Sakib et al.
Health Information Science and Systems (2022) 10:28
https://doi.org/10.1007/513755-022-00190-y

A GIS enhanced data analytics approach

Health Information Science
and Systems

®

Check for
updates

for predicting nursing home hurricane

evacuation response

Nazmus Sakib', Kathryn Hyer?, Debra Dobbs?, Lindsay Peterson? Dylan J. Jester**, Nan Kong® and

Mingyang Li""

Abstract

Nursing homes (NHs) are responsible for caring for frail, older adults, who are highly vulnerable to natural disasters,
such as hurricanes. Due to the influence of highly uncertain environmental conditions and varied NH character-

istics (e.g., geo-location, staffing, residents’health conditions), the NH evacuation response, namely evacuating or
sheltering-in-place, is highly uncertain. Accurate prediction of NH evacuation response is important for emergency
management agencies to accurately anticipate the NH evacuation demand surge with healthcare resources proac-
tively planned. Existing hurricane evacuation research mainly focuses on the general population. For NH evacuation,
existing studies mainly focus on conceptual studies and/or qualitative analysis using a single source of data, such as
surveys or resident health data. There is a lack of research to develop analytics-based method by fusing rich environ-
mental data with NH data to improve the prediction accuracy. In this paper, we propose a Geographic Information
System (GIS) data enhanced predictive analytics approach for forecasting NH evacuation response by fusing multi-
source data related to storm conditions, geographical information, NH organizational characteristics as well as staffing
and residents characteristics of each NH. In particular, multiple GIS features, such as distance to storm trajectory,
projected wind speed, potential storm surge and NH elevation, are extracted from rich GIS information and incorpo-
rated to improve the prediction performance. A real-world case study of NH evacuation during Hurricane Irma in 2017
is examined to demonstrate superior prediction performance of the proposed work over a large number of predictive

analytics methods without GIS information.
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Introduction

Skilled nursing facilities, or nursing homes (NHs), are
responsible for caring for frail, older adults by provid-
ing 24/7 personal and medical care, and daily living
assistance. Most older adults in the NHs suffer from
significant functional (e.g., physical, cognitive, social)
limitations, aging-related disabilities, vision/hearing
impairments and multiple chronic disease, which make
them highly vulnerable to natural disasters, such as hurri-
canes [1-3]. Their impaired mobility, diminished sensory
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awareness, and chronic health conditions make them less
likely to respond and adapt appropriately during hurri-
canes, leaving their lives clearly at risk to the aftermath
of hurricanes, such as physical damage of NH infrastruc-
tures, storm surge and massive flooding, power outage,
and disruption of medical supplies. Existing studies show
that both the mortality and morbidity of NH residents
significantly increase during hurricanes [4, 5].

Due to devastating threats and negative consequences
of hurricanes on vulnerable NH residents, many NHs
have to evacuate and move their frail residents away
from hazard regions to safer places. However, whether
to evacuate a NH is one of the most complex and diffi-
cult decisions encountered by NH administrators. The
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prospects of not evacuating in response to hurricanes
can be tragic. For instance, 34 residents were presumed
to have drowned at St. Rita’s NH in Chalmette, LA, after
its facility owners refused to evacuate before landfall of
Hurricane Katrina in 2005 [6]. In Hurricane Irma in 2017,
14 residents died from heat-related illness after power
losses post-storm at Hollywood Hills NH in Hollywood,
FL. On the other hand, evidence has shown that evacua-
tion has an adverse effect on the health and wellbeing of
many frail and impaired residents. The disruption associ-
ated with evacuation, changes of environment and care
routines, and the trauma of moving itself may result in
physical injuries, functional declines, and depression,
which further complicates NH evacuation [7]. Successful
modeling and prediction of NH evacuation response (i.e.,
evacuating or sheltering in place) of NH administrators
is of great importance. It will enrich the understanding
of the multi-factorial complexity of NH evacuation deci-
sions by identifying and quantifying the effects of differ-
ent internal and external factors with an evidence base
that is informative and critical to disaster preparedness
and response. It will also help local emergency authori-
ties to better plan and manage healthcare resources to
meet with the NH evacuation demand surge in a more
proactive manner.

In the existing literature of both qualitative stud-
ies and quantitative studies in investigating evacuation
responses, many studies mainly focused on the evacua-
tion choices of community-dwelling households from the
general population [8—11]. Baker [8] studied a number
of hurricanes in the Atlantic states from Texas through
Massachusetts occurring between 1961 and 1989, where
sample surveys from the general population were used
to identify characteristics, such as hazardousness of the
region, public service, residence type, perceived risk,
and general storm severity, influencing aggregate-level
evacuation rates. Wolshon et al. [9] combined results
from a survey on state evacuation plans performed by
Louisiana State University and other published studies
at the time. The work summarized evacuation policies
and procedures implemented by state authorities, focus-
ing on the transportation service utilization and response
perspective for the general population. Whitehead et al.
[10] examined prospective hurricane evacuation behav-
ior of North Carolina coastal residents following occur-
rence of Hurricane Bonnie through telephone surveys,
and concluded that storm severity, reception of evacua-
tion order, possibility of flooding, housing structure, and
socio-demographic disparity to important determinants
of evacuation. Hasan et al. [11] considered post-storm
damage assessment data of households affected by Hur-
ricane Ivan and characterized various factors affecting
evacuation behavior.
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Many of these studies considered a single source
of data in the context of non-disaster conditions by
extracting aggregated individual characteristics with-
out explicitly considering the rich information form
actual storms. Unlike the above studies which focused
on studying healthy individuals from the general
population, we will focus on studying the evacuation
response of NH populations at the organization level
and each organization consisting of frail older adults
with complex health conditions and functional limi-
tations. There is a need to incorporate both internal
factors that could comprehensively describe the dif-
ferent aspects (e.g., staffing, dwelling residents) of an
organization and further integrate them with the highly
heterogeneous geo-spatial characteristics of NHs in
the context of actual disaster conditions. In the exist-
ing long-term care literature of NH evacuation, many
focused on conceptual and qualitative studies [12—14]
based on descriptive statistics or narrative summaries,
and they often utilized a single source of data, such as
retrospective surveys and telephone questionnaire,
without taking into account the spatial heterogeneity of
environmental characteristics of NHs and quantifying
the influence of environmental conditions on evacua-
tion response. Some of existing qualitative studies con-
sider linear statistical models [15] in quantifying the
influence of different input factors for prediction per-
formance output of evacuating or sheltering-in-place.
However, they only consider limited environmental
characteristics at the aggregate level. Further, the lin-
ear models developed in these quantitative studies may
not be appropriate in capturing the potential nonlinear
relationship between various inputs and the evacuation
response and the prediction performance accuracy will
be greatly undermined.

To fill the aforementioned research gap, in this paper
we propose a GIS-integrated predictive analytics frame-
work for evacuation response prediction of NHs by
integrating multi-source data from NH residents, NH
facilities and environmental conditions in the context of
a real disaster scenario. In particular, we extract multiple
GIS features to comprehensively characterize the spa-
tially heterogeneous environmental conditions (e.g., both
geographical condition and storm conditions) of NHs at
different spatial locations in the state of Florida. With
the incorporation and integration of such rich GIS infor-
mation with NH resident and staffing characteristics,
we considered different linear and nonlinear machine
learning methods to achieve the improved evacuation
response prediction of NHs in real disaster scenarios.
The influence of environmental conditions on NHs evac-
uation are further quantified explicitly in the presence of
varied characteristics of individual NH facility.
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The remaining of the paper is organized as follows. In
the next section, we will introduce the proposed method-
ology of extracting various GIS features and NH features
as well as the development of different machine learning
models to integrate the extracted features. Then, we will
give a concrete real-world example using the recent dis-
aster scenario of Hurricane Irma to compare the predic-
tion performance of different machine learning models
and emphasize the prediction performance benefits of
incorporating multiple GIS features extracted. The model
interpretation results based on linear classification model
will be also discussed. Conclusions are provided in the
end.

Methodology

To develop a predictive analytics method for investigat-
ing the multifactorial nature of NH evacuation response
and further predicting the evacuation response of NH
facilities, the features extracted (to be explained below)
are based on the following conceptual model described in
Fig. 1.

Extracting environmental characteristics

Due to the devastating threats and negative conse-
quences of hurricanes on vulnerable NH residents, such
as drowning, shutdown of life-sustaining devices, and
shortage of medical supplies, many NHs have to evacuate
and move their frail residents away from hazard regions
to safer places. The severity of actual damage on NHs in
different storm-affected regions may vary significantly.
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Thus, the anticipated geographical conditions in the
neighboring area of each NH before a storm’s arrival tend
to become important external factors (beyond the facil-
ity’s control) that may influence NH administrators’ evac-
uation decisions. In this section, we extracted a series
of environmental features to represent various environ-
mental characteristics (e.g., storm characteristics, geo-
graphic characteristics of each NH) that may affect NH
evacuation decision. They will be incorporated as predic-
tors while developing different predictive models. Before
extracting environmental features, we first obtained the
actual evacuation responses (i.e., evacuation or shelter-
in-place) of all NHs in the state of Florida during Hur-
ricane Irma from the Florida Agency for Health Care
Administration (AHCA) [16]. AHCA is the statutory
organization responsible for health and policy planning
in Florida. The agency also reports emergency response
information of long-term care providers during extreme
event scenarios, such as hurricanes. Figure 2 visualizes
geolocation of all NHs in operation in the state of Florida
and individual evacuation status during Hurricane Irma.
Such response data will further be utilized as labeled
outputs in “Classification models” and “Performance
evaluation” sections for predictive models training and
prediction performance evaluation. Furthermore, we also
extracted the geolocation of each NH to facilitate the cal-
culation of NH-specific environmental features. The lati-
tudes and longitudes of each NH location were extracted
using ArcGIS Online World Geocoding Service [17].

Resident Facility
characteristics characteristics
= Acuity = Staffing level and
= Functional characteristics
limitations = Organization and
= Disease diagnoses management
= Special equipment characteristics
requirements = Physical structure of
= Special mobility facility
requirements = Availability of host
facility and
transportation

Storm
characteristics

Geo-location
characteristics

Proximity to
projected storm
trajectory

Facility location type
Evacuation warning
zone

Elevation of building
structures

= Time, area, and
intensity of storm

= Probable wind speed
at NH location

= Projected storm surge
at NH location

Internal factors

A

y

External factors

Evacuation response: Evacuate vs. Shelter-in-place

Fig. 1 A conceptual model for evacuation decision-making criteria for NHs during hurricanes
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Fig. 2 Extracted geolocations and evacuation status of NHs in FL during hurricane Irma

We began with extracting the storm characteris-
tics affecting NH evacuation decisions. The storm GIS
data was extracted from the National Hurricane Center
(NHC) of the National Oceanic and Atmospheric Admin-
istration (NOAA) [18]. During a hurricane event, NHC
monitors and records rich spatial-temporal information
of a storm every 3—6 h, including current storm location,
projected trajectory, spatial probability distribution of
wind speeds, and potential storm surge areas. It allows us
to extract and calculate different NH-specific storm fea-
tures and investigate their impacts on NH evacuation. As
a storm approaches, the closeness between the projected
storm path and the location of a NH may reflect the level
of storm threat and can be potentially relevant to evacua-
tion decision of a NH. We extracted the projected storm
path, which represented the forecast trajectory of the
center locations of a storm. To quantify the proximity of a
NH to the projected storm path, we calculated the short-
est Euclidean distance from each NH geolocation point
to the projected storm path, as shown in Fig. 3.

The building damage and power outage resulting from
high and sustained wind speeds may greatly affect the
NH administrators’ evacuation decisions. To investi-
gate the impact of the projected wind speed on the NH
evacuation decision, we extracted the spatial probability
distribution map of wind speeds over a regularly spaced
(5 km) grid of points, as shown in Fig. 4. The projected
wind speed probability at a specific 5km-by-5km grid
area represented the cumulative probability of sustained
(1-minute) surface (10-meter altitude) wind speeds equal

to or exceeding 50-knot (i.e., 57.5 mph) within a 120-h
time period. According to the Beaufort Wind Scale [19],
50-knot winds are classified officially as storm-force
winds which can cause significant structural damage.
As shown in Fig. 4, NHs located closer to the projected
storm path tend to have a higher probability of experi-
encing higher winds, and vice versa.

As the adage “hide from the wind, run from the water”
suggests, another important aspect which may consider-
ably affect the vulnerability and safety of a NH location
during hurricane is the projected flood risk. We consid-
ered the potential storm surge and elevation at each NH
location as external and inherent features respectively
to characterize the potential flood risk. Figure 5 shows
the spatial map of potential storm surge associated with
the storm, which describes the risk of potential coastal
flooding due to a storm. Both the predicted areas (where
inundation from storm surge could occur) and the pre-
dicted heights (that water could reach in those areas)
were numerically determined by the Sea, Lake, and Over-
land Surges from Hurricanes (SLOSH) model developed
by National Weather Service [20]. The tidal mask region
refers to the area usually submerged during daily or sea-
sonal high tides. As shown in Fig. 5, several NHs located
in coastal regions at high potential storm surge evacuated
before hurricane landfall. Apart from examining the food
risk resulting from potential storm surge, we further con-
sidered the inherent geographic characteristics of each
NH facility, namely, the elevation. Inland NHs in low-
lying regions may also potentially experience flooding
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due to the rain water deposition and/or the rise of water
levels in nearby ponds, lakes, rivers, or other water reser-
voirs. To extract the elevation of each NH, we considered
the Florida Digital Elevation Model (DEM) [21] devel-
oped by the University of Florida GeoPlan Center. Fig-
ure 6 shows the spatial map of elevation values recorded
on a 5m-by-5m statewide grid. The elevation value from a

grid area which is the closest to a NH’s geolocation point
has been selected as the approximate elevation value for
that NH.

Extracting NH characteristics
The NH administrator’s decision of evacuating or shel-
tering-in-place may not only be affected by external
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factors of environmental characteristics as described
above. It may also be affected by various internal fac-
tors related to each NH facility. In this section, we will
further investigate various internal factors’ influence by
comprehensively extracting various aspects of NH char-
acteristics, such as organizational characteristics, staff-
ing characteristics and resident characteristics of each

NH. To comprehensively evaluate the NH characteristics
from different aspects, we consider the most updated
Certification and Survey Provider Enhanced Reports
(CASPER) data of each NH closest to the storm season.
CASPER data, originally known as Online Survey Certifi-
cation And Reporting (OSCAR) data, is the annual regu-
latory inspection data collected by state survey agencies
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and maintained by the Centers for Medicare and Med-
icaid Services (CMS) [22]. It contains rich facility-level
NH data related to the overall organization, such as size
and ownership, as well as the aggregate characteristics of
caregivers and residents within each NH. Based on the
domain knowledge of expertise as well as national guide-
lines for NH evacuation [23] we extract the NH charac-
teristics based on the CAPSER data from three aspects,
namely, (i) organizational properties, (ii) aggregated staff-
ing characteristics, and (iii) aggregated resident charac-
teristics, which will be elaborated with details as follows.
From the organizational perspective, existing studies
indicate that the structural characteristics of an organi-
zation, such as ownership type, may have major implica-
tions in the extent of challenges the NH administrators
would face in making decisions during the storm. For
instance, government-owned facilities may have greater
access to financial and/or transportation resources/sup-
port from government agencies than for-profit facilities,
which would lower for-profit facilities’ logistics capabili-
ties and increase financial concerns in initializing evacu-
ation [24, 25]. Further, NHs of different sizes may have
different likelihoods of exhausting their own organiza-
tional resources and may decide to evacuate due to their
self-insufficiency. For a NH within a larger NH chain, it
may be easier to identify and prepare the hosting facil-
ity within the chain to receive the evacuees, making the
evacuation more convenient. To comprehensively quan-
tify various organizational characteristics of each NH, we
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to weather out the storm or evacuate safely. Second, NH
caregivers, such as nurses and aides, must be trained or
have the right skills mix to tackle unique challenges dur-
ing extreme hazard scenarios, such as hurricanes [12]. If
the facility is sheltering-in-place, adequate staff is cru-
cial in avoiding increased morbidity and mortality of
residents, as the staff would provide formal care, emo-
tional support to residents, and also complete prepara-
tory tasks such as strengthening building structures and
storing supplies. For evacuation, the staff needs to coor-
dinate transfer efforts, carry residents onto vehicles and
transport them, and help them relocate into new host-
ing facility. Many NHs may face the challenges of staffing
shortage and caregiver absenteeism during a hurricane
because many staff members may evacuate by themselves
or have concerns for their own family members. The NH
may have less self-sufficiency accordingly to shelter-in-
place successfully with adequate staffing. To comprehen-
sively investigate the influence of staffing characteristics
affecting evacuation response, staffing levels of 3 differ-
ent types of direct caregivers, such as registered nurses,
licensed practical nurses, certified nursing assistants, and
6 types of non-direct caregivers, such as administrative
nurse, occupational therapy services, physical therapy
services, activities staff, social services, and housekeep-
ing staff, are extracted and calculated based on CASPER
data. Hours per resident per day (HPRD) [26] is consid-
ered as the aggregate measure to characterize the staffing
level of each type of caregiver. Specifically, for NH i, the
HPRD of the kth type of caregiver can be calculated as

Total FTE of caregiver type k x 70 hours bi-weekly

(1)

HPRDj; =

14 days x Number of residents in NH i

extract and calculate various organization level features
based on CASPER data of each NH, such as the type of
ownership, the overall size and the average occupancy
rate. To quantify detailed organizational structure, we
also introduce the binary indicators, “Any special care
unit’;, to indicate whether the facility contains a special
care unit (e.g., special units for caring residents with
Alzheimer’s Disease and Related Disorders) and various
binary indicators under “Medical team structure’; to indi-
cate whether the medical team contains senior leadership
and advanced medical personnel in the facility. The set
of organizational features extracted are summarized in
Table 1.

NH staffing also plays an important role in disaster pre-
paredness and response (e.g., evacuating or sheltering-in-
place) against hurricane from the following two aspects.
First, adequate staffing is required in order to ensure the
care continuity and the success of disaster preparedness

For each type of caregiver, part-time and temporary
employees are converted into full-time equivalent (FTE)
to facilitate the calculation of total FTE. For physical
therapists, both the therapists and therapist assistants are
taken into account. The extracted staffing characteristics
features of each NH are summarized in Table 1.

In addition to the organizational and staffing character-
istics, characteristics of the vulnerable residents in a NH
are also important aspects that NH administrators need
to take into account and thus may potentially influence
the NH evacuation decision. Many NH residents are non-
ambulatory and bed-ridden, and evacuating them safely
is more challenging because it requires more efforts from
nursing staff as well as special transportation means,
such as wheelchair conversion vans. For those residents
with morbid obesity, specific equipment, such as lift and
transfer equipment, need to be prepared. Many of NH
residents may have complex medical conditions, such as
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Table 1 Descriptive statistics summary of the integrated NH evacuation data

Statistic/Feature All facilities* Evacuated facilities Sheltered facilities
N =653 N =59 (9.04%) N =594 (90.96%)
Organizational structure (Y/N)
For profit facility 72% 53% 74%
Not for-profit facility 25% 44% 24%
Government facility 2% 3% 2%
Chain-facility 61% 58% 61%
Part of a CCRC 9% 20% 8%
Size (# beds) 1233 (48.6) 118.8 (48.47) 123.74 (48.63)
Resident count 107.47 (44.33) 99.54 (44.53) 108.26 (44.27)
Occupancy rate 87.09% (11.36) 83.96% (15.84) 87.4% (10.79)
ADRD special care unit 13% 14% 13%
Non-ADRD special care unit 5% 3% 5%
Any special care unit 17% 17% 17%
Has organized resident group 98% 97% 98%
Has organized family members group (feet) (%) 42% 37% 42%
Payer mix (% residents)
Medicare 54.98% (22.2) 48.71% (26.39) 55.6% (21.66)
Medicaid 20.28% (14.37) 19.46% (13.83) 20.36% (14.43)
Private pay and other 24.75% (17.98) 31.83% (24.55) 24.04% (17.05)
Environmental GIS features
Distance from projected trajectory 24 h prior decision (Km) 112.56 (78.04) 66.11 (55.48) 11717 (78.48)
50 knots wind speed probability 24 h prior (%) 61.14(28.37) 55.17 (15.37) 61.74 (29.29)
Potential storm surge 24 h prior (feet) (%) 0.24 (1.21) 0.3(1.17) 0.23(1.21)
Elevation of facility (feet) 45.1(47.71) 12.36 (13.05) 4835 (48.67)
Staffing characteristics (HPRD)
Registered nurses 0.49 (0.58) 0.54 (0.84) 0.49 (0.55)
Licensed practical nurses 0.95(0.37) 1.02 (0.71) 0.95(0.32)
Certified nursing assistants 2.82(0.77) 299 (1.19) 2.81(0.72)
Direct care nurse staffing** 4.27(1.37) 4.56 (2.63) 424(1.17)
Administrative Nurse 0.28 (0.22) 0.31(0.39) 0.27 (0.19)
Occupational therapy services 0.26 (0.16) 0.24(0.12) 0.27 (0.16)
Physical therapy services 1(0.2) 0.28 (0.19) 31(0.21)
Activities staff 0.21(0.16) 0.26 (0.37) 0.21(0.13)
Social services 0.11(0.13) 0.15(0.36) 0.11 (0.08)
Housekeeping staff 0.58 (0.57) 0.79 (1.64) 0.56 (0.3)
Medical team structure (Y/N)
Medical director only 18% 19% 18%
Physician extender only 0.5% 0% 1%
Full medical team 45% 39% 45%
No medical team 4% 5% 4%
Resident characteristics (% residents)
Acuindex (patient acuity) 1094 (1.2) 11.01 (1.34) 1093 (1.18)
Behavioral healthcare needs 18.13% (17.31) 18.69% (15.1) 18.07% (17.53)
Dementia or Alzheimer’s 42.98% (17.26) 4391% (17.17) 42.88% (17.28)
Depression 33.73% (21.1) 31.77% (21.31) 33.93% (21.08)
Intellectual disability 1.19% (3.6) 1.03% (1.56) 1.21% (3.74)
Physical restraint use 0.63% (1.74) 0.23% (0.62) 0.67% (1.81)
Serious mental lliness 29.6% (17.46) 27.96% (14.31) 29.77% (17.75)
Medication utilization (% residents)
Antipsychotics 18.11% (11.31) 16.93% (9.59) 18.23% (11.46)
Antianxiety 2531% (10.71) 24.64% (9.69) 2537% (10.81)
Antidepressants 48.53% (13. OS) 47.48% (12.8) 48.63% (13.08)
Sedative/hypnotics 7.36% (5.96) 7.05% (5.07) 7.39% (6.04)
* Mean (SD)

**Sum of RN, LPN, CNA
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renal and respiratory diseases, and they may either need
special care, such as dialysis, or be highly oxygen depend-
ent. If the NH is sheltering-in-place, power outages and
inadequate medical supplies (due to road disruption) may
be devastating to their residents. Existing studies also
show that for those residents with mental conditions,
such as, dementia or anxiety, NH evacuation and relo-
cation availability may have detrimental effects on their
health outcomes and induce post-traumatic stress [13].
To comprehensively investigate the influence of resident
characteristics from different aspects, several aggregate
features in a NH facility, such as the percentage of resi-
dents having aforementioned conditions, the percentage
of residents receiving different types of medications (e.g.,
antipsychotics, antianxiety, antidepressants, sedative/
hypnotics), the percentage of residents who require phys-
ical restraints and the percentage of residents covered
under Medicare, Medicaid, or paying by themselves, are
extracted and calculated from CASPER data. To further
quantify the highly varied health conditions and acuities
of NH residents, a composite index feature called “Acuin-
dex” is employed to summarize the overall resident acu-
ity in the facility [27, 28]. Acuindex is a numeric measure
calculated by first combining the percentage of residents
requiring nursing staff assistance with different activities
of daily living, such as eating, toileting, bed transferring,
and the percentage of residents requiring special treat-
ments, such as respiratory treatment, suctioning, intrave-
nous therapy, tube feeding, etc., and then further dividing
by the total number of residents in the facility. A higher
Acuindex value indicates that facility has a frailer popula-
tion of residents with more extensive care needs and vice
versa. The extracted resident characteristics related fea-
tures are summarized in Table 1.

Classification models

After extracting various features that may potentially
affect the NH evacuation decision (as described above),
in this section, we will develop data-driven predictive
models to predict the binary decision of “evacuating” or
“sheltering-in-place” by comprehensively investigating
different classification algorithms. For NH facility i, the
binary response variable y; is labelled as “1” if the facil-
ity has evacuated, and “0” if the facility has sheltered-in-
place. Different features that represent different aspects
of the ith NH, such as environmental characteristics, NH
facility characteristics and NH dwelling-residents’ char-
acteristics, will serve as input variables x; for the devel-
oped predictive models. Since the sheltered-in-place
NHs account for about 90% of the total number of NHs
in the dataset, there is considerable classification imbal-
ance issue, which will significantly affect the modeling
accuracy [29]. To address such class imbalance issue,
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up-sampling technique is performed for the minor-
ity class to create an equally balanced dataset for model
development as follows [30]. First, the dataset is divided
into training dataset and testing dataset randomly
into large and small portions (e.g., 80% data randomly
selected for training set and rest 20% for testing set) by
keeping the same ratio of observations of minority class,
i.e., evacuated NHs, to majority class, i.e., shelter-in-
place NHs, in both data sets. Then, individual observa-
tions from the minority class in the training dataset are
randomly sampled until the sizes of majority and minor-
ity class observations in the dataset become equal. The
prepared training dataset and testing dataset are used for
model training and model assessment, respectively.

We first investigate the linear classification model
of logistic regression (LR) and its regularized variants.
These models aim to find the optimal model parameters
01z by minimizing the loss function

n
[Or) = Z{—yiOLTin + log[1 + exp 07 px;1) )
=1

+ 21 110R1I3 + 22110 1R111

where the first term is the negative log-likelihood func-
tion of LR, and the last two terms contain L2-norm and
L1-norm penalties, respectively. The former terms repre-
sent the goodness-of-fit and a smaller negative log-like-
lihood function value indicates a better goodness-of-fit.
The latter terms control the complexity by shrinking the
irrelevant model parameters towards zero (in L2-norm)
and exactly equal to zero (in Ll-norm), respectively.
When both 41 =0 and Ay = 0, the model is conven-
tional LR; when 41 > 0 and /3 = 0, it becomes the LR
model with Ridge penalty, and when 4; =0 and 43 > 0,
it becomes the LR model with LASSO penalty. Regular-
ization-based LR models are considered to address the
potential overfitting issues of conventional LR for predic-
tion performance improvement. The tuning parameter 4
in both ridge and LASSO penalties are determined based
on the cross-validation (CV).

After investigating the linear classification model, we
further investigate different tree-based nonlinear clas-
sification modeling approaches, namely classification
and regression tree (CART) and tree-based assembling
methods. For CART, the impurity measure of GINI index
is considered for tree plotting and a tree model will stop
growing once all its leaf nodes only contain a single class
of either “evacuation” or “sheltering-in-place”. To mitigate
the overfitting issue of CART, pruning is further con-
sidered based on CV to merge some of the branches to
form a smaller tree. Due to the high variance of CART,
we further considered the tree-based ensemble meth-
ods, namely, random forest and gradient-boosted tree, to



Sakib et al. Health Information Science and Systems (2022) 10:28

further strengthen the prediction accuracy. The former
ensemble learning methods generate a large number of
deep trees in the parallel structure while the latter gener-
ates a large number of simple trees in sequential manner.
The tuning parameters, such as size of trees in random
forests or the depth of tree in gradient-boosted tree, are
also determined based on the CV.

Although tree-based classification methods give non-
linear decision boundaries, they are established based on
the rectangular-shaped partitions of the feature space. We
further investigate other nonlinear classification models,
such as memory-based method of nearest-neighbor clas-
sification, optimization-based method of support vector
machines (SVM) and network-based method of artificial
neural network (ANN), which constructs nonlinear deci-
sion boundaries based on varied assumptions and crite-
ria. K-Nearest Neighbor (KNN) directly performs the
prediction based on the major vote of its K-neighbor data
points, i.e., ¥ = argmax ke{o,l}% >_n, I(yi = k), where
Ny is an index set of K-nearest neighboring observations
for input variables x# and I(-) is an indicator function. In
KNN, to make prediction of evacuation response of a NH
with input features %o, its k nearest NHs with observed
evacuation response in the feature space are first identi-
fied and the corresponding closeness is evaluated based
on the Euclidean distance, distancei = |lx — %oll,
where x((7)) is input features of the ith neighboring NH
with observed evacuation response [31]. Based on the
majority vote of the observed evacuation response among
k nearest NHs, the predicted evacuation response of NH
will be obtained. SVM and ANN are more computation-
ally demanding nonlinear classification methods which
either formulate the classification problem as an optimi-
zation model, or capture the nonlinear mapping among
inputs and outputs with a multi-layer network structure,
respectively. The tuning parameters and settings of each
method, such as choice of Kin KNN, kernel type and cost
settings in SVM, and number of neurons in layer in ANN,
are also determined based on CV [31, 32].

Performance evaluation

During the model development stage, 10-fold CV is
employed to: (i) obtain the expected estimate of the
test accuracy, (i) tune model parameter values such
that overfitting can be avoided. CV is achieved by par-
titioning the training dataset into several approxi-
mately equal-sized folds and building a model on the
dataset by progressively holding one fold out for vali-
dation. CV-accuracy is calculated as the average accu-

racy obtained over all the validation set predictions, i.e.,

1 10 n N
Acccy = 0%, Zm:l i1 L(yi,m = Yi,m) where ¥,

and y;,, are observed and predicted values in the mth
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validation set with sample size #,, , respectively. I(.) is an
indicator function, and 10 is the number of folds in the
dataset. Limiting exposure to the full training dataset
allows selection of model parameters that do not per-
fectly fit the training data but are generalized adequately
resulting in optimal performance over unseen test data,
hence reducing overfitting.

Following model development and tuning, each opti-
mized model is utilized to generate prediction on previ-
ously unseen test dataset and prediction accuracy is
evaluated. Several metrics are employed to assess model
effectiveness from different aspects, namely, test accu-
racy, test sensitivity, test specificity, and test balanced
accuracy. Test accuracy is simply the proportion of cor-
rectly predicted class labels against the total number of
observations in the test data, i.e., Accesr = - S 1 =ik

where y; y; are observed and predicted values, respec-

tively, and #; is the total number of test observations.
Test accuracy is an overall metric and may not fully
explain individual class-specific prediction performance.
Test sensitivity is used to measure prediction perfor-
mance of the model for the minority class (evacuated) as
a proportion of the number of correctly predicted evacu-
ated NHs against the total number of observed evacuated

. n, N
NHs, ie., Accsens = Zj:iw I(Yj,evac = Yj,evac); where

Yjevac and Y evac are observed and predicted values for
evacuation, respectively, and #ey4 is the total number of
evacuated NHs in test dataset. Similarly, test specificity
measures prediction performance of the model for the
majority class (shelter-in-place) as a proportion of the
number of correctly predicted shelter-in-place NHs
against the total number of observed shelter-in-place

: 1 Mshelt S
NHs, ie., Accypec = —— Z};f “ I(Yj,shelter = Yj,shelter):

Hshelter

Mevac

where yjseirer and Y speizer are observed and predicted
values for shelter-in-place, respectively, and #gepe, is the
total number of shelter-in-place NHs in test dataset.
Here, the minority (evacuated NHs) is defined as the pos-
itive class, and the majority (shelter-in-place NHs) is
defined as negative class in the context of sensitivity and
specificity, respectively. Assessing sensitivity and speci-
ficity of the predictions produced by each model
enhances the ability to compare models in terms of their
flexibility in detecting rare classes and differentiating data
from the majority class, and also allows determining the
effect of up-sampling in performance improvement.
Since test accuracy may indicate greater model perfor-
mance even if the model predicts all majority class in the
test data correctly and misses all minority class, an
improved measure is desirable. Test balanced accuracy is
the average of test sensitivity and test specificity, i.e.,
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AccgenstAcc .
Accpy = —5—2%, and provides a better representa-

tion of the prediction performance [31].

Real case study

Data description and preprocessing

Hurricane Irma was one of the major hurricanes in his-
tory over the open Atlantic Ocean. The storm made ini-
tial landfall in Florida near Cudjoe Key as a Category 4
(130 mph) hurricane on September 10, 2017 9 AM and
afterwards made final landfall at Marco Island as Cat-
egory 3 (115 mph) on September 10, 2017 3:35 PM,
moving up the state and dissipating over the next day.
An estimated 6.5 million people were ordered to evacu-
ate causing scarcity of supplies and fuel, and heavy traf-
fic along evacuation routes. One direct and 33 indirect
deaths were reported in South Florida. The storm caused
significant destruction by uprooting trees, damaging
building roofs and structures, excessive inland flooding
and coastal surge, and heavy rainfall. More than 75% cli-
ents in the state lost power for almost a week, and half
of all crops in Miami-Dade county was ruined [33]. The
estimated cost of damages in flood loss to homes in all
storm-affected state was between 25-38 billion USD [34],
with state property damages costing hundreds of millions
USD in different counties. As with any extreme event,
long-term care service residents and staff were at greater
risk. 684 NHs were in operation during the hurricane,
among which a total of 85 facilities decided to evacuate
pre- or post-landfall.

To maintain consistency with the scope of the study,
several inclusion/exclusion criteria were applied to the
list of operating NHs. NHs which evacuated after land-
fall were not considered since the decision was based on
post-storm damages and aftereffects, rather than evalu-
ation of pre-storm anticipated risks. NHs which evacu-
ated many days in advance (on or before 96 h of landfall)
were excluded since the storm was considerable distance
away from FL and related environmental data was not yet
available. NHs with facility characteristics data missing
entirely or with data recorded on inappropriate survey
dates (i.e., survey significantly predating the storm), cat-
egorized as hospital-based facilities, and/or with incor-
rectly reported nursing staff levels (i.e. greater than 24, or
0 HPRD) were removed. The resulting dataset contained
a total of 653 NHs, of which 59 (9.04%) evacuated and
the rest 594 (90.96%) sheltered-in-place. The evacuation
status was encoded as binary numbers, where 1 indicated
evacuated and O shelter-in-place, such that it can be used
as a numerical response during modeling. Table 1 pre-
sents descriptive statistics of the selected NHs with vari-
ous characteristics stratified by evacuation status.

Following extraction of NH-specific environmen-
tal features as described in “Extracting environmental

Page 11 of 20

characteristics” section and facility structural, staffing
and resident characteristics data as described in “Extract-
ing NH characteristics” section, a joint dataset was cre-
ated including all extracted features of each NH. To
prepare for predictive modeling, the dataset is treated
with several preprocessing measures. The data was ran-
domly split into 80-20 train-test subsets. The training set
is intended to be utilized in model estimation, while the
test set remained as unseen data for later predictions.
Based on the training set, redundant facility character-
istics features were removed by evaluating correlation
coefficients between all possible pairs of features and
setting a cutoff of 0.6 and guided by domain knowledge.
For instance, Social services HPRD feature was removed
as it was highly correlated with Registered nurses HPRD.
Existence of multicollinearity among undetected feature
combinations was determined with calculation of Vari-
ance Inflation Factor (VIF) with cutoff set at 5. Accord-
ing to disaster management timelines, NHs need to
take decision on whether to evacuate or shelter-in-place
at least 24 to 36 h prior storm occurrence to allow suf-
ficient time for clearing the area or completing prepara-
tions, respectively [35, 36]. The environmental features
recorded between 24-h and 36-h prior decision were
highly correlated and repetitive as the storm’s projected
trajectory changed little. Hence, the environmental fea-
tures extracted from geographic observations were
recorded 24-h prior evacuation decision of each NH,
assuming it is the last time NHs can make decision. The
final set of features included 4 environmental features
and 32 facility characteristics features in the joint dataset.
Since NHs sheltering in place substantially outnumbered
evacuated facilities, up-sampling was applied to training
dataset to balance proportion of each class and ease esti-
mation of predictive models.

Prediction performance comparison

To investigate how different environmental features
impact predictive performance individually and alto-
gether, 1 baseline and 5 different proposed modeling
strategies were adopted as detailed in Table 2. As the
conventional approaches consider only facility charac-
teristics influencing evacuation decision in literature,
D1-BASE strategy was set up for model estimation using
only the facility characteristics dataset and no GIS fea-
tures. Hence D1-BASE was the baseline for comparison
against proposed strategies. The proposed D2-DIST,
D3-WSP, D4-SURG, D5-ELEV strategies were set up
where each dataset contained only one GIS-feature in
addition to facility characteristics — distance between
facility and storm trajectory, 50-knot wind speed proba-
bilities at facility location, potential storm surge at facility
location, and elevation of facility location, respectively.
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Table 2 Different predictive modeling strategies

Short name Modeling strategy description Strategy type
D1-BASE NH facility characteristics without any GIS features Conventional
D2-DIST NH facility characteristics with 1 GIS feature only: distance between facility and storm trajectory Proposed
D3-WSP NH facility characteristics with 1 GIS feature only: probable wind speed at facility location Proposed
D4-SURG NH facility characteristics with 1 GIS feature only: potential storm surge at facility location Proposed
D5-ELEV NH facility characteristics with 1 GIS feature only: elevation at facility location Proposed
D6-FULL NH facility characteristics with all 4 GIS features Proposed

Table 3 Different machine learning methods considered

Model name Model description Model type
L1-Log Logistic Regression (LR) Linear
L2-Lasso LASSO LR Linear
L3-Ridge Ridge LR Linear
NL1-RF Random Forest Non-linear
NL2-DT Decision Tree Non-linear
NL3-GBT Gradient Boosted Trees Non-linear
NL4-SVM Support Vector Machines Non-linear
NL5-KNN K-Nearest Neighbor Non-linear
NL6-ANN Artificial Neural Network Non-linear

This allowed evaluation of marginal change in predic-
tion performance of the models compared to baseline
and determination of the best individual GIS-feature.
D6-FULL contained all 4 GIS-features together in addi-
tion to NH facility characteristics to include all available
information in modeling.

For each of the modeling strategies, 9 different linear
and non-linear predictive classification models were
employed, as listed in Table 3, to establish functional
relationship between evacuation response and hetero-
geneous facility characteristics and GIS-features. Each
predictive model differs in mathematical formula-
tion and estimation process. Some involve pre-setting
hyperparameters of the model configuration to maxi-
mize prediction accuracy suitable for respective data.
Unknown values of hyperparameters which maximize
prediction accuracy are found by searching through the
numerical space by trial-and-error. In this case, optimal
hyperparameters of each model were determined with
10-fold CV, as described in “Performance evaluation”
section, on training dataset to maximize prediction
performance, i.e., CV-accuracy. For instance, regulari-
zation parameter was optimized for LASSO and Ridge
logistic regression, number of trees and number of
features randomly chosen at each split was tuned for
Random Forest, number of trees for Gradient Boosted
Trees, cost and kernel parameters for Support Vector

Machines, number of nearest neighbors in K-nearest
Neighbor, number of units in hidden layer for Artifi-
cial Neural Network, etc. Features of test dataset was
fed to each tuned model to predict evacuation response
and compared with observed responses to evaluate test
classification accuracy. Furthermore, test sensitivity,
test specificity and test balanced accuracy are evaluated
to assess prediction performance of each category of
evacuation response. Comparison of prediction perfor-
mance obtained over each modeling strategy and pre-
dictive model are visualized in Figs. 7, 8, 9, 10, and 11,
and numerically reported in Table 4.

Several insights were obtained from the results through
perspectives of each performance metrics. From CV-
accuracy and test accuracy in Figs. 7 and 8, it is evident
that incorporation of one or more GIS-features improved
performance significantly for most models compared
to baseline strategy. Incorporating all 4 GIS-features
improved performance for all models the most. Among
individual features, elevation of facility (D5-ELEV
strategy) and distance of facility to storm trajectory
(D2-DIST) interchangeably provided the strongest
improvement in prediction accuracy. Non-linear models
in general provided increased CV- and test-accuracies
for all strategies since they are more capable of capturing
non-linear relationship between the features and evacua-
tion responses, and their greater model complexity allows
optimal generalization over the data. In contrast, linear
models were largely dependent on available information
in the training dataset and higher margins of accuracy
improvements were obtained with inclusion of GIS-fea-
tures compared with non-linear models. Sensitivity and
Specificity in Figs. 9 and 10 show prediction accuracies
achieved for minority and majority classes respectively.
Incorporation of GIS-features greatly improved predic-
tive capacity of minority class, since more information
was available in informing class separation. Balanced
accuracy provided a better criterion in discerning model
efficacy for individual class prediction. Especially for a
few models, such as Random Forest and SVM, incorpo-
rating GIS-features was the only way to obtain any cor-
rect prediction for minority class.
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Fig. 8 Prediction performance comparison among different models based on Test accuracy

Comparing all metrics across models and strategies,
Gradient Boosted Tree (NL3-GBT) with incorporation
of all 4 GIS-features (D6-FULL) was the best model
for the dataset in predicting NH evacuation decision
response. With high CV-accuracy (0.877), it gave the
highest performance on unseen data with test accu-
racy of 0.992. It could detect both minor and major
classes with high accuracy (test sensitivity of 1 and test

specificity of 0.992), showing the best performance at
test balanced accuracy of 0.966. A close contender was
LASSO Logistic model (L2-Lasso), which was also the
best among all linear models. Contrary to expectations
from a complex model and despite achieving high CV-
and test accuracies, Random Forest failed at predict-
ing minority class (e.g., Fig. 9) and was overly biased
towards majority class (e.g., Fig 10) [37]. Decision Tree
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Fig. 10 Prediction performance comparison among different models based on Test specificity

(NL2-DT) performance was often unstable across dif-
ferent strategies since the modeling method of training
single trees leads to high variance in predictions.
Up-sampling played an important role in improving
prediction accuracy, and it is illustrated by a further
case study as follows. The previously best performing
model NL3-GBT was applied to the dataset with all
GIS-features (D6-FULL) before and after up-sampling.

As observed in Fig. 12 and Table 5, the imbalanced
dataset results in poor accuracies and balancing the
classes enhanced performance across all metrics. Par-
ticularly as seen in test sensitivity, up-sampling drasti-
cally improved the model’s ability to detect minority
class. The model became more nuanced towards class
distinctions in the feature space resulting in higher pre-
diction accuracy.
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Fig. 11 Prediction performance comparison among different models based on Test balanced accuracy

Investigating the impact of different influencing factors

on evacuation response

As described in the previous section, in general, nonlin-
ear predictive model exhibits superior prediction perfor-
mance than linear predictive model due to the nonlinear
nature between evacuation response output and different
input variables. However, this does not imply that linear
model, such as LR, has no usefulness. As compared to
nonlinear predictive model, linear predictive model has
more meaningful model interpretation, which will help
enrich the understanding and evidence base of evacua-
tion process for healthcare professionals. Further, LR is
considered because its model interpretation (e.g., odds
ratio) and data uncertainty quantification (e.g., standard
errors, p values) are more easily accepted concepts and
terminologies by the public health experts. Table 6 sum-
marizes the model estimation results of LR by including
all GIS-features. For significant features, both the signs
and magnitude of their estimated coefficients, e.g., B,
have meaningful interpretations. Positive (or negative)
sign of a feature indicates that the increased value of that
feature will increase (or decrease) the probability of a NH
to be evacuated. Further, the actual influence of a feature
can be quantified by the adjusted odds ratio value, which
is a ratio of the evacuation probability over the shelter-
in-place probability of a NH by holding other features
constant.

Based on the typical choice of the significance level
of 0.05, significant features are available from differ-
ent aspects, such as NH organizational structure, envi-
ronmental conditions, caregivers working in a NH and
dwelling NH residents. It confirms the need of fus-
ing multi-source data to investigate and identify the

multi-factorial determinants for NH evacuation. From
organizational structure perspective, the type of owner-
ship is a significant factor and a not-for-profit NH is more
likely to evacuate (e.g., AOR = 7.76) than a for-profit NH
by holding other features the same. It could be explained
due to several following reasons. First, compared to not-
for-profit NHs, for-profit NHs may have a less well-pre-
pared evacuation plan, making evacuation on their own
challenging. Existing studies indicated that for-profit
NHs tend to have a less effective and adequate evacua-
tion plan with higher chance of being cited for evacua-
tion plan deficiencies [38]. NH evacuation is a complex
process involving moving frail residents to the designated
receiving facilities with adequate medical equipment,
food, water, medication, medical record and caregiv-
ers. A thoughtful and adequate evacuation plan includes
detailed evacuation procedures, transportation logistics
and evacuation provisions, and will be an essential basis
for ensuring successful NH evacuation. Further, for-profit
NHs may also have other barriers [7, 24], such as limited
logistics and financial support from public agencies and/
or a lack of economic incentives for moving due to costly
transportation.

From an environmental condition perspective, three
GIS features, namely, distance from a NH to the pro-
jected storm path, the neighboring wind speed of a NH
and NH elevation, play significant roles in influencing
evacuation decisions. Specifically, the farther distance a
NH to the projected storm trajectory, the less likelihood
the NH will be evacuated due to a lower chance of expe-
riencing a hurricane threat. In particular, an unit increase
(in Km) of distance from a NH’s location to the pro-
jected storm trajectory will decrease odds ratio between
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Table 4 Numerical summary of prediction performance comparison results

Metric\Strategy Model
L1-Log L2-Lasso L3-Ridge NL1-RF NL2-DT NL3-GBT NL4-SVM NL5-KNN NL6-ANN
CV accuracy
D1-BASE 0.628 0.601 0.61 1 0.678 091 0.931 0.871 0917
D2-DIST 0.711 0.702 0.686 1 0.741 0922 0926 0.896 0916
D3-Wsp 0.625 0613 0617 0.999 0.739 0.943 0.943 0.883 0.898
D4-SURG 0.633 0.606 0.618 1 0.639 0.908 0.925 0.873 0.898
D5-ELEV 0.738 0.729 0.736 0.999 0.833 0932 0.944 0.883 0939
Dé-FULL 0.936 0937 0.901 0.998 0.877 0.991 0.993 0.968 0974
Test accuracy
D1-BASE 0.605 0.628 0.651 0915 0612 0814 0.853 0.736 0.736
D2-DIST 0.69 0.667 0.705 0915 0.504 0.806 0.845 0.791 0.822
D3-wsp 0.636 0.636 0.682 0915 0.791 0.86 0.86 0.721 0.791
D4-SURG 0.612 0.628 0.651 0915 0.612 0.806 0.845 0.744 0.744
D5-ELEV 0.713 0.643 0.682 0915 0.721 0.86 0.837 0.798 0.775
D6-FULL 0.907 0.961 0.891 0.946 0.907 0.992 0938 0.946 0.922
Test sensitivity
D1-BASE 0.636 0818 0.636 0 0.364 0.182 0 0.364 0.182
D2-DIST 0.818 0.909 0.818 0 0.909 0455 0.091 0455 0.455
D3-wsp 0.636 0.545 0.636 0 0818 0.727 0 0.364 0.364
D4-SURG 0.636 0.636 0.636 0 0.364 0.273 0 0.364 0.091
D5-ELEV 0.727 0.818 0.818 0 0.727 0.364 0 0455 0455
D6-FULL 0.818 1 0.909 0.364 0.636 1 0.364 0.909 0.545
Test specificity
D1-BASE 0.602 0.61 0.653 1 0.636 0.873 0.932 0.771 0.788
D2-DIST 0678 0.644 0.695 1 0466 0.839 0915 0.822 0.856
D3-WSP 0.636 0.644 0.686 1 0.788 0.873 0.941 0.754 0.831
D4-SURG 0.61 0.627 0.653 1 0.636 0.856 0924 0.78 0.805
D5-ELEV 0.712 0.627 0.669 1 0.72 0.907 0915 0.831 0.805
D6-FULL 0.915 0.958 0.89 1 0.932 0.992 0.992 0.949 0.958
Balanced accuracy
D1-BASE 0.619 0.714 0.645 0.5 0.5 0.528 0466 0.568 0.485
D2-DIST 0.748 0.777 0.757 0.5 0.688 0.647 0.503 0.639 0.656
D3-WSP 0.636 0.595 0.661 0.5 0.803 0.8 0471 0.559 0.598
D4-SURG 0.623 0.632 0.645 05 0.5 0.565 0462 0.572 0448
D5-ELEV 0.72 0.723 0.744 0.5 0.724 0.636 0458 0.643 063
D6-FULL 0.867 0979 0.9 0.682 0.784 0.996 0678 0929 0.752

evacuation and shelter-in-place by a factor of 0.868 by
holding other features fixed. Similarly, the greater prob-
ability of anticipated wind speed exceeding 50 knots
within a 120-h time period at a NH location, the less
likely that NH will evacuate with an AOR of 0.687. The
severe weather conditions may present significant dis-
ruption in transfer efforts and evacuation safety since
50 knots winds and gusts or above may break branches,
uproot trees, or tip or veer high profile vehicles off course
[19, 39]. In addition, a NH situated on higher ground will
be less likely to evacuate. For an unit elevation increase

(in feet), the odds ratio between evacuation and shelter-
in-place will be decreased by a factor of 0.868. This is also
intuitive and self-explanatory since NH at higher eleva-
tion will be less likely experiencing potential flooding
from coastal surge or inland inundation.

From NH staffing and residents’ characteristics per-
spective, two features, namely the staffing level of
licensed practical nurses and the percentage of NH resi-
dents who received antianxiety medication, play signifi-
cant roles in whether a NH will be evacuated. Specifically,
a NH with a higher staffing level of LPNs (quantified in
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Table 5 Numerical summary of the influence of up-sampling on prediction performance of model NL3-GBT under

D6-FULL strategy

Type Metric
CV accuracy Test accuracy Test sensitivity Test specificity Balanced
accuracy
Imbalanced 097 0.946 0455 0.992 0.724
Up-sampled 0.991 0.992 1 0.992 0.996

HPRD) indicates a low likelihood of evacuation, which
can be explained from two aspects. First, LPNs are nurs-
ing staff who provide basic routine medical care, such as
monitoring and recording vital signs (e.g., blood pres-
sure, heart rate, respiration, etc.) of patients, giving
injections, changing bandages and administering medica-
tions. Adequate LPNs implies that the NH has adequate
workforce to self-sufficiently take care of NH residents
during hurricane and sheltering-in-place requires such
self-sufficiency [23]. Second, many for-profit NHs tend
to consider LPN as a substitute of RN for performing
advanced nursing activities since LPN is less costly. Thus,
the larger number of LPNs is often positively correlated
with the for-profit status of a NH, which tends to shelter
in place due to the economic incentive of avoiding high
evacuation costs. In addition, a NH with a higher per-
centage of residents who receive antianxiety medication
is less likely to evacuate. It is because that NH residents
with pre-existing mental disorders, as indicated by the
medication provided, are more vulnerable to evacuation.
The changing environment in the new hosting facility,
the discontinuity of care and moving itself due to evacu-
ation will exacerbate their mental health conditions, such

as anxiety, depression and post-traumatic stress disor-
ders [14]. Besides, easing stress, providing reassurance
and persuasion to manage mental disorder symptoms of
these residents during an evacuation is also challenging
for caregivers with limited time but overwhelming work-
load [40, 41].

Conclusion

In this paper, a GIS-integrated predictive analytics frame-
work is proposed for predicting evacuation response of
NHs in hurricane disaster scenario. Data from multi-
ple sources, such as environmental conditions, resident
census in the facility, and facility staffing and organi-
zational characteristics during the time of disaster are
considered and integrated for improving the prediction
performance. Specifically, several important spatial and
temporal heterogeneous environmental GIS features are
extracted for NHs at different spatial locations, e.g., dis-
tance to storm trajectory, projected wind speed, poten-
tial storm surge, and elevation of the facility. A number
of linear and nonlinear machine learning models are
applied and optimized for predicting the evacuation
response and compared based on different prediction
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Table 6 LR model interpretation

Feature B Odds ratio SE (8) p value

Organizational structure

Not for-profit facility (Y/N) 2.049 7.76 0.949 0.031*
Government facility (Y/N) 1.908 6.74 2.507 0447
Chain-facility (Y/N) 0.481 1618 0.781 0.538
Part of a CCRC (Y/N) 0.391 1478 1.057 0.712
Occupancy rate (% beds) —0.008 0.992 0.038 0.821
ADRD special care unit (Y/N) 2142 8516 1.252 0.087
Non-ADRD special care unit (Y/N) — 2015 0.133 1.857 0.278
Has organized resident group (Y/N) —2.597 0.074 1.745 0.137
Has organized family members group (Y/N) —0.904 0.405 0.707 0.201
Medicare (% residents) —001 0.99 0.013 0419
Medicaid (% residents) 0.062 1.064 0.038 0.109
Environmental GIS characteristics
Distance from projected trajectory 24 h prior decision (km) —0.142 0.868 0.027 1.17E=07%**
50 knots wind speed probability 24 h prior (%) — 0375 0.687 0.07 6.94E—08***
Potential storm surge 24 h prior (feet) — 0492 0611 0.35 0.16
Elevation of facility (feet) —0.142 0.868 0.032 8.65E—06%**
Staffing characteristics
Nurse with admin duties (HPRD) 0.838 2312 2424 0.729
Registered nurses (HPRD) —2.58 0.076 1811 0.154
Licensed practical nurses (HPRD) —3.358 0.035 1.504 0.026*
Certified nursing assistants (HPRD) 1.119 3.062 0.964 0.246
Occupational therapy services (HPRD) —0.197 0.821 3.782 0.958
Activities staff (HPRD) 2501 12.2 2.903 0.389
Housekeeping staff (HPRD) 0.592 1.808 1376 0.667
Medical director only (Y/N) —0.363 0.696 1.097 0.741
Full medical team (Y/N) —0.299 0.742 0.867 0.73
No medical team (Y/N) 249 12.06 2018 0217
Resident characteristics (% residents)
Acuindex (patient acuity) 0.579 1.784 0.34 0.088
Behavioral healthcare needs 0.02 1.02 0.025 0431
Dementia or Alzheimer’s —0.041 0.96 0.027 0.135
Depression — 0.004 0.996 0.018 0.835
Intellectual disability 0.064 1.066 0.123 0.605
Physical restraint use 0.131 1.14 0.358 0.715
Serious mental illness 0.016 1.016 0.032 0615
Antipsychotics medication —0.033 0.968 0.046 0478
Antianxiety medication —0.106 0.899 0.051 0.039*
Antidepressants medication 0.034 1.035 0.031 0.277
Sedative/hypnotics medication 0.118 1.125 0.075 0.118

* p<0.05; ** p<0.01; *** p<0.001

95% confidence Intervals for each parameter estimate are calculated byﬁj +1.96 x SE(/§) , where is the respective estimated covariate coefficient and SE is the Std.
Error

performance measures identify the final best predictive = Furthermore, the influence of the GIS-features are quan-
model. A case study on Hurricane Irma impacting NHs tified, together with several resident and facility charac-
in FL is considered to demonstrate effectiveness of the teristics identified as influential factors for evacuation
framework, comparing prediction performance among response. The proposed framework will allow NH admin-
models with and without incorporating GIS features. istrators to understand the multifactorial complex nature
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of evacuation response and the predictive capability with
improved accuracy will assist emergency management
agencies in planning proactive resource management
strategies for evacuation demand surge during disasters,
such as hurricanes. Since the major focus in this paper is
to demonstrate the potentials of integrating GIS data and
applying machine learning to improve NH evacuation
prediction, LR is considered for model interpretation. As
future work, we will consider more in-depth and state-of-
the-art interpretive machine learning methods.
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