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A pipeline for malignancy and therapy agnostic
assessment of cancer drug response using cell
mass measurements
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Functional precision medicine offers a promising complement to genomics-based cancer

therapy guidance by testing drug efficacy directly on a patient’s tumor cells. Here, we

describe a workflow that utilizes single-cell mass measurements with inline brightfield

imaging and machine-learning based image classification to broaden the clinical utility of such

functional testing for cancer. Using these image-curated mass measurements, we char-

acterize mass response signals for 60 different drugs with various mechanisms of action

across twelve different cell types, demonstrating an improved ability to detect response for

several slow acting drugs as compared with standard cell viability assays. Furthermore, we

use this workflow to assess drug responses for various primary tumor specimen formats

including blood, bone marrow, fine needle aspirates (FNA), and malignant fluids, all with

reports generated within two days and with results consistent with patient clinical responses.

The combination of high-resolution measurement, broad drug and malignancy applicability,

and rapid return of results offered by this workflow suggests that it is well-suited to per-

forming clinically relevant functional assessment of cancer drug response.
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Effective biomarkers for precision oncology require mea-
surement approaches that, in addition to predicting a
patient’s response to therapy, are amenable to data collec-

tion within the constraints of routine clinical cancer care. Key
constraints include limited amounts of tumor specimens for
characterization, biological heterogeneity, and the requirement
for rapid return of results to ensure clinical actionability.

Genomic biomarkers have become the gold standard for
guiding therapy choice in precision oncology, demonstrating
remarkable clinical benefit for several well-defined genomic
alterations1–3. However, recent clinical results have shown that
such genomics-driven approaches remain limited in scope. Most
notably, the National Cancer Institute—Molecular Analysis for
Therapy Choice (NCI-MATCH) study found that fewer than 20%
of patients were assigned to a therapy based on the identification
of an actionable mutation4. When also considering patient out-
comes, recent studies have found that approximately 5–7% of
patients demonstrate clinical benefit from genome-targeted
therapies5,6. Furthermore, patients that initially respond to
treatment often develop resistance, at which point subsequent
analysis of actionable mutations rarely offers additional infor-
mation to guide further treatment7. Thus, there is a critical need
for new tools that complement genomic approaches to enable
rational therapy selection for a wider population of cancer
patients.

Functional precision medicine offers one such approach8,9.
Whereas molecular, histological, and genomic biomarkers for
predicting cancer drug response rely on proxy measurements of
cellular function to potentially inform drug selection, functional
precision medicine instead measures the effect of specific drugs
directly on live cells isolated from a patient’s tumor. This
approach has the benefit of offering a truly personalized bio-
marker for potential drug efficacy. However, the need for live cells
presents distinct challenges to testing, including limited cellularity
offered by the most clinically accessible specimen formats, loss of
cell viability, and rapid phenotypic drift ex vivo. Because of these
constraints, many recent development efforts in functional pre-
cision medicine have focused on hematologic malignancies where
access to an abundance of live cells from a fresh tumor specimen
is more routinely feasible10–15. However, broader application of
these approaches to solid tumors remains challenging, often

requiring extended culture to expand cells ex vivo to enable drug
response testing16–18. Despite encouraging recent progress
towards testing drugs more quickly on freshly isolated solid
tumor cells19, these biomarkers have yet to be translated into
workflows that enable routine clinical testing.

Key requirements for a broadly applicable functional test for
cancer drug response include (1) Flexibility: the test must be
compatible with various tumor specimen formats that are col-
lected as part of standard clinical care and the biomarker must
demonstrate an ability to detect response to drugs of different
classes. (2) Sensitivity and robustness: the assay must be capable
of identifying subtle changes in cell populations from highly
heterogenous specimens. (3) Speed: loss of cell viability and rapid
phenotypic drift ex vivo often preclude long-term drug dosing
strategies upstream of response assessment. Furthermore, to
effectively guide therapeutic decision-making, particularly for
patients with advanced or progressing diseases, the assay results
must be returned in a clinically actionable timeframe.

Single-cell mass measurements are uniquely suited to meet the
translational requirements for functional precision medicine
assays. As an integrative biophysical readout of phenotype, cell
mass has been shown to change rapidly in response to treatment
with efficacious drugs, and, as a single-cell measurement, popu-
lations can be characterized using a relatively small number of
cells20–24. Additionally, these measurements of cellular mass
change have been shown to correlate with patient treatment
response in a range of malignancies23,24. However, as with other
functional measurement approaches, the logistical and technical
challenges of performing these live cell measurements continue to
limit their clinical applicability.

Here we describe an end-to-end workflow that extends the
potential application space of single-cell mass-based drug
response testing by demonstrating the feasibility of using this
approach to assess drug efficacy in various primary specimen
formats from both hematologic and solid tumor malignancies
(Fig. 1). Using shipping and tumor cell isolation protocols specific
for various specimen formats, viable single-cell suspensions are
generated (Methods). After overnight drug treatment in vitro, the
mass distributions of these cell populations are measured using a
microfluidic platform that incorporates a suspended micro-
channel resonator (SMR). The SMR sensor enables highly precise
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measurements of cell mass in a simple flow-through channel
configuration, as described extensively elsewhere25–27. In addition
to mass measurements, brightfield images are collected for each
particle passing through the mass sensor and subsequently
annotated using a convolutional neural network (CNN)-based
image classifier to ensure that only single cells of interest are used
for downstream statistical analysis. This complete workflow
demonstrates robust technical reproducibility (Supplementary
Fig. 1) and is routinely completed within 2 days.

Using this pipeline, a wide range of therapies can be tested
within 24 h of treatment, as demonstrated here, with dose-
dependent mass responses for 60 different drugs with varying
mechanisms of action across various cell lines. Furthermore, we
demonstrate the feasibility of performing these measurements for
several different minimally-invasive tumor specimen formats that
are commonly collected as part of routine clinical care. These
include blood, bone marrow, low-input specimens such as fine-
needle aspirates (FNA), and malignant fluids such as pleural
effusions. Together, these results demonstrate that a test based on
image-annotated single-cell mass measurements has the potential
to offer broad utility, is robust to the biological complexity of
translationally-relevant clinical specimens, and can be executed in
a clinically actionable timeframe.

Results
Measuring mass response signal by comparing single-cell mass
distributions. To capture cell mass response to treatment with
adequate statistical significance, we utilize the flow-through for-
mat of SMRs, enabling mass measurements of single cells23–27.
An SMR sensor is composed of a suspended cantilever with an
integrated U-shaped microfluidic channel28 (Fig. 1c). As a cell
passes through the integrated channel, the cantilever’s mass is
transiently altered, inducing a brief change in the resonant fre-
quency proportional to the buoyant mass of the cell, referred to as
“mass” throughout this paper (Methods). The fluidic control
scheme implemented in the instrument (Supplementary Fig. 2),

together with the SMR chip, enables us to consistently measure
samples of 5000 cells from a 50 μl volume in 10 min.

For measuring the treatment response from a patient specimen,
we first isolate the cancer cells from the sample (Fig. 2a) and
incubate the aliquoted cells with drugs or drug combinations
(Methods). We then flow the cell populations through the mass
sensor to capture their cell mass probability distribution
functions, which we will refer to as mass distributions in this
paper. As an example, Fig. 2a shows three distinct mass
distributions—a reference distribution of vehicle-treated cells
(gray) and two distributions of drug-treated cells (blue and
purple). We compare the distributions of treated cells to that of
the reference cells using Earth Mover’s Distance (EMD), a
measurement of statistical similarity, and quantify the difference
as a “mass response” signal (Fig. 2b, Methods). We measure a
larger mass response for diverging mass distributions (higher
EMD value, blue versus gray) and a smaller mass response when
mass distributions are similar (lower EMD value, purple versus
gray). To achieve a malignancy-agnostic metric that can be used
across various tumor specimen types, we normalize each single-
cell mass measurement by the mean mass of the vehicle-treated
cells in the sample, resulting in a unitless mass response signal
that reports mass change (in percent) relative to control (Fig. 2b).

As with other population-based statistical tests, the accuracy of
the mass response measurement relies on how well the sampled
cell populations represent the true distribution in the tumor
sample. To understand the impact of mass measurement
parameters such as sensor noise and the number of cells
measured, we ran simulations using the data shown in Fig. 2a
(Supplementary Fig. 3a, b). Measuring at least 2500 cells to
calculate a mass distribution limits the baseline noise in the mass
response signal between identical samples to less than 1.5% and
the standard deviation of the mass response to less than 1%,
whereas when the measurement is based on a sample of 500 cells,
these parameters are 3 and 1%, respectively.

Due to the inherent biological heterogeneity of patient
specimens, the isolated single cells within a sample may exhibit
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Fig. 2 Measuring the mass response of cancer cells to treatment. a First, isolated cancer cells are dosed and incubated with drugs to be tested (blue and
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distribution of treated cells (blue and purple curves) and untreated reference cells (gray curve). b Mass distributions of the treated and reference cells are
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effects. dMass response plot showing the mass response signals of the control and treated cells shown in (a) and (b). 95% confidence intervals, shown as
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response magnitude difference of TEST and CTRL to a “limit of decision” threshold of 3% (Methods). * indicates p < 0.05, ns indicates p > 0.05.
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different levels of treatment response. Therefore, signal linearity is
a critical attribute for accurately translating the treatment-
induced mass change to a linear mass response that can be
compared across samples, drugs, and treatment doses. As a
demonstration, we simulate varying magnitudes of mass
responses by sampling cells at different ratios from the treated
and reference distributions shown in Fig. 2a. We show that the
mass response signal is a linear function of the ratio of
responding cells in the sample (Supplementary Fig. 3c).

Interpreting mass response as cancer cell response to treat-
ment. A key goal of functional testing is to enable measurements
to be performed in short timescales, ideally less than 48 hours,
minimizing the impact of possible phenotypic drift and viability
change of the primary cancer cells being tested. To ensure
accurate and reliable treatment response results, we measure
vehicle-treated cells twice—both before and after the treated cell
populations—to account for any phenotypic drift over the course
of mass measurement, which may take a few hours when testing
several conditions. For most drugs presented here, dimethyl
sulfoxide (DMSO) is used for dissolution, and therefore, DMSO
(0.25%) treatment alone serves as the vehicle control. Mass
measurements of cells treated with 0.25% DMSO are indis-
tinguishable from untreated cells, suggesting a minimal effect of
DMSO alone on cell mass (Supplementary Fig. 1). Figure 2c
demonstrates the structure of the measurement approach. First, a
population of vehicle-treated cells are measured to be used as a
“reference” distribution. Then, cells that were exposed to treat-
ment are measured. Multiple treatment “conditions” can be
sequentially measured after the reference cells for testing a drug
panel. Finally, a second replicate condition of vehicle-treated cells
are measured as a “control". To quantify treatment-independent
changes in the vehicle-treated cells throughout the measurement
duration, we calculate the mass response between the vehicle-
treated control and reference distributions (CTRL in Fig. 2d). To
quantify cell response to treatment, we calculate the mass
response between the drug-treated cells and vehicle-treated
reference cells (TEST in Fig. 2d). Comparing the TEST and
CTRL signals using bootstrapping29 to confirm a signal magni-
tude difference larger than a “limit of decision” threshold yields a
p-value for interpreting the treatment response outcome (Meth-
ods). For example, a distance measured between blue and gray
dots in Fig. 2d greater than the limit of decision with a corre-
spondingly low p-value would indicate that cells treated with the
tested drug changed their mass relative to the control cells at a
significant level. A high p-value rejecting the hypothesis would
instead indicate no response to treatment (purple dot in Fig. 2d).
In this paper, we define the three-sigma limit of decision30 as 3%
across all measurements, which corresponds to three times the
standard deviation of the distance between 500 cells repeatedly
sampled from a cell population (Supplementary Fig. 3a).

To test the robustness of our approach, we simulated cellular
phenotypic drift in the form of mass loss as a function of time
(Supplementary Fig. 3d). We tested varying rates of mass loss-
per-time for cells to identify the limits of the measurement to
correctly capture the response of the treated cells. Assuming a
linear rate of phenotypic drift as a function of time, we find that
for correctly resolving a mass response magnitude of 5%
(relative to control), a phenotypic drift of vehicle-treated cells
should be less than 10%. We have not observed phenotypic drift
rates exceeding this number for any cell line or primary
specimens reported here. Nonetheless, our approach enables us
to identify significant phenotypic drift by monitoring the
distance between the reference and control cells, as shown as
the CTRL signal (Fig. 2d). If this distance is found to be higher

than 10%, we conclude that the test is inconclusive due to high
phenotypic drift.

Image classification for identifying single cells of interest.
Despite the high efficacy of commercially available cell enrich-
ment kits (Methods), processed primary tumor specimens often
contain biological debris and cellular aggregates in addition to
single cells of interest. Because mass measurements alone cannot
distinguish between these different particle types, this additional
material can interfere with the ability to detect drug-induced
changes in mass distributions. To address this challenge, we
implemented brightfield imaging inline with the mass sensor
(Fig. 1) with real-time optical particle detection immediately
downstream to trigger image capture. Each mass measurement is
paired with its corresponding brightfield image and annotated
using CNN-based image classification. This image classification
occurs in two stages. First, a binary CNN classifier is used to
identify which single-cell events to accept and non-single-cell
events to reject, such as debris and cellular aggregates. Each
accepted event is classified further as either an intact or perme-
able single cell and each rejected event is characterized as either
an aggregate or debris using two additional binary CNN classi-
fiers (Fig. 3a).

We trained the CNN models using manually curated images of
each class collected for a range of cell lines and primary tumor
specimens to ensure generalizability across various specimen
formats (Methods). When applied to manually curated image
sets, these models achieve cross-validated precision and recall
values exceeding 97% for each image class (Fig. 3a).

In this training set, images with small particulate matter or
fibrous material are classified as debris, and images with clearly
segmented clusters of cells are classified as aggregates. Intact and
permeable cell discrimination is based primarily on the reduced
contrast seen in cells that have presumably lost their membrane
integrity. This loss of contrast observed by brightfield imaging is
consistent with viability data collected in parallel with flow
cytometry assessment of DAPI, a DNA-intercalating dye that is
more accessible to the nuclei of non-viable cells that have lost a
functioning cell membrane (Supplementary Fig. 4).

The utility of image-annotated single-cell mass measurements
can be seen when comparing the mass distributions of each
particle class for cell lines with different baseline mass
characteristics (Fig. 3b). Human lung cancer cells (PC9) and
human multiple myeloma cells (MM1S) have significantly
different underlying mass distributions. Given this variation,
relying on mass measurements alone to identify single cells versus
debris or aggregate events based on universal gating would not be
feasible across various cell types. In contrast, image annotation
and classification offer a broadly applicable means of identifying
particles of interest across various samples, as can be seen with
the consistent mass trends across particle classes observed in
these two cell lines, with cell aggregates having the largest mass
followed by intact cells, permeable cells, and debris. This
flexibility allows for the identification of single cells for further
analysis regardless of the underlying structure of a given
specimen’s mass distribution. This improved ability to character-
ize single-cell mass distributions is a key requirement for robustly
identifying treatment responses. To quantify the benefit of linked
imaging, we compared the sampling error between random
subsets of cells drawn from either all mass measurements
collected in a condition or only the mass measurements
annotated as accepted by image classification (Fig. 3c). Across
3222 different datasets collected for a range of primary cells and
cell lines, we found that image curation significantly improved
this sampling variability, with an average decrease in sampling
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error of 16.2% when compared with non-curated measurements
from the same condition. Interestingly, "Aggregate" events
appeared to account for more sampling error than “Debris”
events when considering each class individually (Supplementary
Fig. 4b, c). These results demonstrate the ability of linked imaging
to improve the reliability of sampling an underlying mass
distribution, particularly in the context of highly heterogenous
specimens where only a limited subset of the measurements are
single cells.

Cellular mechanisms of mass response. When considering
changes to cell mass that may occur in response to treatment, we
define three potential categories related to a drug’s mechanism of
action (MOA): (1) changes due to cell cycle arrest, (2) changes
due to disruption of metabolic processes, and (3) changes due to
failure of the cell’s structural integrity (Fig. 4a). Using a basic set
of assumptions about the nature of each type of drug response
mechanism, we can create simple models that demonstrate the
expected changes in mass across a population of single cells. In
the case of cell cycle arrest, we expect that the mass distribution
gradually consolidates around the average newborn-cell mass for
G0/G1 arrest or around the average cell mass prior to the division
for G2/M arrest (Fig. 4b). Prior work has shown that disruption
of metabolic pathways can manifest as changes to single-cell
mass31. These effects can skew towards anabolic or catabolic
processes, resulting in larger or smaller cells, respectively, as
shown schematically in Fig. 4b. Disruption of cell structural
integrity is expected to lead to the largest changes in mass across a
population, as this category is consistent with apoptosis and/or

necrosis of cells, and mass loss is likely driven by dramatic
physical changes to cells such as the loss of membrane integrity/
cytoplasm, membrane blebbing, cellular fragmentation, and other
processes. Here, we assume that large quantities of mass loss will
cause cells to shift from their initial vehicle-treated distribution
towards a minimally overlapping secondary distribution (Fig. 4b).

Drugs with the MOAs described here are reasonably common,
as are homogenous cell lines that respond to these drugs, allowing
us to test these hypothetical models. To test the mass response
outcome of G0/G1 arrest, we exposed the human lung cancer
H1666 cell line to 10 uM trametinib, a MEK inhibitor, for 17 h,
which arrests most cells in early G1 (Supplementary Fig. 5a)32.
Consistent with expectation, we saw the cell mass distribution
shift downward as compared to the control (Fig. 4c, d). In
contrast, by treating MDA-MB-361 cells for 24 h with 10 nM
docetaxel, a microtubule inhibitor which prevents cell division,
we observe a significant upward shift in mass (Fig. 4c, d and
Supplementary Fig. 5b). These two cell cycle arrest phenotypes
are central to the activity of many drugs, both targeted inhibitors
and chemotherapies, and mass response resolves these pheno-
types robustly across many examples (Supplementary Fig. 6). To
produce metabolic skew data, we treated cells with cycloheximide,
a ribosomal inhibitor, or carfilzomib, a proteasome inhibitor, to
skew metabolism towards catabolism or anabolism, respectively.
In L1210 cells treated with 400 nM cycloheximide for 24 h, we
observe a decrease in the average cell mass in the population,
consistent with inhibition of protein biogenesis33. If we look at
U266 cells treated with 50 nM of the proteasome inhibitor
Carfilzomib for 6 h, we instead observe a subtle increase in the
average mass of cells, consistent with excess protein accumulation

Fig. 3 Image annotation of mass data improves measurement fidelity. a Schematic representation of the multi-step image classification approach
implemented in the workflow depicted in Fig. 1. An input image is first classified as accepted or rejected with a binary CNN classifier, and subsequently, all
accepted particles are classified as either an intact or permeable cell and all rejected particles are classified as either an aggregate or debris with two
additional binary CNN classifiers. The inset images are representative of each class. The parenthetical percentages listed at each binary decision node
indicate the cross-validated model performances, listing the precision and recall values, respectively (Methods). b Violin plots showing the mass
distributions for a full population of cells without image classification (white) as well particles within the population that were classified as aggregates
(purple), intact cells (gray), permeable cells (pink), or debris (blue) for a human lung cancer cell line model (PC9) and a human multiple myeloma cell line
(MM1S). c Single-cell image classification reduces the noise in mass response signal by reducing the sampling error. As a demonstration, we randomly
sample 1000 cells 100 times from a measured condition with and without image curation and calculate the mean mass response within these two sets
representing the sampling error with and without image curation. When this is repeated for all the measurements presented in this paper, including 3222
measured conditions across 13 different instruments, we find that image curation reduces the sampling error by 16.2% on average. An example pair of
mass distributions with (gray) and without (white) image curation is shown, indicating the presence of cell aggregate and debris populations in the original
measurement set, which are subsequently removed by the image curation process.
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prior to downstream cytotoxicity (Fig. 4c, d)34. Finally, as an
example of complete structural disruption, we used L1210 cells
treated with 0.5% Tween 20 detergent for 10 min, which
permeabilizes the cell membrane and spiked in at 40% to an
otherwise healthy cell population. Here, we observe a decrease in
the primary mass peak representing live cells, and an increase in
the smaller peak, which represents permeabilized cells (Fig. 4c, d).
These same changes to mass distributions can be observed for
cells following cell death induced by clinically relevant drugs
(Supplementary Fig. 7).

The ability of mass distributions to discern these different
response profiles makes it well-suited for detecting drug response
in heterogeneous primary samples. The dynamic nature of these
mass change mechanisms, combined with heterogeneity in the
timing of cellular response and potential phenotypic drift ex vivo,
means that the presentation of these mechanisms is not

necessarily uniform across a population of cells. For example,
even in homogenous cell lines, such as PC9 cells treated with
doxorubicin, different doses of the drug at a single timepoint
show how mass response signal can be manifested from both cell
cycle arrest and structural disruption, either alone or simulta-
neously (Supplementary Fig. 8).

Mass response modulates with dose, time, and cellular fraction.
In addition to compatibility with various drug mechanisms, when
considering the role of mass response measurement in a clinical
pipeline, it is also important to demonstrate compatibility with
heterogeneous tumor cell specimens that have a limited time
window of phenotypic stability ex vivo during which drug sen-
sitivity can be assessed. It is, therefore, important to assess the
effects of drug concentration and time, as well as underlying
response heterogeneity on mass response readouts.
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The canonical approach used to characterize drug sensitivity as
a function of dose and time is the viability-based dose-response
curve or IC50 curve. As such, a range of viability markers and
techniques (i.e., MTT, ATP, flow cytometry) have shown
potential as functional biomarkers for cancer care, but the impact
of these approaches in the context of primary tumor samples has
often been limited by the number of cells required and the time
necessary to conduct these assays1. However, as an established
standard, IC50 curves provide a useful comparator and model for
understanding the variables that affect cell drug response. IC50

measurements sweep dose space to define the dose inflection
point above which a majority of cells die in response to a drug.
The optimal timepoint for assessing viability-based dose response
is typically dictated by the drug mechanism and cell line being
studied. For fast-acting drugs, a 24 h timepoint is often sufficient
to accurately define cellular sensitivity; however, for slow-acting
drugs (e.g., drugs functioning through cell cycle arrest), a
timepoint of 72 h or longer may be required.

To evaluate how these dose concentration and timing
parameters affect cell mass response, we modulated these
variables independently in cell lines to understand their effect.
MM1S cells treated with a range of concentrations of carfilzomib
for a fixed amount of time (15 h), showed a dose-dependent mass
response similar to the IC50 curves collected for the same cell line
(Fig. 5a). We also noted that mass response changes over time in
response to a fixed concentration of drug (Fig. 5b). For fast-acting
drugs, which rapidly induce cytotoxicity, mass response magni-
tude demonstrates a dose dependence in line with viability loss
measurements collected at similar timepoints (Fig. 5c and
Supplementary Fig. 9a, b). However, as a result of being able to
detect signals prior to cell death, mass response can detect the
effects of slow-acting drugs well in advance of a 50% viability loss
required to define an accurate IC50 signal (Fig. 5d and
Supplementary Fig. 9c, d). For example, in the case of PC9 cells
treated with paclitaxel, 24-h mass measurements accurately define
a dose-response inflection point revealing effective concentrations
of the drug, despite minimal changes in viability observed at all
concentrations tested and IC50 measurements requiring 72 h for a
more accurate readout (Fig. 5d). When this comparison is made
across 60 different drugs tested across 12 different cell lines, the
value of this rapidly manifesting mass response signal is made
clear (Fig. 5e and Supplementary Data 1). For many drugs,
whether targeted kinase inhibitors or chemotherapies, a 24-h IC50

value is comparable to measured mass response with mass-based
signal developing at the same or only slightly lower doses of the
drug than observed by viability measurements. However, for
drugs which work through slower-acting mechanisms such as cell
cycle arrest, 24-h mass response measurements still define
effective drug concentrations, whereas 24-h IC50 measurements
provide little perspective. Instead, 72-h or longer IC50 timepoints
must be taken to define cellular sensitivity to such drugs (Fig. 5e).
This ability to rapidly detect drug-induced changes in cellular
phenotype is particularly beneficial in the context of primary
tissue measurements where longer-term drug incubations are
infeasible due to phenotypic drift and viability loss ex vivo.

While homogenous cell lines provide a good context for
probing the fundamental characteristics of mass response
measurements, they are not good proxies for the heterogeneity
seen in primary tumor specimens. For this reason, it is important
to assess the impact of heterogeneity on mass response
measurements. This variable can be probed explicitly by mixing
drug- and vehicle-treated fractions from the same cell line,
demonstrating that at a given timepoint, the mass response
increases proportionally to the fraction of cells responding
(Fig. 6a). A more complex model is needed to emulate the
heterogeneous size distribution and drug sensitivity in a primary

sample. To test fractional sensitivity with this heterogeneity in
mind, we used a mixture of three cell lines, each with a unique
sensitivity to an individual drug (Fig. 6b). When we observe
response using 1-drug versus, 2- or 3-drug combos, we see an
additive shift in mass response that is roughly the sum of
responses for each drug as a monotherapy (Fig. 6b).

These results demonstrate a high degree of concordance
between mass response measurements and other existing drug
response assays and show that mass response can accurately
characterize the effects of time, dose, and sample heterogeneity.
The higher information content offered by single-cell mass
response measurements and their unique ability to resolve cellular
sensitivity at earlier timepoints upstream of viability loss offer
clear advantages in characterizing primary tumor cells where
longer-term maintenance of cells ex vivo is not practical.

Demonstrating the feasibility of mass response measurements
for various specimen formats. Sample composition and collec-
tion feasibility vary significantly across different clinical specimen
formats and can affect the ease of cell isolation and measurement.
A functional testing pipeline must therefore be compatible with
specimens collected from a variety of tumor cell compartments in
order to maintain broad applicability across malignancies.

Previous work has demonstrated the feasibility of using mass
response measurements to characterize drug efficacy for hema-
tological malignancy sample formats such as blood and bone
marrow21. While providing an encouraging proof-of-concept that
such biophysical readouts can accurately predict patient
responses to therapy, the technical complexity of processing solid
tumor specimens led us to test whether our image-annotated
mass measurement workflow could maintain the ability to
characterize drug sensitivity while also offering the speed,
robustness, and technical reproducibility required of a clinical
testing pipeline (Supplementary Fig. 2b).

To first demonstrate the compatibility of this workflow with
hematologic tumor specimens, we present measurements of a
peripheral blood sample from a patient with plasma cell leukemia
(PCL), and a bone marrow aspirate from a patient with multiple
myeloma (MM) (Fig. 7a, b). In both cases, cellular mass responses
were observable for a range of therapies. Tumor cells isolated
from the PCL sample with a prior demonstration of the t(11;14)
translocation showed a dose-dependent response to venetoclax as
a monotherapy and when in combination with bortezomib and
selinexor. However, these cells did not show a significant mass
response to selinexor or bortezomib alone, suggesting that the
response was driven primarily by venetoclax. This patient had
previously been treated with venetoclax-based therapy and had a
good response lasting five months, as indicated by eradication of
the t(11;14) clone in subsequent diagnostic bone marrow biopsies.
However, treatment was discontinued after five months due to
adverse effects (cytopenias). The bone marrow aspirate sample
from a relapsed/refractory multiple myeloma patient with known
extramedullary involvement demonstrated a dose-dependent
response to the combination of selinexor, carfilzomib, and
dexamethasone, as well as the DCEP therapy combination
(dexamethasone, cyclophosphamide, etoposide, and cisplatin).
When dosed as monotherapies, most of the mass response
observed with the combination therapy was recapitulated by
dosing with the cyclophosphamide analog mafosfamide—a
spontaneously hydrolyzing compound that produces the same
two components as metabolized cyclophosphamide35. As with
prior predictive measurements in multiple myeloma, DCEP mass
response measurements were consistent with the patient’s
decrease in serum monoclonal protein and response to treatment
with salvage combination chemotherapy.
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For patients with relapsed or metastatic solid tumor malig-
nancies, clinical assessment often requires the collection of solid
tissue samples rather than blood or bone marrow specimens.
Collection of these specimens by means of surgical resections or
sometimes even by core biopsies are infeasible given the size and
anatomical location of metastatic lesions, and the desire to avoid
unnecessary invasive procedures. Fine-needle aspiration (FNA),
which utilizes lower profile needles as compared with core
biopsies, offers a minimally-invasive alternative to sample
collection and reduces the risk of bleeding and injury36. To
ensure maximal clinical utility, we sought to determine the
feasibility of performing mass response measurements using these
low-input FNA specimens, which often yield only tens of
thousands of single cells for downstream analysis.

We collected FNA specimens from three different anatomical
locations: a lung mass in a patient with non-small cell lung cancer
(NSCLC), a neck mass in a patient with melanoma, and a soft
tissue lytic bone mass in a patient with breast cancer (Fig. 7c).
Total cell yields were 115-, 25-, and 120-thousand tumor cells for
the lung, bone, and neck masses, respectively. These specimens
demonstrated a range of cell mass drug responses, with the lung
mass showing a significant mass response to paclitaxel and
gemcitabine, the neck mass showing a significant mass response
to a combination of dabrafenib and trametinib, and the soft tissue
bone mass showing no significant response to docetaxel or
doxorubicin. Interestingly, the patient with NSCLC was subse-
quently treated with a combination of carboplatin and paclitaxel
and demonstrated a marked clinical response, consistent with the
mass response to paclitaxel noted for this specimen. These
measurements demonstrate the feasibility of performing the end-
to-end workflow with low-input tissue formats and are an
indication that the pipeline is compatible with performing drug
response testing within the constraints of current clinical
management strategies for patients with advanced solid tumor
malignancies.

In addition to disseminated metastatic lesions, many patients
with advanced cancer accumulate malignant fluids in the form of

pleural effusions or abdominal ascites, which cause significant
discomfort and must be drained for diagnostic and therapeutic
reasons to manage symptoms37. Because these malignant fluids
contain tumor cells, they offer another potential specimen format
for minimally-invasive drug response testing. After standard
tumor cell enrichment protocols (Methods), these samples often
yield a significant number of cells for measurement. For example,
in a patient with advanced non-small cell lung cancer, a 150 ml
sample of malignant pleural effusion yielded nearly 170 million
tumor cells, more than enough to perform mass response testing
for a panel of drugs (Fig. 7d). This patient had been undergoing
treatment with capmatinib due to a confirmed MET exon
14 skipping mutation but had not been responding to this therapy
at the time of the effusion collection. Mass response measure-
ments collected on the tumor cells isolated from the effusion
sample were consistent with this clinical outcome, revealing no
significant mass response to capmatinib across doses ranging over
multiple orders of magnitude. However, these cells were not
generally unresponsive to all treatments, showing significant and
dose-dependent mass responses of varying magnitudes to
therapies including paclitaxel, docetaxel, and cisplatin (Fig. 7e
and Supplementary Fig. 10a). Consistent with cell line measure-
ments of slower-acting taxane drugs—including paclitaxel and
docetaxel—the mass responses detected for these drugs were not
observable with flow cytometry-based viability measurements
collected for this same specimen (Supplementary Fig. 10b). These
results demonstrate the feasibility of collecting mass response
measurements with malignant fluid specimens and provide an
example of the drug response heterogeneity that can be revealed
by measuring primary tumor cells directly. Additionally, they
demonstrate the potential of this new approach to complement
existing genomic biomarkers, which, as in the case of this patient,
do not always identify an efficacious therapy.

Discussion
The workflow presented here builds on recent efforts in func-
tional precision medicine for cancer10–17 and offers key
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additional translational developments towards broadly applicable
rapid therapy guidance for clinical cancer care. We have
demonstrated the feasibility of collecting drug response mea-
surements across cyto-dilute and minimally-invasive specimen
formats used to sample solid tumors such as FNA and malignant
fluids, in addition to those commonly used in the study of
hematologic malignancies, including blood and bone marrow.
The technical improvements described here, including image
classification for measurement curation and the statistical
approach, assist in identifying treatment responses using a limited
number of cells from a heterogeneous and labile primary sample.
The reduction of background noise in primary samples enabled
by these advancements also serves to shorten the turnaround time
of the test to 2 days by limiting the duration of drug exposure
necessary to observe the response.

In addition to demonstrating broad utility across various
malignancies and specimen formats, we have also shown that
this workflow can be used to identify mass responses for a wide

range of therapies. Despite unique mechanisms of action and
differing effects on cellular biophysical properties, single-cell
mass measurements were able to identify dose-dependent
responses in cell lines for all the major drug classes tested
here. Furthermore, with few exceptions, these mass responses
were observable within 24 h, often before a significant signal
could be detected with alternative viability-based measure-
ments. For exceptionally slow-acting drugs, such as the anti-
metabolite 5-fluorouracil, although the mass response was not
observable until roughly 48 h after treatment, this preceded any
observable change in cell viability as assessed by flow cytometry
(Supplementary Fig. 9c). Together, these results suggest that
mass response measurements offer a degree of generalizability
on par with existing gold-standard, viability-based drug
response assays while enabling a faster response readout in
many contexts—an essential set of features when characterizing
heterogeneous clinical specimens that may be undergoing rapid
phenotypic drift ex vivo38,39.
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As with other drug response measurement approaches, there
are certain limitations to using mass response for rapid therapy
guidance. For instance, due to the tumor cell isolation and drug
dosing approaches used in this workflow, it is optimized for
characterizing drugs with tumor cell-intrinsic mechanisms of
action. Therapies that act primarily through non-cell intrinsic
means, such as anti-angiogenic drugs that require physiological
remodeling (e.g., bevacizumab) or endocrine therapies that
indirectly target hormone receptor-positive cancers (e.g., aroma-
tase inhibitors), are currently incompatible with this workflow.
However, certain therapy types, including immuno-oncology
drugs such as checkpoint inhibitors, may require less significant
pipeline alteration to implement effective drug response mea-
surements. Despite these therapies acting through non-tumor
cell-intrinsic mechanisms, previous work has demonstrated that
single-cell mass also provides a readout of the functional state of
immune cells21,22. The workflow presented here is amenable to
the direct measurement of these immune cell-intrinsic drug
effects.

The single-cell nature of this mass measurement pipeline offers
additional technical opportunities moving forward. For example,
linked imaging was used here for particle classification and mass
measurement data quality improvement, but the optical access
offered by this platform is compatible with additional linked
single-cell readout approaches, including brightfield image ana-
lysis for feature extraction, or fluorescence detection for immu-
nophenotyping. In combination with fluidic handling
developments, these optical improvements may lead to lower cell
number requirements for future versions of the assay. As a non-
destructive method, these single-cell mass measurements can also
be collected upstream of linked multi-omic single-cell molecular
readouts, as has been demonstrated previously with paired
scRNA-seq22. Similarly, mass response measurements collected
for a primary tumor specimen can be used to complement
genomic results collected for the same patient, either simulta-
neously to improve predictive accuracy, or downstream to select
the optimal inhibitor for a given genomic alteration. In either
case, single-cell mass measurements offer a functional assessment
of therapeutic response to further parse the underlying biological
determinants of drug sensitivity, offering significant potential
benefits for both clinical decision-making and cancer drug
development.

As a functional test targeting a wide breadth of malignancies
and drug mechanisms, this approach presents unique challenges.
For example, the scope of the drug response testing possible for a
given primary specimen is largely dependent on the total amount
of tumor cells available after processing. As can be seen in Fig. 7
and Supplementary Fig. 11, the number of conditions tested can
therefore range from one to over 25. This cell yield is highly
variable across specimen formats and individual samples and is
an important consideration when designing drug panels to test
for various sample types. Tumor cells isolated from primary
specimens may also have highly variable purity and viability
across different samples, another key consideration for imple-
menting this workflow clinically (Supplementary Note 1).

Interpretation of the mass-response data collected for these
primary specimens is also a key developmental focus of this
approach as it moves into the clinic. While here we have focused
on a simple binary assessment of response and non-response
based on a statistical distance comparison, future work will focus
on the value of considering the magnitude of response or other
single-cell mass distribution features in capturing the depth or
durability of clinical response. Context-appropriate validation
datasets are required to ensure that the test correctly identifies
clinically relevant response and non-response. These drug and
malignancy-specific limit of decision specifications are the focus

of multiple ongoing prospective studies in acute myeloid leuke-
mia, multiple myeloma, and solid tumors, including breast and
lung cancer (NCT04985357 and NCT03777410). The work
shown here has enabled the incorporation of this test into a
robust and scalable CLIA-certified workflow for these and future
clinical validation studies.

This demonstration of clinical feasibility, in addition to the
fundamental properties of mass response measurements—drug
and malignancy-agnostic utility, compatibility with small sample
size, and rapid turnaround time—represents a significant step
towards the broad clinical impact of a functional test on
patient care.

Methods
Single-cell mass measurement. We use the SMR technology to conduct single-
cell measurements in a similar way to what was previously presented23,28, at flow
rates exceeding 80 nl/s and with mass precision of less than 0.5 pg. Different from
the previous studies, the measurement setup used for this study is an integrated
instrument that controls the SMR sensor and associated fluidics. Thirteen identical
SMR instruments were utilized to collect the data presented in this paper. Each
instrument is equipped with a pressure- and flow-based fluidic control setup, a
temperature controller for keeping the SMR chip stable at room temperature, an
FPGA controller along with custom readout and drive electronics for controlling
the SMR sensor and record data similar to that described in Olcum et al.40, an
imaging unit to capture images of single cells as they flow through the SMR and a
computer to run the control and analysis software. The SMR and the sub-units in
the prototype are controlled by custom software developed in the LabView
environment. The software automatically guides the technician through the steps of
calibration, fluidic priming, cell measurement, and cleaning steps sequentially. The
cleaning step is performed between each measured drug condition to prevent
contamination across measurements. The settings and parameters of measure-
ments for the instruments are identical across all the SMR instruments and are
pulled by the control software from a local server. Furthermore, the control soft-
ware is equipped with automatic routines such as flow-kick-back for clog pre-
vention, automatic sample loading for minimizing waste, and cleaning routines to
increase speed and reliability.

Calculation of mass response signal. In this work, we use Earth Mover’s Distance
(EMD), also known as the first Wasserstein Distance, to quantify the difference of
mass distributions as “mass response”. EMD possesses properties of an ideal metric
to quantify differences in cellular distributions41 such as linearity, translation
invariance, symmetry, and is robust to small differences of distributions due to
instrument drift, measurement noise, or other sources of variability42. As suggested
by Orlova et al.42, EMD meets all the requirements given above and is computa-
tionally efficient for executing one-dimensional data like the single-cell mass
measurements43.

To define the mass response signal as a normalized, dimensionless metric to
compare mass distributions, we introduce the following notation (Eq. 1):

Mass Response of X :¼ EMDðX;ZÞ=∑N
i Zi ¼ ∑N

i jXi � Zij=∑N
i Zi; ð1Þ

where X and Z are sorted single-cell mass measurements of drug- and vehicle-
treated reference cells, respectively, and N is the number of cells in each
distribution42. (Mass response is also calculated for instances where X and Z have
different sizes. In the above equation, we assume N for both for simplicity.)

We calculate the 90% confidence interval of the mass response signal using non-
parametric bootstrap methods as we cannot expect Gaussian (or other known)
distributions for the cellular mass. Specifically, the BCa (bias-corrected and
accelerated) method is used to estimate confidence intervals with accurate coverage
probabilities over the entire range of mass response signal44. For all the reported
mass responses in this paper, N ¼ 2500 cells and the number of bootstrap
replicates for the mass response confidence interval is R ¼ 5000 unless otherwise
explicitly noted.

Statistics and reproducibility—determination of test outcome based on limit
of decision. The proposed structure for measuring mass response (Fig. 2c, d)
enables us to test the biological significance of the measured mass response signal
as opposed to directly comparing single-cell measurements using a statistical test.
Since the number of cells measured (N) to represent each cell population is on the
order of thousands, small deviations in the mass distributions due to sampling
error, instrument noise, or phenotypic drift can turn out to be statistically sig-
nificant. Such deviations, however, can be statistically significant without repre-
senting a biologically meaningful signal45. To circumvent this problem, we define
the test statistic, θ, to be the difference between two mass response signals, i.e.,
CTRL and TEST, as shown in Fig. 2d, and check if θ is larger than the limit of
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decision threshold. Hence (Eq. 2):

θðX;Y;ZÞ � Mass ResponseðXÞ �Mass Response ðYÞ ¼ ð∑N
i jXi � Zij

�∑N
i jYi � ZijÞ=∑N

i Zi;
ð2Þ

where Y is the sorted mass measurements of the vehicle-treated control cells and X
and Z are defined as above. The second term of the equation is the distance
between reference and control cells measured at different points in time (Fig. 2c).
The test statistic is thus the distance of the drug-treated cells to the vehicle-treated
reference cells relative to the “phenotypic drift” (if any) in the control cells over the
duration of the test. Even in the absence of drift, the second term captures the
naturally occurring noise inherent in estimating the distance between two finite
samples from the same distribution.

To test for cancer cell sensitivity to treatment, we compare the signal, θ, to a
threshold, θ0—the biologically meaningful “limit of decision”—appropriate for the
class of drug being evaluated. It is challenging, in general, to do non-parametric
hypothesis testing for non-zero nulls. As stated by Chernick, “Particularly
important in hypothesis testing is the use of asymptotically pivotal statistics and
centering the distribution under the null hypothesis”46. Consistent with the
statement, we use the bootstrap-t method as outlined here. Using the derivation of
Davison et al.29, we introduce a pivot, i.e., a combination of data and parameters
whose distribution is independent of an underlying model (Eq. 3),

T ¼ ðθ̂ � θÞ=S ð3Þ

where θ̂ is the observed signal, θ is the (unobservable) true signal, and S is the
standard error of θ̂. In this formulation, T is asymptotically Gaussian. In the work
presented here, θ̂ is measured from N ¼ 2500 cells each of reference, control, and
test populations. S is estimated using r ¼ 19 bootstrap replicants of θ̂.

To test the null hypothesis H0 : θ ≤ θ0, we substitute θ0 for θ and the observed
value of the pivot under the null becomes (Eq. 4):

tobs ¼ θ̂ � θ0

� �
=S ð4Þ

To do the hypothesis test, we compare tobs to a bootstrap simulation of
T (Eq. 5):

T� ¼ θ̂
� � θ̂

� �
=S� ð5Þ

where S* is the estimated error of the bootstrap replicant, θ̂
�
. Since S� is, again,

found by bootstrap, we have an “embedded bootstrap” method. We used R ¼ 999

iterations of θ̂
�
and, for each of those, r ¼ 19 iterations to estimate S�.

The p value, i.e., probability of achieving the observed result given the null
hypothesis is true, is then (Eq. 6):

p value ¼ Pr T ≥ tobs
� � ffi 1þ# T� ≥ tobs

� �
1þ R

ð6Þ

where Pr xð Þ is the probability that x is true and #½x�� is the count of bootstrap
variants for which x is true. For the chosen number of iterations, R, the minimum
achievable p value is 0.001. We compare the resultant p value to the customary
significance level of 5%, i.e., p value< 0:05, to determine if the null hypothesis can
be rejected.

Image classification. Images collected of various cell types on the SMR instruments
were manually curated to generate training sets of at least 10,000 images for each
image class (intact cell, permeable cell, debris, and aggregate). Three different binary
classification CNN models were then generated using the Keras library (2.3.1) in
Python (3.7.7). These include (1) an accept/reject model that utilized both intact and
permeable cell images as “accepted” events and both debris and aggregate images as
“rejected” events during training, (2) an intact/permeable model, and (3) an aggregate/
debris model. For training, we used image augmentation to improve the robustness of
the final models. This augmentation included random vertical and horizontal image
flipping, brightness adjustment, and rotation. Eachmodel was trained using 90% of the
images from each curated training set, with the remaining 10% used for cross-
validation to test model performance. The precision and recall of this cross-validation
are reported in Fig. 3. Images were classified in two stages, first utilizing the accept/
reject classifier and then further annotating accepted particles with the intact/
permeable classifier and the rejected particles with the debris/aggregate.

Cell culture. A549, PC9, MDA-MB-361, PA-TU-8902, HT-29, NCI-H1666, NCI-
H2228, MM.1S, MM.1R, H929, U266, and KMS-12-PE cells were maintained in a
base media supplemented with fetal bovine serum (FBS; Sigma Aldrich,
Cat#F4135), antibiotic-antimycotic (Gibco, Cat#15240062) and HEPES (Gibco,
Cat#15630080), and stored in a humidified incubator at 37 °C, 5% CO2. Base media
was either RPMI1640+GlutaMAX (Gibco, Cat#61870), DMEM+ glucose+
GlutaMAX (Gibco, Cat#10566024), or McCoy’s 5 A Medium (ATCC, Cat#302007).
H929 cells were cultured in media supplemented with 2-Mercaptoethanol (Sigma,
Cat#97622). For passage, adherent cell lines were treated with 0.25% trypsin-EDTA
(Gibco, Cat#25200) as recommended by the manufacturer. Cell lines were obtained
from ATCC, DSMZ, or ECACC, except for KMS-12-PE cells, which were received

as part of a collaboration with the Parekh Lab at MSSM. All cell lines tested
negative for mycoplasma on a monthly basis.

Drug dosing. Drugs were obtained from MedChemExpress or SelleckChem as
lyophilized powders and were reconstituted in an appropriate solvent and stored as
single-use aliquots at −80 ˚C for long-term use. For mass response assays, cells
were dosed at 2 × 105 cells/mL and were dosed at the determined drug con-
centrations for the specified duration. Control cells were dosed at 0.25% DMSO
(vehicle control). Cells were then plated in 6 or 12-well standard polystyrene plates
and incubated for the specified period. For suspension cell lines, at the time of
measurement, cells were gently resuspended, rinsed with a complete medium,
centrifuged for 5 min at 300 × g, and resuspended in a medium for measurement.
For adherent cell lines cells, at the time of measurement, the supernatant of each
well was collected, the well was rinsed with PBS, and cells were detached using
0.25% Trypsin-EDTA (Gibco, Cat#25200) for 7 min. The detached cells were then
combined with the supernatant for each well, centrifuged for 5 min at 300 × g, and
resuspended in the medium for measurement. Isolated primary cells were plated
into 24 or 96-well lo-bind plates (Corning: Cat# 3473), and following incubation,
cells were gently resuspended, rinsed with complete medium, centrifuged for 5 min
at 300 × g, and resuspended in a medium for measurement.

Sample shipment. Primary cancer specimens were collected from patients upon
provision of informed consent and consistent with the IRB-approved protocols
(WCMC IRB # 0010004608, ISMMS IRB # STUDY-18-00456, CSHRI IRB #
1738582-3). Once the primary sample was collected, the shipper was sent overnight
back to the Travera laboratory for processing. All FNA and malignant fluid samples
were shipped in shippers maintaining 4 ˚C (FedEx, standard duration cooling
unit). Fine-needle aspirates were resuspended in HypoThermosol (BioLife Solu-
tions) for preservation during shipment. Blood and bone marrow specimens were
placed in green-top sodium-heparin clinical specimen tubes (BD Vacutainer), and
shipped in controlled room temperature shippers maintaining temperatures
between 15–20 °C (Inmark Life Sciences). Each shipper was otherwise prepared
consistent with the regulations for a Category B shipment of biological substances.

Tumor cell isolation. Blood and bone marrow samples were processed by
upstream filtration through a 70-µm mesh filter (pluriSelect), followed by Ficoll
density gradient centrifugation (Sigma Aldrich). Mononuclear cell populations
were then subjected to positive selection using CD138+ or CD33+ magnetic
microbeads (Miltenyi) and separated using an AutoMACS Pro Separator (Milte-
nyi) following the manufacturer’s protocols. Purified cells were resuspended in
RPMI media supplemented with Glutamax and 10% FBS. Fine-needle aspirate
samples were first subjected to red blood cell lysis (BD PharmLyse), followed by
mechanical and enzymatic digestion using the Miltenyi human tumor dissociation
kit following the manufacturer’s protocol. Tumor cells were then purified using the
Miltenyi human tumor cell isolation kit following the manufacturer’s protocol.
Pleural effusion samples were similarly first subjected to red blood cell lysis fol-
lowed by MACS-based tumor cell isolation using the same Miltenyi tumor cell
isolation kit. For both FNA and effusion specimens, enriched tumor cells were
resuspended in DMEM media with Glutamax and 20% FBS.

Viability assays. The viability response of cells was assessed using CellTitre-Glo
2.0 (Promega, Cat#G9242), and luminescence was quantitated by a plate reader.
Cells were plated in triplicate in a flat bottom 96-well plate (Corning, Cat#3903) at
starting concentrations of either 2 × 104 or 2 × 105, depending on cell doubling
time. Drug treatments were assessed between 24–144 h. All measurements were
performed based on the manufacturer’s protocol.

Flow cytometry assays. All flow cytometry measurements were performed on a
MACSQuant 10 cytometer (Miltenyi Biotec, Auburn, CA). Data analysis was
performed with FlowJo (10.8.1). Cell viability was assessed by staining cells with
Annexin V (Biolegend, CAT# 640945) and 4’,6-Diamidino-2-Phenylindole,
Dilactate (DAPI) (Biolegend, CAT# 422801), viable cells were defined as cells
staining negative for both DAPI and Annexin V. To compare flow cytometry data
with mass data (Fig. 5 and Supplementary Fig. 9), subsets of 2500 cells were
randomly sampled from each flow cytometry data set 1000 times to define a 95%
confidence interval for cell viability readouts. These measurements were then
compared to the control condition using a 3% limit of decision (described above for
mass response measurements) to determine p values. To faithfully compare the
magnitude of response between flow cytometry and mass readouts, the y-axis limit
for mass response measurements was determined by finding the mass response
between image events classified as “Cells” versus “Permeable” within the control
population of cells measured for each experiment as a proxy for 100% viability loss
as determined by flow cytometry (Supplementary Fig. 4).
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Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets generated during and/or analyzed during the current study are available
from the corresponding author on reasonable request. All source data for figures can be
found in Supplementary Data 1.
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