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AssTracr.—Microbial endophytes are integral factors in plant evolution, ecology, and physiology.
However, the endophyte communities across all major plant lineages have yet to be characterized,
and data are particularly scarce for lycophytes. Here we used a culture-based approach to survey
the diversity of endophytic bacteria in five sympatric Lycopodiaceae species in central New York.
The most notable endophyte isolated from this study is a bacterial species Allobranchiibius
huperziae, which was only recently described from the roots of Huperzia serrata in China. The fact
that the same endophyte was also found in our North American samples suggest a possible specific
association with Lycopodiaceae species. The data and cultures from this study provide an
important foundation for future metagenomic and functional studies to characterize better the
diversity and significance of plant endophytes.

Key worns.—Allobranchiibius huperziae, microbiome, symbiosis, 165

Every macro-organism lives in close association with countless micro-
organisms and plants are no exception. Some famed plant symbionts, such as
arbuscular mycorrhizal fungi (AMF), are considered critical in the establish-
ment of early land plants and their continued success (Heckman et al., 2001;
Taylor and Krings, 2005; Delaux et al., 2012; Selosse et al., 2015). Meanwhile,
many plants harbor nitrogen-fixing bacteria, e.g., Rhizobium, Frankia, and
Nostoc, which not only influence plant growth, but also the surrounding
environment (Santi, Bogusz, and Franche, 2013).

Yet, these well-known, specialized symbioses are not the only ones that
impact plant growth and ecological interactions. In fact, communities of
bacteria, archaea, fungi, and other eukaryotic microbes can live within healthy
plant tissues (Berg et al., 2016). These microbes, called “endophytes,” make up
communities that are often highly diverse, even within the same host species
and geographic location (Higgins et al., 2007; U'Ren et al., 2010; Nelson and
Shaw, 2019). This diversity is reflected in the various roles these endophytes fill
within their host plant—they may be mutualistic, commensalistic, pathogenic,
or latently saprotrophic, and may act to influence plant growth and interactions
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with other organisms, including pathogens (Porras-Alfaro and Bayman, 2011).
Thus, plant-microbial interactions are undoubtedly underestimated but integral
factors in shaping ecosystem structuring (Rudgers, Koslow, and Clay, 2003;
Afkhami and Strauss, 2016; Aguilar-Trigueros and Rillig, 2016).

Regardless of their importance, microbial symbiotic communities have not
been well characterized for all major lineages of land plants. Studies on the
microbiomes of Lycopodiaceae are relatively scarce. Those that do exist focus
mostly on fungal endophytes, largely employing light microscopy (Freeberg
1962; Duckett and Ligrone, 1992; Gemma, Koske, and Flynn, 1992; Schmid and
Oberwinkler, 1993; Treu et al., 1996; Zhi-Wei, 2000; Fernandez, Messuti, and
Fontenla, 2008; Kessler et al., 2010a, b; Zubek et al., 2010; Muthukmar and
Prabha, 2013; Lehnert, Krug, and Kessler, 2017) and sometimes utilizing modern
sequencing technologies (Winther and Friedman, 2008; Benucci et al., 2020).
Some studies have described culturable fungal endophytes of Huperzia serrata
(Thunb.) Trevis., which can produce huperzine A, a bioactive cholinesterase
inhibitor of pharmaceutical interest for treating Alzheimer’s disease (Zhu et al.,
2010; Wang et al., 2011; Le et al., 2019).

Even fewer studies have explored the bacterial communities living in
association with Lycopodiaceae species. Benucci et al., (2020) utilized
llumina amplicon-sequencing technologies to characterize the bacterial
communities of roots of nine Lycopodiaceae species (and one Selaginella
species) in New Zealand. They identified 551 operational taxonomic units
(OTUs) belonging to 28 classes of bacteria, with Proteobacteria, Acidobacteria,
Actinobacteria, and Bacteriodetes being the most prominent. However, they
did not sterilize the surface of the root material examined, thus there is no way
of knowing which OTUs lived on the external surface of the roots and which
are endophytes. Furthermore, Ghosh et al. (2016) explored the influence on
plant growth of Burkholderia spp. living on the surface of Lycopodium
cernuum L. rhizoids. Finally, Ai et al. (2017) described a novel genus and
species of bacterial endophyte (Allobranchiibius huperziae) from H. serrata.

No study, to date, has specifically characterized the endophytic bacterial
communities of Lycopodiaceae species. Could there be specialized symbioses
between bacterial species and Lycopodiaceae species? Could these relation-
ships impact plant growth, secondary chemical production, or interactions
with other organisms (e.g., fungal symbionts, herbivores, pathogens), and
evolution? Our study aims to take a step towards answering these questions by
characterizing and comparing the culturable endophytic bacteria in five
Lycopodiaceae species found in central New York.

MATERIALS AND METHODS

Plant collection location.—We collected Huperzia lucidula (Michx.) Trevis.,
Spinulum annotinum (L.) A. Haines, Lycopodium clavatum L., Diphasiastrum
digitatum (Dill. ex A. Braun) Holub, and Dendrolycopodium dendroideum
(Michx.) A. Haines from a sympatric population in Shindagin Hollow State
Forest (GPS coordinates: 42.33707, -76.33905). The soil type of this location is
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well-draining acidic silt-loam. Aerial and subterranean tissues from one plant
of each species were collected once a week, for four consecutive weeks, in June
2019 (6/4, 6/10, 6/17, 6/24).

Plant sampling and endophyte isolation.—Intact plants were brought to the
lab and refrigerated until they could be cleaned and processed (no more than 48
hours after collection). They were rinsed with deionized (DI) water to remove
large debris. We divided plants into three categories of tissue: aerial,
subterranean shoot, and subterranean root. Each tissue type was transferred to
a sterile hood, rinsed again in sterile DI water to remove finer debris, and
chopped into 2mm? segments. Segments were surface sterilized by submerging
them in 95% ethanol for 30 seconds, 10% bleach (with a few drops of 1%
Tween 20) for two minutes, and 70% ethanol for two minutes (based on Arnold,
2002). Segments were allowed to air dry under sterile air on autoclaved filter
paper. These protocols have been shown to eliminate epiphytic microbes
(Schulz et al., 1993; Arnold, 2002), but to ensure this, the exterior of one piece
from each batch was rubbed on a lysogeny broth (LB) plate. If anything grew on
the control plate, the entire batch was disregarded as contaminated. For each
sample, ten segments of aerial tissue, five segments of subterranean shoot, and
five segments of subterranean root were placed onto LB plates. Plates were
sealed with parafilm, left at room temperature, and regularly checked for
growth. Subcultures were made to separate different morphologies.

Culture identification.—Once pure cultures were obtained, we used a sterile
pipet tip to transfer bacteria into a 0.2 mL tube for colony PCR with 27F (5’
AGAGTTTGATCMTGGCTCAG 3’; Lane et al., 1991) and 1492RIl (5’
GGTTACCTTGTTACGACTT 3’; Turner et al.,, 1999) primers, with the
following recipe: 12.85 pl. PCR water; 5 pL. 5x GoTaq Flexi buffer; 2.5 pL
dNTP’s (1mM each); 2.5 pL. BSA; 1uL. 27F primer; 1pL 1492R1 primer; 0.15 pL
GoTaq (Promega). The thermocycler program was set as: (1) 95°C for 4 minutes;
(2) 95°C for 1 minute; (3) 60°C for 30 seconds; (4) 72°C for 1 minute 45 seconds;
(5) repeat steps (2), (3), and (4) nine times, reducing step (3) by 1°C each time;
(6) 95°C for 1 minute; (7) 50°C for 30 seconds; (8) 72°C for 1 minute 45 seconds;
(9) repeat steps (6), (7), and (8) 17 times; (10) 72°C for five minutes 40 seconds.
If colony PCR failed, DNA extractions were carried out based on Wilson (2001)
and subject to the same PCR protocol as above. We cleaned all successful
amplification products using an ExoSAP protocol (New England BioLabs) and
submitted them to Eurofins for Sanger sequencing. Forward and reverse Sanger
sequences were joined using Geneious Prime (Version 2019.2.1) and compared
to the NCBI GenBank database using BLAST searches. Species names were
assigned if sequences matched to only one species with at least 97% identity
and full coverage. Unidentifiable taxa were grouped together if sequences were
at least 97% similar (based on VSEARCH, Rognes et al., 2016) and given an
identifier based on higher level taxonomic ranks. The 16S rRNA sequences
were deposited in GenBank and assigned accession numbers: MZ994597
through MZ7.994648.

Phylogenetic inference.—To support our taxonomic identifications, we
created a phylogenetic tree with our 16S endophyte sequences and reference
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Tasie 1. Number of cultures from each plant species and tissue type

Aerial shoot Subterranean shoot Subterranean root TOTAL
De. dendroideum 1 10 4 15
Di. digitatum 2 7 12 21
H. lucidula 29 20 5 54
L. clavatum 3 0 21 24
S. annotinum 10 14 19 43
TOTAL 45 51 61 157

16S sequences from GenBank. Sequence alignment and maximum-likelihood-
based phylogenetic inference were done using PASTA (Mirarab et al., 2015)
with the default setting.

ResuLts

Of the 800 plates, 161 had bacterial growth (20.1% culture rate), of which
157 were identified (19.6% isolation rate; Table 1, Appendix 1). These 157
cultures belonged to 52 distinct OTUs (Table 2, Fig. 1) in 17 families. A total of
23 bacterial OTUs were isolated more than once. Huperzia lucidula had the
greatest culture number and species richness, followed by Spinulum
annotinum, Lycopodium clavatum, Diphasiastrum digitatum, and Dendroly-
copodium dendroideum. Although aerial tissue had the fewest cultures, it had
a higher richness than either subterranean shoots or roots, owing to the high
richness in H. lucidula aerial tissue.

The phylogenetic trees (Figs. 2 and 3) generated overall support our
taxonomic identifications. They also suggest that the two sequences which
were only identifiable as bacteria (“Bacteria sp. 1” and “Bacteria sp. 2”) belong
in Bacillaceae, and are most closely related to Lysinibacillus.

Discussion

Bacterial culturing rate and community composition.—In this study, 20.1%
of the 800 surface sterilized plant segments had bacterial growth. No previous
studies explored the culturable bacterial endophyte communities of
Lycopodiaceae, and a canvassing of studies conducted on other plants

Tasie 2. Number of bacterial species identified from each plant species and tissue type

Aerial shoot Subterranean shoot Subterranean root TOTAL
De. dendroideum 1 7 4 9
Di. digitatum 2 5 8 12
H. lucidula 22 14 4 34
L. clavatum 2 0 14 15
S. annotinum 7 7 9 17
TOTAL 29 24 23 52
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Fic. 2. Maximum likelihood phylogeny of the bacterial OTUs and confirmed reference sequences.
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Fic. 3. Maximum likelihood phylogeny of the bacterial OTUs and confirmed reference sequences,
continued.

revealed a distinct lack of reporting of bacterial culture rates. Thus, it is
difficult to determine if 20.1 % represents a relatively high or low culture rate.

Potential roles of isolated bacterial endophytes.—Bacterial endophytes can
have a wide range of effects on their plant hosts, but specific functional studies

Downloaded From: https://bioone org/journals/American-Fem-Joumnal on 21 Dec 2022
Terms of Use: https://bicone_org/terms-of-use Access provided by Comell University



86 AMERICAN FERN JOURNAL: VOLUME 112, NUMBER 2 (2022)

are needed to accurately describe the interactions between lycophytes and
their endophytes. However, speculation can be made based on previously
described interactions. For example, Bacillus mycoides may act to control
pathogens in sugar beets (Bargabus et al., 2002). Yet, for the many other
unidentifiable Bacillus spp., Bacillaceae spp., and Bacillales spp. isolated in
this study, it is impossible to hypothesize as to how they may impact their
hosts. The same is true for the numerous unidentifiable Paenibacillus spp.,
Paenibacillaceae, Microbacteriaceae, Nocardiaceae, and Rhodanobacteraceae.

Some Pseudomonas spp. promote plant growth via multiple mechanisms,
including auxin production and increasing phosphate and nitrogen
availability (Gnanamanickman, 2007; Oteino et al., 2015). Similarly, there is
evidence that some species of Cohnella, Lysinibacillus, and Burkholderiaceae
promote plant growth either through phytohormone production or by
increasing nutrient availability (Niang et al., 2018; Gnanamanickman, 2007;
Naureen et al., 2017; Shabanamol et al., 2017). Sanguibacter spp. may increase
resistance to cadmium (Rajkumar, Ae, and Freitas., 2009). On the other hand,
many Acidovorax spp. and Erwinia spp. are pathogens (Gnanamanickman,
2007).

Two genera isolated here are of particular interest as lycophyte symbionts:
Methylobacterium and Allobranchiibius. Like some of the other bacterial taxa
described above, Methylobacterium spp. may impact plant growth by
producing phytohormones (like cytokinins and auxins) and increasing
nitrogen availability (Holland, 1997; Kutschera, 2007). Additionally,
Methylobacterium spp. have been hypothesized to be ubiquitous co-evolving
symbionts across the land plant phylogeny (Holland, 1997). This hypothesis
warrants further investigation. Allobranchiibius is represented by a single
species, A. huperziae, isolated from Huperzia serrata roots in China (Ai et al.,
2017). We also found it in S. annotinum aerial tissue in this study, however its
activity in the plant is unknown. Given that it has only been reported as a
lycophyte endophyte, in two geographically disparate studies, further
investigation should be conducted to determine if it is a lycophyte-specific
symbiont and how it might be interacting with the plants.

Limitations of this study.—Any study on culturable endophyte communities
inherently carries significant bias. First, microbial species abundances
calculated from culturing have limited, if any, meaning. It is simply not
possible to be sure that what is growing is representative of the communities
that exist inside of a living plant. With our culturing methods, any obligate
symbionts or obligate anaerobes would be missed entirely and fastidious
bacteria may not have been able to grow. Thus, it is not possible to make
confident conclusions regarding diversity indices and other statistical
analyses. Second, the low number of cultures in this study did not allow for
statistical analyses.

Future directions.—These culture data, while a valuable first step in
characterizing microbial endophyte communities, need to be accompanied
by a next-generation amplicon-sequencing dataset to characterize more
thoroughly the complete endophyte community. We anticipate that the
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results of an amplicon-seq study on Lycopodiaceae would yield a far greater
number of OTU’s, as well as more reliable species abundance data. The
increase in statistical power inherent in amplicon-seq datasets, coupled with
expanded sampling, would also allow for exploration of host and tissue
specificity.

Furthermore, to fully characterize the microbiome of these plants, the
unidentifiable OTUs from this study need to be fully described and given
taxonomic assignment. Future large-scale functional assays on all OTUs are
needed to determine how these endophytes interact with both their host plant
and each other. These endophytes and their exudates may also possess utility
in other applications, such as pest/pathogen management in agriculture or
pharmaceutical development.
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ArpenDix 1.—Number of occurrences of each bacterial OTU in each plant tissue type
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Arpennix 1.—Extended.
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Arpennix 1.—Extended.
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