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Abstract 

Nursing homes (NHs) are responsible for caring for frail, older adults, who are highly vulnerable to natural disasters, 
such as hurricanes. Due to the influence of highly uncertain environmental conditions and varied NH character-
istics (e.g., geo-location, staffing, residents’ health conditions), the NH evacuation response, namely evacuating or 
sheltering-in-place, is highly uncertain. Accurate prediction of NH evacuation response is important for emergency 
management agencies to accurately anticipate the NH evacuation demand surge with healthcare resources proac-
tively planned. Existing hurricane evacuation research mainly focuses on the general population. For NH evacuation, 
existing studies mainly focus on conceptual studies and/or qualitative analysis using a single source of data, such as 
surveys or resident health data. There is a lack of research to develop analytics-based method by fusing rich environ-
mental data with NH data to improve the prediction accuracy. In this paper, we propose a Geographic Information 
System (GIS) data enhanced predictive analytics approach for forecasting NH evacuation response by fusing multi-
source data related to storm conditions, geographical information, NH organizational characteristics as well as staffing 
and residents characteristics of each NH. In particular, multiple GIS features, such as distance to storm trajectory, 
projected wind speed, potential storm surge and NH elevation, are extracted from rich GIS information and incorpo-
rated to improve the prediction performance. A real-world case study of NH evacuation during Hurricane Irma in 2017 
is examined to demonstrate superior prediction performance of the proposed work over a large number of predictive 
analytics methods without GIS information.

Keywords:  Nursing home, Hurricane evacuation, Predictive analytics, GIS data, Vulnerable population

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

Introduction
Skilled nursing facilities, or nursing homes (NHs), are 
responsible for caring for frail, older adults by provid-
ing 24/7 personal and medical care, and daily living 
assistance. Most older adults in the NHs suffer from 
significant functional (e.g., physical, cognitive, social) 
limitations, aging-related disabilities, vision/hearing 
impairments and multiple chronic disease, which make 
them highly vulnerable to natural disasters, such as hurri-
canes [1–3]. Their impaired mobility, diminished sensory 

awareness, and chronic health conditions make them less 
likely to respond and adapt appropriately during hurri-
canes, leaving their lives clearly at risk to the aftermath 
of hurricanes, such as physical damage of NH infrastruc-
tures, storm surge and massive flooding, power outage, 
and disruption of medical supplies. Existing studies show 
that both the mortality and morbidity of NH residents 
significantly increase during hurricanes [4, 5].

Due to devastating threats and negative consequences 
of hurricanes on vulnerable NH residents, many NHs 
have to evacuate and move their frail residents away 
from hazard regions to safer places. However, whether 
to evacuate a NH is one of the most complex and diffi-
cult decisions encountered by NH administrators. The 
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prospects of not evacuating in response to hurricanes 
can be tragic. For instance, 34 residents were presumed 
to have drowned at St. Rita’s NH in Chalmette, LA, after 
its facility owners refused to evacuate before landfall of 
Hurricane Katrina in 2005 [6]. In Hurricane Irma in 2017, 
14 residents died from heat-related illness after power 
losses post-storm at Hollywood Hills NH in Hollywood, 
FL. On the other hand, evidence has shown that evacua-
tion has an adverse effect on the health and wellbeing of 
many frail and impaired residents. The disruption associ-
ated with evacuation, changes of environment and care 
routines, and the trauma of moving itself may result in 
physical injuries, functional declines, and depression, 
which further complicates NH evacuation [7]. Successful 
modeling and prediction of NH evacuation response (i.e., 
evacuating or sheltering in place) of NH administrators 
is of great importance. It will enrich the understanding 
of the multi-factorial complexity of NH evacuation deci-
sions by identifying and quantifying the effects of differ-
ent internal and external factors with an evidence base 
that is informative and critical to disaster preparedness 
and response. It will also help local emergency authori-
ties to better plan and manage healthcare resources to 
meet with the NH evacuation demand surge in a more 
proactive manner.

In the existing literature of both qualitative stud-
ies and quantitative studies in investigating evacuation 
responses, many studies mainly focused on the evacua-
tion choices of community-dwelling households from the 
general population [8–11]. Baker [8] studied a number 
of hurricanes in the Atlantic states from Texas through 
Massachusetts occurring between 1961 and 1989, where 
sample surveys from the general population were used 
to identify characteristics, such as hazardousness of the 
region, public service, residence type, perceived risk, 
and general storm severity, influencing aggregate-level 
evacuation rates. Wolshon et  al. [9] combined results 
from a survey on state evacuation plans performed by 
Louisiana State University and other published studies 
at the time. The work summarized evacuation policies 
and procedures implemented by state authorities, focus-
ing on the transportation service utilization and response 
perspective for the general population. Whitehead et al. 
[10] examined prospective hurricane evacuation behav-
ior of North Carolina coastal residents following occur-
rence of Hurricane Bonnie through telephone surveys, 
and concluded that storm severity, reception of evacua-
tion order, possibility of flooding, housing structure, and 
socio-demographic disparity to important determinants 
of evacuation. Hasan et  al. [11] considered post-storm 
damage assessment data of households affected by Hur-
ricane Ivan and characterized various factors affecting 
evacuation behavior.

Many of these studies considered a single source 
of data in the context of non-disaster conditions by 
extracting aggregated individual characteristics with-
out explicitly considering the rich information form 
actual storms. Unlike the above studies which focused 
on studying healthy individuals from the general 
population, we will focus on studying the evacuation 
response of NH populations at the organization level 
and each organization consisting of frail older adults 
with complex health conditions and functional limi-
tations. There is a need to incorporate both internal 
factors that could comprehensively describe the dif-
ferent aspects (e.g., staffing, dwelling residents) of an 
organization and further integrate them with the highly 
heterogeneous geo-spatial characteristics of NHs in 
the context of actual disaster conditions. In the exist-
ing long-term care literature of NH evacuation, many 
focused on conceptual and qualitative studies [12–14] 
based on descriptive statistics or narrative summaries, 
and they often utilized a single source of data, such as 
retrospective surveys and telephone questionnaire, 
without taking into account the spatial heterogeneity of 
environmental characteristics of NHs and quantifying 
the influence of environmental conditions on evacua-
tion response. Some of existing qualitative studies con-
sider linear statistical models [15] in quantifying the 
influence of different input factors for prediction per-
formance output of evacuating or sheltering-in-place. 
However, they only consider limited environmental 
characteristics at the aggregate level. Further, the lin-
ear models developed in these quantitative studies may 
not be appropriate in capturing the potential nonlinear 
relationship between various inputs and the evacuation 
response and the prediction performance accuracy will 
be greatly undermined.

To fill the aforementioned research gap, in this paper 
we propose a GIS-integrated predictive analytics frame-
work for evacuation response prediction of NHs by 
integrating multi-source data from NH residents, NH 
facilities and environmental conditions in the context of 
a real disaster scenario. In particular, we extract multiple 
GIS features to comprehensively characterize the spa-
tially heterogeneous environmental conditions (e.g., both 
geographical condition and storm conditions) of NHs at 
different spatial locations in the state of Florida. With 
the incorporation and integration of such rich GIS infor-
mation with NH resident and staffing characteristics, 
we considered different linear and nonlinear machine 
learning methods to achieve the improved evacuation 
response prediction of NHs in real disaster scenarios. 
The influence of environmental conditions on NHs evac-
uation are further quantified explicitly in the presence of 
varied characteristics of individual NH facility.
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The remaining of the paper is organized as follows. In 
the next section, we will introduce the proposed method-
ology of extracting various GIS features and NH features 
as well as the development of different machine learning 
models to integrate the extracted features. Then, we will 
give a concrete real-world example using the recent dis-
aster scenario of Hurricane Irma to compare the predic-
tion performance of different machine learning models 
and emphasize the prediction performance benefits of 
incorporating multiple GIS features extracted. The model 
interpretation results based on linear classification model 
will be also discussed. Conclusions are provided in the 
end.

Methodology
To develop a predictive analytics method for investigat-
ing the multifactorial nature of NH evacuation response 
and further predicting the evacuation response of NH 
facilities, the features extracted (to be explained below) 
are based on the following conceptual model described in 
Fig. 1.

Extracting environmental characteristics
Due to the devastating threats and negative conse-
quences of hurricanes on vulnerable NH residents, such 
as drowning, shutdown of life-sustaining devices, and 
shortage of medical supplies, many NHs have to evacuate 
and move their frail residents away from hazard regions 
to safer places. The severity of actual damage on NHs in 
different storm-affected regions may vary significantly. 

Thus, the anticipated geographical conditions in the 
neighboring area of each NH before a storm’s arrival tend 
to become important external factors (beyond the facil-
ity’s control) that may influence NH administrators’ evac-
uation decisions. In this section, we extracted a series 
of environmental features to represent various environ-
mental characteristics (e.g., storm characteristics, geo-
graphic characteristics of each NH) that may affect NH 
evacuation decision. They will be incorporated as predic-
tors while developing different predictive models. Before 
extracting environmental features, we first obtained the 
actual evacuation responses (i.e., evacuation or shelter-
in-place) of all NHs in the state of Florida during Hur-
ricane Irma from the Florida Agency for Health Care 
Administration (AHCA) [16]. AHCA is the statutory 
organization responsible for health and policy planning 
in Florida. The agency also reports emergency response 
information of long-term care providers during extreme 
event scenarios, such as hurricanes. Figure  2 visualizes 
geolocation of all NHs in operation in the state of Florida 
and individual evacuation status during Hurricane Irma. 
Such response data will further be utilized as labeled 
outputs in “Classification models” and “Performance 
evaluation” sections for predictive models training and 
prediction performance evaluation. Furthermore, we also 
extracted the geolocation of each NH to facilitate the cal-
culation of NH-specific environmental features. The lati-
tudes and longitudes of each NH location were extracted 
using ArcGIS Online World Geocoding Service [17].

Fig. 1  A conceptual model for evacuation decision-making criteria for NHs during hurricanes
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We began with extracting the storm characteris-
tics affecting NH evacuation decisions. The storm GIS 
data was extracted from the National Hurricane Center 
(NHC) of the National Oceanic and Atmospheric Admin-
istration (NOAA) [18]. During a hurricane event, NHC 
monitors and records rich spatial–temporal information 
of a storm every 3–6 h, including current storm location, 
projected trajectory, spatial probability distribution of 
wind speeds, and potential storm surge areas. It allows us 
to extract and calculate different NH-specific storm fea-
tures and investigate their impacts on NH evacuation. As 
a storm approaches, the closeness between the projected 
storm path and the location of a NH may reflect the level 
of storm threat and can be potentially relevant to evacua-
tion decision of a NH. We extracted the projected storm 
path, which represented the forecast trajectory of the 
center locations of a storm. To quantify the proximity of a 
NH to the projected storm path, we calculated the short-
est Euclidean distance from each NH geolocation point 
to the projected storm path, as shown in Fig. 3.

The building damage and power outage resulting from 
high and sustained wind speeds may greatly affect the 
NH administrators’ evacuation decisions. To investi-
gate the impact of the projected wind speed on the NH 
evacuation decision, we extracted the spatial probability 
distribution map of wind speeds over a regularly spaced 
(5 km) grid of points, as shown in Fig. 4. The projected 
wind speed probability at a specific 5km-by-5km grid 
area represented the cumulative probability of sustained 
(1-minute) surface (10-meter altitude) wind speeds equal 

to or exceeding 50-knot (i.e., 57.5 mph) within a 120-h 
time period. According to the Beaufort Wind Scale [19], 
50-knot winds are classified officially as storm-force 
winds which can cause significant structural damage. 
As shown in Fig. 4, NHs located closer to the projected 
storm path tend to have a higher probability of experi-
encing higher winds, and vice versa.

As the adage “hide from the wind, run from the water” 
suggests, another important aspect which may consider-
ably affect the vulnerability and safety of a NH location 
during hurricane is the projected flood risk. We consid-
ered the potential storm surge and elevation at each NH 
location as external and inherent features respectively 
to characterize the potential flood risk. Figure  5 shows 
the spatial map of potential storm surge associated with 
the storm, which describes the risk of potential coastal 
flooding due to a storm. Both the predicted areas (where 
inundation from storm surge could occur) and the pre-
dicted heights (that water could reach in those areas) 
were numerically determined by the Sea, Lake, and Over-
land Surges from Hurricanes (SLOSH) model developed 
by National Weather Service [20]. The tidal mask region 
refers to the area usually submerged during daily or sea-
sonal high tides. As shown in Fig. 5, several NHs located 
in coastal regions at high potential storm surge evacuated 
before hurricane landfall. Apart from examining the food 
risk resulting from potential storm surge, we further con-
sidered the inherent geographic characteristics of each 
NH facility, namely, the elevation. Inland NHs in low-
lying regions may also potentially experience flooding 

Fig. 2  Extracted geolocations and evacuation status of NHs in FL during hurricane Irma
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due to the rain water deposition and/or the rise of water 
levels in nearby ponds, lakes, rivers, or other water reser-
voirs. To extract the elevation of each NH, we considered 
the Florida Digital Elevation Model (DEM) [21] devel-
oped by the University of Florida GeoPlan Center. Fig-
ure 6 shows the spatial map of elevation values recorded 
on a 5m-by-5m statewide grid. The elevation value from a 

grid area which is the closest to a NH’s geolocation point 
has been selected as the approximate elevation value for 
that NH.

Extracting NH characteristics
The NH administrator’s decision of evacuating or shel-
tering-in-place may not only be affected by external 

Fig. 3  NH-specific proximity distance to the projected storm path

Fig. 4  50-knots cumulative wind speed probability map
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factors of environmental characteristics as described 
above. It may also be affected by various internal fac-
tors related to each NH facility. In this section, we will 
further investigate various internal factors’ influence by 
comprehensively extracting various aspects of NH char-
acteristics, such as organizational characteristics, staff-
ing characteristics and resident characteristics of each 

NH. To comprehensively evaluate the NH characteristics 
from different aspects, we consider the most updated 
Certification and Survey Provider Enhanced Reports 
(CASPER) data of each NH closest to the storm season. 
CASPER data, originally known as Online Survey Certifi-
cation And Reporting (OSCAR) data, is the annual regu-
latory inspection data collected by state survey agencies 

Esri, HERE, Garmin, FAO, USGS, NGA, EPA, NPS, FPECA, NOAA, AHCA
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and maintained by the Centers for Medicare and Med-
icaid Services (CMS) [22]. It contains rich facility-level 
NH data related to the overall organization, such as size 
and ownership, as well as the aggregate characteristics of 
caregivers and residents within each NH. Based on the 
domain knowledge of expertise as well as national guide-
lines for NH evacuation [23] we extract the NH charac-
teristics based on the CAPSER data from three aspects, 
namely, (i) organizational properties, (ii) aggregated staff-
ing characteristics, and (iii) aggregated resident charac-
teristics, which will be elaborated with details as follows.

From the organizational perspective, existing studies 
indicate that the structural characteristics of an organi-
zation, such as ownership type, may have major implica-
tions in the extent of challenges the NH administrators 
would face in making decisions during the storm. For 
instance, government-owned facilities may have greater 
access to financial and/or transportation resources/sup-
port from government agencies than for-profit facilities, 
which would lower for-profit facilities’ logistics capabili-
ties and increase financial concerns in initializing evacu-
ation [24, 25]. Further, NHs of different sizes may have 
different likelihoods of exhausting their own organiza-
tional resources and may decide to evacuate due to their 
self-insufficiency. For a NH within a larger NH chain, it 
may be easier to identify and prepare the hosting facil-
ity within the chain to receive the evacuees, making the 
evacuation more convenient. To comprehensively quan-
tify various organizational characteristics of each NH, we 

extract and calculate various organization level features 
based on CASPER data of each NH, such as the type of 
ownership, the overall size and the average occupancy 
rate. To quantify detailed organizational structure, we 
also introduce the binary indicators, “Any special care 
unit”, to indicate whether the facility contains a special 
care unit (e.g., special units for caring residents with 
Alzheimer’s Disease and Related Disorders) and various 
binary indicators under “Medical team structure”, to indi-
cate whether the medical team contains senior leadership 
and advanced medical personnel in the facility. The set 
of organizational features extracted are summarized in 
Table 1.

NH staffing also plays an important role in disaster pre-
paredness and response (e.g., evacuating or sheltering-in-
place) against hurricane from the following two aspects. 
First, adequate staffing is required in order to ensure the 
care continuity and the success of disaster preparedness 

to weather out the storm or evacuate safely. Second, NH 
caregivers, such as nurses and aides, must be trained or 
have the right skills mix to tackle unique challenges dur-
ing extreme hazard scenarios, such as hurricanes [12]. If 
the facility is sheltering-in-place, adequate staff is cru-
cial in avoiding increased morbidity and mortality of 
residents, as the staff would provide formal care, emo-
tional support to residents, and also complete prepara-
tory tasks such as strengthening building structures and 
storing supplies. For evacuation, the staff needs to coor-
dinate transfer efforts, carry residents onto vehicles and 
transport them, and help them relocate into new host-
ing facility. Many NHs may face the challenges of staffing 
shortage and caregiver absenteeism during a hurricane 
because many staff members may evacuate by themselves 
or have concerns for their own family members. The NH 
may have less self-sufficiency accordingly to shelter-in-
place successfully with adequate staffing. To comprehen-
sively investigate the influence of staffing characteristics 
affecting evacuation response, staffing levels of 3 differ-
ent types of direct caregivers, such as registered nurses, 
licensed practical nurses, certified nursing assistants, and 
6 types of non-direct caregivers, such as administrative 
nurse, occupational therapy services, physical therapy 
services, activities staff, social services, and housekeep-
ing staff, are extracted and calculated based on CASPER 
data. Hours per resident per day (HPRD) [26] is consid-
ered as the aggregate measure to characterize the staffing 
level of each type of caregiver. Specifically, for NH i, the 
HPRD of the kth type of caregiver can be calculated as

For each type of caregiver, part-time and temporary 
employees are converted into full-time equivalent (FTE) 
to facilitate the calculation of total FTE. For physical 
therapists, both the therapists and therapist assistants are 
taken into account. The extracted staffing characteristics 
features of each NH are summarized in Table 1.

In addition to the organizational and staffing character-
istics, characteristics of the vulnerable residents in a NH 
are also important aspects that NH administrators need 
to take into account and thus may potentially influence 
the NH evacuation decision. Many NH residents are non-
ambulatory and bed-ridden, and evacuating them safely 
is more challenging because it requires more efforts from 
nursing staff as well as special transportation means, 
such as wheelchair conversion vans. For those residents 
with morbid obesity, specific equipment, such as lift and 
transfer equipment, need to be prepared. Many of NH 
residents may have complex medical conditions, such as 

(1)HPRDik =
Total FTE of caregiver type k × 70 hours bi-weekly

14 days×Number of residents in NH i
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Table 1  Descriptive statistics summary of the integrated NH evacuation data

Statistic/Feature All facilities*
N = 653

Evacuated facilities
N = 59 (9.04%)

Sheltered facilities
N = 594 (90.96%)

Organizational structure (Y/N)

 For profit facility 72% 53% 74%

 Not for-profit facility 25% 44% 24%

 Government facility 2% 3% 2%

 Chain-facility 61% 58% 61%

 Part of a CCRC​ 9% 20% 8%

 Size (# beds) 123.3 (48.6) 118.8 (48.47) 123.74 (48.63)

 Resident count 107.47 (44.33) 99.54 (44.53) 108.26 (44.27)

 Occupancy rate 87.09% (11.36) 83.96% (15.84) 87.4% (10.79)

 ADRD special care unit 13% 14% 13%

 Non-ADRD special care unit 5% 3% 5%

 Any special care unit 17% 17% 17%

 Has organized resident group 98% 97% 98%

 Has organized family  members group (feet) (%) 42% 37% 42%

 Payer mix (% residents)

 Medicare 54.98% (22.2) 48.71% (26.39) 55.6% (21.66)

 Medicaid 20.28% (14.37) 19.46% (13.83) 20.36% (14.43)

 Private pay and other 24.75% (17.98) 31.83% (24.55) 24.04% (17.05)

Environmental GIS features

 Distance from projected trajectory  24 h prior decision (Km) 112.56 (78.04) 66.11 (55.48) 117.17 (78.48)

 50 knots wind speed probability  24 h prior (%) 61.14 (28.37) 55.17 (15.37) 61.74 (29.29)

 Potential storm surge 24 h prior (feet) (%) 0.24 (1.21) 0.3 (1.17) 0.23 (1.21)

Elevation of facility (feet) 45.1 (47.71) 12.36 (13.05) 48.35 (48.67)

Staffing characteristics (HPRD)

 Registered nurses 0.49 (0.58) 0.54 (0.84) 0.49 (0.55)

 Licensed practical nurses 0.95 (0.37) 1.02 (0.71) 0.95 (0.32)

 Certified nursing assistants 2.82 (0.77) 2.99 (1.19) 2.81 (0.72)

 Direct care nurse staffing** 4.27 (1.37) 4.56 (2.63) 4.24 (1.17)

Administrative Nurse 0.28 (0.22) 0.31 (0.39) 0.27 (0.19)

 Occupational therapy services 0.26 (0.16) 0.24 (0.12) 0.27 (0.16)

 Physical therapy services 0.31 (0.2) 0.28 (0.19) 0.31 (0.21)

 Activities staff 0.21 (0.16) 0.26 (0.37) 0.21 (0.13)

 Social services 0.11 (0.13) 0.15 (0.36) 0.11 (0.08)

 Housekeeping staff 0.58 (0.57) 0.79 (1.64) 0.56 (0.3)

Medical team structure (Y/N)

 Medical director only 18% 19% 18%

 Physician extender only 0.5% 0% 1%

 Full medical team 45% 39% 45%

 No medical team 4% 5% 4%

Resident characteristics (% residents)

 Acuindex (patient acuity) 10.94 (1.2) 11.01 (1.34) 10.93 (1.18)

 Behavioral healthcare needs 18.13% (17.31) 18.69% (15.1) 18.07% (17.53)

 Dementia or Alzheimer’s 42.98% (17.26) 43.91% (17.17) 42.88% (17.28)

 Depression 33.73% (21.1) 31.77% (21.31) 33.93% (21.08)

 Intellectual disability 1.19% (3.6) 1.03% (1.56) 1.21% (3.74)

 Physical restraint use 0.63% (1.74) 0.23% (0.62) 0.67% (1.81)

 Serious mental Illness 29.6% (17.46) 27.96% (14.31) 29.77% (17.75)

Medication utilization (% residents)

 Antipsychotics 18.11% (11.31) 16.93% (9.59) 18.23% (11.46)

 Antianxiety 25.31% (10.71) 24.64% (9.69) 25.37% (10.81)

 Antidepressants 48.53% (13.05) 47.48% (12.8) 48.63% (13.08)

 Sedative/hypnotics 7.36% (5.96) 7.05% (5.07) 7.39% (6.04)

* Mean (SD)

**Sum of RN, LPN, CNA



Page 9 of 20Sakib et al. Health Information Science and Systems  (2022) 10:28

renal and respiratory diseases, and they may either need 
special care, such as dialysis, or be highly oxygen depend-
ent. If the NH is sheltering-in-place, power outages and 
inadequate medical supplies (due to road disruption) may 
be devastating to their residents. Existing studies also 
show that for those residents with mental conditions, 
such as, dementia or anxiety, NH evacuation and relo-
cation availability may have detrimental effects on their 
health outcomes and induce post-traumatic stress [13]. 
To comprehensively investigate the influence of resident 
characteristics from different aspects, several aggregate 
features in a NH facility, such as the percentage of resi-
dents having aforementioned conditions, the percentage 
of residents receiving different types of medications (e.g., 
antipsychotics, antianxiety, antidepressants, sedative/
hypnotics), the percentage of residents who require phys-
ical restraints and the percentage of residents covered 
under Medicare, Medicaid, or paying by themselves, are 
extracted and calculated from CASPER data. To further 
quantify the highly varied health conditions and acuities 
of NH residents, a composite index feature called “Acuin-
dex” is employed to summarize the overall resident acu-
ity in the facility [27, 28]. Acuindex is a numeric measure 
calculated by first combining the percentage of residents 
requiring nursing staff assistance with different activities 
of daily living, such as eating, toileting, bed transferring, 
and the percentage of residents requiring special treat-
ments, such as respiratory treatment, suctioning, intrave-
nous therapy, tube feeding, etc., and then further dividing 
by the total number of residents in the facility. A higher 
Acuindex value indicates that facility has a frailer popula-
tion of residents with more extensive care needs and vice 
versa. The extracted resident characteristics related fea-
tures are summarized in Table 1.

Classification models
After extracting various features that may potentially 
affect the NH evacuation decision (as described above), 
in this section, we will develop data-driven predictive 
models to predict the binary decision of “evacuating” or 
“sheltering-in-place” by comprehensively investigating 
different classification algorithms. For NH facility i, the 
binary response variable yi is labelled as “1” if the facil-
ity has evacuated, and “0” if the facility has sheltered-in-
place. Different features that represent different aspects 
of the ith NH, such as environmental characteristics, NH 
facility characteristics and NH dwelling-residents’ char-
acteristics, will serve as input variables xi for the devel-
oped predictive models. Since the sheltered-in-place 
NHs account for about 90% of the total number of NHs 
in the dataset, there is considerable classification imbal-
ance issue, which will significantly affect the modeling 
accuracy [29]. To address such class imbalance issue, 

up-sampling technique is performed for the minor-
ity class to create an equally balanced dataset for model 
development as follows [30]. First, the dataset is divided 
into training dataset and testing dataset randomly 
into large and small portions (e.g., 80% data randomly 
selected for training set and rest 20% for testing set) by 
keeping the same ratio of observations of minority class, 
i.e., evacuated NHs, to majority class, i.e., shelter-in-
place NHs, in both data sets. Then, individual observa-
tions from the minority class in the training dataset are 
randomly sampled until the sizes of majority and minor-
ity class observations in the dataset become equal. The 
prepared training dataset and testing dataset are used for 
model training and model assessment, respectively.

We first investigate the linear classification model 
of logistic regression (LR) and its regularized variants. 
These models aim to find the optimal model parameters 
θLR by minimizing the loss function

where the first term is the negative log-likelihood func-
tion of LR, and the last two terms contain L2-norm and 
L1-norm penalties, respectively. The former terms repre-
sent the goodness-of-fit and a smaller negative log-like-
lihood function value indicates a better goodness-of-fit. 
The latter terms control the complexity by shrinking the 
irrelevant model parameters towards zero (in L2-norm) 
and exactly equal to zero (in L1-norm), respectively. 
When both �1 = 0 and �2 = 0 , the model is conven-
tional LR; when �1 > 0 and �2 = 0 , it becomes the LR 
model with Ridge penalty, and when �1 = 0 and �2 > 0 , 
it becomes the LR model with LASSO penalty. Regular-
ization-based LR models are considered to address the 
potential overfitting issues of conventional LR for predic-
tion performance improvement. The tuning parameter � 
in both ridge and LASSO penalties are determined based 
on the cross-validation (CV).

After investigating the linear classification model, we 
further investigate different tree-based nonlinear clas-
sification modeling approaches, namely classification 
and regression tree (CART) and tree-based assembling 
methods. For CART, the impurity measure of GINI index 
is considered for tree plotting and a tree model will stop 
growing once all its leaf nodes only contain a single class 
of either “evacuation” or “sheltering-in-place”. To mitigate 
the overfitting issue of CART, pruning is further con-
sidered based on CV to merge some of the branches to 
form a smaller tree. Due to the high variance of CART, 
we further considered the tree-based ensemble meth-
ods, namely, random forest and gradient-boosted tree, to 

(2)
l(θLR) =

n∑

i=1

{−yiθ
T
LRxi + log[1+ exp θTLRxi]}

+ �1�θLR�
2
2 + �2�θLR�1
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further strengthen the prediction accuracy. The former 
ensemble learning methods generate a large number of 
deep trees in the parallel structure while the latter gener-
ates a large number of simple trees in sequential manner. 
The tuning parameters, such as size of trees in random 
forests or the depth of tree in gradient-boosted tree, are 
also determined based on the CV.

Although tree-based classification methods give non-
linear decision boundaries, they are established based on 
the rectangular-shaped partitions of the feature space. We 
further investigate other nonlinear classification models, 
such as memory-based method of nearest-neighbor clas-
sification, optimization-based method of support vector 
machines (SVM) and network-based method of artificial 
neural network (ANN), which constructs nonlinear deci-
sion boundaries based on varied assumptions and crite-
ria. K-Nearest Neighbor (KNN) directly performs the 
prediction based on the major vote of its K-neighbor data 
points, i.e., ŷ = argmax k∈{0,1}

1
K

∑
Nx

I(yi = k) , where 
Nx is an index set of K-nearest neighboring observations 
for input variables x and I(·) is an indicator function. In 
KNN, to make prediction of evacuation response of a NH 
with input features x0 , its k nearest NHs with observed 
evacuation response in the feature space are first identi-
fied and the corresponding closeness is evaluated based 
on the Euclidean distance, distance(i) = �x(i) − x0� , 
where x((i)) is input features of the ith neighboring NH 
with observed evacuation response [31]. Based on the 
majority vote of the observed evacuation response among 
k nearest NHs, the predicted evacuation response of NH 
will be obtained. SVM and ANN are more computation-
ally demanding nonlinear classification methods which 
either formulate the classification problem as an optimi-
zation model, or capture the nonlinear mapping among 
inputs and outputs with a multi-layer network structure, 
respectively. The tuning parameters and settings of each 
method, such as choice of K in KNN, kernel type and cost 
settings in SVM, and number of neurons in layer in ANN, 
are also determined based on CV [31, 32].

Performance evaluation
During the model development stage, 10-fold CV is 
employed to: (i) obtain the expected estimate of the 
test accuracy, (ii) tune model parameter values such 
that overfitting can be avoided. CV is achieved by par-
titioning the training dataset into several approxi-
mately equal-sized folds and building a model on the 
dataset by progressively holding one fold out for vali-
dation. CV-accuracy is calculated as the average accu-
racy obtained over all the validation set predictions, i.e., 
AccCV = 1

10×nm

∑10
m=1

∑nm
i=1 I(yi,m = ŷi,m) , where yi,m 

and ŷi,m are observed and predicted values in the mth 

validation set with sample size nm , respectively. I(·) is an 
indicator function, and 10 is the number of folds in the 
dataset. Limiting exposure to the full training dataset 
allows selection of model parameters that do not per-
fectly fit the training data but are generalized adequately 
resulting in optimal performance over unseen test data, 
hence reducing overfitting.

Following model development and tuning, each opti-
mized model is utilized to generate prediction on previ-
ously unseen test dataset and prediction accuracy is 
evaluated. Several metrics are employed to assess model 
effectiveness from different aspects, namely, test accu-
racy, test sensitivity, test specificity, and test balanced 
accuracy. Test accuracy is simply the proportion of cor-
rectly predicted class labels against the total number of 
observations in the test data, i.e., Acctest = 1

nt

∑nt
j=1 I(yj = ŷj) , 

where yj ŷj are observed and predicted values, respec-
tively, and nt is the total number of test observations. 
Test accuracy is an overall metric and may not fully 
explain individual class-specific prediction performance. 
Test sensitivity is used to measure prediction perfor-
mance of the model for the minority class (evacuated) as 
a proportion of the number of correctly predicted evacu-
ated NHs against the total number of observed evacuated 
NHs, i.e., Accsens = 1

nevac

∑nevac
j=1 I(yj,evac = ŷj,evac), where 

yj,evac and ŷj,evac are observed and predicted values for 
evacuation, respectively, and nevac is the total number of 
evacuated NHs in test dataset. Similarly, test specificity 
measures prediction performance of the model for the 
majority class (shelter-in-place) as a proportion of the 
number of correctly predicted shelter-in-place NHs 
against the total number of observed shelter-in-place 
NHs, i.e., Accspec =

1
nshelter

∑nshelter
j=1 I(yj,shelter = ŷj,shelter) , 

where yj,shelter and ŷj,shelter are observed and predicted 
values for shelter-in-place, respectively, and nshelter is the 
total number of shelter-in-place NHs in test dataset. 
Here, the minority (evacuated NHs) is defined as the pos-
itive class, and the majority (shelter-in-place NHs) is 
defined as negative class in the context of sensitivity and 
specificity, respectively. Assessing sensitivity and speci-
ficity of the predictions produced by each model 
enhances the ability to compare models in terms of their 
flexibility in detecting rare classes and differentiating data 
from the majority class, and also allows determining the 
effect of up-sampling in performance improvement. 
Since test accuracy may indicate greater model perfor-
mance even if the model predicts all majority class in the 
test data correctly and misses all minority class, an 
improved measure is desirable. Test balanced accuracy is 
the average of test sensitivity and test specificity, i.e., 
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Accbal =
Accsens+Accspec

2  , and provides a better representa-
tion of the prediction performance [31].

Real case study
Data description and preprocessing
Hurricane Irma was one of the major hurricanes in his-
tory over the open Atlantic Ocean. The storm made ini-
tial landfall in Florida near Cudjoe Key as a Category 4 
(130 mph) hurricane on September 10, 2017 9 AM and 
afterwards made final landfall at Marco Island as Cat-
egory 3 (115 mph) on September 10, 2017 3:35 PM, 
moving up the state and dissipating over the next day. 
An estimated 6.5 million people were ordered to evacu-
ate causing scarcity of supplies and fuel, and heavy traf-
fic along evacuation routes. One direct and 33 indirect 
deaths were reported in South Florida. The storm caused 
significant destruction by uprooting trees, damaging 
building roofs and structures, excessive inland flooding 
and coastal surge, and heavy rainfall. More than 75% cli-
ents in the state lost power for almost a week, and half 
of all crops in Miami-Dade county was ruined [33]. The 
estimated cost of damages in flood loss to homes in all 
storm-affected state was between 25-38 billion USD [34], 
with state property damages costing hundreds of millions 
USD in different counties. As with any extreme event, 
long-term care service residents and staff were at greater 
risk. 684 NHs were in operation during the hurricane, 
among which a total of 85 facilities decided to evacuate 
pre- or post-landfall.

To maintain consistency with the scope of the study, 
several inclusion/exclusion criteria were applied to the 
list of operating NHs. NHs which evacuated after land-
fall were not considered since the decision was based on 
post-storm damages and aftereffects, rather than evalu-
ation of pre-storm anticipated risks. NHs which evacu-
ated many days in advance (on or before 96 h of landfall) 
were excluded since the storm was considerable distance 
away from FL and related environmental data was not yet 
available. NHs with facility characteristics data missing 
entirely or with data recorded on inappropriate survey 
dates (i.e., survey significantly predating the storm), cat-
egorized as hospital-based facilities, and/or with incor-
rectly reported nursing staff levels (i.e. greater than 24, or 
0 HPRD) were removed. The resulting dataset contained 
a total of 653 NHs, of which 59 (9.04%) evacuated and 
the rest 594 (90.96%) sheltered-in-place. The evacuation 
status was encoded as binary numbers, where 1 indicated 
evacuated and 0 shelter-in-place, such that it can be used 
as a numerical response during modeling. Table  1 pre-
sents descriptive statistics of the selected NHs with vari-
ous characteristics stratified by evacuation status.

Following extraction of NH-specific environmen-
tal features as described in “Extracting environmental 

characteristics” section  and facility structural, staffing 
and resident characteristics data as described in “Extract-
ing NH characteristics” section, a joint dataset was cre-
ated including all extracted features of each NH. To 
prepare for predictive modeling, the dataset is treated 
with several preprocessing measures. The data was ran-
domly split into 80-20 train-test subsets. The training set 
is intended to be utilized in model estimation, while the 
test set remained as unseen data for later predictions. 
Based on the training set, redundant facility character-
istics features were removed by evaluating correlation 
coefficients between all possible pairs of features and 
setting a cutoff of 0.6 and guided by domain knowledge. 
For instance, Social services HPRD feature was removed 
as it was highly correlated with Registered nurses HPRD. 
Existence of multicollinearity among undetected feature 
combinations was determined with calculation of Vari-
ance Inflation Factor (VIF) with cutoff set at 5. Accord-
ing to disaster management timelines, NHs need to 
take decision on whether to evacuate or shelter-in-place 
at least 24 to 36 h prior storm occurrence to allow suf-
ficient time for clearing the area or completing prepara-
tions, respectively [35, 36]. The environmental features 
recorded between 24-h and 36-h prior decision were 
highly correlated and repetitive as the storm’s projected 
trajectory changed little. Hence, the environmental fea-
tures extracted from geographic observations were 
recorded 24-h prior evacuation decision of each NH, 
assuming it is the last time NHs can make decision. The 
final set of features included 4 environmental features 
and 32 facility characteristics features in the joint dataset. 
Since NHs sheltering in place substantially outnumbered 
evacuated facilities, up-sampling was applied to training 
dataset to balance proportion of each class and ease esti-
mation of predictive models.

Prediction performance comparison
To investigate how different environmental features 
impact predictive performance individually and alto-
gether, 1 baseline and 5 different proposed modeling 
strategies were adopted as detailed in Table  2. As the 
conventional approaches consider only facility charac-
teristics influencing evacuation decision in literature, 
D1-BASE strategy was set up for model estimation using 
only the facility characteristics dataset and no GIS fea-
tures. Hence D1-BASE was the baseline for comparison 
against proposed strategies. The proposed D2-DIST, 
D3-WSP, D4-SURG, D5-ELEV strategies were set up 
where each dataset contained only one GIS-feature in 
addition to facility characteristics – distance between 
facility and storm trajectory, 50-knot wind speed proba-
bilities at facility location, potential storm surge at facility 
location, and elevation of facility location, respectively. 
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This allowed evaluation of marginal change in predic-
tion performance of the models compared to baseline 
and determination of the best individual GIS-feature. 
D6-FULL contained all 4 GIS-features together in addi-
tion to NH facility characteristics to include all available 
information in modeling.

For each of the modeling strategies, 9 different linear 
and non-linear predictive classification models were 
employed, as listed in Table  3, to establish functional 
relationship between evacuation response and hetero-
geneous facility characteristics and GIS-features. Each 
predictive model differs in mathematical formula-
tion and estimation process. Some involve pre-setting 
hyperparameters of the model configuration to maxi-
mize prediction accuracy suitable for respective data. 
Unknown values of hyperparameters which maximize 
prediction accuracy are found by searching through the 
numerical space by trial-and-error. In this case, optimal 
hyperparameters of each model were determined with 
10-fold CV, as described in “Performance evaluation” 
section, on training dataset to maximize prediction 
performance, i.e., CV-accuracy. For instance, regulari-
zation parameter was optimized for LASSO and Ridge 
logistic regression, number of trees and number of 
features randomly chosen at each split was tuned for 
Random Forest, number of trees for Gradient Boosted 
Trees, cost and kernel parameters for Support Vector 

Machines, number of nearest neighbors in K-nearest 
Neighbor, number of units in hidden layer for Artifi-
cial Neural Network, etc. Features of test dataset was 
fed to each tuned model to predict evacuation response 
and compared with observed responses to evaluate test 
classification accuracy. Furthermore, test sensitivity, 
test specificity and test balanced accuracy are evaluated 
to assess prediction performance of each category of 
evacuation response. Comparison of prediction perfor-
mance obtained over each modeling strategy and pre-
dictive model are visualized in Figs. 7, 8, 9, 10, and 11, 
and numerically reported in Table 4.

Several insights were obtained from the results through 
perspectives of each performance metrics. From CV-
accuracy and test accuracy in Figs. 7 and 8, it is evident 
that incorporation of one or more GIS-features improved 
performance significantly for most models compared 
to baseline strategy. Incorporating all 4 GIS-features 
improved performance for all models the most. Among 
individual features, elevation of facility (D5-ELEV 
strategy) and distance of facility to storm trajectory 
(D2-DIST) interchangeably provided the strongest 
improvement in prediction accuracy. Non-linear models 
in general provided increased CV- and test-accuracies 
for all strategies since they are more capable of capturing 
non-linear relationship between the features and evacua-
tion responses, and their greater model complexity allows 
optimal generalization over the data. In contrast, linear 
models were largely dependent on available information 
in the training dataset and higher margins of accuracy 
improvements were obtained with inclusion of GIS-fea-
tures compared with non-linear models. Sensitivity and 
Specificity in Figs.  9  and 10 show prediction accuracies 
achieved for minority and majority classes respectively. 
Incorporation of GIS-features greatly improved predic-
tive capacity of minority class, since more information 
was available in informing class separation. Balanced 
accuracy provided a better criterion in discerning model 
efficacy for individual class prediction. Especially for a 
few models, such as Random Forest and SVM, incorpo-
rating GIS-features was the only way to obtain any cor-
rect prediction for minority class.

Table 2  Different predictive modeling strategies

Short name Modeling strategy description Strategy type

D1-BASE NH facility characteristics without any GIS features Conventional

D2-DIST NH facility characteristics with 1 GIS feature only: distance between facility and storm trajectory Proposed

D3-WSP NH facility characteristics with 1 GIS feature only:  probable wind speed at facility location Proposed

D4-SURG​ NH facility characteristics with 1 GIS feature only: potential storm surge at facility location Proposed

D5-ELEV NH facility characteristics with 1 GIS feature only: elevation at facility location Proposed

D6-FULL NH facility characteristics with all 4 GIS features Proposed

Table 3  Different machine learning methods considered

Model name Model description Model type

L1-Log Logistic Regression (LR) Linear

L2-Lasso LASSO LR Linear

L3-Ridge Ridge LR Linear

NL1-RF Random Forest Non-linear

NL2-DT Decision Tree Non-linear

NL3-GBT Gradient Boosted Trees Non-linear

NL4-SVM Support Vector Machines Non-linear

NL5-KNN K-Nearest Neighbor Non-linear

NL6-ANN Artificial Neural Network Non-linear
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Comparing all metrics across models and strategies, 
Gradient Boosted Tree (NL3-GBT) with incorporation 
of all 4 GIS-features (D6-FULL) was the best model 
for the dataset in predicting NH evacuation decision 
response. With high CV-accuracy (0.877), it gave the 
highest performance on unseen data with test accu-
racy of 0.992. It could detect both minor and major 
classes with high accuracy (test sensitivity of 1 and test 

specificity of 0.992), showing the best performance at 
test balanced accuracy of 0.966. A close contender was 
LASSO Logistic model (L2-Lasso), which was also the 
best among all linear models. Contrary to expectations 
from a complex model and despite achieving high CV- 
and test accuracies, Random Forest failed at predict-
ing minority class (e.g., Fig.  9) and was overly biased 
towards majority class (e.g., Fig 10) [37]. Decision Tree 

Fig. 7  Prediction performance comparison among different models based on CV accuracy

Fig. 8  Prediction performance comparison among different models based on Test accuracy
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(NL2-DT) performance was often unstable across dif-
ferent strategies since the modeling method of training 
single trees leads to high variance in predictions.

Up-sampling played an important role in improving 
prediction accuracy, and it is illustrated by a further 
case study as follows. The previously best performing 
model NL3-GBT was applied to the dataset with all 
GIS-features (D6-FULL) before and after up-sampling. 

As observed in Fig.  12 and Table  5, the imbalanced 
dataset results in poor accuracies and balancing the 
classes enhanced performance across all metrics. Par-
ticularly as seen in test sensitivity, up-sampling drasti-
cally improved the model’s ability to detect minority 
class. The model became more nuanced towards class 
distinctions in the feature space resulting in higher pre-
diction accuracy.

Fig. 9  Prediction performance comparison among different models based on Test sensitivity

Fig. 10  Prediction performance comparison among different models based on Test specificity



Page 15 of 20Sakib et al. Health Information Science and Systems  (2022) 10:28

Investigating the impact of different influencing factors 
on evacuation response
As described in the previous section, in general, nonlin-
ear predictive model exhibits superior prediction perfor-
mance than linear predictive model due to the nonlinear 
nature between evacuation response output and different 
input variables. However, this does not imply that linear 
model, such as LR, has no usefulness. As compared to 
nonlinear predictive model, linear predictive model has 
more meaningful model interpretation, which will help 
enrich the understanding and evidence base of evacua-
tion process for healthcare professionals. Further, LR is 
considered because its model interpretation (e.g., odds 
ratio) and data uncertainty quantification (e.g., standard 
errors, p values) are more easily accepted concepts and 
terminologies by the public health experts. Table 6 sum-
marizes the model estimation results of LR by including 
all GIS-features. For significant features, both the signs 
and magnitude of their estimated coefficients, e.g., β̂ , 
have meaningful interpretations. Positive (or negative) 
sign of a feature indicates that the increased value of that 
feature will increase (or decrease) the probability of a NH 
to be evacuated. Further, the actual influence of a feature 
can be quantified by the adjusted odds ratio value, which 
is a ratio of the evacuation probability over the shelter-
in-place probability of a NH by holding other features 
constant.

Based on the typical choice of the significance level 
of 0.05, significant features are available from differ-
ent aspects, such as NH organizational structure, envi-
ronmental conditions, caregivers working in a NH and 
dwelling NH residents. It confirms the need of fus-
ing multi-source data to investigate and identify the 

multi-factorial determinants for NH evacuation. From 
organizational structure perspective, the type of owner-
ship is a significant factor and a not-for-profit NH is more 
likely to evacuate (e.g., AOR = 7.76) than a for-profit NH 
by holding other features the same. It could be explained 
due to several following reasons. First, compared to not-
for-profit NHs, for-profit NHs may have a less well-pre-
pared evacuation plan, making evacuation on their own 
challenging. Existing studies indicated that for-profit 
NHs tend to have a less effective and adequate evacua-
tion plan with higher chance of being cited for evacua-
tion plan deficiencies [38]. NH evacuation is a complex 
process involving moving frail residents to the designated 
receiving facilities with adequate medical equipment, 
food, water, medication, medical record and caregiv-
ers. A thoughtful and adequate evacuation plan includes 
detailed evacuation procedures, transportation logistics 
and evacuation provisions, and will be an essential basis 
for ensuring successful NH evacuation. Further, for-profit 
NHs may also have other barriers [7, 24], such as limited 
logistics and financial support from public agencies and/
or a lack of economic incentives for moving due to costly 
transportation.

From an environmental condition perspective, three 
GIS features, namely, distance from a NH to the pro-
jected storm path, the neighboring wind speed of a NH 
and NH elevation, play significant roles in influencing 
evacuation decisions. Specifically, the farther distance a 
NH to the projected storm trajectory, the less likelihood 
the NH will be evacuated due to a lower chance of expe-
riencing a hurricane threat. In particular, an unit increase 
(in Km) of distance from a NH’s location to the pro-
jected storm trajectory will decrease odds ratio between 

Fig. 11  Prediction performance comparison among different models based on Test balanced accuracy
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evacuation and shelter-in-place by a factor of 0.868 by 
holding other features fixed. Similarly, the greater prob-
ability of anticipated wind speed exceeding 50 knots 
within a 120-h time period at a NH location, the less 
likely that NH will evacuate with an AOR of 0.687. The 
severe weather conditions may present significant dis-
ruption in transfer efforts and evacuation safety since 
50 knots winds and gusts or above may break branches, 
uproot trees, or tip or veer high profile vehicles off course 
[19, 39]. In addition, a NH situated on higher ground will 
be less likely to evacuate. For an unit elevation increase 

(in feet), the odds ratio between evacuation and shelter-
in-place will be decreased by a factor of 0.868. This is also 
intuitive and self-explanatory since NH at higher eleva-
tion will be less likely experiencing potential flooding 
from coastal surge or inland inundation.

From NH staffing and residents’ characteristics per-
spective, two features, namely the staffing level of 
licensed practical nurses and the percentage of NH resi-
dents who received antianxiety medication, play signifi-
cant roles in whether a NH will be evacuated. Specifically, 
a NH with a higher staffing level of LPNs (quantified in 

Table 4  Numerical summary of prediction performance comparison results

Metric\Strategy Model

L1-Log L2-Lasso L3-Ridge NL1-RF NL2-DT NL3-GBT NL4-SVM NL5-KNN NL6-ANN

CV accuracy

 D1-BASE 0.628 0.601 0.61 1 0.678 0.91 0.931 0.871 0.917

 D2-DIST 0.711 0.702 0.686 1 0.741 0.922 0.926 0.896 0.916

 D3-WSP 0.625 0.613 0.617 0.999 0.739 0.943 0.943 0.883 0.898

 D4-SURG​ 0.633 0.606 0.618 1 0.639 0.908 0.925 0.873 0.898

 D5-ELEV 0.738 0.729 0.736 0.999 0.833 0.932 0.944 0.883 0.939

 D6-FULL 0.936 0.937 0.901 0.998 0.877 0.991 0.993 0.968 0.974

Test accuracy

 D1-BASE 0.605 0.628 0.651 0.915 0.612 0.814 0.853 0.736 0.736

 D2-DIST 0.69 0.667 0.705 0.915 0.504 0.806 0.845 0.791 0.822

 D3-WSP 0.636 0.636 0.682 0.915 0.791 0.86 0.86 0.721 0.791

 D4-SURG​ 0.612 0.628 0.651 0.915 0.612 0.806 0.845 0.744 0.744

 D5-ELEV 0.713 0.643 0.682 0.915 0.721 0.86 0.837 0.798 0.775

 D6-FULL 0.907 0.961 0.891 0.946 0.907 0.992 0.938 0.946 0.922

Test sensitivity

 D1-BASE 0.636 0.818 0.636 0 0.364 0.182 0 0.364 0.182

 D2-DIST 0.818 0.909 0.818 0 0.909 0.455 0.091 0.455 0.455

 D3-WSP 0.636 0.545 0.636 0 0.818 0.727 0 0.364 0.364

 D4-SURG​ 0.636 0.636 0.636 0 0.364 0.273 0 0.364 0.091

 D5-ELEV 0.727 0.818 0.818 0 0.727 0.364 0 0.455 0.455

 D6-FULL 0.818 1 0.909 0.364 0.636 1 0.364 0.909 0.545

Test specificity

 D1-BASE 0.602 0.61 0.653 1 0.636 0.873 0.932 0.771 0.788

 D2-DIST 0.678 0.644 0.695 1 0.466 0.839 0.915 0.822 0.856

 D3-WSP 0.636 0.644 0.686 1 0.788 0.873 0.941 0.754 0.831

 D4-SURG​ 0.61 0.627 0.653 1 0.636 0.856 0.924 0.78 0.805

 D5-ELEV 0.712 0.627 0.669 1 0.72 0.907 0.915 0.831 0.805

 D6-FULL 0.915 0.958 0.89 1 0.932 0.992 0.992 0.949 0.958

Balanced accuracy

 D1-BASE 0.619 0.714 0.645 0.5 0.5 0.528 0.466 0.568 0.485

 D2-DIST 0.748 0.777 0.757 0.5 0.688 0.647 0.503 0.639 0.656

 D3-WSP 0.636 0.595 0.661 0.5 0.803 0.8 0.471 0.559 0.598

 D4-SURG​ 0.623 0.632 0.645 0.5 0.5 0.565 0.462 0.572 0.448

 D5-ELEV 0.72 0.723 0.744 0.5 0.724 0.636 0.458 0.643 0.63

 D6-FULL 0.867 0.979 0.9 0.682 0.784 0.996 0.678 0.929 0.752
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HPRD) indicates a low likelihood of evacuation, which 
can be explained from two aspects. First, LPNs are nurs-
ing staff who provide basic routine medical care, such as 
monitoring and recording vital signs (e.g., blood pres-
sure, heart rate, respiration, etc.) of patients, giving 
injections, changing bandages and administering medica-
tions. Adequate LPNs implies that the NH has adequate 
workforce to self-sufficiently take care of NH residents 
during hurricane and sheltering-in-place requires such 
self-sufficiency [23]. Second, many for-profit NHs tend 
to consider LPN as a substitute of RN for performing 
advanced nursing activities since LPN is less costly. Thus, 
the larger number of LPNs is often positively correlated 
with the for-profit status of a NH, which tends to shelter 
in place due to the economic incentive of avoiding high 
evacuation costs. In addition, a NH with a higher per-
centage of residents who receive antianxiety medication 
is less likely to evacuate. It is because that NH residents 
with pre-existing mental disorders, as indicated by the 
medication provided, are more vulnerable to evacuation. 
The changing environment in the new hosting facility, 
the discontinuity of care and moving itself due to evacu-
ation will exacerbate their mental health conditions, such 

as anxiety, depression and post-traumatic stress disor-
ders [14]. Besides, easing stress, providing reassurance 
and persuasion to manage mental disorder symptoms of 
these residents during an evacuation is also challenging 
for caregivers with limited time but overwhelming work-
load [40, 41].

Conclusion
In this paper, a GIS-integrated predictive analytics frame-
work is proposed for predicting evacuation response of 
NHs in hurricane disaster scenario. Data from multi-
ple sources, such as environmental conditions, resident 
census in the facility, and facility staffing and organi-
zational characteristics during the time of disaster are 
considered and integrated for improving the prediction 
performance. Specifically, several important spatial and 
temporal heterogeneous environmental GIS features are 
extracted for NHs at different spatial locations, e.g., dis-
tance to storm trajectory, projected wind speed, poten-
tial storm surge, and elevation of the facility. A number 
of linear and nonlinear machine learning models are 
applied and optimized for predicting the evacuation 
response and compared based on different prediction 

Fig. 12  The influence of up-sampling on prediction

Table 5  Numerical summary of the influence of up-sampling on prediction performance of model NL3-GBT under 
D6-FULL strategy

Type Metric

CV accuracy Test  accuracy Test  sensitivity Test  specificity Balanced  
accuracy

Imbalanced 0.97 0.946 0.455 0.992 0.724

Up-sampled 0.991 0.992 1 0.992 0.996
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performance measures identify the final best predictive 
model. A case study on Hurricane Irma impacting NHs 
in FL is considered to demonstrate effectiveness of the 
framework, comparing prediction performance among 
models with and without incorporating GIS features. 

Furthermore, the influence of the GIS-features are quan-
tified, together with several resident and facility charac-
teristics identified as influential factors for evacuation 
response. The proposed framework will allow NH admin-
istrators to understand the multifactorial complex nature 

Table 6  LR model interpretation

* p<0.05; ** p<0.01; *** p<0.001

95% confidence Intervals for each parameter estimate are calculated by β̂j ± 1.96× SE(β̂) , where is the respective estimated covariate coefficient and SE is the Std. 
Error

Feature β̂ Odds ratio SE ( β̂) p value

Organizational structure

 Not for-profit facility (Y/N) 2.049 7.76 0.949 0.031*

 Government facility (Y/N) 1.908 6.74 2.507 0.447

 Chain-facility (Y/N) 0.481 1.618 0.781 0.538

 Part of a CCRC (Y/N) 0.391 1.478 1.057 0.712

 Occupancy rate (% beds) − 0.008 0.992 0.038 0.821

 ADRD special care unit (Y/N) 2.142 8.516 1.252 0.087

 Non-ADRD special care unit (Y/N) − 2.015 0.133 1.857 0.278

 Has organized resident group (Y/N) − 2.597 0.074 1.745 0.137

 Has organized family members group (Y/N) − 0.904 0.405 0.707 0.201

 Medicare (% residents) − 0.01 0.99 0.013 0.419

 Medicaid (% residents) 0.062 1.064 0.038 0.109

Environmental GIS characteristics

 Distance from projected trajectory 24 h prior decision (km) − 0.142 0.868 0.027 1.17E−07***

 50 knots wind speed probability 24 h prior (%) − 0.375 0.687 0.07 6.94E−08***

 Potential storm surge 24 h prior (feet) − 0.492 0.611 0.35 0.16

 Elevation of facility (feet) − 0.142 0.868 0.032 8.65E−06***

Staffing characteristics

 Nurse with admin duties (HPRD) 0.838 2.312 2.424 0.729

 Registered nurses (HPRD) − 2.58 0.076 1.811 0.154

 Licensed practical nurses (HPRD) − 3.358 0.035 1.504 0.026*

 Certified nursing assistants (HPRD) 1.119 3.062 0.964 0.246

 Occupational therapy services (HPRD) − 0.197 0.821 3.782 0.958

 Activities staff (HPRD) 2.501 12.2 2.903 0.389

 Housekeeping staff (HPRD) 0.592 1.808 1.376 0.667

 Medical director only (Y/N) − 0.363 0.696 1.097 0.741

 Full medical team (Y/N) − 0.299 0.742 0.867 0.73

 No medical team (Y/N) 2.49 12.06 2.018 0.217

Resident characteristics (% residents)

 Acuindex (patient acuity) 0.579 1.784 0.34 0.088

 Behavioral healthcare needs 0.02 1.02 0.025 0.431

 Dementia or Alzheimer’s − 0.041 0.96 0.027 0.135

 Depression − 0.004 0.996 0.018 0.835

 Intellectual disability 0.064 1.066 0.123 0.605

 Physical restraint use 0.131 1.14 0.358 0.715

 Serious mental illness 0.016 1.016 0.032 0.615

 Antipsychotics medication − 0.033 0.968 0.046 0.478

 Antianxiety medication − 0.106 0.899 0.051 0.039*

 Antidepressants medication 0.034 1.035 0.031 0.277

 Sedative/hypnotics medication 0.118 1.125 0.075 0.118



Page 19 of 20Sakib et al. Health Information Science and Systems  (2022) 10:28

of evacuation response and the predictive capability with 
improved accuracy will assist emergency management 
agencies in planning proactive resource management 
strategies for evacuation demand surge during disasters, 
such as hurricanes. Since the major focus in this paper is 
to demonstrate the potentials of integrating GIS data and 
applying machine learning to improve NH evacuation 
prediction, LR is considered for model interpretation. As 
future work, we will consider more in-depth and state-of-
the-art interpretive machine learning methods.
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