Quantum Time Complexity and Algorithms for
Pattern Matching on Labeled Graphs

Parisa Darbari', Daniel Gibney?, and Sharma V. Thankachan®

! Florida Polytechnic University, Lakeland, FL 33805, USA
pdarbarikozekanan@floridapoly.edu
2 Georgia Institute of Technology, Atlanta, GA 30332, USA
daniel.j.gibney@gmail.com
3 North Carolina State University, Raleigh, NC 27695, USA
svalliy@ncsu.edu

Abstract. The problem of matching (exactly or approximately) a pat-
tern P to a walk in an edge labeled graph G = (V, E), denoted PMLG,
has received increased attention in recent years. Here we consider con-
ditional lower bounds on the time complexity of quantum algorithms
for PMLG as well as a new quantum algorithm. We first provide a con-
ditional lower bound based on a reduction from the Longest Common
Subsequence problem (LCS) and the recently proposed NC-QSETH. For
PMLG under substitutions to the pattern, our results demonstrate (i)
that a quantum algorithm running in time O(|E|m'~¢ + |E|'~*m) for
any constant € > 0 would provide an algorithm for LCS on two strings
X and Y running in time O(|X||Y|'™% + |X|*~¢|Y|), which is better
than any known quantum algorithm for LCS, and (ii) that a quantum
algorithm running in time O(|E|m%7€ + \E\%fsm) would violate NC-
QSETH. Results (i) and (ii) hold even when restricted to binary al-
phabets for P and the edge labels in G. We then provide a quantum
algorithm for all versions of PMLG (exact, only substitutions, and sub-
stitutions/insertions/deletions) that runs in time O(y/|V]|E| - m). This
is an improvement over the classical O(|E|m) time algorithm when the
graph is non-sparse.
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1 Introduction

We consider an approximate version of the Pattern Matching on Labeled Graphs
problem (PMLG) under substitutions to the pattern, defined as follows: Given a
directed edge-labeled graph G = (V, E) with alphabet X, a string P of length m
also over alphabet X' (which we call a pattern), and an integer 6 > 0, determine
if there exists a walk in G that matches a string P’ such that dgy (P, P") < 6.
Here, dg (P, P') denotes the Hamming distance between P and P’ and a walk
is a ordered list of edges in F, i.e., e1, ..., e, where e; and e;41 are incident
to the same vertex for 1 < ¢ < m. Edges are allowed to be repeated in a walk.
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Letting label(e) denote the edge label for an edge e € E, we say a length m
string P’[1,m] matches a walk ey, ..., e, if P'[i] = label(e;) for 1 <i < m.

PMLG was first considered in the context of pattern matching in hypertext [5,
30, 32, 33]. It has become increasingly important in Computational Biology where
labeled graphs are used as multi-genomic references and sets of reads obtained
through sequencing must be mapped to the reference [1, 10,13, 17,27, 34]. PMLG
is also used in variant calling [9,12, 25] and read error correction [28,31].

The theoretical aspects of PMLG have also received significant study. The
classical algorithm for PMLG is a dynamic programming solution that runs in
time O(|E|m) [5,32]. It was first shown in [15] that a PMLG algorithm running
in time O(|E|'~*m + |E|m!'~¢) for any constant ¢ > 0 would contradict the
Strong Exponential Time Hypothesis (SETH) even for directed acyclic graphs
(DAGSs) and 6 = 0. These results were later strengthened in [18] to show that
the same lower bounds hold based on likely weaker assumptions in circuit com-
plexity. Nevertheless, there exist classes of graphs where the exact matching
problem can be solved in near-linear time, e.g., Wheeler graphs [16]. However,
recognizing whether a given graph has these properties is a hard problem [4, 19,
20]. The version of the problem where modifications are allowed to labels in the
graph rather than the pattern has also been considered, which is NP-hard even
when restricted to only substitutions over binary alphabets on special classes of
graphs [5, 21, 26].

Despite the extent of the applied and theoretical work, there has been sparse
research on utilizing quantum computing to solve PMLG. Equi et al. [14] re-
cently considered the problem for leveled DAGs, where they presented an al-
gorithm running in O(|E| + /m). Several closely related problems have been
studied as well. Aaronson et al. [2] look at quantum algorithms for the problem
of determining whether a string is contained in a regular language were consid-
ered. However, these regular languages were represented as monoids rather than
NFAs, meaning the input representation could differ drastically from the labeled
graphs used here. For finding exact matches in a single string (which could be
viewed as a path) there exists a quantum algorithm running in O(\/ﬁ + /m)
time? on a string of length n and pattern of length m [24, 36].

We provide the first hardness result for PMLG in the quantum computing
setting based on a reduction from the Longest Common Subsequence problem
(LCS) and the conjectured hardness NC-QSETH [8], along with a new algorithm
yielding a quantum speedup for non-sparse graphs.

1.1 Quantum Computing and Input Model

Quantum algorithms typically have their problem instance expressed as an ora-
cle, or a function that allows one to query the problem instance. On a quantum
computer, these queries can be made with an input that is the superposition
of multiple inputs, allowing for a type of parallelism. We refer the interested
reader to [23]. These oracles are often treated as black boxes, but they can also

4 O(.) suppresses poly-logarithmic factors.
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be provided as a Boolean circuit, or through an algorithmic description (under
the quantum random access assumption discussed more below). The query com-
plexity of a quantum algorithm is defined as the number of times that the oracle
gets queried by the algorithm, and the quantum time complexity is the number
of elementary gates® needed to implement the quantum algorithm, in addition
to the number of queries.

A lower-level description of a quantum algorithm in terms of unitary op-
erators acting on a state vector (a quantum circuit) is necessary for many of
the algorithms that are the fundamental building blocks of quantum computing.
These include, for example, quantum random walk algorithms for finding marked
vertices in a graph [29], period finding algorithms [35], and Grover’s search [22].
However, it is often possible to utilize these fundamental algorithms on a higher
level of abstraction. This accommodates algorithm descriptions more similar to
those used in imperative programming. Examples of this approach include the
graph algorithms presented in [11], the O(y/n + /m) pattern matching algo-
rithm mentioned in the introduction [24], and a recent algorithm for finding the
longest common substring of two strings [3]. One useful assumption is quantum
random access (described in [3,7]). Using quantum random access, a classical
T-time algorithm can be invoked by a quantum search algorithm, like Grover’s
search, in O(T') time. We assume quantum random access here as well and pro-
vide our algorithm description at a high level. In fact, our solution in Section 3
can be seen as an algorithm (or even implemented as a small Boolean circuit)
that utilizes the oracles of the original PMLG instance to create new oracles that
are then used as input for a pre-existing quantum algorithm for shortest st-path
in a directed graph.

For PMLG, we assume that our oracles allow us to query the indegree/outdegree
and adjacency list of any vertex and the label of any edge. Any symbol in the
pattern P can also be queried by specifying an index.

1.2 NC-QSETH

When establishing computational complexity results for quantum algorithms,
using known lower bounds on query complexity has an immediate limitation
for proving super-linear lower bounds on quantum time complexity. For prob-
lems where the input represents something such as a graph, once a linear num-
ber of queries have been made, the entire input is obtained by the algorithm.
An alternative approach taken by the authors of [8] is to establish conditional
lower bounds on quantum time complexity using the hypothesized hardness NC-
QSETH. Although the details of NC-QSETH, which is based on a conjectured
hardness of determining properties of circuits in a subset of the circuit class NC,
are too complex to be covered here, we can use the result below.

Lemma 1 (LCS lower bounds based on NC-QSETH [8]). Under NC-
QSETH the Longest Common Subsequence problem (LCS) on two strings of
length n cannot be solved in quantum time O(n**~%) for any constant ¢ > 0.

® Elementary gates are defined in [6].
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1.3 Our Results
We prove the following theorem in Section 2.

Theorem 1. There exists a reduction from LCS with strings X and Y over
alphabet X' to PMLG with substitutions over a binary alphabet. This requires
O((IX|+|Y|) log(|X|+1Y]) -log® | £|) time (on a classical computer) and outputs
a graph G = (V, E) where |V|,|E| = O(|X|log(|X| +|Y|) - log® |X|) and pattern
P[1,m] where m = O(|Y |log(| X | + [Y]) - log® | X|).

Theorem 1 gives us the following Corollaries.

Corollary 1. An algorithm for PMLG with substitutions to the pattern over a
binary alphabet running in quantum time O(|E|'~¢m~+|E|m"'~¢) for any constant
e > 0 would provide an algorithm running in quantum time O(|X||Y|'~¢ +
| X|*=¢]Y]) for LCS.

It should be noted that no strongly sub-quadratic quantum algorithms for LCS
are known.

Corollary 2. An algorithm for PMLG with substitutions to the pattern over a
binary alphabet running in quantum time O(|E|2~*m + |E|mz2 %) for any con-
stant & > 0, would provide an algorithm running in quantum time O(|X|2~¢|Y |+
|X|[Y|27¢) for LCS, violating NC-QSETH.

In Section 3, we provide an algorithm running in quantum time O(m~/|V || E|)
for PMLG based on Durr et al.’s quantum algorithm for shortest path [11],
implying a quantum speedup over the classical algorithm when the graph is not
sparse, i.e., |E| = Q(|V|**¢). This algorithm also works when insertions and
deletions are allowed to the pattern, in addition to substitutions.

2 Reduction from LCS to PMLG

We first present a simplified version of the reduction to PMLG with a larger
alphabet and then show how to modify it to obtain the result for PMLG on
binary alphabets. In the decision version of LCS, we are given two strings X, Y
and k£ > 0 and have to decide where there exists a common subsequence of X
and Y having a length at least k. Suppose |Y| > | X| and let n = |Y|.

We construct our graph G based on the string X. We start by making two
sets of vertices uy, ug, ..., uy x| and vy, va, ..., vx|. We add directed edges (vi, uy)
with labels X[i] for 1 < ¢ < |X|. All remaining edges are labeled with a new
symbol # that is not found in either X or Y. We then create edges (u;,v;11)
for 1 <4 <|X|— 1. Next, for v;, 1 <i < |X| we create edges (v;, v;), (v, Vix1),
(Vi, Vit2), (Vi,Vita), -y (Ui, Viyoe) for the largest ¢ such that i + 2¢ < |X| and
the edge (u|x|,u|x|). See Figure 1. Let § = n — k and

P = #]'logn'\+1 Y[l] #]'logn'|+l Y[Q] #]'logn]—o—l #[logn]+1 Y[TL]
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Fig. 1. Reduction from LCS to PMLG for X = aababbbab. The dashed edges are
only shown from v; but similar edges are present from every v;, 1 < ¢ < |X|. If
Y = baabbabaa then P = #°b#5 a#® a#2b#5b#° a4 b#° a4 a.

Lemma 2. The graph distance from v; to vj for any j > i is at most [logn].

Proof. Let i’ be the largest value such that i < ' < j and there exists edge
(vi,vr) € E. By construction i’ = ¢ + 2* for some x > 0. We claim i’ > % + .
Otherwise i/ =7 + 2% < ]2;1 + 4 implies i + 2%+ < 7, contradicting that index
7/ was the largest possible. Since the distance between the current index and j
can always be at least halved, by repeatedly apply the same process, we need at
most [logn] additional edges before reaching j.

The correctness of the reduction is established by the following lemma.

Lemma 3. There exists an LCS of length at least k for strings X and Y iff
there exists a walk in G that matches P after at most § = n — k substitutions to
P.

Proof. First assume there exists an LCS of length k¥ > k, with X[i;], X[is],...,
X [ix] matching Y[j1], Y[jz],---, Y [jr]- We obtain a walk on G as follows: starting
at vertex v;,, we traverse the self-loop (v;,,v;,) until we reach the Y[j;] in P,
substituting symbols in P to # as necessary. Then we follow edge (v;,,u;,)
matching Y[j;] in P. We now traverse the edge (u;,,v;,+1) and the shortest
path from v;, 41 to v;,, which by Lemma 2 has at most [logn] edges. We next
traverse the self-loop (v;,,v;,) until reaching the symbol Y[js] in P, at which
point we match Y[js] with the edge (v;,,u;,). This process is repeated until
Y [jrr] is matched to the edge (v;,,,ui,, ). If iy = |X|, the edge (u x|, ux|) is
traversed for any remaining symbols in P. Exactly n — k¥’ < n — k = § symbols
in P are substituted to #.

Next suppose there exists a walk in G that matches P with ¢’ < § substitu-
tions. This implies that n — 0’ of the non-#-symbols in P are not substituted
and instead matched with symbols on edges (v;,u;). By construction, once an
edge (v;,u;) is traversed, the next edge with a non-#-label traversed is an edge
(vir, u;r) where i’ > . Hence, the non-# symbols in P matched with edges in G
correspond to a common subsequence of X and Y of length n — &6’ >n — 4§ = k.

It can be easily shown that the statement of Lemma 3 holds when deletions
and insertions are also allowed to P. Lemma 4 proves this result.
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Lemma 4. Given graph G and path P as in our reduction, if a walk minimizes
the number of edits to P, we can assume only substitutions are made.

Proof. Any substring of P consisting of only # can be matched without edit
cost from any vertex v;, 1 < i < |X|. From vertices u;, 1 < i < |X]|, an edge
with # needs to be traversed regardless so it would be suboptimal to delete
any # in P that could be matched on an edge (u;, v;y1). Combining these, an
optimal solution never deletes a substring of P of the form #%, x > 1. This leaves
only substrings that contain some symbol Y [i]. However, the cost for deleting
any such substring is at least the cost of substituting Y'[i] to a #-symbol. We
conclude that no deletions need to be made to P in an optimal solution.

For insertions, a similar argument holds. Any insertion of a substring of the
form #%, x > 1, is clearly suboptimal since there exist enough #-symbols to
traverse from any two vertices v; and v;. An insertion that includes a non-#-
symbol is also unnecessary, since the edge matched against that symbol could
have been not traversed for the same cost.

2.1 Hardness of PMLG over Binary Alphabet

Let X' = X U{#}, 0 = |2’] > 3, and £ = 2[logo]. We will create our own
constant weight binary code (i.e., one where all codewords have the same number
of 1’s) for X'. We first take ¢ = [logo]. This makes ({) > o and allows us to
assign to every symbol in X a distinct binary string of length £ containing exactly
t 1’s. Let enc(a) denote this encoding for o € X’. Controlling the number of 1’s
allows us to compute the cost of an optimal solution, as described next. We
modify the earlier reduction by replacing every edge (u,v) (allowing for v = )

having label a € X’ with:

— A directed path from u to v that matches (10°=24)*0'~! enc(a). These paths
are called symbol paths;

— A parallel directed path starting and ending at the same vertices (or vertex)
that matches the string (10°=2+¢) 110, These are called escape paths.

See Figure 2.

t repetitions

S 0" Jenciey
i 2L . 8
— > > & $
u U e g
10t72+f -1 OK

Fig. 2. Conversion of an edge in G with label a from u to v to two paths in G.
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We denote the resulting graph as G’. The pattern P’ is created by replacing
every symbol P[i] with (10'~2+¢)*1*=1 enc(P[i]) for 1 <i < |P|. Let

8 =tn—k)+(t—1)(P|—(n—k))
=tn—k)+ (@ —1)(n([logn] +2) — (n—k)).

Note that [V’|, |E’|, and |P’| are O(nlogn - log® o).

Lemma 5. Any walk in G' matching P’ with at most 6’ mismatches must start
at some vertex corresponding to an original vertex in V.

Proof. First, consider a walk starting at some vertex w internal to a subdivided
path (i.e., one not corresponding to an original vertex in G) and where w does
not have an edge labeled 1 leaving it. By construction, this causes substrings of
the form 102! in P to not be synchronized and creates at least ¢+ mismatches
for every substring of the form (10t=2+4)*1*=! enc(P[i]). To see this, note that
at most one of the 1’s in the prefix (10t=2+) can be matched to an edge with
label 1 and at least one of the 0’s is mismatched to a 1 edge as well.

If the walk starts at a non-original vertex with an edge leaving it labeled
1 that is not internal to a subpath labeled 1! in an escape path or a symbol
encoding, then for each substring of the form (10°=2¢)*1!=! enc(P[i]) in P’, the
substring enc(c) is forced to traverse a subpath labeled 0%, causing at least ¢
mismatches once again.

Finally, suppose the walk starts at a non-original vertex with an edge leaving
it labeled 1, but internal to a subpath labeled 1! in some escape path or a
symbol encoding. Then for each substring (10t=2+4)t1*~!enc(P[i]) in P’, the
prefix (10°=2+4)? once again causes ¢ mismatches from not being synchronized.

In all cases, at least ¢|P| > ¢’ mismatches are causes in total.

Lemma 6. There exists an LCS of length at least k for strings X and Y iff
there exists a walk in G’ that matches P’ after at most §' substitutions to P’.

Proof. First, suppose there exists an LCS of length at least k. Follow the walk
in G’ corresponding to the walk in G that requires at most § substitutions
to P. When doing so, take the symbol path when the symbol in P matched
the corresponding edge in G, and the escape path otherwise. This incurs ¢t — 1
mismatches per subdivided edge corresponding to a match and ¢ mismatches
per subdivided edge corresponding to a mismatch. Hence the total number of
mismatches is at most t(n — k) + (¢t — 1)(|P| — (n—k)) = §'.

Next, suppose there exists a walk in G’ matching P’ with at most ¢ mis-
matches. By Lemma 5, substrings of the form (10t~2+¢)t1¢=! enc(P[i]) are matched
(after substitutions) to sub-paths in the walk that start at the beginning of sym-
bol or escape paths. If enc(P[i]) # enc(«), then the number of mismatches for
that substring is ¢ since the number of mismatches for matching the escape
path is ¢ (Hamming distance of 1~!enc(P[i]) and 1*710%), versus the symbol
path, which is at least ¢ (Hamming distance of 1*~! enc(P[i]) and 0~ enc(a)). If
enc(P[i]) = enc(a), by matching the symbol path, the number of mismatches is
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t—1 (Hamming distance of 1*~! enc(P[i]) and 0°~* enc(«r)). We conclude that in
an optimal solution the total number of mismatches is ¢ times the number of mis-
matched symbols between P and the corresponding walk in G, plus t—1 times the
number of matched symbols between P and the corresponding walk in G. Hence,
if the number mismatches for G’ is at most &' = t(n— k) + (t — 1)(|P| — (n —k)),
the number mismatched symbols in G is at most n — k = §. By Lemma 3, this
implies the LCS of X and Y is at least k.

This completes the proof of Theorem 1.

3 Quantum Algorithm for PMLG

We will use Durr et al.’s [11] single-source shortest path algorithm as a black
box. Their algorithm is a modification of Dijkstra’s algorithm that utilizes a
minimum finding version of Grover’s search to obtain a quantum time/query
complexity of O(y/]V]|E|) on a graph G = (V, E). It solves the st-shortest path
problem correctly with constant probability greater than % The version of this
algorithm that we are using assumes the graph is represented using adjacency
lists (in the form of an oracle). Given that the outdegree v; is d* (v;), the oracles

fio[dt(vi)] = {1,...,|V]} x N are defined as
fi(j) = (' vertex adjacent to vertex v;, weight on the corresponding edge).

We assume that |E| = £2(|V|) and assign an arbitrary ordering to V.

A reduction from PMLG to the Single Source Shortest Path problem on an
alignment graph was shown by Amir et al. in [5]. We will be using the oracles
for G to implicitly construct an alignment graph for G = (V, E) and P[1,m],
denoted G’. The number of vertices in G’ is ©(]V|m) and the number of edges
is ©(|E|m). Because of this, if we explicitly constructed the alignment graph,
the O(|E|m) edges would result in no speed up over the classical algorithm.
The key insight into efficiently using Durr et al.’s algorithm is that G’ need
not be explicitly constructed to simulate the oracles used by the shortest path
algorithm. We show how the output of the oracles for G’ can be computed in
constant time given the oracles for G and P.

Our algorithm allows for substitutions, insertions, and deletions. Assume we
have substitution cost S, deletion cost D, and insertion cost I. The alignment
graph G’ = (V'  E’) is as follows: The vertex set is

V= {0 [1<i<|V],1<j<m+1}U{s,t}.
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a b
e ——
() U3 V4

Fig. 3. An alignment graph G’ (bottom) that is constructed from the starting graph
G (top) and pattern P = baa. The edges labeled I correspond to insertion and have
weight I; the edges labeled S correspond to substitution and have weight S; the edges
labeled D correspond to deletion and have weight D; the black edges correspond to an
exact match and have weight 0.

We denote edges with the triple (start-vertex, end-vertex, weight). The edge set
for G’ is

J+1, 0)|1<j<m,(v;,v) € E and label((v;,v)) = P[j]} U
Lot ) [ 1< j < m, (vi, o) € E and label((vi, vn)) # Plj]} U
i“ D)[1<i<[V[,1<j<m} U

{vm+1 £,0)|1<i<|V[}.

7

See Figure 3 for an example alignment graph.



10 P. Darbari, et al.

The linearized index for s is 0, for t it is (m+1)|V|41, and for v/, 1 < i < [V,
1<j<m+1,itis (]—1)|V|+Z

For 1 <4 < |V], 1 < j < m, we have that d*t(v)) = 2d*(v;) + 1 and the
oracle is f7 : [dF (v])] = {0, ..., |V'| — 1} x N, where

(G =DIVI+ fi(k), I) 1<k <d(v)
VI + filk —d*(v:)),0)  d*(vi) +1 <k <2d" (v

;) and
J(k_) _ label((vivvfl k—dt (v; )))) [ ]
)

(J‘V‘ + fi(k — d+(vi))vs) d+(vz) +1<k< 2d+( v;) and

label((vi, vy, (k—at(v,)))) 7 Pli]
(IVI+i, D) k=2d7(v) +1

For 1 <i<|V]andj=m+1,d"(v])=1and f/(1) = ((m+1)[V|+1,0). For
vertex s and 1 < k < |V, fo(k) = (k,0).

Lemma 7 ([5]). There exists an st-path in the alignment graph G’ with total
weight § iff there exists a walk in G that P matches after § edits.

Applying the algorithm of Durr et al. and utilizing the oracles above gives
an algorithm running in quantum time O(y/[V’[[E’]) for PMLG. Using that
V'l = (m + 1)|V] + 2 and [E'| = ©(m|E|) this has query/time complexity
O(m/|VI|E).

Theorem 2. There exists a quantum algorithm that solves PMLG (exact match-
ing, matching with substitutions to P, or matching with substitutions, inser-

tions, and deletions to P) with constant probability greater than % and has

O(m+/|V||E]) quantum time and query complexity.

4 Discussion

We leave open the problem of establishing the same reduction from LCS to
PMLG when edits (substitutions, insertion, and deletions) are allowed to the
pattern and the PMLG alphabet is binary. Lemma 4 establishes this result for
polynomial sized alphabets. Note that the hardness of LCS under NC-QSETH
(Lemma 1) holds for constant-sized alphabets, thus Corollary 2 can be extended
to PMLG with edits to the pattern for constant-sized alphabets.

Our reduction from LCS creates a sparse graph. A subquadratic time re-
duction to a dense graph would give an improved quantum algorithm for LCS,
suggesting the challenge of finding such a reduction. Moreover, the graph in our
reduction is cyclic. This is interesting in light of improvements in the query com-
plexity of quantum algorithms for recognizing if a string is in a regular language
when the monoid representation of the regular language is acyclic [2]. If these
results for monoids can be efficiently transferred to acyclic NFAs, it suggests the
challenge of finding a reduction from LCS to PMLG on DAGs when § = 0.
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