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Abstract—Wearable biosensors have been widely used to assist
disease diagnosis or monitor health conditions, making the
authorization to communicate with these biosensors very critical.
The potential tampering attack may cause disasters that threaten
human lives. In this paper, a tampering attack detection method
is proposed for securing key parameters of a real-time ECG
monitoring system. The detection method is based on a built-
in triangle waveform and the corresponding extracted abnormal
pattern vector examination. When the deviation of the pattern
vector is above the defined attack detection threshold value, we
could recognize that an attack occurs. Two representative records
of ECG data are used to evaluate the different attack levels
impact. The proposed tampering attack detection framework
is implemented using 0.18 pm standard CMOS process and
costs 41413 pm? chip area, with an estimated dynamic power
consumption of 15 nW, which is very hardware-efficient and easy
to be implemented.

Index Terms—DBiosensor, Electrocardiogram, Tampering at-
tack, pattern vector examination

I. INTRODUCTION

Wearable biosensors have been playing critical roles in mon-
itoring human health conditions and diagnosing several types
of diseases [1]. Cardiovascular disease (CVD), as the leading
factor of death worldwide recognized by WHO [2], could
also benefit from wearable biosensors. Real-time abnormal
heartbeat rhythm detection and pre-diagnosis can lead to in-
time treatment, which prevents high occupation of medical
resources and long waiting time of patients. Such wearable
biosensors usually grant access to adjusting key parameters
of sensors to doctors or skilled technicians responsible for
analyzing the ECG data, so that they can obtain detailed
information of patients. However, this results in a potential
backdoor that may be hacked to result in a malfunction in
sensors to make them transmit false data. This attack may
lead to accidents that miss important heartbeats information,
thus missing the best timing window for treatment. In other
cases, a healthy person may be diagnosed with a critical
condition, thus wasting lots of medical resources. According
to the American Heart Association report [3], the direct and
indirect expenditures on CVD have reached $363.4 billion in
the United States in 2016-2017.

The smarter and advanced medical devices/systems with
more complex software and hardware components expose a

This work was supported by the National Science Foundation Grants ECCS-
1652944 and ECCS-2015573

broader attack surface for malicious attacks [4]. A rising
number of security issues on medical devices have been
reported in recent years. Researchers demonstrated cyber-
attacks on commercial implantable medical devices (IMDs)
where an implantable cardiac defibrillator (ICD) can be re-
motely disabled and reprogrammed with new therapies [5].
Moreover, medical devices have been shown vulnerable to
eavesdropping attacks through the communication media [6]
(Wi-Fi, Bluetooth, Zigbee, etc.) where adversaries can access
the transmitted data [5]. Different security solutions have been
proposed as countermeasures to malicious attacks, e.g., by
limiting the range of communications via body-coupled com-
munication protocols [7], using cryptographic authentications
[8] or biometric-based authentications derived from the mea-
sured medical signal itself [9], or by introducing physical layer
security along with cryptographic authentications [10], [11]. In
this paper, we proposed a tampering detection mechanism to
defend against malicious manipulations on the key parameters
of a real-time ECG monitoring system.

We previously proposed a low-power real-time Arrhythmia
detection system [12], [13] based on Delta Modulator circuits
[14] and bit-stream signal processing algorithms [15]. In the
proposed system, the threshold of DM2 as the key parameters
is opened to specific terminals. Doctors can adjust the thresh-
old remotely to check the details of ECG signals to obtain
the information they need or improve the heartbeats detection
accuracy. However, tampering attacks on the threshold may
lead to severe issues, including detection failure of important
fiducial points, adding false fiducial points due to noise, or
completely messing up the bit-streams (output of DM2). All
problems result in missing critical information. In this paper,
we propose a tampering attack detection framework, which
reuses several blocks of existing circuits to achieve hardware
efficient design. The paper is organized as follows: Section II
describes the DM2 based AFC and the system for real-time
Arrhythmia classification. Section III presents the tampering
attack model and our proposed method for detecting the attack.
Section IV provides the evaluation of the performance of the
proposed method. Finally, Section VI concludes the paper.

II. CIRCUITS AND SYSTEMS

As shown in Fig. 1, we propose an on-sensor Arrhythmia
recognition system, which includes a parallel DM2 based AFC
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Fig. 1: The proposed wearable heartbeat monitor system
includes the second-order Delta Modulator (DM2), ECG delin-
eation algorithms (DDF), patient-dependant SVM classifier for
arrhythmia recognition (ADSVM), and output interface (OI)
for reporting warnings and fiducial points.
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Fig. 2: An example of output bit-stream of DM2 from a
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(DM2) [16], the corresponding heartbeats detection and ECG
signal delineation algorithm implementation (DDF), and an
Arrhythmia detection algorithm realized by a patient depen-
dent rotated linear kernel SVM classifier (ADSVM) [17]. The
system can report Arrhythmia detection results that include
classifying Supraventricular ectopic beats (SVEB), Ventricular
ectopic beats (VEB), and normal heartbeats through the output
interface (OI). It can also report important ECG signal delin-
eation information, including essential intervals (PR/RR/QT
interval, ST segment, QRS duration), and abnormal morphol-
ogy of P/T waves and QRS complexes.

The DM2 we reported previously in [16] is controlled by a
non-overlap clock. In DM2, the two-stage switch-capacitor-
based discrete-time integrators generate the feedback. The
feedback is subtracted by input to compute the residue voltage.

Then, through a ternary comparator (TeCmp), the residue
voltage is compared with a threshold voltage pair. Threshold,
as the key parameter, is introduced by a digital to analog
converter (DAC). Thus, the output bit of the current clock can
be generated. DM2 converts the analog input signal to digital
bit-streams, in which the pulse density is proportional to the
slope variation of the input. An example of the conversion
with a standard ECG waveform input is shown in Fig. 2. At
large slope varying points like Q/R/S wave peaks, pulses in the
output bit-stream of DM2 are more intensive, and vice versa.

DDF delineates the ECG signal from the output bit-stream
of DM2. It detects the QRS complexes first and searches
back in the data cache to locate the P wave. Meantime, DDF
keeps monitoring the T wave. With the corresponding ECG
delineation algorithm, we can extract the timing information
of these fiducial points. Thus, the feature vector for ADSVM
to recognize Arrhythmia could be generated. An example of
the delineation result could also be found in Fig. 2. The
results show that the DM2 can detect all important fiducial
points within the ECG signal. There are 22 features extracted
from the DM2 in total. Most of the features are timing
information from the delineation of the fiducial points and
essential intervals. The previously proposed classifier [17]
costs very low hardware overhead, making it suitable for
low-power biosensor applications. The classifier is achieved
as follows: (1) Training the global classifier using a public
Arrhythmia database; (2) Training the local classifier using
a certain amount of heartbeats from the patient; (3) Finding
the intersection hyperplane between global and local classifier;
(4) Rotating the global classifier to local classifier by a cer-
tain angle, though the intersection hyperplane. The proposed
method aims at balancing the generalization performance and
specificity.

The outputs of DM2 can be affected by tuning the threshold
introduced by DAC through commands received wirelessly
from a remote station. The permission to adjust this threshold
value is left for doctors or skilled technicians. With different
parameter values, DM2 could be sensitive to different levels
of slope variation. Therefore, doctors can obtain more detailed
information of the fiducial points they care for, and it is also
why we used paralleled DM2 in the proposed system. DM 2,
is designed with a threshold value that only reacts to significant
slope variations like QRS complexes, which are not easily
contaminated by noise. On the other hand, DM 2, is designed
to be sensitive to small waves but may confront saturation
conditions. By optimizing the threshold values, we can achieve
the timing error under 3 ms for detecting a turning point of
the input signal.

ITI. ATTACK MODEL AND THE PROPOSED FRAME WORK
A. Threat Model
As stated above, the sensitivity level of DM2 to different
slope variations can be adjusted by remotely tuning the thresh-
old in the DAC module. Such fine-tuning capability, initially
designed for doctors’ convenience of improving measurement
accuracy, unfortunately, could be leveraged by adversaries for
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Fig. 3: Evaluation of different levels of attack impact with a

standard ECG waveform input. Heartbeats detection with (a)

no attack (Thresh as shown in Fig. 1 is set to 10 mV wirelessly

by default, thus the DM2 has 500+10 mV threshold pair from

the DAC), and (b) attack of threshold changing 30%.

malicious purposes. We have the following assumptions in our
threat model: (1) adversary’s goal is to mislead the recognition
system to make false/inaccurate detection by attacking the
analog-to-feature conversions module; (2) adversary’s capa-
bility is that the attacker has the access to the threshold
adjustment of DM2 to deviate it from its appropriate setting
for inaccurate measurements. Specifically, we consider attack
scenarios where adversaries can tune the threshold by devi-
ating from appropriate settings in the form of adding a DC
voltage bias. The attack could result in the removal/addition of
important fiducial points or undesirable noise, further causing
false detection by the recognition system.

An example of evaluating attack influence on detecting
heartbeats through the above-mentioned system is shown in
Fig. 3. It can be found that with a tampering attack on
changing the threshold value by 20%, false positive (FP)
beats appears. FP beats may influence the true positive (TP)
detection accuracy. Because the ECG detection algorithm does
not allow heartbeats detection within a very short time window,
in Fig. 3 (d), the appearance of FP1 may eliminate the
opportunity of expected detection of TP1. FP beats result in
severe heartbeats detection accuracy decreasing and degrading
the performance of the fiducial points delineation, feature
extraction, and arrhythmia classification.

B. Proposed Tampering Detection Framework

Due to the potential attack targeting on the control of the
DAC, which results in threshold variation and may malfunc-
tion the whole system, it is required to have a mechanism
to form protection. We propose an attack detection frame-
work that is capable to capture “abnormal” patterns in such
malicious threshold adjustments. The proposed framework is
designed to report an alarm if anomalies are detected so that
either the patient or the doctor is alerted about the potential
attack. In cases where the doctor is conducting a benign
threshold adjustment, the patient (user of the device) will
receive a prior notification about the upcoming adjustment so
that the generated alert can be properly treated/ignored.
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Fig. 4: The proposed attack detection framework, including
the normal functional mode (NFM, black blocks) and attack
examination mode (EM, red blocks).

A high-level overview of the proposed detection framework
is illustrated in Fig. 4. Compared to the original system, the
framework introduces two major components for tampering
detection, i.e., a build-in triangle wave (BITrW) generator
(with the help of the existing DAC, and with internal safe
control) and an attack detection module (marked as red blocks
in Fig. 4). The framework provides two modes that can be
interchanged using a switch controlling the connection of the
triangle generator. In the normal functional mode (NFM), the
triangle generator is disconnected/disabled so that only the
ECG input is fed into the AFC module. The DM2 output
bit-stream is connected to the original DDF+ADSVM+OI
modules for Arrhythmia recognition. In the examination mode
(EM), the BITrW generator is enabled so that the triangle
signal becomes the input signal instead, and the corresponding
output bit-stream is connected to the attack detection module
for attack detection. After the AFC conversion process, ma-
licious threshold adjustment will be exposed and present as
explicit abnormal patterns in the output bit-stream which is to
be detected by the attack detection module.

Fig. 5 shows the output bit-stream converted from the built-
in triangle waveform through DM2 (for saving space, DM2’s
output is represented in one ternary bit-stream instead of
the actual two-channel pulses as shown in Fig. 2), and the
corresponding output with different attack levels in the form
of different DC bias. In this work, we mainly focus on a typical
attack scenario where the malicious adjusting behaves in the
form of a DC bias. It is shown that the number of pulses in
DM2’s output varies significantly associated with the change
of threshold value. An 800 ms BITrW (with peak-to-peak
amplitude of 0.2 V, and period of 200 ms) is used as the input.
The middle 600 ms data is used for generating the detection
data pattern, while the first 100 ms data is used to make the
DM2 conversion stable. The 600 ms data includes six turning
points, and the slope varies most at these points. The data is
divided into twelve windows as shown in Fig. 5 (a). Within
each window like w2, we count the number of *+1” bits and ’-
1" bits, respectively. Thus, a 24-dimension vector for standard
threshold (NThVc) can be generated, i.e., the vector extracted
from the attack-free bit-stream as shown in Fig. 5 (b). The
NThVc data is stored on the sensor. Thus, we regularly switch
the system from NFM to EM with the defined time setting
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Fig. 5: Abnormal patterns check vector extraction for the
built-in Triangle waveform based attack examination. (a) The
middle 600 ms data of the built-in triangle waveform, (b)
standard threshold vector extraction, and (c) abnormal pattern
check vector extraction at attack level at 30%.
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Fig. 6: The number of False positive and false negative
heartbeats detected with different threshold attack levels in
evaluating two representative records in MIT-BIH arrhythmia
database.

and compute the abnormal patterns check vector (PCVc).
Then, the PCVc and stored NThVc is compared to find if the
system is under attack or not. The detection circuit is internally
integrated with the DM2-based AFC circuit. Therefore, it is
designed to be resilient to any physical removing/tampering
attacks.

IV. PERFORMANCE EVALUATION

Two representative records data (232 includes VEB de-
tection and 233 includes SVEB detection) in the MIT-BIH
Arrhythmia Database are used to evaluate the attack effec-
tiveness. With simulation of the two records data, the attack
detection threshold (ADTh) is obtained. Then, ADTh is used
to decide if the system is under attack. As shown in Fig. 6,
the performance of the system in heartbeats detection drops
dramatically when the attack level reaches 20%. The system

(o]
w
o

n— Se ('232) I-E-Sle (233i ' ' ' '
< 200 ||=%= PPV (232) == PPV (233) o 1% |
B -4~ Err(232) -§-Err (233)

i
= 150}
a
o 100}
> ]
& 50
D i 1 1

15 175, 20 225 25 275 30
Threshold attack level (%)

I 125
Fig. 7: Sensitivity and positive prediction value affected with
different threshold attack levels in evaluating two representa-
tive records in MIT-BIH arrhythmia database.

becomes malfunctions ultimately when the attack level reaches
30%. The trends of FP and false negative (FN) beats curves
associated with increasing attack levels are similar. Sensitivity,
positive prediction value, and error rate are also used to
evaluate the performance change as shown in Fig. 7, where
the curves of the two records also show similar trends.

According to the evaluation results shown in Fig. 6 and Fig.
7, we define deviation between NThVc¢ and PCVc at the attack
level of 20% as the ADTh. The deviation is calculated by the
summation elements of the absolute value of PCVc-NThVec.
As shown in Fig. 6, the deviation between attack levels 17.5%
and 20% is defined as the ADTh Margin, which shows no
attack impact on heartbeats detection. If the deviation is over
ADTh, we declare there is an attack. Detected deviation within
ADTh Margin represents that there is a potential attack so that
another examination is needed to confirm if it is an attack.
Since we can calculate the ADTh by counting the difference
of the number of pulses in all windows, the proposed attack
detection method is very hardware-efficient.

To evaluate the compatibility with the ECG sensor chip [16],
the framework is implemented using the same technology,
the 0.18 pm standard CMOS process. The chip area (41413
um?) is obtained using Synopsys Design Compiler, with an
estimated dynamic power consumption of 15 nW with the
working clock of the sensor (1K Hz), and the estimated
leakage power of 158 nW. The proposed tampering attack
detection framework shows great potential for future low-
power wearable biosensor applications.

V. CONCLUSION

In this paper, we presented a tampering attack examination
mechanism for a previously proposed real-time wearable ECG
monitoring sensor. By checking the 24-dimension abnormal
pattern vector, we can detect if the system is under attack.
The abnormal pattern vector is generated from the existing
circuit with a built-in triangle waveform as input. The proposed
method is validated with two records data from the MIT-BIH
arrhythmia database. Thus, the attack detection threshold value
is defined by evaluating the attack effectiveness at different
levels. The proposed attack detection method is highly hard-
ware friendly to be implemented. The methodology can be
extended to other future biosensors for hardware security.
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