2201.05710v1 [cs.Al] 14 Jan 2022

arxiv

TPLP: Page 1-8. © The Author(s), 2021. Published by Cambridge University Press 2021 1
doi:10.1017/xxxxx

Specifying and Reasoning about CPS through the Lens
of the NIST CPS Framework

THANH HAI NGUYEN, MATTHEW BUNDAS, TRAN CAO SON
Department of Computer Science, New Mexico State University, Las Cruces, USA
(e-mail: thanhnh@nmsu.edu, bundasma@nmsu.edu, stran@nmsu.edu)

MARCELLO BALDUCCINI, KATHLEEN CAMPBELL GARWOOD
Saint Joseph's University, Philadelphia, USA
(e-mail: mbalducc@sju.edu, kcampbel@sju.edu)

EDWARD R. GRIFFOR
National Institute of Standards and Technologies, USA
(e-mail: edward.griffor@nist.gov)

submitted xx xx xxxx; revised Xx Xx Xxxx; accepted xx xx Xxxx

Abstract

This paper introduces a formal definition of a Cyber-Physical System (CPS) in the spirit of the CPS Frame-
work proposed by the National Institute of Standards and Technology (NIST). It shows that using this def-
inition, various problems related to concerns in a CPS can be precisely formalized and implemented using
Answer Set Programming (ASP). These include problems related to the dependency or conflicts between
concerns, how to mitigate an issue, and what the most suitable mitigation strategy for a given issue would
be. It then shows how ASP can be used to develop an implementation that addresses the aforementioned
problems. The paper concludes with a discussion of the potentials of the proposed methodologies.

KEYWORDS: Attificial Intelligence, Knowledge Representation, Automated Reasoning and Planning,
Cyber-Physical System, Answer Set Programming, Concern Satisfaction, CPS Ontology

1 Introduction

The utility (potable water, wastewater) distribution systems, the electric power grid, the trans-
portation network, automated driving systems (ADS), hospital robots, and smart-home systems
are a few examples of cyber-physical systems (CPS)! that are (or soon to be) a part of our daily
life. Before any CPS is deployed into the real-world, several concerns need to be investigated
and addressed, e.g., why should someone trust that the CPS will perform its functions safely,
securely and reliably? How will such a system respond to a certain critical conditions and will
that response be acceptable? In other words, evidence must be gathered and argued to be suffi-
cient to conclude that critical properties of a CPS have been assured before its deployment. For
financial and practical reasons, the validation and verification of a CPS should be done as early
as possible, starting with its design. CPS are complex systems that evolve with use, requiring a
principled methodology and tools for developing an assurance case before release to the market.

! For brevity, we use CPS to stand for both the plural and the singular cyber-physical system.

mailto:thanhnh@nmsu.edu,bundasma@nmsu.edu,stran@nmsu.edu
mailto:mbalducc@sju.edu,kcampbel@sju.edu
mailto:edward.griffor@nist.gov

2 Thanh H. Nguyen, et al.

Such a methodology and the tools for applying it are two key contributions of this paper. We
present here a formalization of a CPS with a clearly defined semantics that enables the assess-
ment of critical system properties. The need for such a foundation for assurance can be seen in
the next example.

Example 1

Suppose that we would like to develop an Automated Driving System (ADS). We have two
constraints that we would like to enforce: (a) packets sent from the wind-sensor, a part of the
situational awareness module (SAM), to the main processor must be fast and reliable; (b) all
communication channel must be encrypted. We will refer to (a) and (b) as an Integrity concern
and Encryption concern, respectively.

Consider a situation in which the ADS has only one possible communication channel, which is
fast, reliable when encryption is disabled, but is not when encryption is enabled. In this situation,
the two constraints are in conflict with each other. It is impossible to satisfy both of them.

Assume that we also have some preference, called verification, which is related to the
verification of received data. Encrypted data would have been preferred to non-encrypted one.
If the wind-sensor uses the non-encrypted socket communication, it can satisfy (or positively
affect) the Integrity concern but it does not satisfy (or negatively affect) the verification
preference.

In this paper, we view a CPS as a dynamic system that consists of several components with
various constraints and preferences which will be referred as concerns hereafter. Given a concrete
state of the system, a concern might or might not be satisfied. We aim at laying the mathematical
foundation for the study of CPS’ concerns. This foundation must allow CPS developers and
practitioners to represent and reason about the concerns and answer questions such as (i) will a
certain concern or a set of concerns be satisfied? (ii) is there any potential conflict between the
concerns? and (iif) how can we generate the best plan that addresses an issue raised by the lack
of satisfaction of a concern? Readers familiar with research in representing and reasoning about
dynamic systems might wonder whether well-known formalisms for representing and reasoning
about dynamic systems such as automata, action languages, Markov decision process, etc. could
be used for this purpose. Indeed, our proposed framework extends these formalisms by adding a
layer for modeling the components and concerns in CPS.

To achieve our goal, we propose a formalism for representing and reasoning about concerns
of CPS. We will focus on the properties described in the CPS Framework (CPSF) proposed by
the CPS Public Working Group (CPS PWG) organized by the National Institute of Standards and
Technology (NIST) Griffor et al. (2017a;b); Wollman et al. (2017). This framework defines sev-
eral important concepts related to CPS such as facets (modes of the system engineering process:
conceptualization, realization and assurance), concerns (areas of concern), and aspects (clusters
of concerns: functional, business, human, trustworthiness, timing, data, composition, boundaries,
and lifecycle). These concepts are organized in an ontology which is easily extensible and allows
us to better manage development and implementation within, and across, multiple application
domains. We formally propose the notion of a CPS system that (i) considers constraints among
concerns; (if) enables the automatic identification of conflicts between concerns; and (iii) en-
ables the application of planning techniques in computing mitigation strategies. Building and
establishing upon CPSF are important properties of our research, which distinguish it from much
of the work done on CPS so far. While most of the prior research is focused on a specific class of
CPS or of aspects, e.g., CPS for smart grids or concerns related to cybersecurity Uluagac et al.

Specifying and Reasoning about CPS through the Lens of the NIST CPS Framework 3

(2019), the methodology we provide is intentionally domain-independent and applicable to any
class of CPS.

The paper is organized as follows. Section 2 presents a brief overview of the CPS frame-
work, answer set programming, action language, and reasoning with ontologies using answer set
programming. Section 3 contains the main contribution of the paper, a formalization of a CPS
theory, which includes a specification of CPS domain and the semantics defining when a concern
is satisfied. It also formally defines several reasoning tasks related to the satisfaction of concerns
such as (i) when is a concern satisfied; (if) what are the most/least trustworthy components of a
CPS system; (iif) is the CPS system compliant; (iv) computing a mitigation strategy for a system
when some concerns become unsatisfied; (v) which mitigation strategy has the best chance to
succeed. Section 4 provides an answer set programming implementation of the tasks. The paper
concludes with the discussion of the related work. The paper is arranged in a way such that it
can be of interest to different groups of readers. Specifically, it separates the formal definitions
of a CPS, and the reasoning tasks associated with it, from a concrete implementation of the rea-
soning tasks. As such, a reader only interested in the formal theories would likely be interested
in Section 3. On the other hand, the code in Section 4 would be of interest to readers who would
like to experiment with their own CPS.

2 Background

This section reviews the background notions that will be used in the paper, including the CPS
ontology, answer set programming, and the use of logic programming in ontology reasoning.

2.1 NIST CPS Framework and the CPS Ontology

One of the major challenges in designing, maintaining and operating CPS is the diversity of areas
of expertise involved in these tasks, and in the structure of the CPS itself. For example, develop-
ing a “smart ship” Moschopoulos (2001) involves close interaction among, and cooperation of,
experts in disciplines ranging from cybersecurity to air conditioning systems and from propul-
sion to navigation. As demonstrated by, e.g., NASA’s Mars Climate Orbiter?, ensuring a shared
understanding of a CPS and the interoperability of its components is an essential step towards its
success — a goal that is made even more elusive by the fact that the areas of knowledge relevant
to a CPS vary greatly depending to the type of CPS considered.

For this purpose, NIST recently hosted a Public Working Group on CPS with the aim of
capturing input from those involved in CPS to define a CPS reference framework supporting
common definitions and facilitating interoperability between such systems, regardless of the type
of CPS considered. A key outcome of that work was the CPS Framework (Release 1.0, published
as three separate NIST Special Publications Griffor et al. (2017a;b); Wollman et al. (2017)),
which proposes a means of describing three facets during the life of a CPS: conceptualization,
realization, and assurance of CPS; and to facilitate these descriptions through analytical lenses,
called aspects, which group common concerns addressed by the builders and operators of the
CPS. The CPS Framework articulates the artifacts of a CPS in a precise way, including the
concerns that motivate important requirements to be considered in conceptualizing, realizing

2 https://www.simscale.com/blog/2017/12/nasa-mars-climate-orbiter-metric/

4 Thanh H. Nguyen, et al.

(including operating), and assuring CPS. Albeit helpful, being a reference framework the CPS
Framework only helps with the specification of a CPS and the discussion among experts. It does
not, by itself, reduce the amount of work necessary to analyze the CPS and its evolution of the
CPS lifecycle.

This realization gave impulse to the investigation that ultimately resulted in the CPS Ontology
Balduccini et al. (2018); Nguyen et al. (2020a), which provides a CPS analysis methodology
based on the CPS Framework featuring a vocabulary that describes and supports the understand-
ing and development of new and existing CPS, including those designed to interact with other
CPS and function in multiple interconnected infrastructure environments.

CPSFramework:Aspects

uuuuuuuuuu

d
G
R

Fig. 1: NIST CPS Ontology

At the core of the CPS Framework and of the CPS Ontology are the notions of domains,
facets (conceptualization, realization and assurance), aspects and concerns, and a cyber-physical
functional decomposition. The product of the conceptualization facet is a model of the CPS
(requirements added to address prioritized concerns), the product of the realization facet is a CPS
satisfying the model and the product of the assurance facet is assurance case for the prioritized
set of concerns. Domains represent the different application areas of CPS such as automated
driving systems, electrical grid, etc. Concerns are characteristics of a system that one or more
of its stakeholders are concerned about. They are addressed throughout the lifecycle of a CPS,
including development, maintenance, operation and disposal. Requirements are assertions about

Specifying and Reasoning about CPS through the Lens of the NIST CPS Framework 5

the state variables of a CPS aimed at addressing the concerns. The reader should note that, in
line with the current CPSF specification, we consider the term property to be a synonym of
requirement, and we use the two terms interchangeably in the rest of this paper. Artifacts are the
elements of products of the facets for a CPS and include requirements, design elements, tests, and
judgments. Aspects are the ten high-level concerns of the CPS Framework: functional, business,
human, trustworthiness, timing, data, communication, boundaries, composition, and lifecycle.

e Functional aspect is a set of concerns related to the sensing, computational, control, com-
munications and actuation functions of the CPS.

e Business aspect includes the concerns about enterprise, time to market, environment, reg-
ulation, cost, etc.

e Human aspect is a set of concerns related to how a CPS is used by humans or interacts
with them.

o Trustworthiness aspect is a set of concerns related to the trustworthiness of CPS including
security, privacy, safety, reliability, and resilience. In this paper we adopt the definition
of trustworthiness from the NIST CPS Framework, where the term is taken to denote the
demonstrable likelihood that the system performs according to designed behavior under
any set of conditions as evidenced by its characteristics.?

o Timing aspect: Concerns about time and frequency in CPS, including the generation and
transport of time and frequency signals, time-stamping, managing latency, timing compos-
ability, etc.

e Data aspect includes the concerns about data interoperability including data semantics,
identify operations on data, relationships between data, and velocity of data.

o Communications aspect includes the concerns about the exchange of information between
components of a CPS.

e Boundaries aspect is set of concerns about the interdependence among behavioral do-
mains. Concerns related to the ability to successfully operate a CPS in multiple application
area.

e Composition aspect includes the concerns about the ability to compute selected properties
of a component assembly from the properties of its components. Compositionality requires
components that are composable: they do not change their properties in an assembly. Tim-
ing composability is particularly difficult.

e Lifecycle aspect: Concerns about the lifecycle of CPS including its components.

The CPS Ontology defines concepts and individuals related to concepts (with focus on Trust-
worthiness) and the relationships between them (e.g., has-subconcern). Figure 2, excluding the
nodes labeled CAM, SAM and BAT and links labeled “relates” and “active”, shows a fragment of
the CPS ontology where circle nodes represent specific concerns and grey rectangle nodes repre-
sent properties. To facilitate information sharing, the CPS Ontology leverages standards such as
the Resource Description Framework (RDF*) and the Web Ontology Language (OWL?) for de-
scribing the data, representing the entities and their relationships, formats for encoding the data
and related metadata for sharing and fusing. An entity or relationship is defined in the ontology

3 This is a pragmatic choice dictated by our intent to provide a formal account of the NIST CPS Framework. The debate
on a universally accepted definition of trustworthiness is on-going and is beyond the scope of this paper.

4 https://www.w3.org/TR/rdf-concepts/

3 https://www.w3.org/TR/owl-features/

6 Thanh H. Nguyen, et al.

by an RDF-triple (subject, predicate, object). Below are the main classes and relationships in the
CPS ontology.

Aspects and Concerns. The ontology defines the highest-level concept of Concern with its re-
finement of Aspect. In the concern tree in Figure 1, the circle nodes of a concern tree represent
specific concerns which are individuals of class Concern. The root nodes of the concern tree is
a particular kind of concern that is an instance of class Aspect (subclass of Concern). Specific
concerns are represented as individuals: Trustworthiness as an individual of class Aspect,
Security and Cybersecurity of class Concern. Edges linking aspects and concerns are rep-
resented by the relation has—subconcern. A relation has-subconcern is used to associate a
concern with its sub-concerns. Thus, Trustworthiness aspect has—-subconcern Security,
which in turn has-subconcern Cybersecurity.

Properties. Properties of a CPS are represented by individuals of class Property. In the CPS
Framework, a concern can be addressed by a combination of properties. An edge that links a
property p with an aspect or concern c is represented by the relation addressed-by, which
says that concern c is addressed by property p. For example in Figure 2 (LKAS domain), con-
cern Integrity has been addressed by some properties: Secure-Boot, Advanced-Mode,
Powerful-Mode, Normal-Mode and Saving-Mode.

To ease the reading, we provide a summary of the main classes and relationships in the CPS
ontology in Table 1.

2.2 Answer Set Programming

Answer Set Programming (ASP) Marek and Truszczyniski (1999); Niemeld (1999) is a declar-
ative programming paradigm based on logic programming under the answer set semantics. A
logic program IT is a set of rules of the form:

c+ai,...,am,notby,... notb,

where ¢, a;’s, and b;’s are literals of a propositional language® and not represents (default) nega-
tion. ¢ can be absent. Intuitively, a rule states that if @;’s are believed to be true and none of the
b;’s is believed to be true then ¢ must be true. For a rule r, r* and r~—, referred to as the positive
and negative body, respectively, denote the sets {aj,...,a,} and {by,...,b,}, respectively.

Let IT be a program. An interpretation / of Il is a set of ground atoms occurring in IT. The
body of a rule r is satisfied by I if ¥ C I and r~— NI = 0. A rule r is satisfied by I if the body of r
is satisfied by I implies I |= c. When c is absent, r is a constraint and is satisfied by [if its body
is not satisfied by /. I is a model of IT if it satisfies all rules in II.

For an interpretation / and a program I1, the reduct of I w.r.t. I (denoted by IT/) is the program
obtained from IT by deleting (i) each rule r such that ¥~ N1 £ @, and (i) all atoms of the form
not a in the bodies of the remaining rules. Given an interpretation /, observe that the program
IT' is a program with no occurrence of not a. An interpretation I is an answer set Gelfond and
Lifschitz (1990) of ITif / is the least model (wrt. C) of IT .

A program IT can have several answer sets, one answer set, or no answer set. I1 is said to be
consistent if it has at least one answer set; it is inconsistent otherwise. Several extensions (e.g.,
choice atoms, aggregates, etc.) have been introduced to simplify the use of ASP. We will use and

6 For convenience, we often use first order logic literals under the assumption that they represent all suitable ground
instantiations.

Specifying and Reasoning about CPS through the Lens of the NIST CPS Framework 7

Class Meaning
Concerns that stakeholders have w.r.t. to a system, such as security, integrity, etc.
Concern They are represented in the ontology as individuals. The link between a concern
and its sub-concerns is represented by the has—subconcern relation.
High-level grouping of conceptually equivalent or related cross-cutting concerns
Aspect (i.e., human, trustworthiness, etc). In the ontology, Aspect is subclass of class
Concern.
Class of the properties relevant to a given CPS. The fact that a property addresses
Property . . .
a concern is formalized by relation addressed-by.
Features of a CPS that characterize its state, e.g., if a component is on or off.
Configuration When property satisfaction can change at run-time, corresponding individuals
will be included in this class.
Action and Actions are those within the control of an agent (e.g., an operator) and those that
. occur spontaneously. Constraints capture dependencies among properties (e.g.,
Constraint .
mutual exclusion).
Object Property Meaning
The object property represents the has—subconcern relationship between the
cpsf:hasSubCon Ject property rep “ ‘ p

concerns.

cpsf:addrConcern

The object property represents the addressed-Dby relation between a concern
and a property.

cpsf:impactPositively

The object property represents positive impact relation between a property and a
concern.

Table 1: Main components of the CPS Ontology

explain them when needed. Given a program IT and an atom a, we write IT |= a to say that a
belongs to every answer set of I1. IT |~ a to say that a belongs to at least one answer set of IT.

We illustrate the concepts of answer set programming by showing how the 3-coloring problem
of a bi-directed graph G can be solved using logic programming under the answer set semantics.
Let the three colors be red (r), blue (b), and green (g) and the vertex set of G be {0, 1,...,n}. Let
I1(G) be the program consisting of

o the set of atoms edge (u,v) for every edge (u,v) of G,
e for each vertex u of G, the rule stating that u must be assigned one of the colors red, blue,

or green:

{color (u,g);color (u,r);color (u,b) }1 +

8 Thanh H. Nguyen, et al.

This rule uses the choice atom, introduced in Niemela et al. (1999), to simplify the use of
ASP. This atom says that exactly one of the atoms color (u,g), color (u,r), and color (u,b)
must be true.

o for each edge (u,v) of G, three rules representing the constraint that u and v must have
different color:

« color(u,r),color (v,r),edge (u,v)

« color(u,b),color(v,b),edge (u,v)
)

«— color(u,g),color(v,g) ,edge (u,v)

It can be shown that for each graph G, (i) IT(G) has no answer set, i.e., is inconsistent iff the 3-
coloring problem of G does not have a solution; and (ii) if I1(G) is consistent then each answer
set of IT(G) corresponds to a solution of the 3-coloring problem of G and vice versa.

2.3 Action Language 5

We review the basics of the action description language % Gelfond and Lifschitz (1998). An
action theory in Z is defined over two disjoint sets, a set of actions A and a set of fluents F.
A fluent literal is either a fluent f € F or its negation —f. A fluent formula is a propositional
formula constructed from fluent literals. An action domain is a set of laws of the following form:

Executability condition: executable a if py,..., p,)
Dynamiclaw: a causes f if py,...,p, 2)
Static Causal Law: [if p1,...,pn 3)

where f and p;’s are fluent literals and a is an action. (1) encodes an executability condition of an
action a. Intuitively, an executability condition of the form (1) states that a can only be executed
if p;’s hold. (2), referred to as a dynamic causal law, represents the (conditional) effect of a. It
states that f is caused to be true after the execution of a in any state of the world where py,..., p,
are true. When n = 0 in (2), we often omit laws of this type from the description. (3) represents a
static causal law, i.e., a relationship between fluents. It conveys that whenever the fluent literals
P1,--., Py hold then so is f. For convenience, we sometimes denote the set of laws of the form
(3), (2), and (1) by K, Dp, and Dg, respectively, for each action domain D.

A domain given in % defines a transition function from pairs of actions and states’ to sets
of states whose precise definition is given below. Intuitively, given an action a and a state s, the
transition function @ defines the set of states ®(a,s) that may be reached after executing the
action a in state s. If ®(a,s) is an empty set it means that the execution of a in s results in an
error. We now formally define ®.

Let D be a domain in Z. A set of fluent literals is said to be consistent if it does not contain
f and —f for some fluent f. An interpretation I of the fluents in D is a maximal consistent set
of fluent literals of D. A fluent f is said to be true (resp. false) in I iff f € I (resp. =f € I). The
truth value of a fluent formula in 7 is defined recursively over the propositional connectives in the
usual way. For example, f A g is true in [iff f is true in / and g is true in /. We say that a formula
¢ holds in I (or [satisfies @), denoted by I |= ¢, if ¢ is true in 1.

7 states are defined later

Specifying and Reasoning about CPS through the Lens of the NIST CPS Framework 9

Let u be a consistent set of fluent literals and K a set of static causal laws. We say that u is
closed under K if for every static causal law

fifpi,....pn

inK,iful=pi A...Apythenu = f. By Clk (u) we denote the least consistent set of literals from
D that contains « and is also closed under K. It is worth noting that Clx (1) might be undefined.
For instance, if u contains both f and —f for some fluent f, then Clk (1) cannot contain « and be
consistent; another example is that if u = {f, g} and K contains

fif h and -hif f,g

then Clg (1) does not exist because it has to contain both /& and —/, which means that it is
inconsistent.

Formally, a state of D is an interpretation of the fluents in F that is closed under the set of
static causal laws K of D.

An action a is executable in a state s if there exists an executability proposition

executable a if fi,...,f;,

in D such that s = fi A... A f,. Clearly, if n = 0, then a is executable in every state of D. The
direct effect of an action a in a state s is the set

e(a,s)={f|a causes f if fi,....,fu €D, sEfHN...Afu}.

For a domain D, ®(a,s), the set of states that may be reached by executing a in s, is defined as
follows.

1. If a is executable in s, then
D (a,s)={s' | s isastateands = Clg (e(a,s)U (sNs'))};
2. If a is not executable in s, then ® (a,s) = 0.

Every domain D in % has a unique transition function @, which we call the transition function
of D. The transition function allows one to compute the set of states reached by the execution of
a sequence of actions & = [ay, . ..,a,] from a state so, denoted by @ («,), as follows:

1. If n =0 then & (at, 50) = 50
2. If n > 0 then & (0t,50) = Uyea

)Ci)(a’,u) where o = [ay,...,a,] and if & (o,u) = 0
for some u then & (o, s0) = 0.

aiso

2.4 Representation and Reasoning with CPS Ontology in ASP

Various researchers have explored the relationship between ASP and the Semantic Web (e.g.,
Eiter (2007); Nguyen et al. (2018b;a; 2020b)), in particular with the goal of leveraging existing
ontologies. In these works, an ASP program is used for reasoning about classes, properties, in-
heritance, relations, etc. Given ASP’s non-monotonic nature, it also provides sufficient flexibility
for dealing in a principled way with default values, exceptions and for reasoning about the effects
of actions and change.

We use a similar approach in this paper to leverage the existing CPS Ontology for reasoning
tasks related to CPS and concerns. Our approach includes the ability to query the CPS Ontol-
ogy for relevant knowledge and provide it to an ASP-based reasoning component. Because the

(o) S O R S

10
11
12
13

14

10 Thanh H. Nguyen, et al.

present paper is focused on the latter, for simplicity of presentation we assume that all relevant
classes, instances, relations, properties of the CPS ontology are already encoded by an ASP pro-
gram. We denote this program by I1(Q) where denotes the ontology, which is the CPS ontology
in this case. We list the predicates that will be frequently discussed in this paper.

e class (X): Xisaclass;

e subClass (X, Y): X1is asubclass of Y;

® aspect (I) (resp. concern (I), prop (I),decomp_func (I)): I isan individual of class
aspect (resp. concern, property, decomposition function);

e subCo (I,J): Jis sub-concern of I;and

e addBy (C, P): concern C is addressed by property P (a link from a property P to a concern
C in the ontology);

e positiveImpact (P, C): The satisfaction of property P impacts positively on the satis-
faction of concern C.

e func (F,C): F is a functional decomposition of concern C.

Listing 1: IT(Q) :ASP program for CPS Ontology Q

class (X) :— RDFtriple (X, "rdf:type", "owl:Class").

subClass (X,Y) :- RDFtriple (X, "rdfs:subClassOf",Y), class (X), class(Y).
subClass (X,Y) :- subClass(X,Z), subClass(Z,Y).

instance (I) :— RDFtriple (I, "rdf:type", "owl:NamedIndividual") .

isInstance0f (I,X) :—- instance(I), class(X), RDFtriple(I,"rdf:type",X).
isInstanceOf (I,Y) :- instance(I), class(X), class(Y), subClass(X,Y),
isInstanceOf (I,X).

concern (C) :— instance (C), isInstanceOf (C,"cpsf:Concern").

aspect (A) :— instance (A), isInstanceOf (A,"cpsf:Aspect").

prop (P) :— instance (P), isInstanceOf (P, "cpsf:Property").

decomp_func (F) :- instance (F), isInstanceOf (F,"cpsf:DecompFunc").

subCo (I,J) :- concern(I), concern(J), RDFtriple (I, "cpsf:hasSubCon",J).

addBy (C,P) :— prop(P), concern(C), RDFtriple (P, "cpsf:addrConcern",C).

func (F, C) :— decomp_func (F), concern(C), RDFtriple(F,"cpsf:
decompFunctionOf",C) .

positiveImpact (P,C) :- concern(C), prop(P), RDFtriple (P,"cpsf:

impactPositively",C).

Listing 1 represents the ASP program II(Q) of CPS Ontology Q. The predicate
RDFtriple (S, P, 0) denotes the RDF triple store which has been queried and extracted from Q
by using SPARQLS. Lines 1-2 define the class (x) and subClass (X, Y) based on the ontol-
ogy extraction. Line 3 reasons the extension about subclass relationship. Lines 4-6 encode the
definitions of instance (I) and isInstanceOf (I, X) with the similar method. The concern,
aspect, property and decomposition function instances are defined in Lines 7-10. And, the three
rules in Lines 11-14 represent the encoding of subCo (I,J), addBy (C,P), func (F,C) and
positiveImpact (P, C) relationships respectively.

Given a collection of individuals in the CPS ontology Q, IT(€2) will allow us to check
addBy (¢, p), subCo (i, j), func(f,c), positiveImpact (p,c), etc; whether a concern ¢ is ad-
dressed by a property p, concern j is a sub-concern of concern #, f is functional decompo-
sition of concern c, the satisfaction of p impacts positively on concern c, etc. respectively.

8 https://www.w3.org/TR/rdf-sparql-query/

Specifying and Reasoning about CPS through the Lens of the NIST CPS Framework 11

They are written as: I1(Q) = addBy (c, p), I1(Q) = subCo (i, j), [1(Q) = func(f,c),]1(Q)
positivelmpact (p,c), etc.

Similar rules for reasoning about the inheritance between concerns, inheritance between sub-
concerns and concerns, etc. are introduced whenever they are used subsequently. We note that
the CPS framework does come with an informal semantics about when a concern is supposedly
be satisfied. The work in Balduccini et al. (2018) provides a preliminary discussion on how the
satisfaction of a concern can be determined. It does not present a formal description of the CPS
system as in this paper and does not address the functional decomposition issue though.

3 CPS Theory Specification
3.1 Formal Definition

In this section, we develop a formal definition of CPS theory and its semantics. The proposed
notion of a CSP theory will allow one to specify and reason about the concerns of the CPS.
Our discussion will focus on Trustworthiness aspect in the CPS ontology but the proposed
methodology is generic and is applicable to the full CPS ontology. To motivate the definition, we
use the following example:

Example 2 (Extended from Balduccini et al. (2018))

Consider a lane keeping/assist system (LKAS) of an advanced car that uses a camera (CAM) and
a situational awareness module (SAM). The SAM processes the video stream from the camera
and controls the automated navigation system through a physical output. In addition, the system
also has a battery (BAT).

CAM and SAM may use encrypted memory (data_encrypted) and a secure boot
(secure_boot). Safety mechanisms in the navigation system cause it to shut down if issues are
detected in the input received from SAM. The CAM and SAM can be in one of two operational
modes, the basic mode (basic._mode or b_mode) and the advanced mode (advanced_mode or
a.mode). The two properties address concern Integrity relevant to operation function. In
advanced mode, the component consumes much more energy than if it were in basic mode. BAT
serves the system energy consumption and relates with one of three properties, saving.mode
(s.mode) or normal_mode (n_mode) or powerful mode (p-mode). Three properties address
concern Integrity relevant to the energy functionality.

The relationship between saM, caMm and BAT are: (1) If both saM and caM are in
advanced.mode, the battery has to work in saving.mode. (2) if cAM and SAM are in
basic.mode, the battery can be in powerful mode or normal_mode and (3) if one of SAM
and CAM is in advanced._mode and the other one is in basic_mode, then the battery must work

in normal_mode.

The relationship between the LKAS domain and the CPS ontology is shown in Figure 2. Infor-
mally, the CPSF defines that the concern Integrity is satisfied if secure boot is satisfied
and its two functionalities, operation and energy, are satisfied; the operation functional-
ity is satisfied if at least one of the properties {advanced.-mode, basic-mode} is satisfied; and
the energy functionality is satisfied if there is at least one of {savingmode, normal_mode,
powerful mode} properties is satisfied. Intuitively, this can be represented by the following

12 Thanh H. Nguyen, et al.

formula:
(secure_boot) A (advanced mode V basic_mode)
A (saving mode Vnormal mode V powerful mode)

sub-concern

“

sub-concern

-concer
sub-concern sub-concem SuP-ooneen

sub-concern

sub-concern

o sub-concern
Functional Physical- y - ili
unctional Securit Dissociability Manageability
_safety sub-concern

sub-concern Predictability

sub-concern

Cyber-
Securit;
ncem
Confidentialit sub-ecpeen
y ‘Availability w @
sub-concern

sub-concern

sub-concern -

e b e T
_ Address - h ~ \ AN Addre:

Address

\ “ Trusted_Auth Y
\ . Devi Y
! Lo N |

OAuth | Add’ f Address Two H

i ress\ - -

/ TN\ Wresias Trusled_E{\vl

! [N relates | fonmen

A \

PT-Code /| Address

Address . /
Address Address FEY Address

Address / pgdress ey i Address
/" Address 4 check ! |
S Address !
g ' ' Normal

H Mode

Firewall-
Setup

| Address

Algo-RSA| |
l
active
yp

active
1P-

ilteri ! |\ Address active
/) ‘ Filtering / \ b Finger-
relates active " f \ Printi
active rinting
relates G IP-Check ¢
Enenee? N relates/ 2 :
reates | "% relates Ve ates active Email- IRIS-Scan ~ J) ‘
i i i relates
relates relates active active Verify
relates relates /
elates active \ relates active
at relates relates elates
refates relates
relates relates
\ relates

relates
relates

-

relates active

Fig. 2: CPS Ontology and LKAS domain

The example shows that a CPS system is a dynamic domain and contains different components,
each associated with some properties which affect the satisfaction of concerns defined in the
CPS ontology. In addition, the satisfaction of concerns depends on the truth values of formulae
constructed using properties and a concern might be related to a group of properties. We will
write @ (c) to denote the set of properties that addresses a concern c. We therefore define a CPS
system as follows.

Definition 1 (CPS System)
A CPS system . is a tuple (CO, A, F,R,T") where:

CO is a set of components;

A is a set of actions that can be executed over .7

F is a finite set of fluents (or state variables) of the system;

R is a set of relations that maps each physical component co € CO to a set of properties R (co)
defined in the CPS ontology; and

T is a set of triples of the form (c,fu, ¥) where ¢ is a concern, fu is a functional decomposition
of concern ¢, and y is a formula constructed over @ (c).

Specifying and Reasoning about CPS through the Lens of the NIST CPS Framework 13

In Definition 1, (A, F') represents the dynamic domain of ., I represents constraints on the sat-
isfaction of concerns in the CPSF ontology in ., and R encodes the properties of components in
. which are related to the concerns specified in the CPSF. As the truth values of these properties
can be changed by actions, we assume that

UeoecoR (co) U{active (co,p) | co € CO,p € R(co)} CF.

where active (co,p) is true means that the component co is currently active with property
p. (A,F) is an action theory as described in Subsection 2.3. Note that (A,F) can be non-
deterministic due to the presence of statements of the form (3). Although it is possible, this
rarely happens in practical applications. We will, therefore, assume that (A, F) is deterministic
throughout this paper. We illustrate Definition 1 in the following example.

Example 3
The CPS system in Example 2 can be described by Sjxus = (COgras,Aikass Fikass Rikas, L ikas)
where:

e COjas = {SAM,CAM,BAT}.
o Fjius contains the following fluents:

— active(X,P) denotes that component X € COy,s is working actively with prop-
erty P, e.g., active (cam, basic_mode), active (cam,data_encrypted),
active (sam, finger printing) and active (bat,normal_mode) states that
the camera is working in basic mode, with encrypted data, the SAM is authenticated by
fingerprinting method and the battery is working in normal mode.

— on(X) (off (X)) denotes that component X is (isn’t) ready for use.

— the set of properties that are related to the components (P denotes that the truth value
of property P), e.g., basic.mode, oauth, etc. These properties are drawn in Figure 2
(rectangle boxes except the three components SAM, CAM, BAT).

The relationship among the fluents are encoded below:

— active (BAT, saving_mode) if active (SAM, advanced _mode) ,active (CAM ,advanced _mode)
which encodes the statement if both SAM and CAM are in advanced_mode, the battery has
to work in saving_mode.

— active (BAT ,normal_mode) if active (SAM,advanced_mode) ,active (CAM, basic_mode)
and
active (BAT ,normal_mode) if active (SAM,basic_mode) ,active (CAM,advanced mode)
encode the statement if one of SaM and CAM is in advanced.mode and the other one is
in basic_mode, then the battery must work in normal_mode.

— active (BAT, power ful _mode)V active (BAT ,normal _mode) if active (SAM , basic_mode)
active (CAM ,basic_mode) which encodes the statement if both saM and cam are in
basic_mode, the battery can be in powerful mode or normal_mode.

® Ay, contains the following actions:

— switM(X,M): switching the component X to a mode M. The set of the form (1) and
(2) for the action that switches the CAM from basic_mode to advanced_.mode
switM(cam,advanced mode) contains the following statements:

14 Thanh H. Nguyen, et al.

— executable switM(cam,advanced -mode) if on(cam),active(cam,basic_mode)
which says that the action switM(cam,advanced mode) can only be executed if the
component CAM is on and in the basic_mode.

- switM(cam,advanced mode) causes active(cam,advanced mode),

—active (cam,basic_mode).
This states that if we switch the component CAM to the advanced_mode then it is in
the advanced-mode and not in the basic_mode.

The statements for switM(cam,basic_mode) that switches the CAM from
advanced-mode to basic.mode are similar. And the similar statements for
switM(sam,basicmode) and switM(sam,advanced mode) which switch the compo-
nent SAM to basic.mode and advanced-mode respectively.
— There are also actions that switch other components to different modes or methods. These
are:
- swith(X,A): switching between authorization methods where X = SAM.
- switV(X,V): switching between verification methods where X can be SAM or CAM.
— switEM(X,EM): switching between encryption method where X can be SAM or CAM.
— switEA(X,EA): switching between encryption algorithms where X can be SAM or
CAM.

The set of statements of the form (1) and (2) associated with these actions are similar to
those associated with switM(X,M) and is omitted here for brevity.

— t0n(P) and t0£ff (P) denote the actions of enabling and disabling the truth value of prop-
erty P, respectively. The sets of statements of the form (1) and (2) associated to each of
these actions is similar. We list those associated with t0n (P) as an example:

— executable tOn (basic.mode) if —basic_mode: this can only be executed if the sys-
tem property is not in the basic_mode.
— tOn(basic_mode) causes basic_mode: set the system property to basic_mode.

— patch (P) denotes action of patching some properties P with available patch software. The
set of statements for action patch (P) could be:
executable patch (conn_encrypted) if ~conn_encrypted,availablePatch (conn_encrypted)
patch(conn_encrypted) causes conn_encrypted

® Ry = {CAM — {ip-filtering, algoDES, algo AES, algo RSA, data.encrypted,
conn_encrypted, mac_check, protocol_encrypted, secure_boot, basic_mode,
advanced.mode, trusted.auth_device, trusted_environment, iris,scan}, SAM
— {data encrypted, algoRSA , algoDES, algoAES, protocol_encrypted,
conn_encrypted, firewall setup, mac_check, ip-filtering ,advancedmode,
basicmode, finger printing, two_factors, iris_scan, oauth, opt_code, email verify
, 1ip-check , trusted_environment |, secure,boot}, BAT +— {powerfulmode,
trusted_environment, normal mode, saving mode}}.
The components and relations to the properties are illustrated by the arrow lines with “relates”
labels in the bottom part of Figure 2.

o ['.s contains the following triples (see also Figure 3):

— (integrity, operation, advanced.mode V basic.mode) says the satisfaction of for-
mula advanced.mode V basic_mode addresses the concern integrity in the relevant
functional decomposition operation.

Specifying and Reasoning about CPS through the Lens of the NIST CPS Framework

oo

Authorization

s

15

Address AR, Address ~ Tl
N < > S ~<
e — TN Address / YT Address ~
Address’) N - R NI . Address
Normal- SN e . Trusted-Auth- SN N
Mode || .~ Address 1 Address | Ad al Device Address, A Address Two- \
. ! AN vanced || e s/ i Address Fact 1
¢ ! | -Mode | . R " \ actors !
Saving- | AN Finger- ! [
s : N M Address / 5
Mode L Address \ Printing ” / Address Trusted-
. ! Basic- ‘ ‘ ,,’ Environment
Address
Powerful- Secure- Mode IRIS-Scan P |
i /]
Mode Boot {Operation / !
Energy ¢ T L
Email-Verify IP-Check OAuth

Fig. 3: Integrity and Authorization concerns with their Functionalities and Properties

(integrity, energy, savingmode V normal_ mode V powerful_mode) denotes
the formula saving.mode V normal_mode V powerful_mode addresses the concern
integrity in the relevant functional decomposition energy.

(authorization, sign_in, oauth A opt_code) denotes the satisfaction of formula
oauth A opt_code addresses the relevant functional decomposition sign_in of the con-
cern authorization.

(authorization, sign_in, two_factors V finger_printing V iris_scan) denotes
the formula two_factors V finger_printing V iris_scan addresses the concern
authorization in the relevant functional decomposition sign_in.

(authorization, sign_in, cauth A ip_check A email_verify) denotes that the con-
cern authorization with the relevant functional decomposition sign_in is addressed
by formula oauth A ip_check A email_verify.

In addition, the functional decomposition of the concern in-
dicates that the formula (secure boot) A (advancedmodeVbasicmode) A
(saving mode Vnormal mode V powerful mode) addresses the Integrity concern.
Likewise, the formula

Integrity

trusted_auth_device Atrusted_environmentA
(two_factorsVfinger printingViris_scanV
(oauth Aopt_code) V (oauth A ip_check Aemail verify))

addresses the Authorization concern.

Given a CPS system . with a set of fluents F, a state s of . is an interpretation of F that
satisfies the set of static causal laws of the form (3) (Subsection 2.3).

Definition 2 (CPS Theory)
A CPS theory is a pair (-#,I) where . is a CPS system and [/ is a state representing the initial
configuration of ..

3.2 The Semantics of CPS Theories

Given (%, I) where ./ = (CO, A, F,R,T'), the action domain (A, F) specifies a transition function
® o, between states (Subsection 2.3). In each state, the satisfaction of a particular concern in the
CPSF is evaluated using the relationship R and the components C. We will define this relation

16 Thanh H. Nguyen, et al.

next. First, we note that a concern in a CPS can be related to some components in .¥, directly
through the R relation and the formulae in I' or indirectly through the inheritance in the CPS
ontology. Observe that the development of the CPS relies on the following intuition:

e A concern might have several sub-concern;
e A concern might be addressed by a set of functional decompositions which are represented
by Boolean formulae.

This leads to the following informal meaning of the notion of satisfaction of a concern in a
state of the CPS:

e For each concern ¢, if I' does not contain any tuple of the form (c, fu,y) then c is
satisfied in a state s when every of its direct subconcerns is satisfied; for example, the
Trustworthiness concern is satisfied in a state s of the LKAS system if its children,
Safety,Reliability, Security,Resilience, and Privacy, are satisfied; and
every of its properties is satisfied.

e For each concern c, if I contains some tuple of the form (c, fu, y) then c is satisfied when
Ye = A(e,fu,w)er ¥ 1s satisfied in s and every property p related to c—as specified by the CPS
ontology—is satisfied in s; for example, the Integrity concern is satisfied in the state s
of the LKAS system if the formula (4) is satisfied in s where secure_boot is a property
related to Integrity and the other conjuncts are the two disjunctions representing the
two functional decomposition of Integrity.

Next, we formalize precisely the notion of satisfaction of a concern. Let A(c) be the conjunc-
tion of A(c fu,y)ery and all properties that are related to ¢ and not appearing in any formula of
the form (c, fu, y) € I'. For example, in formula (4), the last two conjuncts are the two func-
tional decompositions of Integrity from I'j,, and the first conjunct is a property that does not
appear in any functional decomposition of Integrity. In the following, we denote (c) is the set
of descendants of ¢ such that for each d € (c}, d has no sub-concern.

Definition 3
Let s be a state in ¥ = (CO, A, F,R,T') and ¢ be a concern. We say that c is satisfied in s, denoted
by s Ec, if

e s|=A(c); and
every sub-concern ¢’ of c is satisfied by s.

Having defined when a concern is satisfied in a state, we can define the notion of satisfaction
of a concern after the execution of a sequence of actions as follows. Recall the transition function
® o dictates how the system changes from one state to another state and the set of states resulting
from the execution of a sequence of actions o from a state can be computed by ® . Therefore,
we can define the satisfaction of a concern c after

Definition 4

Let (.7,1) be a CPS theory, a a sequence of actions, and ¢ a concern in the CPS Ontology. ¢
is satisfied after the execution of a sequence of actions « from the initial state /, denoted by
(Z,1) = c after a, iff

&y (o,1) £ONYuc Dy (a,0). [u=c] 5)

Specifying and Reasoning about CPS through the Lens of the NIST CPS Framework 17

In the above definition, the condition & (a,) # @ guarantees that ¢ is a valid sequence of
actions, i.e., its execution in / does not fail. The second condition is the standard definition of
logical entailment.

Definitions 3-4 provide the basis for us to answer questions related to the satisfaction of a
concern in a state or after a sequence of actions is executed, i.e., the concern satisfaction prob-
lem. In the following, we will discuss other problems that are of importance for the design and
development of CPS systems.

3.3 Reasoning Tasks in CPS

Knowing when a concern is (is not) satisfied is very important. We now discuss the issues related
to the satisfaction of concerns in a CPS. We focus on the following problems:

1. What is the most/least trustworthy® component in a CPS?

2. Are there non-compliance in a given CPS? How to detect non-compliance?

3. What to do if an (external or internal) event occurs and leads to an undesirable situation?
How to recover from such situation?

4. What is a best or most preferred mitigation strategy for a given situation?

In what follows, we provide precise formulations of the aforementioned tasks and propose
solutions for them. For simplicity of presentation, we focus on discussing these questions with
respect to a given state. The answers to these questions after the execution of a sequence of
actions from the initial state can be defined similarly to the definition of the satisfaction of a
concern via the function ®, as in Definition 4. Our implementation covers both situations.

3.3.1 Most/Least Trustworthy Components

Given . = (CO,A,F,R,T) and a state s in .. A component x € CO might be related to many
concerns through the properties in R (x), whose truth values depend on the state s. Recall that for
each property p and component x, active (x, p) is true in s indicates that component is active with
property p in the state s; furthermore, the CPS ontology contains the specification that p posi-
tively or negatively impacts a concern c. The latter are defined by the predicates addBy (c, p) and
positivelmpact (p,c) in Q (Subsection 2.4). As such, when a component is active with a property,
it can positively impact a concern. For example, in Figure 2 and 3, the property secure_boot
addresses the Integrity concern and is described to impact positively on the satisfaction of
Integrity concern by Q. In the current state, the component SAM is working on property
secure boot. Assuming that concern Integrity is satisfied in this state, we say that compo-
nent SAM directly positively affects to the Integrity concern through property secure boot.
We say that a component x directly impacts a concern c in state s through a property p if the
following conditions hold:

1. x works with property p in state s; and
2. p addresses concern ¢ and p is true in s.

9 Recall that our discussion focuses on trustworthiness but it can easily be adapted to other aspects defined in the CPS
ontology.

18 Thanh H. Nguyen, et al.

If x directly impacts c in state s through p and the CPS ontology specifies that the satisfaction of
property p impacts positively on the satisfaction of ¢ and c is satisfied in state s, then we say that
x directly and positively affects c.

As the notion of concern satisfaction is propagated through the sub-concern relationship, it
is natural for us to define that component x impacts (resp. affects positively) concern ¢ through
property p in a state s, denoted by impact (x,c,s) (resp. pos (x, p,c,s)), if () x directly addresses
(resp. direct positively affects) ¢ through a property p; or (ii) there exists some sub-concern ¢’ of
c that is addressed (resp. positively affected) by x.

In the above example (see also Figure 2), the component saM directly positively affects to the
Integrity concern through property secure boot then SAM also affects positively concerns
Cyber-Security, Security and Trustworthiness in the concern tree through property
secure_boot.

Given a component x, the ratio between the number of concerns that are positively affected
by x and the number of concerns that are addressed by x characterizes how effectively x influ-
ences the system. For this reason, we will use this number to characterize the trustworthiness of
components in the system. So, we define

Loer@) | {c | s = ¢ A positivelmpact (p,c) A p € s Aactive (x,p)} |

t =
wixs) Lper@) | {e | (s = eV mpositivelmpact (p,c)) AaddBy (¢, p) A p € s Aactive (x,p)} | +1

(6)
Assume that all concerns and properties are equally important, we could compare the trustwor-
thiness of a component x € CO with that of a component ¥’ € CO by comparing the ratios rw.

Definition 5
For a CPS system .¥ = (CO,A,F,R,T"), x1,x, € CO, and state s of .,

X1 is more trustworthy than x; in s, denoted by x1 > x, (or x; is less trustworthy than x1, denoted
by x3 < x1), if

— tw(xy,s) > tw(xa,s); or

— tw(x1,s) =tw(x2,s) = 0 and impact (x1,s) < impact (x2,s) where
impact (x,s) = ELpepi) | {¢ | (s & ¢V —positivelmpact (p,c)) A addBy(c,p) Ap € s A
active (x,p)} |

X1 is as trustworthy as x; in s, denoted by x| ~ x2, if
— tw(x,s) =tw(xz,s) > 0; or
— tw(xy,s) =tw(x,s) = 0 and impact (x1,s) = impact (x3,5).

X1 =g xp denotes that x| >, xp or x| ~ x2. x is a most (least) trustworthy component of .# in s if
x =X (¥ =, x) for every x' € CO.

Proposition 1
Let ¥ = (CO,A,F,R,T’) be a CPS system and s be a state in .. The relation > over the
components of . is transitive, symmetric, and total.

Proof
It is easy to see that for any pair of components, either ¢ > c2, c2 ~ c1, or ¢| ~; ¢p. Furthermore,
¢ ~y c. It follows that > is therefore transitive, symmetric, and total. []

Specifying and Reasoning about CPS through the Lens of the NIST CPS Framework 19

3.3.2 Non-compliance Detection in CPS

The design of a CPS is often subject to competing constraints from various people or organiza-
tions with different focus and type of expertise. This may result in sets of constraints that are
unsatisfiable, e.g., a set of concerns cannot (never) be satisfied, giving rise to a non-compliance.
Example 1 shows that there exists a situation in which competing concerns cannot be satisfied at
the same time. In general, the problem is formulated as follows.

Definition 6 (Lack of Compliance)
Given the CPS system . = (CO,A,F,R,T'), an integer n, a set of actions SA C A, and a set of
concerns SC, we say that . is

. weakly n-noncompliant wrt. (SA, SC) if there exists a sequence & of at most n actions in SA and
an initial state 7, such that (.%,) [~ c after o for some concern ¢ € SC.

. strongly n-noncompliant wrt. (SA,SC) if for every sequence of at most n actions in SA and an
initial state I, (.,) [c after « for some concern ¢ € SC.

Given an integer k, weakly k-noncompliant implies that there is a potential that some concern
in the set SC of concerns might not be satisfied. Strongly k-noncompliant indicates that there is
always some concern that cannot be satisfied. Systems that are strongly k-noncompliant might
need to be re-designed.

It is easy to see that, by Definition 4, checking whether a system is weakly k-noncompliant is
equivalent to identifying a plan of length & or less that “makes some concern unsatisfied.” On the
other hand, checking whether a system is strongly k-noncompliant is equivalent to identifying
a plan of length less than k that “satisfies all concerns”. Since we assume that the specification
language for CPS is propositional and planning for bounded plans is NP-complete, we can easily
derive the following results:

Proposition 2
Given ., (SA,SC), and k, checking whether . is weakly k-noncompliant is NP-complete and
checking whether . is strongly k-noncompliant is co-NP-complete.

Proof
This relies on the fact that checking whether a planning problem has a solution of length k is
NP-complete (e.g., the PLAN-LENGTH problem in Ghallab et al. (2004)). [

3.3.3 Mitigation Strategies

Let ¥ = (CO,A,F,R,T") be a CPS system and s be a state of .. When some concerns are
unsatisfied in s, we need a way to mitigate the issue. Since the execution of actions can change
the satisfaction of concerns, the mitigation of an issue can be achieved by identifying a plan that
suitably changes the state of properties related to the concerns. The mitigation problem in a CPS
can be defined as follows:

Definition 7 (Mitigation Strategy)

Let ¥ = (CO,A,F,R,T") be a CPS domain and s a state in .#. Let X be a set of concerns in Q.
A mitigation strategy addressing X is a plan & whose execution at the initial state s results in a
state s’ such that for every c € X, c is satisfied in 5'.

20 Thanh H. Nguyen, et al.

Definition 7 assumes that all plans are equal. This is often not the case in a CPS system. To
illustrate this issue,

Example 4

Consider the LKAS system in Example 2. The initial state /;, is given by: CAM and SAM are in
basic.mode and secure_boot, BAT is in powerful _mode and every properties in Ij;,; are ob-
served to be True. The energy consumption constraints of BAT are encoded in Listing 2. Figure 4
shows a fragment of the CPS theory that is related to the problem described in this example.

0.6
Address_ -~.
\ f Address

S
\

/ N *
Normal- Address \‘. B !
Mode 7 ! Address ‘
P Ad/dress i > Advanced
. // Address . |_-Mode
Saving- A S N
Mode Secure- -
. Boot Basic-
Powerful- \ Mode
Mode / \
/}, active active _tive active

active

Fig. 4: Current configuration of Ay, related to Integrity concern after cyber-attack

Listing 2: ITj, , : Battery consumption constraints in Ay

1 h(active (bat,saving mode),T) :— h(active (cam,advanced_mode),T),
h (active (sam, advanced_mode),T), step(T).
2 1{h(active (bat,powerful_mode),T); h(active (bat,normal_mode),T)}1 :-
h (active (cam,basic_mode),T), h(active (sam,basic_mode),T), step(T).

3 h(active (bat,normal_mode),T) :—- h(active (X,advanced_mode),T), X!=Y,
h(active (Y,basic_mode),T), step(T).
4 :- h(active (bat,M1),T), h(active (bat,M2),T), M1!=M2, step(T).

A cyber-attack occurs and the controller module is attacked, which causes basic.mode to
become False while advanced. mode is (True). Given this information, we need a mitigation
strategy for the set ¥ = {Inregrity}. The mitigation strategies (with the length is 2) can be gener-
ated as following:

e (= [tOn (basicmode)]

[switM (cam, advancedmode) , switM(sam, advancedmode)]
e O3= [switM(sam, advancedmode) , switM(cam, advancedmode)]
o Oy= [switM (sam, advanced-mode) , tOn (basiCJnode)}
[(

® (5= |switM(cam, advanced._mode) ,tOn(basicmode)}

As shown in the example, it is desirable to identify the best mitigation strategy. In this paper,
we propose two alternatives. The first alternative relies on a notion called likelihood of satisfac-
tion of concerns and the second alternative considers the uncertainty of actions.

Specifying and Reasoning about CPS through the Lens of the NIST CPS Framework 21

Likelihood of Satisfaction (LoS) of Concerns We introduce a notion called likelihood of sat-
isfaction (LoS) of concern and use it to distinguish mitigation strategies. Our notion relies
on the positive impacts of properties on concerns within the system (Subsection 2.4). For
example, property secure_boot positively impacts Integrity in Example 2 (denoted by
positiveImpact (secure_boot, integrity)). For a concern ¢, we denote with rel* (c) the
set of all properties that positively impact a concern c¢. Furthermore, rel], (c,s) is the set of
properties in rel* (¢) which hold in state s. The ratio between these two numbers can be used to

characterize the positive impact degree of concern c in state s as follows:

+
ety €94 v 20

deg* (c,s) = | rel* (c) | @)

1 otherwise

We note that relf, and tw might appear similar but they are different in the following way:
rel?, is concerned with the relationship between properties and concerns while tw focuses on the
relationship between components and concerns.

We define the likelihood of satisfaction of a concern as follows.

Definition 8 (Likelihood of Concern Satisfaction)
Given a CPS system ., a state s in .¥, and a concern c, the likelihood of the satisfaction (LoS)
of ¢ in s, denoted by @r,s (c,s), is defined by:

PLos (C,S) _ { deg+ (C,S) * erxub(c) PrLos ()C7S) if sub (C) 7: (®)

0

deg* (c,s) ifsub(c) =0
where sub (c) is the set of subconcerns of c.
Having defined the LoS of different concerns, we can now use this notion in comparing mitiga-
tion strategies. It is worth to mention that CPSF defines nine aspect, i.e., top-level concerns, (e.g.,
trustworthiness, functionality, timing, etc.). Let TCq be the set of top-level concerns
in the CPS ontology. We discuss two possibilities:

o Weighted LoS: Each top-level concern is associated with a number, i.e., each ¢ € TCq
is associated with a weight W, (e.g., Wryncrionatiry for functionality, Wiusworrhy TOr
trustworthiness, etc.). The weights represent the importance of the top-level concerns
in the CPS. They can be used to compute the weighted LoS of a system . in state s

w(S,s) = YeerCo PLos (c,8)*x W)

This weighted LoS can be used to define a preference relation between mitigation strategies
such as B < & (e is better than B) iff maxyce , (g, W (7,5") > Maxyca, (.5 W (,s').
e Specified Preferences LoS: An alternative to the weighted LoS of a system is to allow
the users to specify a partial ordering over the set TCq which will be used to define a
preference relation among mitigation strategies using well-known preference aggregation
strategies (e.g., lexicographic ordering). For example, if Functionality > Business
then a mitigation strategy o is better than a mitigation strategy 3, written as 8 < «, iff
MaXyca , (o,5) PLos (Functionality,s’) > maxyce , (g,5) PLos (Business,s’) .

It is easy to see that the above preference relation < is also transitive, symmetric, and reflexive
and if some strategies exist then most preferred strategies can be computed.

Example 5 (Continuing from Example 4)

22 Thanh H. Nguyen, et al.

Let us consider the strategies generated in Example 4. All five mitigation strategies (01, 02, 03, Ola
and «5) generated in Section 4.4 can be used to address the issue raised by the cyber-attack.
Specifically, the fragment of final state (G,;) relevant to Integrity concern of each plan (o) is
given below:

° Gal is {CAM +— basic_mode, CAM — secure_boot, SAM +— basic_.mode, SAM +—
secure_boot, BAT — powerful mode } or {CAM +— basic_.mode, CAM +— secure_boot,
SAM — basic_mode, SAM — secure_boot, BAT — normal_mode }

In which, we define Gixl is {CAM — basic.mode, CAM — secure_boot, SAM — basicmode,
SAM — secure_boot, BAT — powerful mode }, and G(le is {CAM — basicmode, CAM —
secure_boot, SAM — basic_mode, SAM +— secure_boot, BAT +— normal mode }

e Gy, and Gg;: {CAM — advanced.mode, CAM — secure_boot, SAM — advanced. mode,
SAM — secure_boot, BAT — saving mode}

° Ga4 is {CAM +— basic.mode, CAM +— secure_boot, SAM — advanced mode, SAM —
secure_boot, BAT — normal mode}

e Gg is {CAM — advanced mode, CAM — secure boot, SAM — basic mode, SAM —
secure_boot, BAT — normalJnode}

In each considered state, the statement X — P denotes that component X is working with
property P. For example, BAT — saving mode says that the battery is working in saving mode.
Considering the five final configurations of different mitigation strategies in the example

above, we have:

deg* (Integrity,) PLos (Integrity, G}xl) =0.6;
deg* (Integrity,) OrLos (Integrity, G%Cl) =04;
deg* (Integrity, Gaz) Qros (Integrity,Gg,) = 0.8;
deg* (Integrity, Ga3) OrLos (Integrity, Ga3) =0.8;
deg* (Integrity, Gy,) = Qros (Integrity,Gg,) = 0.6 and
deg* (Integrity, Gas) = 0.6, PrLos (Integrity, Gas) =0.6

We also have that deg* (availability,) = 1, deg* (security,-) = 1, deg® (trustworthiness,) = 1,
etc. In addition, we also have the LoS values of trustworthiness aspect in the five different
final configurations as following:

PLos (Trttstworthtness G) 0.0497,
PLos (Trttstworthtness G) 0.0331,
@ros (Trustworthiness, Gg,) = 0.0662,
PLos (Trustworthtness Ga3) 0.0662,
@ros (Trustworthiness, Gg,) = 0.0497, and
PLos (Trustworthtness Ga5> 0.0497.

Figure 5 shows the t rustworthiness tree for the final configurations of mitigation strategies
o and 03 (G, and Gg;), where LoS values are computed and displayed as a number at the top-
left of each concern. In all 5 possible strategies, mitigation strategies @ and oz are also the best
mitigation strategies which are especially relevant to the t rustworthiness attribute, where the
LoS of trustworthiness aspect in final state (G, and Gg,) is maximum. In this figure, the
LoS of t rustworthiness (root concern) is 0.0662 (11h_sat (trustworthiness)=0.0662).
By applying a similar methodology for all remaining aspects (i.e., business, functional,
timing etc.), we can calculate LoS values for all nine aspects in CPS Ontology.

Specifying and Reasoning about CPS through the Lens of the NIST CPS Framework 23

0.0662 @

sub-concern

subconcern (o suboncem Sub-ooncem

1.0 1.0 .
0.1161 1.0 0.57
sub-concern
N N sub-concern

1.0 0.11616 10 subconcerm 4
Functional sceﬁ?urty 0 (Physiar Dissociability 0.57 Manageability
_safety sub-concern Security
Predictability
sub-concern 1.0

sub-concern sub-concern
sub-concern

0.1452
1.0 Confidentiality —— sub-concern 10 o57
Availability @
sub-concern 0.8 ubcon
0.5

.57

sub-concern

0.44 0.33
_ Address oo . J—
L Address G ~ E
o - - \ [Powerful
,« Address \ FRY
{ |Moo-AES / ! R
| ,' Address / | Address ;
L . s Add:ess MAC- / ;
/ Address | check ! | /
Algo-RSA| \ Address e
! / i Mode

X | protocol- Data- 5 . i
active |£ncrypted| |Encrypted Fge\‘uall- -
, etup -

/ T Filtering

cern

Authorization J<---__

“Address Address

Address =
. [Trusted_Auth
. _Device

Address

Address“\ " Two- T)
i\ N\, Factors rus i
RN otes | ronment

A . \ /

Addess
Addre N

Address Address

| Address

OAuth |

Basic- '\
Mode i
Advanced)
-Mode |
/f Operatign |

PT-Code | Address
L Address

active

Secure- n active
Saving- |/ relates ' \ Finger-
relates active " i Boot \ v
relates active Mo |P-Check Printing
relates
\ relates En {
relates AN A}
relates relates/ ; T
active relates active il- o
relates relates relates rolates) relates] Emgll relates IRIS-Scan olates
relates relates e active relates active Verify
relates relates
relates .
relates relates active
) relates relates ojates
active active relates ot
relates relates relates
" relates
active
relates relates

relates X
active I:
relates

relates active

Fig. 5: Trustworthiness concern tree with LoS of concerns computation

Mitigation Strategy with The Best Chance to Succeed Preferred mitigation strategies computed

using LoS of concern satisfaction assume that actions always succeeded. In practice, actions
might not always succeed. In this case, it is preferable to identify strategies with the best chance
of success. Assume that each action a is associated with a set of statements of the form:

a success_with v if X (10)

where v € [0,1] and X is a consistent set of literals in .. This statement says that if each / € X is
true in a state s and a is executable in s then v is the probability of a’s execution in s succeeds. We
assume that if a occurs in two statements “a success_with v if X;”” and “a success_with v, if X»”
with X| # X then v; = v, or there exists p € F such that {p,—p} C X; UX,. Furthermore, for
a state s in which no statement associated with some action a is applicable, we assume that a
succeeds with probability 1 in s if it is executable in s. It is easy to see that this set of statements
defines a mapping pr : A X States — [0,1] where States denotes the set of all states of . and
pr(a,s) represents the probability that the execution of a in s succeeds. Thus, the execution of
a sequence of actions (or a strategy) o = [ag,...,a,—1] in a state s succeeds with the probability
Hf’;ol pr(a;,s;) where so = s, and for i > 0, s; is the result of the execution of @;_ in s;_;. This
can be used to define a preference relation between strategies similar to the use of LoS of con-
cern satisfaction, i.e., we prefer strategies whose probability of success is maximal. We omit the
formal definition here for brevity.

It is worth mentioning that the specification by statements of the form (10) is at the action
level. It is assumed that if action a succeeds with a probability v, it means that all of its potential
effects will be achieved with the probability v. In some applications, it might be more proper to

24 Thanh H. Nguyen, et al.

consider a finer level of probabilistic specification of effects such as if action a succeeds then
with a probability p;, e; will be true, for i = 1,... k. To work with this type of applications, a
probabilistic action language such as the one proposed in Baral et al. (2002) or a specification
using Markov decision process could be used. We will leave the discussion related to this type of
applications for the future.

4 An ASP-Based Implementation for Reasoning Tasks in CPS Theories

This section develops an ASP encoding given a CPS theory, building on the work on planning in
ASP and on formalizing CPS (e.g., Gelfond and Lifschitz (1993); Balduccini et al. (2018)). The
code is available at https://github.com/thanhnh-infinity/Research_CPS. We
start with the encoding of the theory (Subsection 4.1). Afterwards, we develop, for each reasoning
task, an ASP module (Subsections 4.2-4.7) which, when added to the encoding of the domain,
will compute the answers for the task.

Throughout this section, we assume that (., 1) where . = (CO,A,F,R,T’) is a CPS. The
encoding of (.,1) in ASP will be denoted with IT(.#)", where n is a non-negative integer
representing the horizon of the system that we are interested in. We note that the encoding of
the CPS ontology (Subsection 2.1 and 2.4), I1(Q), will be automatically added to any program
developed in this section. For this reason, whenever we write IT1(.%)" we mean I1(.)" UTI(Q).

4.1 ASP Encoding of a CPS Theory

The encoding of a CPS theory contains two parts, one encodes the domain and another the initial
state. We first discuss the encoding of the domain.

4.1.1 Encoding of the Domain .

I1(.#)" contains the following rules'’.

o The set of rules declaring the time steps: for each 0 <t < n, an atom step (), i.e., the rule

step (1) +.

The set of rules encoding the components: for each co € CO, an atom comp (co).

The set of rules encoding actions: for each a € A, an atom action (a).

The set of rules encoding fluents: for each f € F, an atom fluent (f).

The set of rules encoding relations: for each co € CO and p € R(co), an atom

relation (co, p).

o The set of rules encoding functional dependencies: for each (c,fu,®) € I', an atom
formula (id(p), an atom addFun (c,fu,idq,), and a set of atoms encoding @, where idy
is a unique identifier associated to ¢ and c is a concern.

e The rules for reasoning about actions and changes (see, e.g., Son et al. (2006)):

— For each executability condition of the form (1) the rule:
exec(a,T) :—step(T), h* (p1,T),...,h* (pu, T).

10 We follow the convention in logic programming and use strings starting with lower/uppercase letter to denote con-
stants/variables. In addition, this program can be generated automatically given that . is specified in the syntax given
in Section 3.

https://github.com/thanhnh-infinity/Research_CPS

Specifying and Reasoning about CPS through the Lens of the NIST CPS Framework 25

— For each dynamic causal law of the form (2):

h* (£,T+1) :—step(T), occurs(a,T), h* (p1,T),...,h" (pu,T).
— For each state constraint of the form (3):

h* (£,T) :—step(T),h* (p1,T),...,h" (ps,T).
— The rules encoding the inertia axiom:

h(f,T+1) :—step(T),h(£,T),not —h(f,T+1).

—h(f,T+1) :—step(T),~h(f,T),not h(f,T+1).

where h* (%, T) stands for h(x,T) if x € F is a fluent and —h (y,T) if x=—yand y € F.

We illustrate the ASP encoding of a CPS by presenting the encoding of the LKAS theory in
Example 2. Listing 3 shows the encoding of components, actions, and relations of ., without

0NN AW~

the encoding of the initial state. Listing 4 shows the ASP encoding for I'j;,s (see Figure 3).
Listing 3: Example program IT(.%jg,s)" for LKAS

comp (sam) . comp (cam). comp (bat) .
relation (cam,algo_AES). relation (cam,algo_RSA).
relation (cam,algo_DES). relation (cam,ip_filtering).

(
(
relation (cam, conn_encrypted). relation (cam,data_encrypted) .
relation (cam, protocol_encrypted). relation (cam,mac_check).
relation (cam, secure_boot). relation (cam,iris_scan).
relation (cam, advanced_mode). relation (cam,basic_mode) .
relation (c
relation (sam,algo_AES). relation (sam,algo_RSA).
relation (sam,algo_DES). relation (sam,mac_check).
relation (sam, conn_encrypted). relation (sam,data_encrypted).
relation (sam,ip_filtering). relation (sam, secure_boot) .
relation (sam, protocol_encrypted). relation (sam, firewall_setup).
relation (sam, advanced_mode) . relation (sam,basic_mode) .
relation (sam, finger_printing). relation (sam,two_factors).
relation (sam,iris_scan). relation (sam, cauth) .
relation (sam, opt_code). relation (sam,email_verify).
relation (sam, ip_check). relation (sam,trusted_environment) .
relation (bat, powerful_mode) . relation (bat,normal_mode) .

(

relation (bat, saving_mode) . relation (bat,trusted_environment) .

action (tOn (X)) :— prop(X). action (tOff (X)) :— prop (X).

exec (tOn (X),T) :— =h(X,T), prop(X), step(T).

exec (tOff (X),T) :— h(X,T), prop(X), step(T).

h (X, T+1) :— occurs (tOn(X),T), step(T).

—h (X, T+1l) :- occurs (tOff(X),T), step(T).

action (patch (X)) :- prop (X).

exec (patch (X),T) :— prop(X), availablePatch(X), —h(X,T), step(T).
h(X,T+1) :— occurs (patch (X),T), step(T).

action (switM(cam,basic_mode)) action (switM(cam, advanced_mode)) .
action (switM(sam,basic_mode)). action (switM(sam,advanced_mode)) .
action (switM(bat, saving_mode)) . action (switM(bat,normal_mode)) .
action (switM(bat, powerful_mode)) .

exec (switM (X, basic_mode),T) :— relation (X,basic_mode),

cam, trusted_auth_device). relation (cam,trusted_environment) .

not h(active (X,basic_mode),T), comp(X), h(basic_mode,T), step(T).

h(active (X,basic_mode),T+1l) :— occurs (switM(X,basic_mode),T), step(
—h (active (X, advanced_mode), T+1) :- occurs (switM(X,basic_mode),T),

).

39
40
41
42

43

44

[e BN e SR S S R

G W RN NNNNDND=E = === = = = = =
— O 000NN HAWNDFE OOV WD~ ONVO

26 Thanh H. Nguyen, et al.

h(active (X, advanced_mode),T), step(T).

exec (switM (X, advanced_mode),T) :- comp (X), relation (X,advanced_mode),
not h(active (X, advanced_mode),T), h(advanced_mode,T), step(T).

h(active (X, advanced_mode), T+1) :— occurs (switM(X,advanced_mode),T),
step (T) .

—h(active (X,basic_mode), T+1l) :— step(T), h(active (X,basic_mode),T),
occurs (switM (X, advanced_mode), T) .

In Listing 3, Line 1 encodes the components; Lines 2-20 encode the relations; Lines 22-29
encode the actions tOn and tOff. The remaining lines of code encode other actions in similar
fashion.

Each formula ¢ related to a concern c is associated with a unique identifier ¢’ and is converted
into a CNF @ A ... A ¢, each @; will be associated with a unique identifier ¢/. The set of
identifiers are declared using the predicate formula/1. It will be declared as disjunction or
conjunction. Furthermore, set notation is used to encode a disjunction or conjunction, i.e., the
predicate member (X, G) states that the formulae X is a member of a disjunction or a conjunction
G. The predicate func (F, C) states that F is the functional decomposition of concern C.

Listing 4: A part of ASP program IT(#)" encoding Iy, for Integrity and
Authorization concerns

formula (0..3).

concern (integrity) .

conjunction (0) . addConcern (integrity,0).

member (secure_boot, 0) . member (energy_func,0) .

member (operation_func,0).

func (operation_func, integrity). func (energy_func, integrity).
disjunction (operation_func). formula (operation_func).

member (advanced_mode, operation_func) .

member (basic_mode, operation_func).

disjunction (energy_func). formula (energy_func).

member (powerful_mode, energy_func) . member (normal_mode, energy_func) .
member (saving_mode, energy_func) .

concern (authorization) .
conjunction (l). addConcern (authorization,1).
member (trusted_auth_device, 1) .

member (trusted_environment, 1) .

member (sign_in_func, 1) .

func (sign_in_func,authorization).
disjunction (sign_in_func) .

formula (sign_in_func) .

member (finger_printing, sign_in_func) .
member (iris_scan, sign_in_func) .
member (two_factors, sign_in_func) .

member (2, sign_in_func) . member (3,sign_in_func) .
conjunction (2).

member (oauth,2). member (opt_code, 2) .

conjunction (3) .

member (oauth, 3) . member (ip_check, 3). member (email_verify, 3).

0NN R W

e e e e
N NN R WD = OO

Specifying and Reasoning about CPS through the Lens of the NIST CPS Framework 27

In Listing 4, the first line uses a special syntax, a short hand, declaring four
atoms formula(0),...,formula(3). The declaration and encoding of the Integrity
concern and its related formulas, properties and decomposition functions are presented
in Lines 3-13. In which, line 3 declares the concern Integrity. Lines 4-6 en-
code the conjunctive formula (conjunction(0)) that addresses the Integrity con-
cern and its membership (e.g., the property secureboot and the two decomposi-
tion functions of the Integrity concern). Line 7 specifies the two functional de-
pendencies of the Integrity concern which are operation_func and energy_func.
Lines 8-13 specify how the formulae address the functional decompositions. Lines 8—
10 declare the disjunctive formula operation_func and define the membership be-
tween properties and this formula (e.g., member (advanced.mode, operation_func),
member (basic.mode, operation_func) says that advanced.mode and basic_mode are ele-
ments of the disjunction operation_func). Similar encoding is applied for disjunctive formulae
energy_func in Lines 11-13. Lines 15-30 encode information related to the Authorization
concern.

4.1.2 Encoding of the Initial State

The encoding of the initial state I of a CPS theory (., 1), denoted by II(7), contains, for each
fluent f, h(f,0) if f is true in I or —h(f,0) if f is false in I. Listing 5 shows a snippet of
the initial state of .#,s with Lines 1-7 specifying the true/false properties and Lines 9—17 the
specific information about which components operate in which properties in LKAS in the initial
state.

Listing 5: An example for a part of initial configuration of T (Ijx,s)

h(finger_printing,0). h(oauth,0). h(ip_check,0).

h (two_factors,0). h(opt_code,0).

h (trusted_auth_device,0). h(trusted_environment,0). h(secure_boot,0).
h (powerful_mode, 0) . h(saving_mode,0). h(normal_mode,0) .

h (basic_mode, 0). h(advanced_mode, 0) .

—h(iris_scan,0). —h(email_verify,0). —h(firewall_setup,0).
sam, secure_boot),0). h(active (sam,algo_RSA),O0).
sam,basic_mode),0). h(active (sam,data_encrypted),0).

h(active (

h (active (

h(active (sam, firewall_ setup),0). h(active (sam, finger_printing),0).
h(active (sam, trusted_environment),0) .

h(active (cam,ip_filtering),0). h(active (cam,data_encrypted),0).
h(active (cam, conn_encrypted),0). h(active (cam, secure_boot),0) .
h(active (cam, trusted_auth_device),0). h(active (cam,basic_mode),0).
h(active (bat,powerful_mode),0). h(active (bat,trusted_environment),0) .

The following property (see, Son et al. (2006)) will be important for our discussion. It shows
that IT(.)" correctly computes the function &y .

Proposition 3

(o) IS R O R S

oo

11

28 Thanh H. Nguyen, et al.

Let s be a state in .. Let I1 = IT1(.%)' U{h*(f,0) | f € s}. Assume that a is an action that is
executable in s. Then, s" € ® o (a,s) iff there exists an answer set S of ITU {occurs (a,0)} such
that {n*(f,1)| f e s} CA.

It is worth mentioning that IT(.#)" allows us to reason about effects of actions in the following
sense: assume that [ag,...,a,—1] is a sequence of actions, then I1(.)" U {occurs (a;,i) | i =
0,...,n— 1} has an answer set S if and only if (i) ag is executable in the state I; (if) for each
i > 0, a; is executable after the execution of the sequence [ag,...,a;—1]; (iii) for each i, the set
{fIfeFhn(fi)eStU{=f]|fe€F-h(f i ecS}isastate of ..

4.2 Computing Satisfaction of Concerns

We will next present a set of ASP rules for reasoning about the satisfaction of concerns as spec-
ified in Definitions 3—4. Since a concern is satisfied if all of its functional decompositions and
properties are satisfied, we define rules for computing the predicate h (sat (C),T) which states
that concern C is satisfied at the step T. The rules are given in Listing 6.

Listing 6: I, : Concern Satisfaction Reasoning in Q

formula (-G) :- formula (G).
prop (—G) :— prop (G) .
h(-F,T):- step(T), l{formula (F);prop(F)}, —h(F,T).
h(F,T) :- step(T), formula(F), disjunction (F), member (G,F), h(G,T).
—h(F,T):- step(T), formula(F), disjunction(F), not h(F,T).
—h(F,T):- step(T), l{formula(G);prop(G)}, formula(F), conjunction (F),
member (G,F), not h(G,T).
h(F,T) :- step(T), formula(F), conjunction(F), not —-h(F,T).
h (sat (C),) :— concern (C), addConcern(C,F), not h(F,T), step(T).
(sat(X) :— subCo (X,Y), not h(sat(Y),T), concern(X), concern (Y),
step (T)
h(sat(X),T) :— subCo (X,Y), —h(sat(Y),T), concern(X), concern(Y),
step(T) .
h(sat(C),T) :- mot —h(sat(C),T), concern(C), step(T).

The first two lines declare that the negation of a formula or a property is also a formula and
thus can be a member of a disjunction or conjunction. The rule on Line 3 says that h (—F,T) is
true if the negation of F is true. This rule uses a special syntax 1{formula (F) ; prop (F) } which
says that there exists at least one F is both a formula and a property. The rule on Line 4 states that
h(F,T) is true if F is a disjunction and one of its disjuncts is true. The next rule (Line 5) states
that —h (F,T) for a disjunction F is true if it cannot be proven that F is true. This rule applies the
well-known negation-as-failure operator in establishing the truth value of —h (F,T). Similarly,
the next two rules establish the truth value of a conjunction F, i.e., h (F, T) is true if none of
its conjuncts is false. The remaining rules are used to establish the truth value of h(sat (C),T),
the satisfaction of concern C at step T. Line 8 states that if the formula addressing the concern
C cannot be proven to be true then the concern is not satisfied. Rules in line 9-10 propagate
the unsatisfaction of a concern from its subconcerns. Finally, a concern is satisfied if it cannot
be proven to be unsatisfied (Line 11). We can prove the following proposition that relates the
implementation and Definition 3.

Proposition 4 (Concern Satisfaction)
For a CPS theory A = (.#,I) and a concern c, c is satisfied (or unsatisfied) in [if & (sat (¢),0)
(or —h (sat (c),0)) belongs to every answer set of IT(A), where IT(A) = IT(.%)° UTI (I) UT,,.

—

~N NN R W

10

11

12

13
14
15
16

Specifying and Reasoning about CPS through the Lens of the NIST CPS Framework 29

Proof

It is easy to see that for any formula ¢ over the fluents in ., the encoding and the rules encoding
a formula, and the rules in Lines 1-7, I |= A(c) iff h(sat(A(c)!),0) belongs to every answer set
of TI(A) where A(c) is the identifier associated to the formula A(c). Lines 9—10 show that if ¢
has a sub-concern that is not satisfied then it is not satisfied and hence Rule 11 cannot be applied.
As such, we have that /(sat(c),0) is in an answer set of I1(A) iff the formula A(c) is true and all
sub-concerns of ¢ are satisfied in that answer set iff ¢ is satisfied in /. [

Since we will be working with the satisfaction of concerns in the following sections, we will
therefore need to include I, in I1(.#)". From now on, whenever we refer to IT(.%)", we mean
T1(.%)" UTI(I) UTlg.

4.3 Computing Most/Least Trustworthy Components

Proposition 1 shows that >~ has min/maximal elements, i.e., least/most trustworthy components
of a system always exist. The program IT,,;; () for computing these components is listed below.

Listing 7: I1,,;;: Computing Most/Least Trustworthy Components

r(X,p,C,T) :- comp(X), prop(P), concern(C), step(T), h(active(X,P),T),
h(p,T), addBy(C,P).

pos (X,P,C,T) :- r(X,P,C,T), positivelImpact (P,C), h(sat(C),T), step(T).

nPos (X,P,C,T):- r(X,P,C,T), not positiveImpact (P,C) step (T) .

nPos (X,P,C,T):- r(X,P,C,T), not h(sat(C),T), step(T).

pos (X,P,C,T) :- pos(X,P,Cy,T), subCo(C,Cy), step(T).

nPos (X,P,C,T) :— nPos (X,P,Cy,T), subCo(C,Cy), step(T).

twep (X, TW, T) :- TW=#count{C,P:pos(X,P,C,T), prop(P), concern(C)},
comp (X), step(T).

twen (X, TW,T) :— TW=#count{C,P:nPos (X,P,C,T), prop (P), concern(C)},
comp (X), step(T).

higher (X;,X,,T) :— twcp (X, TWpl,T), twcp (X, TWp2,T), twcn (X;,TWnl,T),

twen (X, TWn2,T), d1=TWpl/(TWnl + 1), dp=TWp2/(TWn2 + 1), d; > do,
step (T), TWpl!=0, TWp2!=0.

higher (X;,X5,T) :— step(T), twcp(X;,0,T), twcp(Xy,0,T), twcn(X;,TWnl,T),
twen (Xp, TWn2,T), TWnl < TWn2.
equal (X;,X,,T) :— twcp (X;,TWpl,T), twcp(Xp,TWp2,T), twcn (X;,TWnl,T),

twen (X, TWn2, T), d;=TWpl/(TWnl + 1), dp=TWp2/(TWn2 + 1), d; = d,
step (T), TwWpl!=0, TWp2!=0.

equal (X;,X,T) :— step(T), twcp(X;,0,T), twcp(X,0,T), twcn(X;,TwWnl,T),
twen (Xp, TWn2,T), TWnl=TWn2.

not_highestTW (X;,T) :— comp (Xj), comp(Xy), higher (X|,X;,T), step(T).

not_lowestTW (X, T) :— comp (X1), comp(Xy), higher (X;,X,,T), step(T).

most (X, T) :— comp (X), not not_highestTW (X,T), step(T).

least (X, T) :— comp(X), not not_lowestTW (X,T), step(T).

In Listing 7, addBy (C,P) and positiveImpact (P,C) are defined in the program II(Q)
(Subsection 2.4). addBy (C,P) is true means that a property P addresses a concern C.
positiveImpact (P, C) is true means that the satisfaction of property P impacts positively
on the satisfaction of concern C. The predicate r (x,P,C, T) (Line 1) encodes the relation-
ship between X, P and C at the time 7 which says that the component X is working with
the property P at time 7 and P addresses concern C. The second rule (Line 2) defines the
predicate pos (X,P,C, T) that encodes the positive affected relationship between component
X and concern C at time step T through property P which is true if the concern C is satisfied

30 Thanh H. Nguyen, et al.

and positiveImpact (P,C) and r (X, P, C, T) hold. Lines 34 define nPos (X, P, C, T), which
holds at time T if r (x,P,C, T) holds but either positiveImpact (P,C) is not defined in
or concern C is not satisfied. This element is used for the computation of the denominator of
Equation (6). The rest of the listing defines the relationship higher between components en-
coding the > where T represents the state at the time 7' of the system and identifying the most
and least trustworthy components. Lines 5—6 propagate the positive affected and impact relations
(pos/4, nPos/4) of a concern from its subconcerns. twep (x,tw, 1) (resp. twen (x,tw,t)) encodes
the number of concerns positively affected (resp. impacted) by component x at step ¢. The atom
#count{C,P : pos (X,C,P,T),prop(P),concern(C)} is an aggregate atom in ASP and encodes
the cardinality of the set of all concerns positively impacted by P and X.
We can show that the following proposition holds.

Proposition 5

For a CPS theory A = (#,I) and an answer set S of program I1(.%)" UII(I) UIL,y,, if
most (x,t) € S (resp. least (x,t) € S) then x is a most (resp. least) trustworthy component in the
state s;.

The proof follows immediately from the definition of the predicate addBy, positivelmpact and
the definition of aggregate functions in ASP. As such, to identify the most trustworthy component
of ., we only need to compute an answer set S of IT(.%)" UIT (1) UIL,,, and use Proposition 5.

Example 6
Consider the .%};,; domain.

Let us consider the initial configuration Illkas of LKAS system where every properties are ob-
served to be true. For Ayas = (Likas: Ljqs)» We can easily see that (from Figure 2) the atoms:
pos (cam,advanced_mode, integrity,0), pos (cam,secure_boot,cyber security,0), etc. belong to
every answer set of IT(Ajqs) = IT(Fkas)" UTI (I},,) UTIA5 Similar atoms are present to
record the number of concerns affected by different properties. Furthermore, twep (cam,28,0),
twen (cam, 6,0), twep (sam,40,0), twen (sam,0,0), twep (bat,6,0) and twen (bat,5,0) belong to
any answer set of IT(.qs)" UTI (I},) UTIKS: SAM is the most trustworthy component; BAT
is the least trustworthy components at step 0.

Now, let us consider 7% of LKAS system (Figure 2) where there are two properties that are ob-
served to be False: Firewall-setup and Trusted-Auth-Device. For Ajas = (Fikas, [s)
the computation of the program TIT(.%ji)" UTI (I,zkas) U Hﬁ,’fl‘;‘ shows us: twep (cam,22,0),
twen (cam,6,0), twep (sam,22,0), twen (sam, 12,0), twep (bat,0,0) and twen (bat, 11,0) belong
to any answer set of IT(-Fjg,s)" UTT (Ilzkm) U Hﬁfl‘l’ll‘”. In this situation, CAM is the most trustworthy
component; BAT is the least trustworthy components at step 0.

We conclude this part with a brief discussion on possible definitions of >. The proposed defi-
nition assumes everything being equal (e.g. all concerns and properties are equally important, the
roles of every components in a CPS system are equal, etc.). In practice, the ordering > might be
qualitative and user-dependent, e.g., an user might prefer confidentiality over integrity. > can be
defined over a qualitative ordering and implemented in ASP in a similar fashion that preferences
have been implemented (e.g., Gelfond and Son (1998)).

AN AW =

Specifying and Reasoning about CPS through the Lens of the NIST CPS Framework 31

4.4 Computing Mitigation Strategies

The program I ()" UIl,, can be for computing a mitigation strategy by adding the rules shown
in Listing 8:

Listing 8&: H;z .- Generating Plan

l{occurs (A, T):action(A)}1 :- step(T), T<n.

:— occurs (A, T), not exec (A, T).

:— not h(sat(c), n).
The first rule containing the atom 1{occurs(A,T):action(A)}1 — a choice atom — is intu-
itively used to generate the action occurrences and says that at any step 7, exactly one action
must occur. The second rule states that an action can only occur if it is executable. The last
rule helps enforce that £ (sat (¢) ,n) must be true in the last state, at step n. For a set of con-
cerns X, let HZlan [£] be the program obtained from IT”, by replacing its last rule with the set

plan
{:—not h(sat(c),n).|c € I}. Based on the results in answer set planning, we can show:

Proposition 6

Let A= (.,I) be a CPS theory and X be a set of concerns in Q. Then, [ao,...,a,—1] is a mitiga-
tion strategy for X iff IT(A) UTI, , [X] has an answer set S such that occurs (a;, i) € S for every
i=0,...,n—1.

The proof of this proposition relies on the properties of IT(A) discussed in previous section and

the set of constraints in I, [¥].

4.5 Non-compliance Detection in CPS Systems

The program I1(.”)" UTl, can be used in non-compliance detection by adding the rules shown
in Listing 9:
Listing 9: IT" (SA, SC): Non-compliance Detection

l{occurs (A, T):sa_action(A)}1 :— step(T), T<n, not conflict (T).
:— occurs (A,T), not exec(A,T), step(T).

1{h(F,0); -h(F,0)}1 :— fluent (F).

conflict (T) :— sc_concern(C), —h(sat(C),T), step(T).
conflict (T+1l) :- conflict(T), step(T).

:— not conflict (n).
The first two rules are similar to the rules for the planning program, with the exception that the
action selection focuses on the actions in the set SA. The third rule generates an arbitrary initial
state. The rules 4-5 state that if some concern in SC is not satisfied at time 7 then a conflict arises
and the constraint on the last rule says that we would like to create a conflict at step n.

We assume that actions in SA are specified by atoms of the form sa_action (a) and concerns
in SC are specified by atoms of the form sc_concern (c). It is easy to see that an answer set S of
I1(.7)" Ul UIT" (SA, SC) represents a situation in which the system will eventually not satisfy
some concern in SC. Specifically, if the sequence of actions [ag, .. .,a;] such that occurs (a;,i) € S
and, for s > ¢, there exists no occurs (as,s) € S, is executed in the initial state (the set { f | 2 (f,0) €
S.feF}U{=f|-h(f,0) €S, feF}) then some concern in SC will not be satisfied after n steps.
In other words, to check whether . is weakly n-noncompliant, we only need to check whether
7, =1 (%)" Uy, UIT" (SA,SC) as an answer set of not. The proof of this property relies on
the definition of an answer set for a program with constraints, which say that the constraint : -

AW

O 00 3 O W

10

11

12

32 Thanh H. Nguyen, et al.

not conflict (n). must be false in the answer set, which in turn implies that conflict (n)
must be true.

If .7 is weakly n-noncompliant, we can do one more check to see whether it is strongly
n-complaint as follows. Let 7, be a program obtained from 7, by replacing “:- not
conflict (n)” with “:- conflict (n).” We can show that if 7, has no answer set then for
every initial state of .’ no action sequence is executable or there exists some action sequence
such that conflict (n) . is true. Combining with the fact that . is weakly n-noncompliant,
this implies that the domain is strongly n-noncompliant. Again, the proof of this property relies
on the definition of answer sets of programs with constraints, which say that the constraint : -
conflict (n) . must be false in an answer set, which in turn implies that conflict (n) must
be false. However, the program having no answer set implies that every executable sequence of
actions will generate conflict (n).

4.6 Likelihood of Concerns Satisfaction and Preferred Mitigation Strategies

In this subsection, we present an ASP program for computing LoS of concerns and preferred mit-
igation strategies using LoS. Listing 10 shows the ASP encoding for computing of LoS of con-
cerns. It defines the predicate 11h_sat (C, N, T) which states that the likelihood of satisfaction of
concern C at time step T is N. It starts with the definition of different predicates nal1PosCon/3
and nActPosCon/3 representing rel* (c¢) and relf, (c,s) at the step T, i.e., the number of all
possible positively impacting properties on concern C and the number of positively impacting
properties on concern C holding in step T, respectively. Recall that positiveImpact (P,C) i
defined as in Subsection 4.3. Line 5 creates an ordering between subconcerns of concern C for
the computation of 11h_sat (C, N, T). The LoS for a concern without a subconcern is computed
in Line 8. Rules on the lines 9-12 compute the LoS of concerns in accordance with the order
created by rule on Line 1. 11h_sat (C, N, T) is then computed using Equation 8.

Listing 10: I;,s: Computing Likelihood of Concerns Satisfaction

nAllPosCon (C,N2,T) :~ concern(C), step(T), N2=#count{P,Com : comp (Com),
prop (P), positiveImpact (P,C), addBy(C,P), relation(Com,P)}.
nActPosCon (C,N1,T) :— concern(C), step(T), Nl=#count{P,Com : comp (Com),

prop (P), positiveImpact (P,C), addBy(C,P), relation(Com,P),
h(active (Com,P),T)}.

deg_pos (C,1,T) :— step(T), concern(C), nAllPosCon(C,0,T).

deg_pos (C,N1x100/N2,T) :- nAllPosCon (C,N2,T), nActPosCon(C,N1,T),
concern (C), N2!=0.

order (SC,C,N) :- subCo(C,SC), N={SC < SCp : subCo (C,SCp)}.

hSubCo (C) :— subCo (C,SC), concern(C), concern (SC).

—hSubCo (C) :— concern (C), not hSubCo (C).

llh_sat_sub(C,1,T) :- step(T), concern(C), —hSubCo(C).

llh_sat (C,N1%«N2,T) :- step(T), concern(C), llh_sat_sub(C,N1,T),
deg_pos (C,N2,T) .

llh_sat_sub_aux (C,0,X,T) :—- step(T), subCo(C,SC), order(SC,C,0),
1llh_sat (SC,X,T).

llh_sat_sub_aux (C,N,XxY,T) :— step(T), subCo(C,SC), order (SC,C,N),
1llh_sat (SC,Y,T), llh_sat_sub_aux(C,N-1,X,T).

llh_sat_sub (C,X,T) :- llh_sat_sub_aux(C,N,X,T), step(T), concern(C),

not llh_sat_sub_aux (C,N+1,_,T).

Specifying and Reasoning about CPS through the Lens of the NIST CPS Framework 33

It is easy to check that the above program correctly computes the values of deg™ (c,s) and
PrLos (Ca S). Indeed, the program I (Alkas) =1I (%kas)n ull (Ilkas) U chkas Ul U HZIan UIpes
correctly computes the LoS of concerns for various concerns as shown in Subsection 3.3.3 (Fig-
ure 5).

Having computed LoS of concerns and ¢y,s, identifying the best strategies in according to the
two approaches in Subsection 3.3.3 is simple. We only need to add rules that aggregates the LoS
of the top-level concerns specified in the CPS with their corresponding weights or preferences.

This is done as follows:

o Weighted LoS: Listing 11 computes the weighted LoS of the final state. The rule is self-
explanatory.

Listing 11: Computing Weighted LoS

1 scoreLoS(Sc,T) :— llh_sat (functionality,\]fun, T), wLoS(
functionality,Wf,m) , llh_sat (business, Vp,, T), wLoS (business, Wy,
), llh_sat (human, Vi, T), wLoS (human, Wp,,), llh_sat (
trustworthiness, Vi, T), wLoS (trustworthiness,Wsy), llh_sat (
timing, V4, T), wLoS (timing, W), llh_sat (data,Vgg,T), wLoS(
data,Wgy), llh_sat (boundaries,Vpy,,T), wLoS (boundaries, Wpy,) ,
1lh_sat (composition, Veom, T), wLoS (composition,Weym), llh_sat (
lifestyle, Vyy, T), wLoS (lifestyle,Wyr), Sc = Ve Weyy + Viyg* Wiy
* Vium *Whum + Veu*Werw + Vi *Weim + Vg *Waar + Veou*Wpou + Veom*Weom +
Viig*, Wiif -

o Specified Preferences LoS: ASP solver provides a convenient way for computing
preferences based on lexicographic order among elements of a set. Assume that
Trustworthiness is preferred to Business then the two statements

#maximize{V;@k : llh_sat (trustworthiness, V;, n)}
#maximize{V>Q@k’: llh_sat (business, V,, n)}
with k > k" and n is the length of the plan will return answer sets in the lexicographic
order, preferring the concern Trustworthiness over Business. With these statements,
any specified preferred LoS over the set of top-level concern can be implemented easily.

4.7 Computing Mitigation Strategy with The Best Chance to Succeed

To compute strategies with the maximal probability of success, we only need to extend the pro-

gram Hglan with the following rules:

e for each statement “a success_with v if p,... p,”, the two rules:
pr(a,v,T) :— h*(p1,T),...,h* (pu,T).
dpr(a,T) :— h* (py,T),...,h* (ps, T).
which check for the satisfaction of the condition in a statement defining the probability of
success in the step 7" and states that it is defined.
e the rule:
pr(A,1,T) :— exec(A,T),not dpr(A,T).
which says that by default, the probability of success of a at step T is 1.
e computing the probability of the state at step 7
prob(1,0).
prob (UxV,T+1) :— prob(U,T),occurs (A, T),pr (4,V,T).
where the first rule says that the probability of the state at the time 0 is 1; prob (v,t) states

34 Thanh H. Nguyen, et al.

that the probability of reaching the state at the step 7 is v and is computed using the second
rule.

Let IT},, ¢ be Hglan and the above rules. We have that if [ay, . ..,a,—1] and S is an answer set of

I1(A)UIT}, p,s U {occurs (a;,i) | i=0,...,n—1} then prob (TI_) pr (a;,s;) ,n) € S. To compute
the best strategy, we add the rule

#maximize{V: prob(V,n)}.
to the program I}, p.c.

Example 7
Continue with Example 2 after a cyber-attack occurs and causes the property basic-mode to

be False. As in Section 4.4, the five mitigation strategies (1,0, 03,04 and of5) are gener-
ated to restore the LKAS system. Assume that the probability of success of tOn (basic mode),
switM(cam,advanced mode), and switM(sam,advanced mode) are 0.2, 0.6, 0.7 in every state,
respectively. In this case, the strategies o and o3 have the maximal probability to succeed.

5 Towards a Decision-Support System for CPSF

As a demonstration of the potential use of our approach, in this section we give a brief overview
of a decision-support system that is being built for use by CPS designers, managers and operators.
We also include preliminary considerations on performance aspects.

ese ece soe
Foailabis Guaries Sl vallbie Queres
Soohisicated Reasoning: LA Lane-keering Assistat Ssiem
Sophisticated Reasoning: LKAS Lane-keeping ASsistant System ISaphisticated Reasoning. LKAS Lane-kesping Assistant Svstem Saphistcated Reasoning 01 -~ ASF Optology
Sophisticated Reasoning 01 —- ASP Ontology Sophisticated Reasoning 01 =-+ ASP Ontology 41503 st o
SR-RE-01: Most/Least Trustworthy Component r
1 Comp SR-RE-01: Most/Least Trustworthy Component e
SR-RE-01 Check unsatisfied concerns SR-RE-01: Check unsatisfied cancems v cyveramac
SR-RE-01. After cyberattack SR-RE-01: Afte cyberattack tritegy Random method + List i pos b solutons
SR-RE-01. Mitigation Surateay: Random method + List all possible solutions SR-RE-O1: Mitigatian Strategy: Random method + Listail passible salutions ion Siaty: Highess chance o succeed (robailisi Ressening
Saphisticated Reasoning 01 === OWL. Ontology -~ Case 0
SR-RE-D1: Miigation Strategy: Highest chance to succeed (rababilinc Reazoning) SR-RE-01: Mitigation Srategy: Highest chance to succeed Probasilstic Reasoning) el ey 01 == oWt gy Cn)
Sephisticated Reasening 01 -~ OWL Onialogy —— Case 0 \Saphisticated Reasoning 01 --- OWL Ontalagy -~ Case 0
SR-RE-01: Most] Least Trustworthy Component (Case 0) SR-RE-01: Most/Least Trustworthy Component (Case 0)
SR-RE-01: Check unsaisfied concerns (Case 0) SR-RE-01: Check unsadsed concerms (Case 0)
SR-RE-D1: Check all concerns satisfaction (Case 0) SR-RE-01: Check all concerns satisfaction (Case 0)
SR-RE-01: Mitigarion Strategy: Randam method + List all possible solutions (Cast 0) SR-RE-01: Mitigation Strategy: Random method + List al possible solutions (Case 0)
Resut —
Query Resitts (13 answerals =0
ery Reaules s snmwersh: Query Results (12 answersi:
Unaatisries concernaspect/property | fype | function | step St e e
Unsatistied ty [Type | Decospesition Function | Step
concerncree Teree |- o
authent ication | concern | - e concern—tree | tree | I
contigentiotity | Goncern | = ie Sdvanced_rode | property | - Io
cantrots | concern | o all | Gontern’ | - I
cymer._security | concern | e Dasic_sode | property | - 1o
Firewst Lsetup | property | o cyber security | concern | - I
predictabiiity | eoncern’ | I integrity | concern | - io
privacy | concern | I integrity | concern | operation_func I
protection | concern | e itis scan | property | I
Security | concern | e . concern’ | I
truswortniness | aspect | io Trustworthiness | aspect | - I
trusworthiness | concern |] trustuorthiness | concern I
tuo_factors_auth 1 property | ie two_factars 1 property | - I

Fig. 6: Computing Satisfaction of Concerns in Reasoning Component

The decision-support system relies on an ASP-based implementation for reasoning tasks in
CPS theories (described in Section 4) with the different modules for answering queries described
in Section 3.3, and comprises a reasoning component and a visualization component. Figure 6
shows the reasoning component at work on computing satisfaction of concerns related to the
LKAS domain example (described in Section 4.2). Figure 7 illustrates the reasoning component
at work on other modules (Section 4.3—4.7) with different situations related to the LKAS domain.
Notice how the user can ask the system to reason about satisfaction of concerns, to produce
mitigation plans as well as to select the most preferred mitigation strategy, etc.

The output of the reasoning component can then be fed to the visualization component, where
advanced visualization techniques allow practitioners to get a birds-eye view of the CPS or dive

Specifying and Reasoning about CPS through the Lens of the NIST CPS Framework 35

Fig. 7: Other reasoning modules in Reasoning Component

into specific details. For instance, the sunburst visual from Figure 8 provides a view of the CPS
from Figure 2 where the aspects are presented in the inner most ring. Moving outwards, the
visualization shows concerns from increasingly deeper parts of the concern tree and properties.
The left-hand side of the figure depicts the visualization in the case in which all concerns are
satisfied (blue), while the right-hand side shows how the sunburst changes when certain concerns
(highlighted as red) are not satisfied. Focusing on the right-hand side, the text box open over
the visual reports that the trustworthiness aspect is currently not not satisfied and the level at
which this concern is not being met is the concern of privacy and the property of manageability.
The visual allows for a pinpoint where within the CPS framework issues have arisen that when
addressed can enable a working state. We omit the details of visualization component description
as it is not the focus of this paper.

1: CPS Framework C Trustworthiness
Trustworthiness 5 Privacy
Privacy :
e Manageability v)
. C Green): Satisfied

T T | Satisfied

Fig. 8: Visualization component

To ensure flexibility and to allow for investigation on the scalability on larger CPS, the
decision-support system is designed to support a variety of hybrid ontology-ASP reasoning en-
gines. Currently, we consider four reasoning engines: the naive engine is implemented by con-
necting, in a loosely-coupled manner!!, the SPARQL reasoner'? and the Clingo ASP solver. This

' By loosely-coupled, we mean that the components see each other as black-boxes and only exchange information, via
simple interfaces, at the end of their respective computations. Compare this with a tightly-coupled architecture, where
the components have a richer interfaces for exchange state information and controlling each other’s execution flow
while their computations are still running.

12 https://www.w3.org/TR/rdf-sparql-query/

36 Thanh H. Nguyen, et al.

engine issues a single SPARQL query to the ontology reasoner at the beginning of the compu-
tation, fetching all necessary data. The Clingo-Python engine is another loosely-coupled engine,
leveraging Clingo’s ability to run Python code at the beginning of the computation. This engine
issues multiple queries in correspondence to the occurrences of special “external predicates” in
the ASP program, which in principle allows for a more focused selection of the content of the
ontology. The DLVHex2 engine also uses a similar fragmentation of queries, but the underlying
solver allows for the queries to be executed at run-time, which potentially results in more fo-
cused queries, executed only when strictly needed. Finally, the Hexlite engine leverages a similar
approach, but was specifically designed as a smaller, more performant alternative to DLVHex2.

In this preliminary phase of our investigation on scalability, all reasoning engines have ex-
hibited similar performance, as exemplified by Table 2. The table summarizes the results of
question-answering experiments on the Lane Keeping/Assist System (LKAS) domain and on the
Smart Elevator domain Nguyen et al. (2020a). The reasoning tasks considered are for answering
queries discussed earlier, including:

e (Q;) Computing satisfaction of concerns.

e (Q;) Computing most/least trustworthy components.

o (Q3) Generating mitigation strategies.

e (Q4) Non-compliance detection in a CPS.

o (Qs) Selecting the best mitigation strategy by preferred mitigation strategies.
o (Qg) Computing the likelihood of concerns satisfaction.

In Table 2, the performance of the execution for each query (Q;-Qg)'? is measured by the average
processing time of reasoning computations in our experiment CPS theories (LKAS and Smart
Elevator) with different initial situations (different initial configurations). While the results show
that the naive engine is marginally better than the others, the differences are quite negligible,
all within 10%. It is conceivable that larger-scale experiments will eventually exhibit similar
patterns to those found in other research on the scalability of hybrid systems (e.g., Balduccini
and Lierler (2017)). A thorough analysis will be the subject of a separate paper where we have
done some preliminary experiment with our CPS reasoning system and found that it can work
ontologies with more than 150K triples, 85 classes, 61K individuals, 30 object properties, 40 data

properties, and 45 subclass relations within a minute.

6 Related Work

Due to the difference in level of abstraction, most of the approaches from the literature can be
viewed as orthogonal and complementary to ours. Thus, we focus our review of related work on
what we consider to be the most relevant approaches.

The literature from the area of cybersecurity is often focused on the notion of graph-based
attack models. Of particular relevance is the work on Attack-Countermeasure Trees (ACT) Roy
et al. (2012). An ACT specifies how an attacker can achieve a specific goal on a IT system, even
when mitigation or detection measures are in place. While ACT are focused on the Cybersecu-
rity concern, our approach is rather generally applicable to the broader Trustworthiness aspect of

13 We use a Macbook Pro 16 running macOS Big Sur Version 11.5.2, 32GB RAM DDR4, 2.6Ghz 6-Core Intel Core i9,
and ASP solver C1lingo

Specifying and Reasoning about CPS through the Lens of the NIST CPS Framework 37

. LKAS Domain Smart Elevator Domain
Reasoning Tasks
Naive Clingo DLVHex2 Hexlite Naive Clingo DLVHex2 Hexlite
-Python -Python

Q 1.35s 1.48s 1.32s 1.37s 1.31s 1.45s 1.30s 1.35s
Q> 1.28s 1.43s 1.29s 1.32s 1.25s 1.32s 1.22s 1.30s
Q3 1.36s 1.52s 1.38s 1.41s 1.33s 1.49s 1.37s 1.39s
Q4 1.41s 1.52s 1.41s 1.45s 1.40s 1.53s 1.41s 1.47s
Qs 1.38s 1.47s 1.42s 1.39s 1.26s 1.39s 1.33s 1.35s
(013 1.74s 1.93s 1.79s 1.81s 1.78s 1.95s 1.77s 1.86s

Table 2: CPS domains Querying, Extracting and Reasoning Summary

CPS and can in principle be extended to arbitrary aspects of CPS and their dependencies. The un-
derlying formalization methodology also allows for capturing sophisticated temporal models and
ramified effects of actions. In principle, our approach can be extended to allow for quantitative
reasoning, e.g., by leveraging recent work on Constraint ASP and probabilistic ASP Balduccini
and Lierler (2017); Ostrowski and Schaub (2012); Baral et al. (2009). As we showed above, one
may then generate answers to queries that are optimal with respect to some metrics. It is worth
pointing out that the combination of physical (non-linear) interaction and logical (discrete or
Boolean) interaction of CPS can be modeled as a mixed-integer, non-linear optimization prob-
lem (MINLP) extended with logical inference. MINLP approaches can support a limited form of
logic, e.g., through disjunctive programming Balas (1975). But these methods seem to struggle
with supporting richer logics and inferences such as “what-if”” explorations. For relevant work in
this direction, we refer the reader to Mistr et al. (2017); D’Iddio and Huth (2017).

One major focus in the area of cybersecurity is the identification and mitigation of compro-
mised devices. Behavior analysis and behavioral detection are some of the approaches used in
this area. Uluagac et al. (2019) proposes a system-level framework for the identification of com-
promised smart grid devices. The approach employs a combination of system call and function
call tracing, which are paired with signal processing and statistical analysis. In a similar vein,
Shoukry et al. (2018) covers model-based techniques for addressing the problem of sensors that
can be manipulated by an attacker. It is worth noting that, in our methodology, the presence or
lack of compromised devices or components — and even the type of compromise — can be cap-
tured by means of properties, which in turn affect specific concerns. Techniques such as those
described in the cited papers can then be used to determine whether such properties are satisfied
or not.

Another related, complementary approach is presented in Aerts et al. (2017), where the authors
tackle the problem of validation and verification of requirements. The paper proposes model-
based testing as a solution to two key problems in validation and verification of requirements:

38 Thanh H. Nguyen, et al.

translating requirements into concrete test inputs and determining what the outcome of such tests
says about the satisfaction of the requirements. From this point of view, the approach from Aerts
et al. (2017) can be used to provide the information about satisfaction of requirements that is
necessary for the reasoning tasks covered by in our investigation.

Lee (2016) analyzes the role of models in the engineering of CPS and argues for classes of
models that trade accuracy and detail in favor of simplicity and clarity of semantics. This idea is
in line with the considerations that prompted the development of CPSF, and which are infused
in our work through its legacy. In a related fashion, Roehm et al. (2019) proposes a survey of
conformance relations, where the term describes the link between functional behavior of a model
and the behavior of the implemented system (or of a more concretized model). Conformance
relations are typically applied to the task of analyzing requirements and their link to the CPS
being modeled, and in that sense Roehm et al. (2019) is orthogonal to our work. On the other
hand, the paper elicits the interesting issue of whether the characterization of CPS from CPSF
might be viewed, itself, as a conformance relation. This is an open question, which we plan to
address in the future.

Tepjit et al. (2019) presents a rich survey of frameworks for implementing reasoning mecha-
nisms in smart CPS. It is to be noted that the focus of the paper is on the reasoning mechanisms
that occur within a CPS in order to achieve “smartness” Tepjit et al. (2019), while our focus is
on reasoning mechanisms that allow designers, maintainers and operators to reason about a CPS
— where the CPS itself may or may not be “smart.” There is certainly a certain degree of overlap
between this paper and our work, but also of important differences. In particular, the reasoning
mechanisms we discussed here are not always applicable at the system level, which is the focus
of Tepyjit et al. (2019). For instance, our techniques could be used in real-time by a CPS to deter-
mine whether its functional aspect is satisfied, but it may be unrealistic for a CPS to reason about
its own trustworthiness. From another point of view, reasoning mechanisms discussed in Tepjit
et al. (2019), such as planning and decision-making, can be viewed as tools for the satisfaction
of properties. In this sense, a designer might want to use the results of that paper to ensure that
the decision-making mechanisms implemented within a CPS satisfy certain properties that are
responsible for ensuring the functional aspect of the CPS or even its trustworthiness.

The methodologies proposed in our paper build on a vast number of research results in ASP
and related areas such as answer set planning, reasoning about actions, etc. and could be eas-
ily extended to deal with other aspects discussed in CPSF. They are well-positioned for real-
world applications given the efficiency and scalability of ASP-solvers (e.g., clingo Gebser
et al. (2007)) that can deal with millions of atoms, incomplete information, default reasoning,
and features that allow ASP to interact with constraint solvers and external systems.

7 Conclusions and Future Work

The paper presents a precise definition of a CPS, which, in conjunction with the CPS Ontology
Framework by NIST, allows for the representing and reasoning of various problems that are
of interest in the study of CPS. Specifically, the paper defines several problems related to the
satisfaction of concerns of a CPS theories such as the problem of identifying non-compliant
CPS systems, the problem of identifying the most/least trustworthy or vulnerable components,
computing mitigation strategies, a most preferred mitigation strategies, or strategies with the
best chance to succeed. For each problem, the paper presents a formal definition of “what is
the problem?” and provides an ASP program that can automatically verify such properties. To

Specifying and Reasoning about CPS through the Lens of the NIST CPS Framework 39

the best of our knowledge, all of these contributions are new to the research in Cyber-Physical
Systems.

The current ASP implementation'# provides a first step towards developing a tool for CPS
practitioners and designers. It automatically translates a system specification as an ontological
description (e.g., as seen in Figure 5) to ASP code and allows users to ask questions related
to the aforementioned issues. It has been validated against small systems. One of our goals in
the immediate near future is to develop an user-friendly interface that allows users to design or
model their real-world CPS and identify potential issues within their systems and possible ways
to address these issues before these issues become harmful.

Disclaimer. Official contribution of the National Institute of Standards and Technology; not subject to copyright in the
United States. Certain commercial products are identified in order to adequately specify the procedure; this does not
imply endorsement or recommendation by NIST, nor does it imply that such products are necessarily the best available
for the purpose. Portions of this publication and research effort are made possible through the help and support of NIST
via cooperative agreements 70NANB18H257 and 70NANB21H167.

References

AERTS, A., RENIERS, M. A., AND MOUSAVI, M. R. 2017. Cyber-Physical Systems - Foundations, Prin-
ciples and Applications, chapter 19. Model-Based Testing of Cyber-Physical Systems, pp. 287-304. In-
telligent Data-Centric Systems.

BaLAS, E. Disjunctive programming: Cutting planes from logical conditions. In Nonlinear Programming
21975, pp. 279-312. Elsevier.

BALDUCCINI, M., GRIFFOR, E., HUTH, M., VISHIK, C., BURNS, M., AND WOLLMAN, D. A. 2018.
Ontology-based reasoning about the trustworthiness of cyber-physical systems. ArXiv, abs/1803.07438,
1.

BALDUCCINI, M. AND LIERLER, Y. 2017. Constraint Answer Set Solver EZCSP and Why Integration
Schemas Matter. Journal of Theory and Practice of Logic Programming (TPLP), 17, 4, 462-515.

BARAL, C., GELFOND, M., AND RUSHTON, N. 2009. Probabilistic reasoning with answer sets. Theory
and Practice of Logic Programming, 9, 1, 57-144.

BARAL, C., TRAN, N., AND TUAN, L.-C. Reasoning about actions in a probabilistic setting. In AAAI/IAAI
2002, pp. 507-512.

D’IDppIo, A. C. AND HUTH, M. 2017. ManyOpt: An Extensible Tool for Mixed, Non-Linear Optimization
Through SMT Solving. CoRR, abs/1702.01332.

EITER, T. Answer set programming for the semantic web. In DAHL, V. AND NIEMELA, 1., editors, Logic
Programming, 23rd International Conference, ICLP 2007, Porto, Portugal, September 8-13, 2007, Pro-
ceedings 2007, volume 4670 of Lecture Notes in Computer Science, pp. 23-26. Springer.

GEBSER, M., KAUFMANN, B., NEUMANN, A., AND SCHAUB, T. clasp: A conflict-driven answer set
solver. In BARAL, C., BREWKA, G., AND SCHLIPF, J., editors, Proceedings of the Ninth International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’07) 2007, volume 4483 of
Lecture Notes in Artificial Intelligence, pp. 260-265. Springer-Verlag.

GELFOND, M. AND LIFSCHITZ, V. Logic programs with classical negation. In WARREN, D. AND Sz-
EREDI, P., editors, Logic Programming: Proceedings of the Seventh International Conference 1990, pp.
579-597.

GELFOND, M. AND LIFSCHITZ, V. 1993. Representing actions and change by logic programs. Journal of
Logic Programming, 17,2,3,4, 301-323.

14 Available at ht tps://github.com/thanhnh-infinity/Research_CPS

https://github.com/thanhnh-infinity/Research_CPS

40 Thanh H. Nguyen, et al.

GELFOND, M. AND LIFSCHITZ, V. 1998. Action Languages. Electronic Transactions on Artificial Intelli-
gence, 3, 6.

GELFOND, M. AND SON, T. C. Prioritized default theory. In Selected Papers from the Workshop on Logic
Programming and Knowledge Representation 1997 1998, pp. 164-223. Springer Verlag, LNAI 1471.
GHALLAB, M., NAU, D., AND TRAVERSO, P. 2004. Automated planning: theory and practice. Morgan

Kaufmann Publishers.

GRIFFOR, E., GREER, C., WOLLMAN, D. A., AND BURNS, M. J. Framework for cyber-physical systems:
volume 1, overview 2017a.

GRIFFOR, E., GREER, C., WOLLMAN, D. A., AND BURNS, M. J. Framework for cyber-physical systems:
Volume 2, working group reports 2017b.

LEE, E. A. 2016. Fundamental Limits of Cyber-Physical Systems Modeling. ACM Transactions on Cyber-
Physical Systems, 1, 1, 1-26.

MAREK, V. AND TRUSZCZYNSKI, M. Stable models and an alternative logic programming paradigm. In
The Logic Programming Paradigm: a 25-year Perspective 1999, pp. 375-398.

MISTR, M., D’IDDIO, A. C., HUTH, M., AND MISENER, R. 2017. Satisfiability modulo theories for
process systems engineering. eprints for the optimization community.

MOSCHOPOULOS, J. 2001. Ship Control Technology; A US Navy Perspective. I[FAC Proceedings Volumes,
34,7, 381-388.

NGUYEN, T., SON, T. C., BUNDAS, M., BALDUCCINI, M., GARWOOD, K. C., AND GRIFFOR, E. Rea-
soning about trustworthiness in cyber-physical systems using ontology-based representation and asp. In
PRIMA 2020a.

NGUYEN, T. H., PONTELLI, E., AND SON, T. C. On repairing web services workflows. In KOMEN-
DANTSKAYA, E. AND L1U, Y. A, editors, Practical Aspects of Declarative Languages 2020b, pp. 37-53,
Cham. Springer International Publishing.

NGUYEN, T. H., POTELLI, E., AND SON, T. C. 2018a. Phylotastic: An experiment in creating, manipu-
lating, and evolving phylogenetic biology workflows using logic programming. Theory and Practice of
Logic Programming, 18a, 3-4, 656-672.

NGUYEN, T. H,, SON, T. C., AND PONTELLI, E. Automatic web services composition for phylotastic. In
PADL 2018, Los Angeles, CA, USA, January 8-9, 2018, Proceedings 2018b, pp. 186-202.

NIEMELA, I. 1999. Logic programming with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence, 25, 3,4, 241-273.

NIEMELA, 1., SIMONS, P., AND SOININEN, T. Stable model semantics for weight constraint rules. In Pro-
ceedings of the 5th International Conference on on Logic Programming and Nonmonotonic Reasoning
1999, pp. 315-332.

OSTROWSKI, M. AND SCHAUB, T. 2012. ASP Modulo CSP: The Clingcon System. Journal of Theory and
Practice of Logic Programming (TPLP), 12, 4-5, 485-503.

ROEHM, H., OEHLERKING, J., WOEHRLE, M., AND ALTHOFF, M. 2019. Model Conformance for Cyber-
Physical Systems: A Survey. ACM Transactions on Cyber-Physical Systems, 3, 3, 1-26.

Roy, A., KiM, D. S., AND TRIVEDI, K. S. 2012. Attack countermeasure trees (ACT): towards unifying
the constructs of attack and defense trees. Security and Communication Networks, 5, 8, 929-943.

SHOUKRY, Y., CHONG, M., WAKAIKI, M., NUzzo, P., SESHIA, S. A., HESPANHA, J. P.,, AND
TABUADA, P. 2018. SMT-Based Observer Design for Cyber-Physical Systems under Sensor Attacks.
ACM Transactions on Cyber-Physical Systems, 2, 1, 1-27.

SoN, T., BARAL, C., TRAN, N., AND MCILRAITH, S. 2006. Domain-dependent knowledge in answer set
planning. ACM Trans. Comput. Logic, 7,4, 613—-657.

TEPIJIT, S., HORVATH, 1., AND RUSAK, Z. 2019. The State of Framework Development for Implementing
Reasoning Mechanisms in Smart Cyber-Physical Systems: A Literature Review. Journal of Computa-
tional Design and Engineering, 6, 527-541.

ULUAGAC, C. S., AKSU, H., AND BABUN, L. 2019. A System-level Behavioral Detection Framework for
Compromised CPS Devices: Smart-Grid Case. ACM Transactions on Cyber-Physical Systems, 4, 2.

Specifying and Reasoning about CPS through the Lens of the NIST CPS Framework 41

WOLLMAN, D. A., WEISS, M. A., LI-BABOUD, Y.-S., GRIFFOR, E., AND BURNS, M. J. Framework for
cyber-physical systems: Volume 3, timing annex 2017.

	1 Introduction
	2 Background
	2.1 NIST CPS Framework and the CPS Ontology
	2.2 Answer Set Programming
	2.3 Action Language B
	2.4 Representation and Reasoning with CPS Ontology in ASP

	3 CPS Theory Specification
	3.1 Formal Definition
	3.2 The Semantics of CPS Theories
	3.3 Reasoning Tasks in CPS

	4 An ASP-Based Implementation for Reasoning Tasks in CPS Theories
	4.1 ASP Encoding of a CPS Theory
	4.2 Computing Satisfaction of Concerns
	4.3 Computing Most/Least Trustworthy Components
	4.4 Computing Mitigation Strategies
	4.5 Non-compliance Detection in CPS Systems
	4.6 Likelihood of Concerns Satisfaction and Preferred Mitigation Strategies
	4.7 Computing Mitigation Strategy with The Best Chance to Succeed

	5 Towards a Decision-Support System for CPSF
	6 Related Work
	7 Conclusions and Future Work
	References

