

Single-Atom High-Temperature Catalysis on Rh₁O₅ Cluster for Production of Syngas from Methane

Yu Tang,^{1¶} Victor Fung,^{2¶} Xiaoyan Zhang,^{1¶} Yuting Li,^{1¶} Luan Nguyen,¹ Tomohiro Sakata,³ Kotaro Higashi,³ De-en Jiang^{*2} and Franklin (Feng) Tao^{*1}

¹Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS, 66049, USA

²Department of Chemistry, University of California, Riverside, CA, 92521, USA

³Innovation Research Center for Fuel Cells and Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo, 182-8585, Japan

[¶]These authors equally contributed to this work.

* Correspondence and requests for materials should be addressed to emails: franklin.tao.2017@gmail.com (F.T.) and djiang@ucr.edu (D.J.)

Abstract

Single-atom catalysts are a relatively new type of catalyst active for numerous reactions but mainly for chemical transformations performed at low or intermediate temperatures. Here we report that singly dispersed Rh_1O_5 clusters on TiO_2 can catalyze the partial oxidation of methane (POM) at high temperatures with a selectivity of 97% for producing syngas ($\text{CO}+\text{H}_2$) and high activity with a long catalytic durability at 650°C . The long durability results from the substitution of a Ti atom of TiO_2 surface lattice by Rh_1 , which forms singly dispersed Rh_1 atom coordinating with five oxygen atoms (Rh_1O_5), an under-coordinated environment but with nearly saturated bonding with oxygen atoms. Computational studies show the back donation of electron from d_{z^2} orbital of the singly dispersed Rh_1 atom to unoccupied orbital of adsorbed CH_n ($n > 1$) results in the charge depletion of the Rh_1 atom and a strong binding of CH_n to Rh_1 . This strong binding decreases the barrier for activating C-H, thus leading to high activity of Rh_1/TiO_2 . Cationic Rh_1 single atom anchored on TiO_2 exhibits a weak binding to atomic carbon in contrast to the strong binding of metallic Rh surface to atomic carbon. The weak binding of atomic carbon and the spatial isolation of Rh_1 on TiO_2 prevents atomic carbon from coupling on Rh_1/TiO_2 to form carbon layers, making Rh_1/TiO_2 resistant from carbon deposition supported metal catalysts for POM. The highly active, selective and durable high-temperature single-atom catalysis performed at 650°C demonstrates a avenue application of single-atom catalysis to chemical transformations at high temperatures.

Keywords: Single atom catalyst, syngas, partial oxidation, methane, rhodium, AP-XPS, in-situ, operando

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Introduction

The production of synthesis gas (syngas) from methane has mainly been achieved through the catalytic steam reforming of methane (SRM) at 800°C or through noncatalytic homogeneous partial oxidation of methane (POM) at >1127°C.¹⁻⁴ Steam reforming of methane at >800°C has been the predominant catalytic process in the industrial production of syngas since the 1930s.²⁻⁵ Supported Ni catalysts have been the main industrial catalysts for the steam reforming of methane which suffers from a serious issue of carbon deposition despite the fact that a significant number of catalysts of SRM were reported in literature.²⁻⁴ Although the addition of more H₂O to the reactor is used to avoid coke formation in methane reforming, it unfortunately creates new problems in terms of increasing the H₂/CO ratio through the water-gas shift reaction. A high H₂/CO ratio consequently limits the direct use of the CO and H₂ mixture in downstream processes, mainly Fischer-Tropsch synthesis.²⁻⁴ Meanwhile, the noncatalytic POM is a homogeneous reaction processed at an extremely high temperature (>1127°C), which consumes a significant amount of energy to maintain the reaction temperatures and thus results in a large carbon footprint and a need for the costly maintenance of the reactors.

The limitations of catalytic SRM and noncatalytic POM drove explorations into catalytic POM as early as the 1920s.²⁻⁴ Compared to noncatalytic POM performed at >1127°C, catalytic POM can be performed at reaction temperatures lower than 1127°C, significantly reducing energy costs. Due to the mildly exothermic nature of POM at room temperature, performing POM at low temperatures is thermodynamically feasible as long as its kinetics can be promoted by a catalyst. Significant efforts in this area were made in the last few decades as reviewed in literature.^{2,3,6-8} Ni supported on alumina were the main catalysts for POM studied in the 1920s-

1
2
3 1940s.^{9,10} In the 1980s-1990s, Ni catalysts modified with different supports including Y_2O_3 ,
4
5 Co_3O_4 , ZrO_2 , UO_2 , ThO_2 , and rare earth oxides were then reported.²⁻⁴ The main problem of these
6
7 Ni-based POM catalysts is the formation of whisker carbon which clogs reactors substantially.¹¹⁻
8
9
10 17 In addition, by using $CaAl_2O_4$, $AlPO_4-5$, alkaline metal oxide-modified alumina, or
11
12 $Ca_{0.8}Sr_{0.2}TiO_3$ as a support of Ni, the thermal stability of Ni-based catalysts was improved to
13
14 some extent although the selectivity for producing CO and H_2 was sacrificed.¹⁸⁻²² Unfortunately,
15
16 the issues of deactivation of nickel catalysts by carbon deposition during POM remain
17
18 unresolved so far.²
19
20

21
22 In the 1980s, Green et al. reported $Ln_2M_2O_7$ ($Ln=La, Pr, Eu, La, Dy, Yb, Ba, Bi$, and
23
24 $M= Ru, Ir, Pt, Rh$) catalysts exhibiting high activity and selectivity which led to a renaissance in
25
26 catalytic POM studies.^{4,10,23,24} Their early reports on $Ln_2M_2O_7$ inspired a large number of studies
27
28 on precious metals and related catalysts since the 1980s;² Pt, Pd and Rh with a loading of
29
30 0.5wt%-5.0wt% on different types of supports including alumina foam, mixed oxides were
31
32 investigated for POM. Through these studies, an ordering of activity impacted by a support was
33
34 suggested: $Y_2O_3 > La_2O_3 > MgO > Al_2O_3 > SiO_2$ and $Y_2O_3 > ZrO_2 > TiO_2$.²⁵ These supported
35
36 noble metals are highly active for POM although their thermal stabilities were not reported in
37
38 detail.² Different from these Ni-based and noble metal-based catalysts, molybdenum carbide
39
40 was reported by York et al.²⁶⁻²⁸ this type of catalysts has an activity similar to noble metals;
41
42 however, it readily deactivates through a two-step process under reaction conditions, where
43
44 molybdenum carbide is first oxidized to molybdenum oxide and then vaporization occurs at
45
46 high temperatures under 1 atm pressure.^{2,3,6,7,26-28} Despite these significant efforts in the
47
48 development of different types of POM catalysts, these reported catalysts have still suffered
49
50 from either carbon deposition and/or a loss or a harmful restructuring of the active catalyst
51
52 components during POM.
53
54
55
56
57

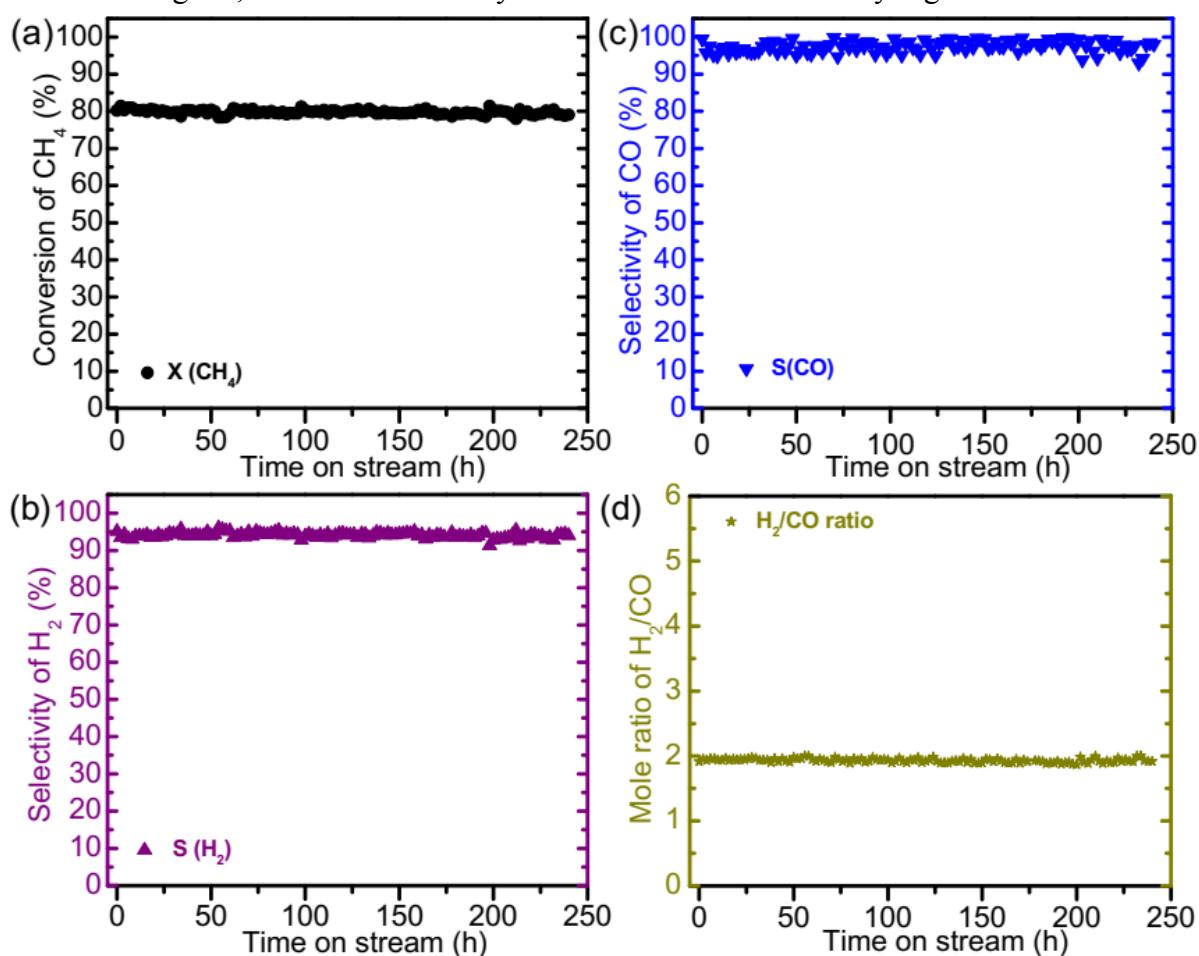
The literature has demonstrated that single-atom catalysts of many transition metals including Pt, Pd and Rh exhibit distinctly different catalytic performances for a number of reactions at relatively low temperature.²⁹⁻³⁹ Compared to the continuously packed metal atoms on the surface of a metal particle, a singly dispersed metal atom, or an isolated metal atom, anchored on surface of a nonmetallic support, typically an oxide, is in a distinctly different chemical and coordination environment and thus exhibits a very different electronic state. For instance, Rh atoms were anchored to the internal surface of a micropore of the aluminosilicate ZSM-5 through proton exchange, making single-atom catalysts, Rh₁@ZSM-5; these reported single-atom sites immobilized in the 0.56 nm wide micropores of ZSM-5 are active for synthesis of acetic acid and methanol through coupling of CH₄, CO and O₂ in the microporous reactor where reactant molecules are delivered through the diffusion of dissolved gas molecules in aqueous solution under a high pressure gas phase at low temperatures of $\leq 150^{\circ}\text{C}$.^{40,41} These singly dispersed metal atoms, or single atoms, on a nonmetallic surface are typically under-coordinated, either electronically deficient or rich, which offer them a high tendency to bind to a reactant molecule or intermediate. However, one major challenge of single-atom catalysts is their short durability at high catalysis temperature and low reusability as their singly dispersed single-atom sites readily sinter at elevated temperatures^{42,3,43,44}. Thus, most single-atom catalysts function well at room temperature or a relatively low temperatures ($\leq 300^{\circ}\text{C}$) but not at high temperatures ($\geq 450^{\circ}\text{C}$), although a significant portion of chemical productions of chemical and petrochemical industries are performed at high temperatures driven by thermodynamics or/and kinetics. Notably, the high temperature defined here is different from that of high temperature processes in industries which run at 800°C or higher.

Herein we report a high-temperature single-atom catalyst, Rh₁/TiO₂ which is highly

1
2
3 active for POM at 650°C. During the high temperature catalysis at 650°C, its Rh₁ atom
4 coordinates with five O atoms, a nearly saturated coordination shell. This single-atom catalyst
5 exhibits long durability and extraordinary catalytic performance at 650°C for at least 240 hrs
6 and high reusability from 20 repeat runs in the temperature range of 450-650°C.
7
8
9
10
11
12
13
14

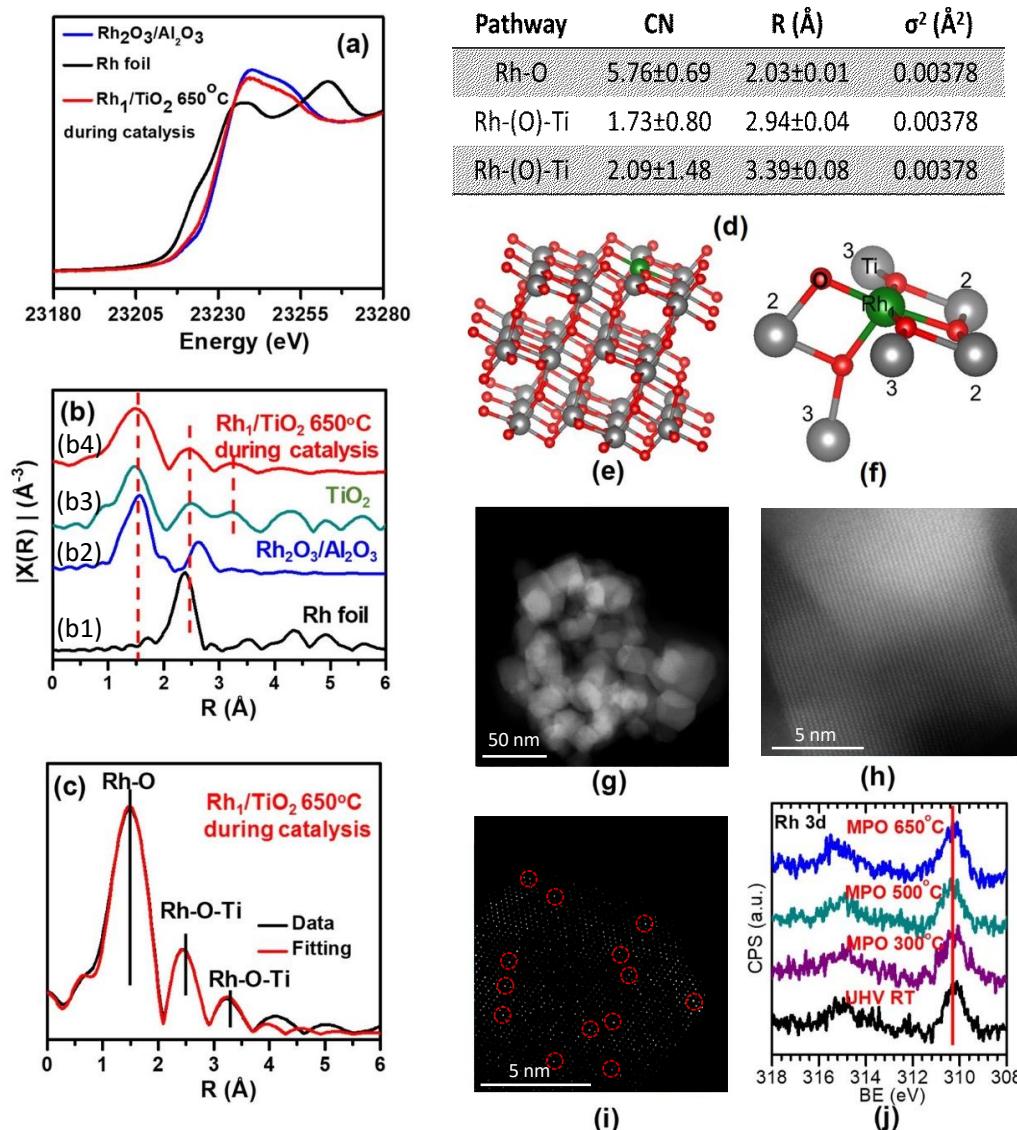
15 **Results and Discussion**

16


17 **Catalytic performance of single-atom catalyst Rh₁/TiO₂**

18

19 The single-atom catalyst, Rh₁/TiO₂ was prepared through a deposition precipitate
20 method modified for the preparation of Rh₁/TiO₂. Rh(III) cations were introduced to surface of
21 TiO₂ nanoparticles followed by drying at 60°C in air overnight and then annealing at 650°C
22 in air for 4 hrs. Based on ICP-AES measurements, the actual loading of Rh on TiO₂ is
23 0.037wt%. Details of the preparation can be found in the section of Experimental Methods and
24 Computational Approaches. For convenience, 0.037wt%Rh/TiO₂, Rh₁/TiO₂ and Rh₁O₅/TiO₂
25 are interchangeably used to refer the same catalyst in this article, depending on which piece of
26 specific information (concentration, single dispersion, or coordination) of this catalyst is
27 emphasized.
28
29


30 Compared to the inactive TiO₂ nanoparticles for POM in the temperature range of 300-
31 700 °C (Figure S1a), the Rh₁/TiO₂ catalyst is highly active for POM in the range of 450-650°C
32 under a flow of a mixture of 25 ml/min 10% CH₄ and 25 ml/min 5% O₂ (Figure S2). At 650
33 °C, 50 mg of 0.037wt% Rh/TiO₂ has a conversion of 80% for CH₄ (Figure 1a). The
34 selectivities for producing H₂ and CO at 650°C are 96% and 98%, respectively (Figures 1b
35 and 1c). This catalytic activity and selectivity on Rh₁/TiO₂ remain after over 240 hrs of
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

time on stream (Figure 1). There was no interphase diffusion limit since the conversion of CH₄ remained nearly the same while the flow rate of the mixture of CH₄ and O₂ varied in the range of 30-100 ml/min (Figure S3). The observed by-products are mainly CO₂ and H₂O which are formed from a competing reaction channel, the complete oxidation of methane; here the selectivities for forming by-products CO₂ and H₂O are 4% and 2%, respectively. In the kinetics-controlled regime, the Rh₁/TiO₂ catalyst exhibits an extraordinarily high turnover rate of 2428

Figure 1. Catalytic durability of Rh₁/TiO₂ catalyst (0.037wt%Rh/TiO₂) for POM in a period of 10 days. (a) Conversion of CH₄ at 650°C; (b) Selectivity for producing H₂ at 650°C; (c) Selectivity for producing CO at 650°C; (d) H₂/CO molar ratio at 650°C. Catalysis conditions: catalyst is 50 mg 0.037wt%Rh/TiO₂; the gas fed to the reactor is a mixture of 25 mL/min of 10% CH₄ and 25 ml/min of 5% O₂; catalysis temperature is 650°C.

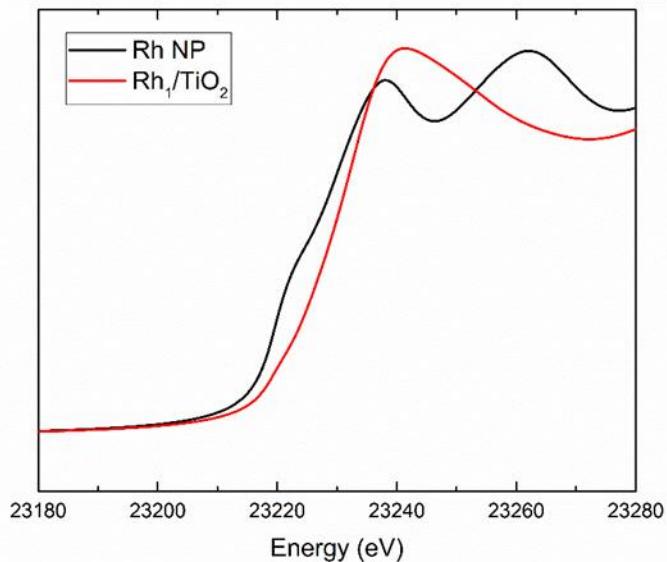
H₂ molecules produced from a Rh₁-based site per minute at 650°C. Details of calculation of

Figure 2. In-situ and operando studies of the 0.037wt%Rh/TiO₂ (Rh₁/TiO₂) catalyst for POM. (a-c) In-situ XANES and EXAFS studies of Rh K-edge. (a) XANES data of Rh foil, Rh₂O₃/Al₂O₃ and Rh₁/TiO₂ under catalytic condition of 650°C; (b) k^2 -weighted Rh K-edge EXAFS data in r space of (b1) Rh foil collected in air, (b2) Rh₂O₃/Al₂O₃ collected in air, and (b4) Rh₁/TiO₂ collected in the flowing mixture of CH₄ and O₂ through in-situ study approach of EXAFS, and (b3) k^2 -weighted Ti K-edge EXAFS data in r space of TiO₂ collected in air; (c) k^2 -weighted Rh K-edge EXAFS data in r space of Rh₁/TiO₂ collected in the flowing mixture of CH₄ and O₂ through in-situ study approach of EXAFS (black line) and the fitted curve (red line). (d) List of fitting parameters including bond lengths and coordination number. (e) Optimized structural model of catalyst Rh₁/TiO₂. (f) Coordination environment of Rh₁ atoms in the optimized structural model of (e). (g) Large scale TEM image of catalyst particles after catalysis at 650°C for 240 hrs. (h) High resolution TEM image of a particle of (g); (i) High resolution aberration-corrected HAADF-STEM images visualizing singly dispersed Rh atoms anchored on TiO₂ marked in red circles. (j) AP-XPS spectra of Rh 3d of Rh₁/TiO₂ in UHV at 25°C, in the mixture of CH₄ and O₂ at 300°C, 500°C and 650°C.

the TOR can be found in Section 7.2 of the supporting information (SI). The distinct difference

1
2
3 in catalytic activity between pure TiO_2 (Figure S1) and Rh_1/TiO_2 (Figure 1) clearly shows the
4 crucial role of the anchored Rh_1 atom although the loading is as low as only 0.037wt%. To test
5 the reusability of the catalyst, catalysis was performed from 300°C to 650°C on Rh_1/TiO_2 ,
6 followed by cooling to 300°C before the next cycle. for a total of 20 cycles on Rh_1/TiO_2 .
7
8 Compared to the catalytic performance of the 1st cycle (Figure S2a), the decay in catalytic activity
9 and selectivities at the 20th cycle (Figure S2b) is less than 4% over a period of about 360 hrs.
10
11 This suggests quite a high reusability for Rh_1/TiO_2 .
12
13

14 The single-atom catalyst Rh_1/TiO_2 also exhibited quite a long durability for POM at 650°C
15 for at least 240 hrs. As shown in Figure 1a, the conversion of CH_4 (80%) remained without any
16 decay at the 240th hr compared to the 0th hr. In addition, the selectivity for production of H_2 and
17 CO remained at 96% and 98%, respectively, under 650°C for the whole duration with negligible
18 changes (Figures 1b and 1c). The molar ratio of produced H_2/CO remained at 2.0 during the
19 catalysis at 650°C for 240 hrs (Figure 1d). The preservation of catalytic activity, selectivities and
20 H_2/CO molar ratio in Figure 1 confirms the high durability of the Rh_1/TiO_2 catalyst at the high
21 temperature of 650°C, suggesting that the chemical and coordination environments of Rh atoms of
22 this catalyst remained unchanged (Figure 1), which is further supported by in-situ and operando
23 characterizations of 0.037%Rh/ TiO_2 under the catalytic condition described below.
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44


Chemical and coordination environment of Rh atoms of single-atom catalyst

45 The chemical and coordination environments of Rh atoms of 0.037wt%Rh/ TiO_2 at the
46 atomic scale were investigated through in-situ XANES and EXAFS studies. 20 mg of
47 0.037wt%Rh/ TiO_2 (Catalyst #1) was loaded into the XAS reactor (XANES and EXAFS); a
48 mixture of 10 ml/min 10% CH_4 and 10 ml/min 5% O_2 was introduced; thus, the gas hourly space
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 velocity (GHSV) in the XAS reactor of in-situ XAS studies at the beamline end-station was the
4 same as that of catalytic measurements performed at our catalysis lab. The catalyst was heated
5 to 650°C in the flow of the aforementioned reactant mixture. High activities and selectivity of the
6 catalyst during the in-situ XAS studies at 650°C were confirmed through analysis with an on-
7 line mass spectrometer analyzing the composition of gas received through a glass capillary
8 installed on the outlet of the XAS reactor. During the in-situ studies, the generated fluorescence
9 due to absorption of Rh K-edge was collected when the catalyst was in the mixture of 10% CH₄
10 and 5% O₂ upon catalysis at 650°C for 4 hrs. The Rh K-edge of Rh₁/TiO₂ (Catalyst #1) at
11 23231.0 eV (red line in Figure 2a) is close to that of Rh₂O₃ nanoparticles supported on Al₂O₃ (blue
12 line in Figure 2a),⁴⁸ suggesting that Rh atoms of 0.037%Rh/TiO₂ are in an oxidized state. In
13 addition, the observed energy spectrum of Rh K-edge of Rh₁/TiO₂ (red line in Figure 2a) is quite
14 consistent with the energy spectrum of Rh K-edge (red line in Figure 3) theoretically simulated by
15 using the structural model of single atom catalyst (Figure 2e) optimized in computational studies.
16 The proposed structural model of 0.037%Rh/TiO₂ (Figure 2e) will be described and discussed in
17 detail later in this article.
18
19

20 In *r*-space spectra of Rh K-edge of 0.037%Rh/TiO₂ (Figure 2b4), a main peak at 1.50 Å
21 was observed and readily assigned to Rh-O bonds, consistent with Rh-O bonds of the reference
22 sample, Rh₂O₃ nanoparticles supported on Al₂O₃ (Figure 2b2) and those reported in references.⁴⁸⁻
23 Here 1.50 Å is the Rh-O distance in *r*-space spectrum before a phase correction. We note all the
24 distances of EXAFS studies described in the following paragraphs are distances before phase
25 correction except for a specific note. Compared to the observed Rh-O-Rh peak at 2.63 Å from the
26 reference sample (Rh₂O₃/Al₂O₃ in Figure 2b2), no such a Rh-O-Rh peak was observed in the
27 spectra of 0.037wt%Rh/TiO₂ (Figure 2b4). In addition, the spectrum of Rh₁/TiO₂ (Figure
28

2b4) does not have the peak of Rh-Rh bonds of Rh foil observed at 2.35 Å (Figure 2b1). Thus, neither peak of Rh-O-Rh bond of Rh_2O_3 nanoparticles (2.63 Å) nor peak of Rh-Rh bond of metal Rh nanoparticles (2.30 Å) was observed in the r-space spectrum of 0.037 wt% Rh/TiO₂ (Figure 2b4). The difference in coordination environment among Rh₁/TiO₂, Rh₂O₃/Al₂O₃ and Rh foil was supported by wavelet transform (WT) of EXAFS data of references samples (Rh foil and Rh₂O₃/Al₂O₃) and the catalyst 0.037wt%Rh/TiO₂ (Figure 4). In Figure 4a, there is one major contour maximum observed in the WT plot of Rh foil at (11.6 Å⁻¹, 2.30 Å), which is attributed to the first shell Rh-Rh coordination pathway in foil sample. In the WT plot of Rh₂O₃ reference sample (Figure 4b), there is one major contour maximum at (7.7 Å⁻¹, 1.5 Å) for the first shell Rh-O coordination pathway, and another three minor contour bands at $k = 7.68 \text{ \AA}^{-1}$, 10.5 Å⁻¹ and 13.4 Å⁻¹, which are assigned to the coordination with surrounding O and Rh atoms at $R=2.5\text{--}2.6 \text{ \AA}$ in the second shell (Rh-O-Rh). However, in the WT plot of Rh₁/TiO₂ catalyst under POM at

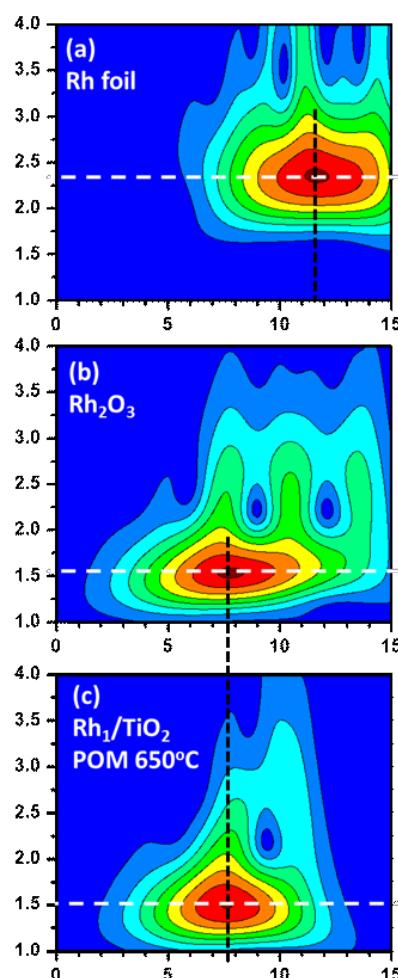
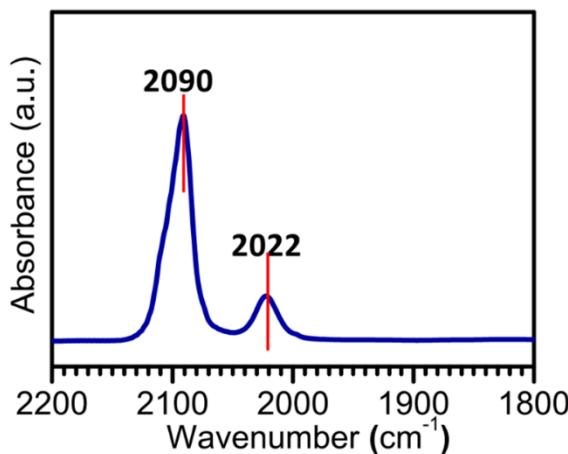


Figure 3. Theoretically simulated Rh K-edge energy spectra of Rh K-edge of single-atom catalyst Rh₁/TiO₂ and Rh nanoparticle. Red curve is the simulated spectrum of Rh₁ anchored on TiO₂ through the structural mode optimized with DFT (Figures 2e and 2f); black curve is the simulated spectrum of Rh nanoparticles consisting of 79 atoms (Rh₇₉) optimized with DFT (Figure S28b). The simulated spectra of Rh₁/TiO₂ and Rh nanoparticle are shown to be consistent with the observed spectra of Rh₁/TiO₂ (red curve in Figure 2a) and Rh foil (black curve in Figure 2a).

650°C (Figure 4c), only one maximum at (7.6 Å⁻¹, 1.5 Å) is found for Rh-O coordination pathway, suggesting the lack of the second shell Rh-O-Rh on Rh₁/TiO₂. In addition, the contour maxima of Rh-Rh coordination which had been found in Rh foil and Rh₂O₃/Al₂O₃ are not observed in the WT plot of Rh₁/TiO₂, suggesting the lack of Rh-Rh coordination in the catalyst during POM. Figure 4 suggests that Rh atoms are singly dispersed in 0.037 wt% Rh/TiO₂ instead of forming Rh metal NPs or Rh₂O₃ NPs, further evidenced in the DRIFTS, CO chemisorption measurements, and AP-XPS studies to be discussed in the following paragraphs.

It could be argued that the peak of Rh-O-Ti of Rh₁/TiO₂ at 2.50 Å in Figure 2b4 could not be fully distinguished from the peak of Rh-Rh of Rh foil at 2.30 Å in Figure 2b1 due to the limited resolution of these r-space spectra, the following characterizations allow us to deduce that no Rh-Rh bonds contributed to this peak of Rh-O-Ti of Rh₁/TiO₂ at 2.50 Å in Figure 2b4. First, compared to the vibrational feature of CO adsorbed on Rh nanoparticles at 1872 cm⁻¹ and 2060 cm⁻¹ in the spectra of Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) (Figure S10), the lack of the two peaks in the DRIFTS spectrum of the used Rh₁/TiO₂ (Figure 5) suggests that no Rh nanoparticles formed on surface of 0.037 wt% Rh/TiO₂ during catalysis at 650°C since 1872 cm⁻¹ and 2060 cm⁻¹ are attributed to stretching of CO molecules adsorbed on surface of Rh metal nanoparticles (Figure S10) or the Rh single crystal.⁵¹ The detailed pretreatment and collection of data of DRIFT spectra were described in Section 5 in SI. Peaks at 2090 cm⁻¹ and 2022 cm⁻¹ in the DRIFTS spectrum of Rh₁/TiO₂ in Figure 5 are assigned to asymmetric and symmetric stretching of C≡O of two CO molecules bound to a single Rh atom; this binding configuration is called geminal-dicarbonyl binding configuration in which two CO molecules are simultaneously bound to a metal atom. The vibrational signature in Figure 5 is very similar to that of single-atom catalysts reported in literature.^{8,9} For Rh nanoparticles, such a geminal-dicarbonyl binding configuration should be a quite minor or even not present since Rh atoms on the surface of a Rh nanoparticle are continuously packed. Thus,

1
2 DRIFT studies suggests that no Rh NPs were formed on TiO_2 of 0.037wt%Rh/ TiO_2 during
3 catalysis at 650°C. Secondly, the measurement of the dispersion of Rh atoms of 0.037%Rh/ TiO_2
4 by CO chemisorption showed that >97.5% of Rh atoms of the used 0.037%Rh/ TiO_2 are singly
5 dispersed on TiO_2 ; this further suggests that the fraction of Rh atoms of 0.037%Rh/ TiO_2 catalyst
6 that could potentially form Rh nanoparticles is lower than 2.5%. The single dispersion of Rh atoms on
7 surface of 0.037%Rh/ TiO_2
8 catalyst is suggested from CO
9 chemisorption measurement, the
10 vibrational signature of CO
11 chemisorbed on 0.037 wt%
12 Rh/ TiO_2 and in-situ EXAFS
13 studies. It is further supported with
14 the lack of Rh nanoparticles on the
15 used catalyst (Figures 2g and 2h)
16 and the observation of singly
17 dispersed Rh atoms (Figure 2i).
18
19 The peak at 2.50 Å in
20 *r*-space of Rh K-edge of
21 0.037wt% Rh/ TiO_2 (Figure
22 2b4 or Figure 2c) was fitted to
23 Rh-O-Ti. Figure 2c presents
24 the fitted *r*-space spectrum (in
25 red) which matches the
26



47 **Figure 4. Wavelet transformation of EXAFS data of reference**
48 **samples Rh foil (a), $\text{Rh}_2\text{O}_3/\text{Al}_2\text{O}_3$ nanoparticles (b), and the**
49 **catalyst 0.037wt%Rh/ TiO_2 (Rh_1/TiO_2) (c).** Wavelet transformation
50 parameters: HAMA Fortran package, k weight 2, Morlet function,
51 kappa=5, and sigma=1.

52
53
54
55
56
57
58
59
60

experimental spectrum (in black) very well. The fitting parameters are listed in Figure 2d. This fitting shows (1) O and Ti atoms are in the first and second shells of Rh₁ atom of 0.037wt% Rh/TiO₂ under the catalytic condition at 650°C, respectively, (2) the coordination number of oxygen atoms in the closest shell of Rh₁ atom is about 5.76±0.69, and (3) the coordination number of Ti atoms in the second shell to Rh₁ is about 3.82. The average coordination number of oxygen atoms bonded to a singly dispersed Rh₁ atom is 5.76±0.69, suggesting that a Rh atom can substitute for either a Ti atom of the top layer (Figure S6a, Figure 2e or 2f) of TiO₂ or a Ti atom in subsurface or deeper layer of TiO₂ since the coordination number of O to a Ti atom in the top layer of Ti atom or in the subsurface of TiO₂ is 5 or 6, respectively. In fact, vast majority of Rh atoms of the used 0.037wt% Rh/TiO₂ substitute for *Ti atoms of the top layer in terms of the surface of TiO₂* instead of *Ti atoms in subsurface of TiO₂* of Rh₁/TiO₂ since the dispersion of Rh atoms on surface of the 0.037 wt% Rh/TiO₂ is 97.5% based on the CO chemisorption measurements (Section 2 in SI).

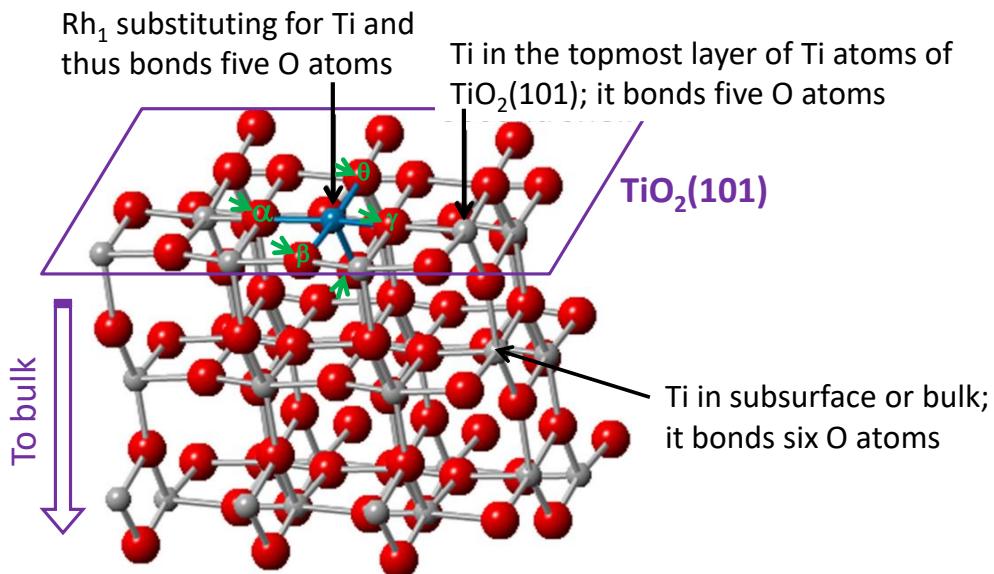

As most users are usually only granted beam time of 1-3 days, continuously tracking catalyst structure with EXAFS in a period of 10 days was not realistic. The following in-situ XAS studies including XANES and EXAFS of Catalyst #2 was performed. To be specific, Catalyst #2 is 0.037wt%Rh/TiO₂ which has already been used for POM at 650 °C at catalysis lab before XAS studies. In-situ XANES and EXAFS studies of Catalyst #2 were performed under the same in-situ condition as Catalyst #1. Fittings the *r*-space spectrum

Figure 5. DRIFT studies of CO adsorbed on 0.037wt%Rh/TiO₂ (Rh₁/TiO₂).

of Rh K-edge of Catalyst #2 (Figure S11b) shows that Rh atoms of Catalyst #2 were still singly dispersed. The fitting parameters of Figure S11b of Catalyst #2 listed in Figure S12 suggest the number of oxygen atoms coordinated with Rh_1 atom and bond length of Rh-O of the Catalyst #2 are similar to the Catalyst #1 (Figure 2d). The high similarity between the r-space spectra of catalyst #1 and catalyst #2 suggests the preservation of the coordination environment of Rh_1 atoms of Rh_1/TiO_2 during catalysis at 650°C. This structural preservation upon catalysis at 650°C well rationalizes the long durability of Rh_1/TiO_2 in terms of catalytic performance at 650°C (Figure 1).

The replacement of Ti cations in surface lattice of TiO_2 by Rh cations was supported by the observation of periodic peaks at 2.63 Å and 3.35 Å of Rh K-edge in r-space spectrum as

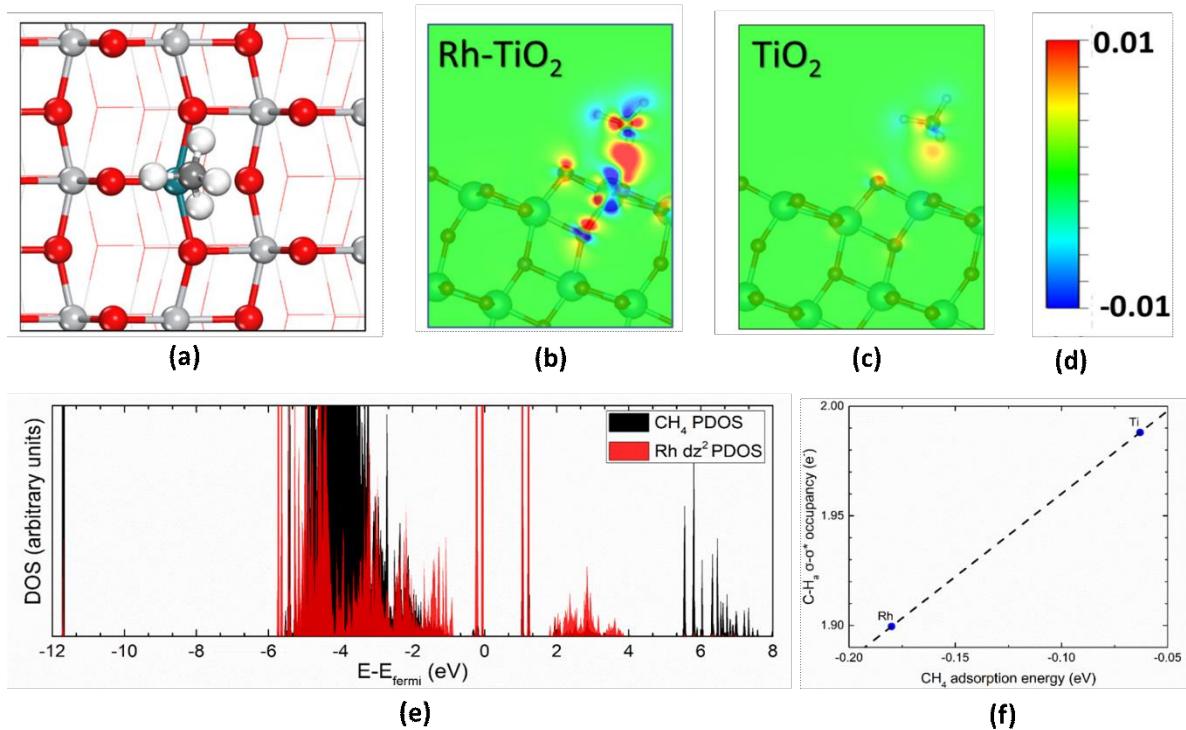


Figure 6. Structure of Rh_1/TiO_2 in which Rh_1 substituted Ti atom in surface lattice of $\text{TiO}_2(101)$, optimized with DFT. Rh, O and Ti atoms are shown in blue, red, and gray, respectively. The five O atoms (directly bonding to Rh_1 on $\text{TiO}_2(101)$ surface are marked with five green arrows. Compared to the first coordination shell of a Ti atom in subsurface or bulk, the first coordination shell of the Rh_1 is nearly saturated and thus it exhibits high stability. On the other hand, the unsaturation of the first coordination shell of the Rh_1 makes the Rh_1 reasonably strongly bound to C atoms of CH_4 , CH_3 and CH_2 and thus makes Rh_1 highly active in transformation of CH_4 to CH_3 , CH_3 to CH_2 , and CH_2 to CH . The nearly saturated environment of Rh_1 makes the singly dispersed Rh_1 atom thermodynamically stable; thus, the Rh_1/TiO_2 exhibits long duration at 650°C for 240 hrs without decay of catalytic performance and high reusability.

marked with red dashed lines in Figure 2b4. These periodic peaks are in good agreement with the periodic peaks in r-space spectrum of Ti K-edge of Rh₁/TiO₂ (Figure 2b3) and those periodic peaks of bare TiO₂ (Figure S14a). Based on literature,^{52,53} the appearance of the two peaks of Ti K- edge at 2.54 Å and 3.30 Å in Figure S14a was contributed from the periodic arrangement of Ti atoms (Ti-O-Ti^a and Ti-O-Ti^b) in the crystal lattice of pure TiO₂ (Figure 6). Compared to r-space spectrum of Ti K-edge of Ti atoms of TiO₂ (Figure 2b3), a very similar periodic pattern in r-space spectrum of Rh K-edge of Rh atoms of Rh₁/TiO₂ (Figure 2b4) was observed. This similarity suggests that these Rh₁ atoms substituted for Ti atoms in the surface lattice of TiO₂ (Figure S13f).

The chemical state of Rh atoms of Rh₁/TiO₂ during POM at 650°C was tracked with Ambient Pressure X-ray Photoelectron Spectroscopy (AP-XPS).⁵⁴ The formation of CO and H₂ on Rh₁/TiO₂ during AP-XPS studies was confirmed with an on-line mass spectrometer installed on AP-XPS, showing that the catalyst was active during the AP-XPS characterization at 650°C. The high binding energy of Rh 3d_{5/2} of Rh₁/TiO₂ at 310.2 eV (Figure 2j) suggests that Rh₁ atoms are in a cationic state during catalysis at 650°C. The high binding energy of Rh 3d peak of Rh₁/TiO₂ during catalysis observed experimentally is consistent with the electron transfer from d_{z^2} of Rh₁ atom to CH₄ proposed through computational studies.

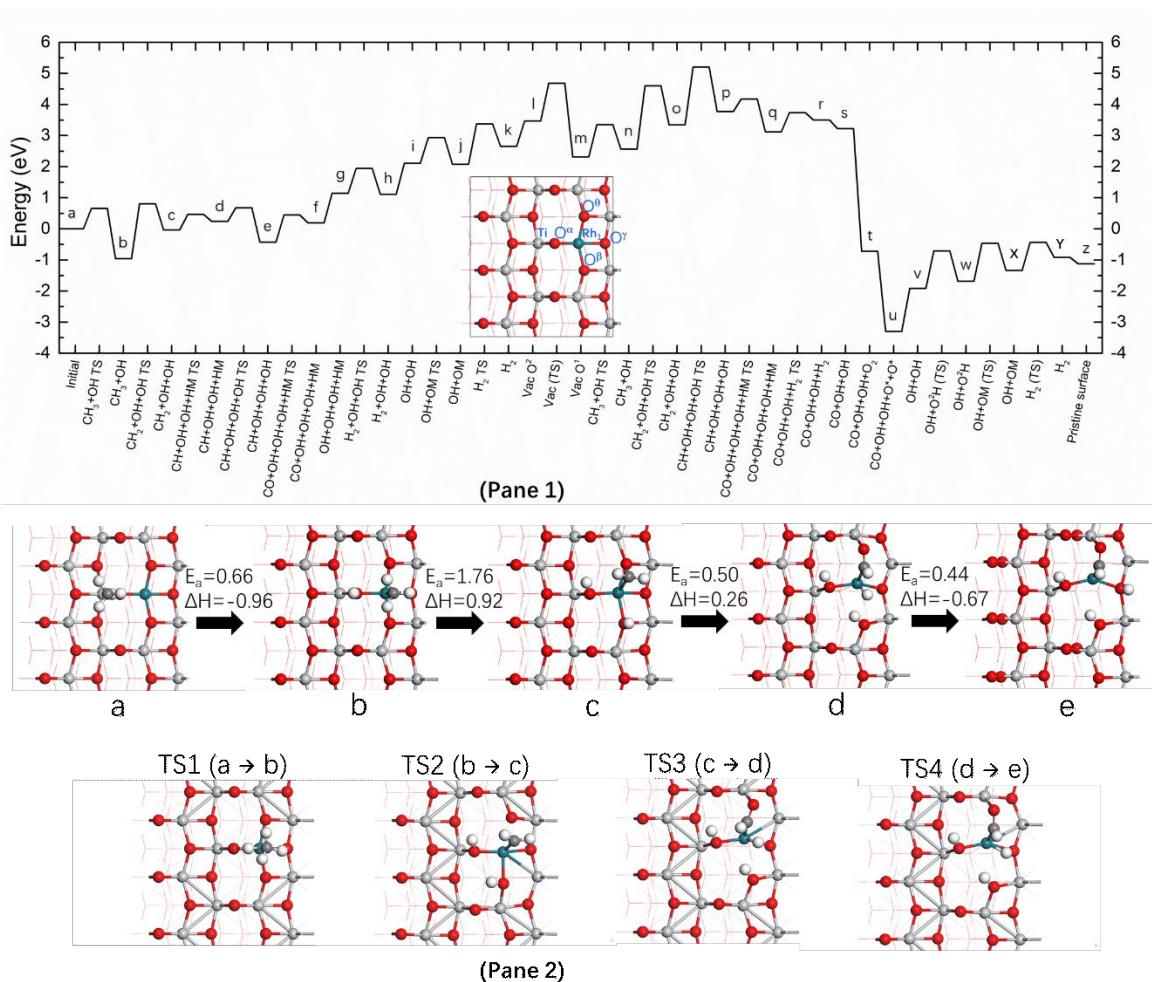

As (101) is the dominant surface of this catalyst Rh₁/TiO₂ based on HAADF-STEM studies (Figures S13b-S13d), TiO₂ (101) was chosen as the surface to anchor the Rh₁ atom in the theoretical simulations of the surface structure of Rh₁/TiO₂. Based on the surface structure of TiO₂(101), Rh atom could be anchored through a substitution mode (Figure S6a) or three capping-on modes (Figures S6b-S6d). Computations of the energies of the four optimized structural modes in Figure S6 show that the substitution mode of Rh₁/TiO₂ is most thermodynamically favorable. In

Figure 7. Geometrical and electron configurations and orbital coupling of CH₄ adsorbed on TiO₂ (101) generated from DFT calculations. (a) Top view of Rh₁/TiO₂ with chemisorbed CH₄. (b) and (c) Electron-density-difference plots of CH₄ on Rh atom of Rh₁/TiO₂ and CH₄ on Ti atom of bare TiO₂. (d) Color bar used to show relative electron density in (b) and (c), warmer color stands for higher electron density. (e) Partial density of states (PDOS) plots of the adsorbed CH₄ on Rh₁/TiO₂ obtained from DFT calculations; the projected states on dz² are shown for the Rh site. (f) Calculated linear correlation between the C-H_a σ-σ* occupancy and methane adsorption strength from periodic natural bond orbital (NBO) analysis.

this mode, an Rh atom substitutes for a Ti atom in the top layer of Ti atoms of the (101) surface of TiO₂ and thus each Rh₁ atom bonds with 5 oxygen atoms as shown in Figure 6, Figure 2e, or Figure S6a. The five O atoms bonding to Rh₁ on TiO₂(101) surface are marked with five green arrows in Figure 6. Here, Rh₁O₅ is used to refer the coordination environment of a Rh₁ atom of the catalyst during catalysis. The reasonability of the thermodynamically favorable substitution mode is supported by the consistency between the bond parameters of Rh-O obtained from the structural optimization in computational studies and these parameters generated from EXAFS experiments. Thus, the substitution structural mode in Figures

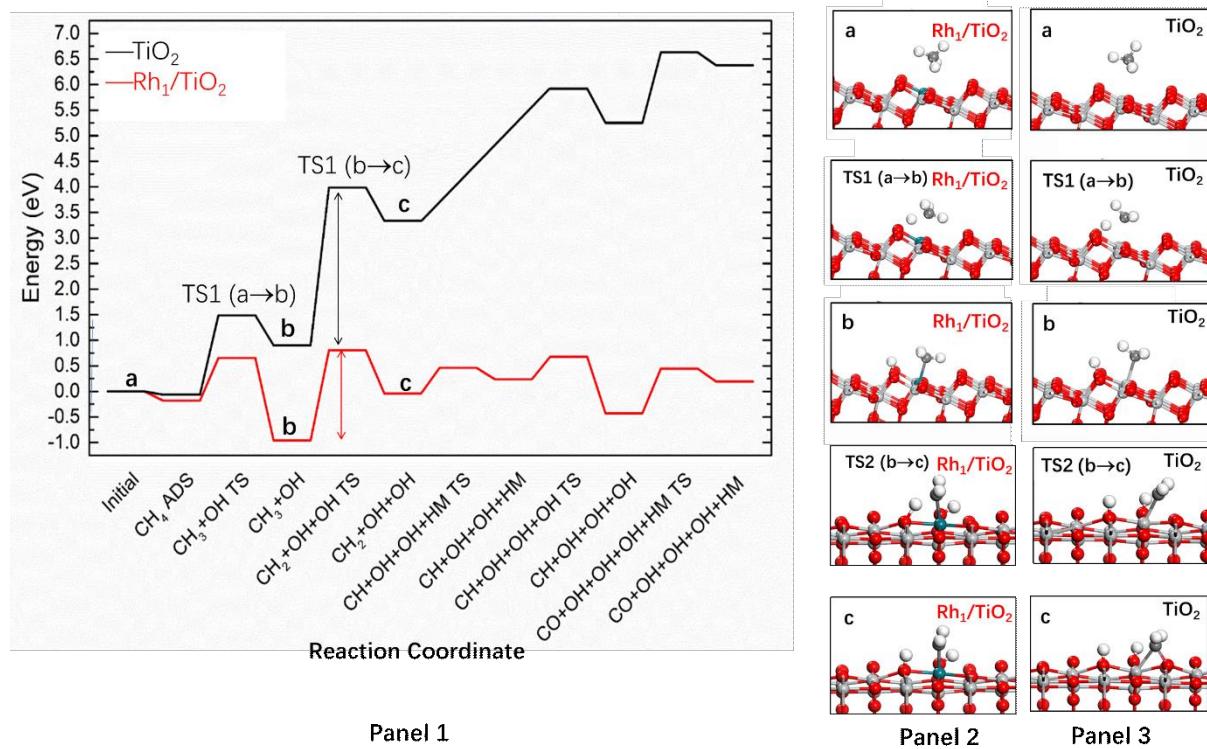

6 was used as the surface structure in the simulation of the catalytic mechanism of POM on the single-atom catalyst, Rh_1/TiO_2 .

Figure 8. Enthalpy profiles of the compete pathway of POM consisting of 26 elementary steps on Rh_1/TiO_2 (Panel 1) and optimized structures of intermediates (a, b, c, d, and e) of activation of CH_4 on Rh_1O_5 to form CH_3 ($a \rightarrow b$), CH_2 ($b \rightarrow c$), and CH ($c \rightarrow d$) and the transition state 1($a \rightarrow b$), transition state 2($b \rightarrow c$), transition state 3($c \rightarrow d$) and transition state 4($d \rightarrow e$) (Panel 2). Inset of panel 1 is the clean surface structure of Rh_1/TiO_2 . All other intermediates and transition states are presented in Figures S18-S21.

To shed light on the POM mechanism, the adsorption and transformation of CH_4 on Rh_1/TiO_2

were explored through computational studies. Based on literature,⁵⁵⁻⁵⁸ chemisorption of CH₄ typically involves the formation of an alkane σ complex. Charge transfer and orbital coupling between CH₄ and Rh₁ were studied with DFT. Figure 7a is the top view of the optimized

Figure 9. Energy profile of transformations of CH₄ to CH₃, CH₃ to CH₂, CH₂ to CH on Rh₁/TiO₂ and bare TiO₂. Obviously, the activation barriers on Ti cation of TiO₂(101) is much higher than that of Rh₁/TiO₂. In addition, compared to the Ti atom on surface of TiO₂(101), the binding energies of CH₃ of intermediate **b** on Rh₁ is increased by 3.4 eV; thus, the energy of intermediate **b** on Rh₁/TiO₂ is much lower than that on TiO₂ (see the energy level of intermediate **b** in Panel 1). The reasonably high binding energies of CH₃ to Rh₁ and H atom to its neighboring O atom in intermediate **b** on Rh₁/TiO₂ results in a lower activation barrier for dissociating CH₃ to CH₂ and H to form intermediate **c** on Rh₁/TiO₂ than that on TiO₂, based on the Brønsted–Evans–Polanyi relationship.

Rh₁/TiO₂ with a chemisorbed CH₄ molecule through binding C atom of CH₄ to Rh₁ atom. The calculated electron-density- difference plots of CH₄ on Rh atom of Rh₁/TiO₂ are shown in Figures 7b; electron density of Rh₁ of Rh₁/TiO₂ transferring to the C atom of CH₄ are mapped based on the color bar. Meanwhile, in the case of bare TiO₂, electron density of Ti of TiO₂ hardly transfer to CH₄ (Figure 7c). This specific difference can be found in the calculated Bader charges

(Figure S16). The substantial charge transfer from Rh₁ of Rh₁/TiO₂ to C atom of CH₄ is supported by the elongation of C-H from 1.096 Å of free CH₄ molecule to 1.115 Å of the chemisorbed CH₄ molecules on Rh₁ atom; however, the C-H bond distance of CH₄ adsorbed on bare TiO₂ (Figure S17) is 1.099 Å which is nearly the same as the free molecule.

To further understand the significance of Rh₁ in orbital coupling between CH₄ and Rh₁, partial density of states (PDOS) of CH₄ and Rh atom of Rh₁/TiO₂ with chemisorbed CH₄ were calculated. As shown in Figure 7e, molecular orbitals of CH₄ (black lines) mix most strongly with the *d*_{z²} orbital of the substituting Rh₁ atom (red lines) since electron density of *d*_{z²} orbital of Rh₁ can back donate to unoccupied orbital of the adsorbed CH₄ molecule. This back donation is consistent with the electron-density-difference plot in Figure 7b that shows a significant charge depletion around the Rh₁ atom and the corresponding charge enhancement around CH₄. The electron-density difference can be evaluated through the color code of Figure 7d. Moreover, the natural bond orbital (NBO) analysis in Figure 7f shows a lower C-H σ-σ* occupancy on Rh₁/TiO₂ than that on bare TiO₂, suggesting that Rh₁ of Rh₁/TiO₂ is quite favorable for activating the C-H bond. Thus, both electron density calculation and simulation of orbital coupling of CH₄ and Rh₁ show that Rh₁ is favorable for binding CH₄ and activating the C-H bond.

Molecular-level understanding of POM on Rh₁/TiO₂ at high temperature

Extensive computational studies were performed for optimizing intermediates and searching for transition states of POM performed on the optimized structure of Rh₁O₅/TiO₂ shown in Figure 6. These theoretical simulations proposed a complete catalytic cycle consisting of 26 elementary steps starting from chemisorption of reactants to form two CO and four H₂ molecules on Rh₁/TiO₂ (2 CH₄+O₂→2CO+4H₂). A complete energy profile of intermediates

1
2
3 and transition states of the entire pathway were plotted in panel 1 of Figure 8. All
4 intermediates are listed in Figure S18 and Figure S19, respectively. Figures S20 and S21 present
5 the structures of transition states of this complete reaction pathway of POM on Rh₁/TiO₂.
6
7

8 Notably, the activation of molecular O₂ on Rh₁/TiO₂ is distinctly different from that on an
9 oxygen vacancy of a transition metal oxide. The activation was not performed at the beginning of
10 the cycle as the surface at the beginning does not present oxygen vacancies and the adsorption of
11 molecule O₂ on surface without oxygen vacancies is weak. Even if molecular O₂ is dissociated,
12 the formed O atoms can thermodynamically favorably return to gas phase. Step *t* to *u* in Figure
13 S19 is the activation of reactant O₂ through insertion of a molecular O₂ between Rh₁ atom and its
14 nearest Ti atom in the intermediate *t*. Notably, this insertion step is kinetically barrierless and
15 thermodynamically exothermic (panel 1 in Figure 6), suggesting a different path for activating
16 molecular O₂ on Rh₁/TiO₂ in contrast to dissociation of O=O on oxygen vacancy on transition
17 metal oxides. Different from the barrierless kinetics of molecular O₂ on this single atom catalyst
18 Rh₁/TiO₂, kinetical barrier for activation of O₂ on Co₃O₄,⁵⁹ TiO₂,⁶⁰ CeO₂,⁶¹ is in the range of about
19 0.5-2.0 eV, which varies at different faces and vacancies. Compared to the activation of O₂ on an
20 oxygen vacancy of transition metal oxides, this distinctly different barrierless activation
21 mechanism of O₂ on the site of Rh₁/TiO₂ demonstrated the significance of Rh₁ in the high activity
22 of Rh₁/TiO₂ for POM. The presence of both undercoordinated Rh₁ atom and its nearly oxygen
23 vacancies make dissociative adsorption of molecular O₂ significantly downhill with little or no
24 barriers, thus stabilizing the dissociated O atoms even at high temperatures.
25
26

27 As can be seen from panel 2 of Figure 8, the Rh₁O₅ plays a crucial role in progressively
28 activating CH₄ to form CH₃, CH₂ and CH before CH insets into Rh₁-O⁰ toward forming a CO
29 molecule. The coupling between C-H of CH₄ and Rh₁-O^α of Rh₁O₅ (*a* in panel 2 of Figure 8)
30
31

1
2
3 makes the first C-H bond broken, forming CH₃ on Rh₁ and H on O^α next to Rh₁ (**b** in panel 2 of
4 Figure 8). C-H of CH₃ couples with Rh₁-O^β, forming CH₂ on Rh₁ and H on O^β next to Rh₁ (**c**).
5
6 In terms of transformation of CH₂ to CH, Rh₁-O^β is broken and then CH is inserted to Rh₁-O^θ
7 (**d**) and thus forms Rh₁-C(H)-O^θ-Ti (**e** in panel 2 in Figure 8). Upon -CH- is inserted, the H atom
8 of CH transfers to Rh₁, forming Rh₁-C-O^θ-Ti (**f** in Figure S18). C-H activations on Ti cation of
9 bare TiO₂(101) were simulated; as shown in panel 1 (black line) and panel 3 in Figure 9, each
10 of the three transformations (CH₄→CH₃, CH₃→CH₂, CH₂→CH) on Ti cation of bare TiO₂(101)
11 experiences a much higher activation barrier than those on Rh₁ cation of Rh₁/TiO₂. It clearly
12 shows that Rh₁ on TiO₂ plays a significant role in activation of CH₄, which is consistent with
13 the significant charge transfer from Rh₁ of Rh₁/TiO₂ to C of CH₄ (Figure 7b) but negligible
14 charge transfer from Ti of bare TiO₂ to C of CH₄ (Figure 7c). After transformation of CH₄ to
15 CH whose C atom bonds with both O^θ and Rh₁, the C-H of CH breaks to lose its H atom to form
16 a -CO^θ species whose C atom bridges on Rh₁ and Ti in **e-f** in Figure S18; then, both Rh₁-C(=O^θ)
17 and (O^θ=)C-Ti bonds break to form the first CO molecule in the step of **f-g**. Then, one O vacancy
18 (O_{vac}) is created in **g** (Figure S18) due to the loss of O^θ as a part of the first product molecule
19 CO. The coupling of two H atoms on Rh₁ forms the first H₂ molecule in **h-i** (Figure S18), so do
20 the other two H atoms to form the second H₂ molecule in the step of **k-l** in Figure S18. Although
21 the formation of H₂ is slightly uphill in terms of reaction enthalpy, the elevated temperatures
22 under reaction conditions make it favorable for H₂(g) to form rather than stay dissociative
23 adsorbed on the surface. Thus, H atom adsorbed on surface was a part of intermediate instead
24 of a part of the active site for POM.
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

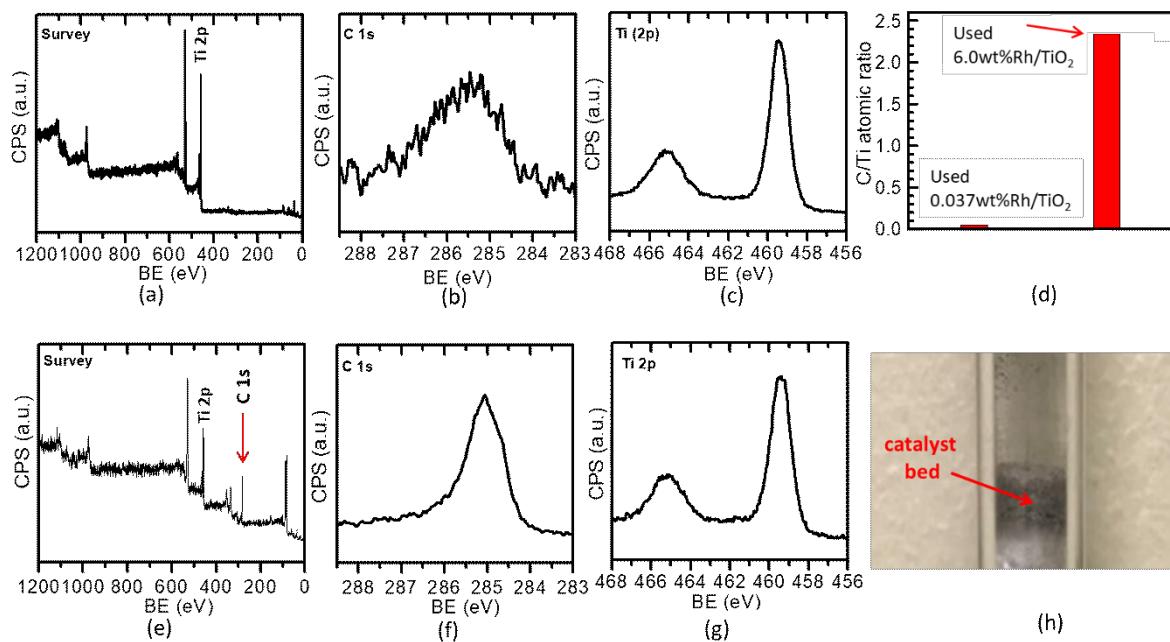
The C-H of the second CH₄ molecule is activated on Rh₁ with a reasonably low activation barrier due to the relatively low coordination number of O atoms to Rh₁ in the intermediate m

(**m-n** in Figure S19), forming CH₃ bound to Rh₁ in **n**; further C-H activation of CH₃ on Rh₁-O^β forms CH₂ whose C atom inserts between Rh₁ and O^θ, forming H₂C-O^θ and H₂C-Rh₁ in **o**; the formed CH₂ loses a H atom to form CH whose C atom bonds with both O^θ and Rh₁ in **p**; a CO-like species forms and its C atom bonds on Rh₁ after HC(=O) loses its H atom in **q**; coupling of two H atoms forms the third H₂ molecule in **r**; a molecular O₂ chemisorbs to bond with both Rh₁ and Ti in **t**; then, CO species adsorbed on Rh₁ desorb as the second CO molecule (**u-v** in Figure S19) in the catalytic cycle (2CH₄+O₂→2CO+4H₂). Subsequently, the left two H atoms couple, forming the fourth H₂ molecule in **v-y**. The last H₂ in the catalytic cycle desorbs in **y-z**, regenerating the initial surface where Rh₁ bonds with five O atoms (O^α, O^β, O^γ, O^θ, and one O in subsurface). The regenerated surface (**z**) in Figure S19 is ready for the second catalytic cycle. Through the 26 elementary steps, two CH₄ and one O₂ participated into the catalytic reaction on the Rh₁O₅ site anchored on TiO₂, forming two CO and four H₂ molecules.

As shown in Figures S18 and S19, most intermediates of the POM on Rh₁/TiO₂ directly bind to Rh₁ and its adjacent O or nearest Ti atom, further confirming the crucial role of the Rh₁ on TiO₂(101). Based on the energy profile of all intermediates and transition states in panel 1 in Figure 8, the three steps with highest activation barriers are **b→c**, **n→o**, and **o→p** with barriers of 1.76 eV, 2.30 eV and 1.86 eV, respectively. **b→c** is the activation of C-H of CH₃ of the first CH₄ on Rh₁ to form CH₂; **n→o** is the activation C-H of CH₃ of the second CH₄ on Rh₁ to form CH₂; **o→p** is the activation of CH₂ of the second CH₄ to form CH on Rh₁. Overall, the rate-determining step among the complete pathway of POM (2CH₄+O₂→2CO+4H₂) on Rh₁/TiO₂ is the activation of C-H of CH₃ of the second CH₄ on Rh₁O₅ to form CH₂.

POM on Rh nanoparticles supported on TiO₂

In order to understand how the singly dispersed Rh₁ site could be different from its counterpart at high temperature, a surface consisting of closely packed Rh atoms was prepared for performing comparable studies on durability of catalyst under the same condition as Rh₁/TiO₂. Such a surface can be found on Rh nanoparticles supported on TiO₂, termed Rh NP/TiO₂. The precursor of Rh NP/TiO₂ was prepared through impregnation which is a method different from the deposition-precipitation method used in preparation of Rh₁/TiO₂. In the preparation of Rh NP/TiO₂, its precursor was reduced at 500°C for 2 hrs and 650°C for 2 hrs in 5% H₂ instead of calcination in air at 650°C used in the preparation of Rh₁/TiO₂. Details of preparations of Rh NP/TiO₂ can be found in the section of Experimental Methods and Computational Approaches. This Rh NP/TiO₂ catalyst is active for POM in the temperature range of 300-650°C (Figure S23). Statistical counting of over 500 Rh NPs of the used catalyst Rh NP/TiO₂ shows that the average size of the Rh NPs supported on TiO₂ after catalysis at 650°C for 240 hr is approximately 3.0 nm (Figure S24). In the following sections, we use the labels Rh NP/TiO₂ and 6.3wt%Rh/TiO₂ interchangeably, referring to the same catalyst. Compared to 50 mg of 0.037wt%Rh/TiO₂ (Rh₁/TiO₂) at 450°C, 500°C, 550°C or 650°C (Figure S2), 50 mg of 6.3wt%Rh/TiO₂ exhibits similar conversion of CH₄ at these corresponding temperatures, respectively. However, they exhibit quite different catalytic selectivities for producing H₂ or CO (Figure S2 versus Figure S23).


Notably, the similar conversion of CH₄ exhibited by the two catalysts (50 mg Rh NP/TiO₂ versus 50 mg Rh₁/TiO₂) at a temperature such as 650°C does not suggest any similarity in activity of their catalytic site. As TiO₂ is completely inert for oxidation of CH₄ in 300-700°C (Figure S1), the conversions of CH₄ of 50 mg of 6.3wt%Rh/TiO₂ and 50 mg of 0.037wt%Rh/TiO₂

1
2
3 depend on the numbers of Rh atoms exposed on catalyst surface. For 50 mg of 0.037wt%Rh/TiO₂,
4
5 the amount of *the exposed Rh atoms on the surface* to catalyze the conversion of CH₄ is 1.75×10⁻⁷ mol;
6
7 however, for 50 mg of 6.3wt%Rh/TiO₂, the amount of *the exposed Rh atoms on the surface*
8 to catalyze conversion of CH₄ is 1.07×10⁻⁵ mol. Calculations of the amounts of exposed Rh atoms
9 on the catalyst surfaces were described in Section 6 of SI. The ratio of Rh atoms precipitated into
10 the POM on 50 mg of 6.3wt%Rh/TiO₂ to that on 50 mg of 0.037wt%Rh/TiO₂ is about 61:1. Thus,
11 although the conversions of CH₄ on the two catalysts are seemingly similar, the activities of each
12 exposed Rh atoms of the two catalysts are in fact *distinctly* different. The difference in catalytic
13 activity between the two catalysts was further confirmed by measuring the turn-over rates under
14 the kinetics-controlled regime. As described in Section 4 of SI, the reaction rate of each catalyst
15 was measured when the conversion of CH₄ is less than 10%. With the measured reaction rate at
16 650°C under kinetics-controlled regime, the turn-over rates (TOR) of the two catalysts were
17 calculated in Section 7 of SI. The TOR of H₂ on a Rh atom of single-atom catalyst
18 0.037wt%Rh/TiO₂ is 2428 H₂ molecules per minute but it is only 35.8 H₂ molecules per minute
19 on an exposed Rh atom of Rh nanoparticle catalyst, 6.3wt%Rh/TiO₂. Details of the calculations
20 of TORs using data of kinetics studies are described in Sections 7.2 and 7.3 in the SI.
21 Demonstrably, the activity in terms of TOR of the single-atom catalyst Rh₁/TiO₂ at 650°C is
22 much higher than the Rh nanoparticle catalyst, Rh NP/TiO₂, at the same temperature.
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Durability of single-atom catalyst Rh₁/TiO₂ at 650°C

Other than the much higher activity of Rh₁/TiO₂ catalyst at 650°C than Rh NP catalyst at this temperature, the high-temperature single-atom catalyst, Rh₁/TiO₂ exhibits a much longer durability in catalytic performance than the Rh NP/TiO₂ (Figure 1 *versus* Figure S27). It is

necessary to highlight that the comparison of the difference in durability of catalytic performance is for obtaining a fundamental understanding of the reason of the observed high-temperature durability of single-atom catalysts; and not for developing a commercial POM catalyst for production of syngas in industries.

Figure 10. Formation of carbon layers on Rh NP/TiO₂ catalyst but not on Rh₁/TiO₂ based on XPS studies of 0.037wt%Rh/TiO₂ (Rh₁/TiO₂) and 6.3wt%Rh/TiO₂ (Rh NP/TiO₂) after catalysis at 650°C of 240 hrs. (a) Survey of the used 0.037wt%Rh/TiO₂ (Rh₁/TiO₂) catalyst; (b) C 1s spectrum of the used 0.037wt%Rh/TiO₂ (Rh₁/TiO₂) catalyst; (c) Ti 2p of the used 0.037wt%Rh/TiO₂ (Rh₁/TiO₂) catalyst; (d) C/Ti atomic ratio of the used 0.037wt%Rh/TiO₂ (Rh₁/TiO₂) catalyst and the used 6.3wt%Rh/TiO₂ (Rh NP/TiO₂) catalyst; (e) Survey of the used 6.3wt%Rh/TiO₂ (Rh NP/TiO₂) catalyst; (f) C 1s spectrum of the used 6.3wt%Rh/TiO₂ catalyst; (g) Ti 2p of the used 6.3wt%Rh/TiO₂ catalyst; (h) photo of the used 6.3wt%Rh/TiO₂ catalyst after catalysis at 650°C for 240 hours.

Compared to the nanoparticle catalyst (Rh NP/TiO₂), the single-atom catalyst (Rh₁/TiO₂) exhibits superior resistance to carbon formation. The continuously packed Rh atoms on surface of Rh nanoparticles of Rh NP/TiO₂ (Figure S28b) make CH_x (x=0-2) species adsorbed on two adjacent Rh atoms couple readily toward chain propagation leading to the formation of a coke

layer. As seen from XPS studies (Figures 10e, 10f and 10g), thick carbon layers were formed on the used Rh NP/TiO₂ after POM at 650°C for 240 hrs while negligible amounts of carbon were formed on Rh₁/TiO₂ after 240 hrs of POM at 650°C (Figure 10a, 10b and 10c). The atomic ratio of carbon atoms of surface carbon layers to all titanium atoms in surface region of used Rh NP/TiO₂ is about 2.5 (Figure 10d), suggesting the thickness of carbon is at least several atomic layers. It is much larger than that of Rh₁/TiO₂ used at 650°C for 240 hrs. The experimentally observed facile formation of carbon layers on Rh NPs is supported by the quite high adsorption energy of atomic carbon on Rh atoms of Rh nanoparticle surface uncovered in our computational studies (Figure S29b). Compared to the Rh atom on a Rh nanoparticle of 6.3wt%Rh/TiO₂, adsorption energy of atomic carbon on the singly dispersed Rh₁ atoms of 0.037wt%Rh/TiO₂ is lower by 2.8 eV (Figure S29); this significant difference in adsorption energy of carbon atom to Rh atoms of the two catalysts (Rh₁/TiO₂ versus Rh NP/TiO₂) results from the distinctly different coordination environment between Rh₁ of Rh₁/TiO₂ and Rh of Rh NP/TiO₂ (Figure S29). In terms of Rh₁/TiO₂, the singly dispersed Rh₁ atoms on TiO₂ does not provide opportunity for two CH_x (x=0-2) species adsorbed on spatially isolated Rh₁ atoms to couple since CH_x species on Rh₁/TiO₂ are spatially separated. Thus, Rh₁/TiO₂ exhibits high resistance to formation of coke at 650°C for a period of at least 240 hrs.

The high adsorption energy of atomic carbon on the surface of the metal Rh nanoparticle can rationalize the progressive decay of conversion of CH₄ to 60% at 105th hr and to nearly only 20% at 240th hr (Figure S27a). Along with the decay of catalytic activity, selectivities largely decreased to 86% for H₂ and 84% for CO at 105th hr and to 42% for H₂ and 29% for CO at 240th hr, respectively (Figures S27b and S27c). This significant decay of catalytic activity of 6.3 wt% Rh/TiO₂ is consistent with the observation of large amount of carbon formed on 6.3 wt%

1
2
3 Rh/TiO₂ after catalysis for 240 hrs at 650°C (Figure 10h).
4
5

6 The C/Ti atomic ratio of the 6.3 wt% Rh/TiO₂ catalyst used at 650°C for 240 hrs is
7 about 45 times of that of the single atom catalyst Rh₁/TiO₂ catalyst used at the same temperature for
8 the same amount of time (Figure 10d), rationalizing the significant decay of catalytic performance
9 of 6.3wt%Rh/TiO₂ results from the formation of carbon layers on Rh nanoparticles which blocked
10 the active sites. As reported in literature,^{2,4,11-17} there are two types of carbons formed on POM
11 catalysts including encapsulated carbon which blocks catalytic sites and thus obviously degrades
12 catalytic performance, and whisker carbon which forms on a catalyst nanoparticle but sinks to one
13 end of the catalyst nanoparticle and thus does not directly poison the catalyst surface but results in
14 serious reactor clogging. As the reactor of 6.3wt%Rh/TiO₂ catalyst was not clogged after catalysis
15 at 650°C for 240 hr, likely the encapsulated carbon instead of whisker carbon was formed on Rh
16 NPs of 6.3wt%Rh/TiO₂. As these encapsulating carbon layers on the catalyst surface block the
17 active sites, the catalytic activity clearly becomes degraded. The mechanism of deactivation of
18 6.3wt%Rh/TiO₂ is interesting and worth further studies. As the theme of this article is the
19 molecular-level understanding of the high-temperature single-atoms catalytic chemistry of
20 Rh₁/TiO₂ for POM, we leave the further studies of the deactivation of 6.3wt%Rh/TiO₂ in POM as
21 a future task.
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

Conclusion

46
47 The high-temperature single-atom catalyst, Rh₁O₅/TiO₂ was prepared by substituting
48 for Ti atoms of surface lattice with Rh atoms. The singly dispersed Rh₁O₅ clusters exhibit
49 extraordinary catalytic performance of POM at 650°C including high activity, 98% selectivity
50 for producing CO and 99% for H₂, long durability of 240 hrs, and high reusability over at least
51
52
53
54
55
56
57
58
59

1
2
3 20 cycles of catalysis. The single-atom site of this catalyst exhibits a turnover frequency of
4 2428 H₂ molecules per Rh₁ atom per minute at 650°C under kinetics-controlled regime. This
5 extraordinary catalytic performance remains with no decay at 650°C for at least 240 hrs.
6
7 Computational studies suggest that (1) activation barrier of the rate-determining step,
8 dehydrogenation of CH₃ to CH₂ is greatly decreased while CH₃ and H bind to Rh₁ and O of Rh₁O₅
9 cluster of this catalyst, respectively, and (2) the long catalytic durability of Rh₁/TiO₂ at 650°C
10 results from the unique coordination environment that Rh₁ atom on TiO₂ is in a nearly full
11 coordination shell of oxygen atoms since Rh₁ coordinates with 5 oxygen atoms. Also benefited
12 from the nearly saturated coordination of Rh₁ on TiO₂ surface, the adsorption energy of atomic
13 carbon on Rh₁ is much lower than that on Rh atom with an obviously unsaturated shell on the
14 surface of a Rh NP. The single dispersion of Rh₁ atoms on Rh₁/TiO₂ and the low binding energy
15 of atomic carbon on Rh₁ of the Rh₁/TiO₂ effectively prevents the Rh₁/TiO₂ from forming carbon
16 layers at high temperature, where the formation of carbon layers in POM on currently reported
17 catalysts remains a common phenomenon. This study suggests an avenue for single-atom
18 catalysis for significant chemical transformations at high temperatures.
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Experimental Methods and Computational Approaches

Preparation of 0.037wt% Rh/TiO₂ (Rh₁/TiO₂). Single atom catalyst, termed 0.037wt% Rh/TiO₂ or Rh₁/TiO₂ was prepared with a modified deposition-precipitation method. Rhodium (III) nitrate hydrate, Rh(NO₃)₃·2H₂O (99.9%, Sigma-Aldrich) was used as the source of Rh cations for the preparation of the catalysts. A solution of Rh³⁺ with concentration of 2.84×10⁻³ mol/L was made for the following use. Crystallized TiO₂ nanoparticle with a size of 20-50 nm (99.9%, Sigma-Aldrich) was used as a TiO₂ support. The catalyst precursor of Rh₁/TiO₂

1
2
3 was prepared through a deposition precipitation method modified for the preparation of single-
4 atom catalyst, Rh₁/TiO₂. In a typical experiment, 500 mg TiO₂ was mixed with 50 mL deionized
5 water through a vigorous stirring to form a white suspension. 3.0 mL Rh(NO₃)₃·2H₂O aqueous
6 solution (2.84×10⁻³ mol/L) was introduced to the TiO₂ suspension through a precise injection
7 with a syringe pump while the solution was vigorously stirred. The nominal loading is
8 0.20wt%. The new suspension was continuously stirred for 2 hours more to allow sufficient
9 natural adsorption of metal ions. The pH value of the mixture was carefully adjusted to 9.5 by
10 gradually introducing ammonium hydroxide solution, followed by vigorous stirring for 6 hours
11 more in order to reach a complete equilibrium in solution. Then, the prepared solution was
12 centrifuged and then dried at a 60°C in overnight with a following calcination in Muffle furnace at
13 650°C in air for 4 hours. The measured loading of Rh with ICP-AES is only 0.037±0.005wt%.
14 Thus, either 0.037wt% Rh/TiO₂ or Rh₁/TiO₂ was used in the text for referring to this catalyst.
15

16
17 As described above, 0.037wt% Rh/TiO₂ was prepared through deposition-precipitation
18 modified for this work. Based on the mechanism of the deposition-precipitation method, only a
19 portion of cations were precipitated by OH⁻. The portion of Rh³⁺ cations can be precipitated on
20 TiO₂ depends on the pH of the solution. Higher pH allows a larger portion of Rh³⁺ cations to be
21 precipitated. To make sure formation of singly dispersed Rh₁ on TiO₂ upon annealing at 650°C in
22 air instead of formation of Rh₂O₃ nanoparticles, the pH of the aqueous solution containing TiO₂
23 was controlled at 9.5. Based on ICP-AES measurements, the actual loading of Rh is 0.037wt%Rh.
24 Thus, only about 18.5% of the Rh³⁺ cations dissolved in water were precipitated. The rest of the
25 Rh³⁺ cations remained in solution and then was washed out upon centrifugation to separate the
26 TiO₂ with precipitated Rh³⁺ in the form of Rh(OH)₃ from aqueous solution which contained the
27 rest of Rh³⁺. Certainly, the Rh³⁺ in aqueous solution can be readily reused by precipitation at high
28

pH to form $\text{Rh}(\text{OH})_3$; a following calcination in air makes Rh_2O_3 . A reduction of Rh_2O_3 in H_2 forms Rh metal nanoparticles. Thus, the preparation of Rh_1/TiO_2 does not waste the precursor of Rh^{3+} .

Preparation of 6.3wt%Rh/TiO₂ (RhNP/TiO₂). The 6.3wt%Rh/TiO₂ catalyst was prepared via impregnation method which is distinctly different from the modified deposition-precipitation method. 500 mg of TiO₂ powder was introduced to 0.50 ml aqueous solution of $\text{Rh}(\text{NO}_3)_3 \cdot 2\text{H}_2\text{O}$ which contains 33.36 mg Rh obtained from 85.18 mg of $\text{Rh}(\text{NO}_3)_3 \cdot 2\text{H}_2\text{O}$. The concentration of Rh would be 6.25wt% if all Rh atoms could be transferred to surface of TiO₂ based on the calculation, $\frac{33.36 \text{ mg Rh}}{33.36 \text{ mg Rh} + 500 \text{ mg TiO}_2} = 6.25\text{wt\%}$. The impregnated sample was dried in a 60°C oven overnight and treated in flowing 5% H_2 in a tube furnace at 500°C for 2 hrs and then at 650°C for 4hrs. Based on ICP measurements, the concentration of Rh loaded on TiO₂ is $6.3 \pm 0.3\text{wt\%}$ which suggests most of the Rh atoms were transferred to TiO₂. Upon the above procedure, Rh nanoparticles were formed on TiO₂. Thus, either 6.3wt%Rh/TiO₂ or Rh NP/TiO₂ was used in the text to refer to this catalyst which is TiO₂ with loaded Rh NPs.

Compared to the preparation of single-atom catalysts described in the section of Experimental methods and computational approaches, the nanoparticle catalyst (6.3wt%Rh/TiO₂ or termed Rh NP/TiO₂) was prepared with the impregnation method instead of deposition precipitation used for Rh_1/TiO_2 . The impregnated sample was dried in a 60°C oven in air overnight. Then, the dry catalyst precursor was treated in 5% H_2 at 500°C and 650°C instead of calcination in air at 650°C. In the preparation of Rh_1/TiO_2 , pH of aqueous solution containing TiO₂ and Rh^{3+} cations was carefully controlled at pH=9.5. However, in the preparation of Rh NP/TiO₂, the solution containing $\text{Rh}(\text{NO}_3)_3$ solution and TiO₂ is at about 7.0. In the precipitation for preparation of Rh_1/TiO_2 , only about 20% Rh^{3+} cations were precipitated; however, in the preparation of Rh

1
2
3 NP/TiO₂, all Rh³⁺ cations in solution were transferred to surface of TiO₂. Thus, the preparations
4
5 of single-atom catalyst (Rh₁/TiO₂) and nanoparticle catalyst (Rh NP/TiO₂) were distinctly
6
7 different.
8

9
10 NP-0.037wt% Rh/TiO₂ was prepared with the same preparation steps as 6.3wt% Rh
11
12 NP/TiO₂: first impregnation of Rh³⁺ to TiO₂ and then drying at 120°C oven in air overnight and
13
14 reduction at 650°C in 5% H₂ for 4 hrs in a tube furnace (the same protocol used to prepare 6.3wt%
15
16 Rh NP/TiO₂). This preparation made Rh exist in the format of Rh nanoparticles supported on TiO₂.
17
18 Thus, Rh of NP-0.037wt% Rh/TiO₂ exist in the format of Rh NPs, distinctly different from Rh₁
19
20 atoms on 0.037wt% Rh/TiO₂. Unfortunately, the conversion of CH₄ in POM on 50 mg of NP-
21
22 0.037wt% Rh/TiO₂ is actually much lower than detection limit of GC (<0.5% of CH₄).
23
24

25
26 **DFT calculations.** The density functional theory (DFT) calculations were performed
27
28 with the Vienna ab initio Simulation Package (VASP).^{2,3} The on-site Coulomb interaction was
29
30 included with the DFT+U method by Dudarev et al.⁴ in VASP using a Hubbard parameter U = 3
31
32 eV for the Ti atom, from the previous literature for TiO₂.^{5,6} The Perdew-Burke-Ernzerhof (PBE)⁵
33
34 functional form of generalized-gradient approximation (GGA) was used to describe electron
35
36 exchange and correlation. In terms of unit cell, we used a 1×3 supercell of the stable (101) surface
37
38 facet of bulk anatase TiO₂. Regarding to the distance between Rh atoms, the Rh atoms are
39
40 separated by ~10 Å along each axis of the cell. About the Hubbard U correction, The Hubbard
41
42 correction was applied for Ti d-orbitals of the model. As there have yet to be any studies
43
44 investigating the optimal U value for Rh in TiO₂, we opted to not include a correction for Rh and
45
46 we do not anticipate this will change the conclusions for the DFT calculations.
47
48
49

50
51 All calculations were performed with spin polarization. The projector-augmented wave
52
53 method was used to describe the electron-core interaction^{7,8} with a kinetic energy cutoff of 450
54
55
56
57

1
2
3 eV. The Brillouin zone was sampled with the Monkhorst-Pack scheme of a $3\times2\times1$ k- point
4
5 mesh.⁸ Transition states (TS) were found with the nudged elastic band (NEB)⁹ method using a
6
7 force convergence criterion of 0.05 eV/Å. To calculate the occupancies of the molecular bonds of
8
9 methane, the periodic natural bond orbital (NBO) analysis implemented by Schmidt et al. was
10
11 used.¹⁰
12
13
14
15
16

17 Supporting Information

18

19 Size and morphology of 6.3wt%Rh/TiO₂; Chemisorption of CO on 0.037wt%Rh/TiO₂ and
20
21 6.3wt%Rh/TiO₂; Evaluation of catalytic performances of bare TiO₂, 0.037wt%Rh/TiO₂ and
22
23 6.3wt%Rh/TiO₂; Measurement of reaction rate under kinetics-controlled regime; Ex-Situ, In-Situ
24
25 and Operando Characterizations; Calculations of the amount of Rh (in mol) *exposed to surface* of
26
27 50 mg of 0.037wt%Rh/TiO₂ and 50 mg of 6.3wt%Rh/TiO₂; Calculations of turn-over rates (TOR)
28
29 of 0.037wt%Rh/TiO₂ (Rh₁/TiO₂) and 6.3wt%Rh/TiO₂ (Rh NP/TiO₂); Note on the difference in
30
31 coordination environment of Rh atoms in 0.037wt%Rh/TiO₂ (Rh₁/TiO₂) and 6.3wt%Rh/TiO₂
32
33 (Rh NP/TiO₂); Note on AP-XPS studies.
34
35
36
37
38
39
40

41 Acknowledgements

42

43 This experimental part was supported by the NSF Career Award NSF-CHE-1462121 and Chemical
44 Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S.
45 Department of Energy under Grant No. DE-SC0014561. The offer of beam time from the Innovation
46 Research Center for Fuel Cells at The University of Electro-Communications and the assistance in data
47 collection at Japan was highly appreciated. FT deeply thank Dr. M. Chi at ORNL for TEM studies of a part
48 of the Rh₁/TiO₂ samples of this work and Dr. W. Hang at Iowa for assisting in DRIFT studies of some of
49 the Rh₁/TiO₂ samples. FT highly appreciate collaborators at FZU for offering significant amount of machine
50
51
52
53
54
55
56
57
58
59
60

1
2
3 time for free access to their high-resolution TEM and other characterization instruments for extensive
4 studies of samples before and after catalysis. Without the access to these characterization instruments of
5 collaborators of FZU, it is impossible to finish this work at all. This work does not contain any classified
6 information. All data and details of this work were/are published as the DOE and NSF projects
7 acknowledged here were funded by chemistry division of NSF and office of science of DOE with the goal
8 of pursuing publishable fundamental understanding of science of catalytic chemistry instead of any
9 technique or knowhow with commercial values. None of these authors of this work thinks any part of this
10 work could have any potential commercial value. None of these authors of this work thinks any part of this
11 work could be combined or mingled with other work to generate classified information or commercial
12 value.
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
References

1 Pena, M. A., Gomez, J. P. & Fierro, J. L. G. New catalytic routes for syngas and hydrogen
2 production. *Applied Catalysis a-General* **144**, 7-57, doi:10.1016/0926-860x(96)00108-1 (1996).

3 York, A. P. E., Xiao, T. C. & Green, M. L. H. Brief overview of the partial oxidation of methane to
4 synthesis gas. *Topics in Catalysis* **22**, 345-358, doi:10.1023/a:1023552709642 (2003).

5 Tsang, S. C., Claridge, J. B. & Green, M. L. H. RECENT ADVANCES IN THE CONVERSION OF
6 METHANE TO SYNTHESIS GAS. *Catalysis Today* **23**, 3-15, doi:10.1016/0920-5861(94)00080-1
7 (1995).

8 Vernon, P. D. F., Green, M. L. H., Cheetham, A. K. & Ashcroft, A. T. PARTIAL OXIDATION OF
9 METHANE TO SYNTHESIS GAS. *Catalysis Letters* **6**, 181-186, doi:10.1007/bf00774718 (1990).

10 Byrne Jr, P. J., Gohr, E. J., Elizabeth, N. J. & Haslam, R. T. Recent Progress in Hydrogenation of
11 Petroleum. *Industrial & Engineering Chemistry* **24**, 1129-1135, doi:10.1021/ie50274a009 (1932).

12 Nahar, G. & Dupont, V. Hydrogen production from simple alkanes and oxygenated hydrocarbons
13 over ceria-zirconia supported catalysts: Review. *Renewable & Sustainable Energy Reviews* **32**, 777-
14 796, doi:10.1016/j.rser.2013.12.040 (2014).

15 Amin, A. M., Croiset, E. & Epling, W. Review of methane catalytic cracking for hydrogen
16 production. *International Journal of Hydrogen Energy* **36**, 2904-2935,
17 doi:10.1016/j.ijhydene.2010.11.035 (2011).

18 Enger, B. C., Lodeng, R. & Holmen, A. A review of catalytic partial oxidation of methane to
19 synthesis gas with emphasis on reaction mechanisms over transition metal catalysts. *Applied
20 Catalysis a-General* **346**, 1-27, doi:10.1016/j.apcata.2008.05.018 (2008).

21 Liander, H. The utilisation of natural gases for the ammonia process *Transactions of the Faraday
22 Society* **25**, 462-472, doi:10.1039/TF9292500462 (1929).

23 Prettre, M., Eichner, C. & Perrin, M. The catalytic oxidation of methane to carbon monoxide and
24 hydrogen *Transactions of the Faraday Society* **42**, 335b-339, doi:10.1039/TF946420335B (1946).

25 Dissanayake, D., Rosynek, M. P., Kharas, K. C. C. & Lunsford, J. H. PARTIAL OXIDATION OF
26 METHANE TO CARBON-MONOXIDE AND HYDROGEN OVER A NI/AL₂O₃ CATALYST.
27 *Journal of Catalysis* **132**, 117-127, doi:10.1016/0021-9517(91)90252-y (1991).

28 Choudhary, V. R., Mamman, A. S. & Sansare, S. D. SELECTIVE OXIDATION OF METHANE TO
29 CO AND H₂ OVER NI/MGO AT LOW-TEMPERATURES. *Angewandte Chemie-International
30 Edition in English* **31**, 1189-1190, doi:10.1002/anie.199211891 (1992).

31 Choudhary, V. R., Rajput, A. M. & Rane, V. H. LOW-TEMPERATURE CATALYTIC SELECTIVE
32 PARTIAL OXIDATION OF METHANE TO CO AND H-2 OVER NI/YB₂O₃. *Journal of Physical
33 Chemistry* **96**, 8686-8688, doi:10.1021/j100201a004 (1992).

34 Choudhary, V. R., Rajput, A. M. & Prabhakar, B. NONEQUILIBRIUM OXIDATIVE
35 CONVERSION OF METHANE TO CO AND H-2 WITH HIGH SELECTIVITY AND
36 PRODUCTIVITY OVER NI/AL₂O₃ AT LOW-TEMPERATURES. *Journal of Catalysis* **139**, 326-
37 328, doi:10.1006/jcat.1993.1027 (1993).

38 Ruckenstein, E. & Hul, Y. H. Methane partial oxidation over NiO MgO solid solution catalysts.
39 *Applied Catalysis a-General* **183**, 85-92, doi:10.1016/s0926-860x(99)00047-2 (1999).

40 Hu, Y. H. & Ruckenstein, E. Catalyst temperature oscillations during partial oxidation of methane.
41 *Industrial & Engineering Chemistry Research* **37**, 2333-2335, doi:10.1021/ie980027f (1998).

42 Santos, A. *et al.* Oxidation of methane to synthesis gas in a fluidized bed reactor using MgO-based
43 catalysts. *Journal of Catalysis* **158**, 83-91, doi:10.1006/jcat.1996.0008 (1996).

44 Lu, Y., Liu, Y. & Shen, S. K. Design of stable Ni catalysts for partial oxidation of methane to
45 synthesis gas. *Journal of Catalysis* **177**, 386-388, doi:10.1006/jcat.1998.2051 (1998).

46 Liu, S. *et al.* Sustainable Ni catalyst for partial oxidation of CH₄ to syngas at high temperature.
47 *Studies in Surface Science and Catalysis* **130**, 3567-3572, doi:10.1016/S0167-2991(00)80576-5
48 (2000).

49 Choudhary, V. R., Uphade, B. S. & Mamman, A. S. Partial oxidation of methane to syngas with or
50 without a support. *Journal of Catalysis* **187**, 11-18, doi:10.1006/jcat.1999.0352 (1999).

51

1

2

3 without simultaneous CO(2)and steam reforming reactions over NiAlPO4. *Microporous and*
4 *Mesoporous Materials* **23**, 61-66, doi:10.1016/s1387-1811(98)00110-3 (1998).

5 21 Hayakawa, T. *et al.* A sustainable catalyst for the partial oxidation of methane to syngas: Ni/Cal-
6 xSrxTiO3, prepared in situ from perovskite precursors. *Angewandte Chemie-International Edition in*
7 *English* **35**, 192-195, doi:10.1002/anie.199601921 (1996).

8 22 Basile, F. *et al.* Ni/Mg/Al anionic clay derived catalysts for the catalytic partial oxidation of methane
9 - Residence time dependence of the reactivity features. *Journal of Catalysis* **173**, 247-256,
10 doi:10.1006/jcat.1997.1942 (1998).

11 23 Peters, K., Rudolf, M. & Voetter, H. On the reaction pathway of methane reforming (germ.).
12 *Brennstoff-Chemie* **36**, 257 (1955).

13 24 Ashcroft, A. T. *et al.* SELECTIVE OXIDATION OF METHANE TO SYNTHESIS GAS-USING
14 TRANSITION-METAL CATALYSTS. *Nature* **344**, 319-321, doi:10.1038/344319a0 (1990).

15 25 Choudhary, V. R., Prabhakar, B., Rajput, A. M. & Mamman, A. S. Oxidative conversion of methane
16 to CO and H-2 over Pt or Pd containing alkaline and rare earth oxide catalysts. *Fuel* **77**, 1477-1481,
17 doi:10.1016/s0016-2361(98)00063-5 (1998).

18 26 York, A. P. E., Claridge, J. B., Brungs, A. J., Tsang, S. C. & Green, M. L. H. Molybdenum and
19 tungsten carbides as catalysts for the conversion of methane to synthesis gas using stoichiometric
20 feedstocks. *Chemical Communications*, 39-40, doi:10.1039/a605693h (1997).

21 27 York, A. *et al.* in *Studies in Surface Science and Catalysis* Vol. 110 711-720 (Elsevier, 1997).

22 28 Claridge, J. B. *et al.* New catalysts for the conversion of methane to synthesis gas: Molybdenum and
23 tungsten carbide. *Journal of Catalysis* **180**, 85-100, doi:10.1006/jcat.1998.2260 (1998).

24 29 Qiao, B. *et al.* Single-atom catalysis of CO oxidation using Pt-1/FeOx. *Nature Chemistry* **3**, 634-641,
25 doi:10.1038/nchem.1095 (2011).

26 30 Yang, X.-F. *et al.* Single-Atom Catalysts: A New Frontier in Heterogeneous Catalysis. *Accounts of*
27 *Chemical Research* **46**, 1740-1748, doi:10.1021/ar300361m (2013).

28 31 Liang, S., Hao, C. & Shi, Y. The Power of Single-Atom Catalysis. *Chemcatchem* **7**, 2559-2567,
29 doi:10.1002/cctc.201500363 (2015).

30 32 Lang, R. *et al.* Hydroformylation of Olefins by a Rhodium Single-Atom Catalyst with Activity
31 Comparable to RhCl(PPh3)(3). *Angewandte Chemie-International Edition* **55**, 16054-16058,
32 doi:10.1002/anie.201607885 (2016).

33 33 Sun, Q. *et al.* Zeolite-Encaged Single-Atom Rhodium Catalysts: Highly-Efficient Hydrogen
34 Generation and Shape-Selective Tandem Hydrogenation of Nitroarenes. *Angewandte Chemie-
35 International Edition* **58**, 18570-18576, doi:10.1002/anie.201912367 (2019).

36 34 Tang, Y. *et al.* Rh single atoms on TiO2 dynamically respond to reaction conditions by adapting their
37 site. *Nature Communications* **10**, doi:10.1038/s41467-019-12461-6 (2019).

38 35 Wang, L. *et al.* Atomic-level insights in optimizing reaction paths for hydroformylation reaction over
39 Rh/CoO single-atom catalyst. *Nature Communications* **7**, doi:10.1038/ncomms14036 (2016).

40 36 Guan, H. *et al.* Enhanced performance of Rh-1/TiO2 catalyst without methanation in water-gas shift
41 reaction. *Aiche Journal* **63**, 2081-2088, doi:10.1002/aic.15585 (2017).

42 37 Han, B. *et al.* A highly active Rh-1/CeO2 single-atom catalyst for low-temperature CO oxidation.
43 *Chemical Communications* **56**, 4870-4873, doi:10.1039/d0cc00230e (2020).

44 38 Ma, X.-L., Liu, J.-C., Xiao, H. & Li, J. Surface Single-Cluster Catalyst for N-2-to-NH3 Thermal
45 Conversion. *Journal of the American Chemical Society* **140**, 46-49, doi:10.1021/jacs.7b10354 (2018).

46 39 Matsubu, J. C. *et al.* Adsorbate-mediated strong metal-support interactions in oxide-supported Rh
47 catalysts. *Nature Chemistry* **9**, 120-127, doi:10.1038/nchem.2607 (2017).

48 40 Shan, J., Li, M., Allard, L. F., Lee, S. & Flytzani-Stephanopoulos, M. Mild oxidation of methane to
49 methanol or acetic acid on supported isolated rhodium catalysts. *Nature* **551**, 605-+,
50 doi:10.1038/nature24640 (2017).

51 41 Tang, Y. *et al.* Single rhodium atoms anchored in micropores for efficient transformation of methane
52 under mild conditions. *Nature Communications* **9**, doi:10.1038/s41467-018-03235-7 (2018).

53 42 Nguyen, L. *et al.* Reduction of Nitric Oxide with Hydrogen on Catalysts of Singly Dispersed

54

55

56

57

58

59

60

1
2
3 Bimetallic Sites Pt1Com and Pd1Con. *ACS Catalysis* **6**, 840-850, doi:10.1021/acscatal.5b00842
4 (2016).
5 43 Leclerc, C. A., Redenius, J. M. & Schmidt, L. D. Fast lightoff of millisecond reactors. *Catalysis
6 Letters* **79**, 39-44, doi:10.1023/a:1015348022952 (2002).
7 44 Schmidt, L. D. in *Studies in surface science and catalysis* Vol. 130 61-81 (Elsevier, 2000).
8 45 An, K. & Somorjai, G. A. Size and Shape Control of Metal Nanoparticles for Reaction Selectivity in
9 Catalysis. *Chemcatchem* **4**, 1512-1524, doi:10.1002/cctc.201200229 (2012).
10 46 Borodko, Y., Ercius, P., Pushkarev, V., Thompson, C. & Somorjai, G. From Single Pt Atoms to Pt
11 Nanocrystals: Photoreduction of Pt²⁺ Inside of a PAMAM Dendrimer. *Journal of Physical Chemistry
12 Letters* **3**, 236-241, doi:10.1021/jz201599u (2012).
13 47 Borodko, Y. *et al.* From Single Atoms to Nanocrystals: Photoreduction of PtCl₆ (2-) in Aqueous and
14 Tetrahydrofuran Solutions of PVP. *Journal of Physical Chemistry C* **117**, 26667-26674,
15 doi:10.1021/jp409960p (2013).
16 48 Glover, E. N. K., Ellington, S. G., Sankar, G. & Palgrave, R. G. The nature and effects of rhodium
17 and antimony dopants on the electronic structure of TiO₂: towards design of Z-scheme
18 photocatalysts. *Journal of Materials Chemistry A* **4**, 6946-6954, doi:10.1039/c6ta00293e (2016).
19 49 Grunwaldt, J. D., Basini, L. & Clausen, B. S. In situ EXAFS study of Rh/Al₂O₃ catalysts for catalytic
20 partial oxidation of methane. *Journal of Catalysis* **200**, 321-329, doi:10.1006/jcat.2001.3211 (2001).
21 50 Cavusoglu, G. *et al.* in *16th International Conference on X-Ray Absorption Fine Structure* Vol. 712
22 *Journal of Physics Conference Series* (2016).
23 51 Krenn, G., Bako, I. & Schennach, R. CO adsorption and CO and O coadsorption on Rh(111) studied
24 by reflection absorption infrared spectroscopy and density functional theory. *Journal of Chemical
25 Physics* **124**, doi:10.1063/1.2184308 (2006).
26 52 Bouchet, R., Weibel, A., Knauth, P., Mountjoy, G. & Chadwick, A. V. EXAFS study of dopant
27 segregation (Zn, Nb) in nanocrystalline anatase (TiO₂). *Chemistry of Materials* **15**, 4996-5002,
28 doi:10.1021/cm034640n (2003).
29 53 Wu, Q., Zheng, Q. & van de Krol, R. Creating Oxygen Vacancies as a Novel Strategy To Form
30 Tetrahedrally Coordinated Ti⁴⁺ in Fe/TiO₂ Nanoparticles. *Journal of Physical Chemistry C* **116**,
31 7219-7226, doi:10.1021/jp212577g (2012).
32 54 Nguyen, L., Tao, F. F., Tang, Y., Doug, J. & Bao, X.-J. Understanding Catalyst Surfaces during
33 Catalysis through Near Ambient Pressure X-ray Photoelectron Spectroscopy. *Chemical Reviews* **119**,
34 6822-6905, doi:10.1021/acs.chemrev.8b00114 (2019).
35 55 Hall, C. & Perutz, R. N. Transition metal alkane complexes. *Chemical Reviews* **96**, 3125-3146,
36 doi:10.1021/cr9502615 (1996).
37 56 Weaver, J. F., Hakanoglu, C., Antony, A. & Asthagiri, A. Alkane activation on crystalline metal
38 oxide surfaces. *Chemical Society Reviews* **43**, 7536-7547, doi:10.1039/c3cs60420a (2014).
39 57 Liang, Z., Li, T., Kim, M., Asthagiri, A. & Weaver, J. F. Low-temperature activation of methane on
40 the IrO₂(110) surface. *Science* **356**, 298-301, doi:10.1126/science.aam9147 (2017).
41 58 Saillard, J. Y. & Hoffmann, R. C-H AND H-H ACTIVATION IN TRANSITION-METAL
42 COMPLEXES AND ON SURFACES. *Journal of the American Chemical Society* **106**, 2006-2026,
43 doi:10.1021/ja00319a020 (1984).
44 59 Liu, J. *et al.* Tuning Catalytic Selectivity of Oxidative Catalysis through Deposition of Nonmetallic
45 Atoms in Surface Lattice of Metal Oxide. *ACS Catalysis* **6**, 4218-4228, doi:10.1021/acscatal.5b02900
46 (2016).
47 60 Siemer, N. *et al.* Atomic-Scale Explanation of O₂ Activation at the Au-TiO₂ Interface. *Journal of
48 the American Chemical Society* **140**, 18082-18092, doi:10.1021/jacs.8b10929 (2018).
49 61 Brugnoli, L., Pedone, A., Menziani, M. C., Adamo, C. & Labat, F. O₂ Activation over Ag-Decorated
50 CeO₂(111) and TiO₂(110) Surfaces: A Theoretical Comparative Investigation. *Journal of Physical
51 Chemistry C* **124**, 25917-25930, doi:10.1021/acs.jpcc.0c09080 (2020).
52
53
54
55
56
57
58
59
60