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Parameterized MDPs and Reinforcement Learning
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Abstract—We present a framework to address a class of
sequential decision-making problems. Our framework features
learning the optimal control policy with robustness to noisy data,
determining the unknown state and action parameters, and per-
forming sensitivity analysis with respect to problem parameters.
We consider two broad categories of sequential decision-making
problems modeled as infinite horizon Markov decision processes
(MDPs) with (and without) an absorbing state. The central idea
underlying our framework is to quantify exploration in terms
of the Shannon entropy of the trajectories under the MDP and
determine the stochastic policy that maximizes it while guaran-
teeing a low value of the expected cost along a trajectory. This
resulting policy enhances the quality of exploration early on in
the learning process, and consequently allows faster convergence
rates and robust solutions even in the presence of noisy data as
demonstrated in our comparisons to popular algorithms, such
as Q-learning, Double Q-learning, and entropy regularized Soft
Q-learning. The framework extends to the class of parameterized
MDP and RL problems, where states and actions are parameter
dependent, and the objective is to determine the optimal param-
eters along with the corresponding optimal policy. Here, the
associated cost function can possibly be nonconvex with multiple
poor local minima. Simulation results applied to a 5G small cell
network problem demonstrate the successful determination of
communication routes and the small cell locations. We also obtain
sensitivity measures to problem parameters and robustness to
noisy environment data.

Index Terms—Markov decision processes (MDPs), maxi-
mum entropy principle (MEP), network design, parameterized
sequential decision making, reinforcement learning.

I. INTRODUCTION

MARKOV decision processes (MDPs) model sequential
decision-making problems which arise in many appli-

cation areas, such as robotics, sensor networks, economics,
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and manufacturing. These models are characterized by the
state-evolution dynamics st+1 = f (st, at), a control policy
μ(at|st) that allocates an action at from a control set to each
state st, and a cost c(st, at, st+1) associated with the tran-
sition from st to st+1. The goal in these applications is to
determine the optimal control policy that results in a path,
a sequence of actions and states, with minimum cumulative
cost. There are many variants of this problem [1], where the
dynamics can be defined over finite or infinite horizons; where
the state dynamics f can be stochastic; where the models for
the state dynamics may be partially or completely unknown,
and the cost function is not known a priori, albeit the cost at
each step is revealed at the end of each transition. Some of
the most common methodologies that address MDPs include
dynamic programming; value and policy iterations [2]; linear
programming [3], [4]; and Q-learning [5].

In this article, we view MDPs and their variants as com-
binatorial optimization problems and develop a framework
based on the maximum entropy principle (MEP) [6] to address
them. MEP has proved successful in addressing a variety of
combinatorial optimization problems, such as facility loca-
tion problems [7], combinatorial drug discovery [8], traveling
salesman problem and its variants [7], image processing [9],
graph and Markov chain aggregation [10], and protein struc-
ture alignment [11]. MDPs, too, can be viewed as combinato-
rial optimization problems—due to the combinatorially large
number of paths (sequence of consecutive states and actions)
that it may take based on the control policy and its inherent
stochasticity. In our MEP framework, we determine a probabil-
ity distribution defined on the space of paths [12], such that
1) it is the fairest distribution—the one with the maximum
Shannon entropy H and 2) it satisfies the constraint that the
expected cumulative cost J attains a prespecified feasible value
J0. The framework results in an iterative scheme, an anneal-
ing scheme, where probability distributions are improved upon
by successively lowering the prespecified values J0. In fact,
the Lagrange multiplier β corresponding to the cost con-
straint (J = J0) in the unconstrained Lagrangian is increased
from small values (near 0) to large values to effect anneal-
ing. Higher values of multipliers correspond to lower values
of the expected cost. We show that as the multiplier value
increases, the corresponding probability distributions become
more localized, finally converging to a deterministic policy.

This framework is applicable to all the classes of MDPs and
its variants described above. Our MEP-based approach inherits
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the flexibility of algorithms such as deterministic annealing [7]
developed in the context of combinatorial resource allocation,
which include adding capacity, communication, and dynamic
constraints. The added advantage of our approach is that we
can draw close parallels to existing algorithms for MDPs and
RL (e.g., Q-learning)—thus enabling us to exploit their algo-
rithmic insights. Below, we highlight the main contributions
and advantages of our approach.
Exploration and Unbiased Policy: In the context of model-

free RL setting, the algorithms interact with the environment
via agents and rely upon the instantaneous cost (or reward)
generated by the environment to learn the optimal policy.
Some of the popular algorithms include Q-learning [5], Double
Q-learning [13], Soft Q-learning [entropy regularized (ER)
Q-learning] [14]–[20] in discrete state and action spaces, and
trust region policy optimization (TRPO) [21], and soft actor–
critic (SAC) [22] in continuous spaces. It is commonly known
that for the above algorithms to perform well, all relevant
states and actions should be explored. In fact, under the
assumption that each state–action pair is visited multiple times
during the learning process, it is guaranteed that the above
discrete space algorithms [5], [13]–[15] will converge to the
optimal policy. Thus, the adequate exploration of the state
and action spaces becomes incumbent to the success of these
algorithms in determining the optimal policy. Often the instan-
taneous cost is noisy [14] which hinders the learning process
and demands an enhanced quality exploration.

In our MEP-based approach, the Shannon entropy of the
probability distribution over the paths in the MDP explicitly
characterizes the exploration. The framework results in a dis-
tribution over the paths that is as unbiased as possible under
the given cost constraint. The corresponding stochastic policy
is maximally noncommittal to any particular path in the MDP
that achieves the constraint; this results in better (unbiased)
exploration. The policy starts from being entirely explorative,
when the multiplier value is small (β ≈ 0), and becomes
increasingly exploitative as the multiplier value increases.

Parameterized MDPs and RL: These classes of
optimization problems are not even necessarily MDPs
which contribute significantly to their inherent complexities.
However, we model them in a specific way to retain the
Markov property without any loss of generality, thereby mak-
ing these problems tractable. Scenarios, such as self-organizing
networks [23]; 5G small cell network design [24], [25]; supply
chain networks; and last mile delivery problems [26], pose a
parameterized MDP with a two-fold objective of determining
simultaneously 1) the optimal control policy for the underly-
ing stochastic process and 2) the unknown parameters that the
state and action variables depend upon such that the cumula-
tive cost is minimized. The latter objective is akin to facility
location problem [27]–[29], that is shown to be NP-hard [27],
and where the associated cost function (nonconvex) is riddled
with multiple poor local minima.

For instance, Fig. 1 illustrates a 5G small cell network,
where the objective is to simultaneously determine the loca-
tions of the small cells {fj} and design the communication
paths (control policy) between the user nodes {ni} and base
station δ via a network of small cells. Here, the state space S

Fig. 1. 5G small cell network. The objective is to determine the small cell
location {yj ∈ R

d} and the communication routes from the base station δ to
each user {ni} via the network of the small cells.

of the underlying MDP is parameterized by the locations {yj}
of small cells {fj}.

Algebraic Structure and Sensitivity Analysis: In our frame-
work, maximization of Shannon entropy of the distribution
over the paths under a constraint on the cost function value
results in an unconstrained Lagrangian—the free-energy func-
tion. This function is a smooth approximation of the cumu-
lative cost function of the MDP, which enables the use of
calculus. We exploit this distinctive feature of our framework
to determine the unknown state and action parameters in the
case of parameterized MDPs and perform sensitivity analysis
for various problem parameters. Also, the framework easily
accommodates stochastic models that describe uncertainties
in the instantaneous cost and parameter values.
Algorithmic Guarantees and Innovation: For the classes of

MDPs that we consider, our MEP-based framework results
into nontrivial derivations of the recursive Bellman equation
for the associated Lagrangian. We show that these Bellman
operators are contraction maps and use their several properties
to guarantee the convergence to the optimal policy and as well
as to local minima in the case of parameterized MDPs.

In the context of model-free RL, we provide compar-
isons with the benchmark algorithms Q, Double Q, and ER
G-learning [14] (also referred to as Soft Q-learning). Our algo-
rithms converge at a faster rate (as fast as 1.5 times) than the
benchmark algorithms across various values of the discount
factor, and even in the case of noisy environments. In the
context of parameterized MDPs and RL, we address the small-
cell network design problem in 5G communication. Here, the
parameters are the unknown locations of the small cells and
the control policy determines the routing of the communica-
tion packet. Upon comparison with the sequential method of
first determining the unknown parameters (small cell locations)
and then the control policy (equivalently, the communication
paths), we show that our algorithms result into costs that
are as low as 65% of the former. The efficacy of our algo-
rithms can be assessed from the fact that the solutions in
the model-based and model-free cases are nearly the same.
We also demonstrate sensitivity analysis, benefits of anneal-
ing, and considering entropy of distribution over the paths in
our simulations on parameterized MDPs and RL.

This article is organized as follows. We briefly review the
related work and MEP [6] in Section II. In Sections III and IV,
we develop the MEP-based framework for MDPs. Section V
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builds upon Section III to address the case of parameterized
MDPs and RL problems. Simulations on a variety of scenarios
are presented in Section VI. We discuss the generality of our
framework, its capabilities, and future directions of the work
in Section VII. For the ease of reading, we provide a com-
prehensive list of symbols in Section F of the supplementary
material.

II. PRELIMINARIES

Related Work in Entropy Regularization: Some of the
previous works in RL literature [14]–[20], [30], [31] either
use entropy as a regularization term (− log μ(at|st)) [14], [15]
to the instantaneous cost function c(st, at, st+1) or maximize
the entropy (−∑a μ(a|s) log μ(a|s)) [16]–[18] associated only
with the stochastic policy under constraints on the cost J. This
results in benefits, such as better exploration, overcoming the
effect of noise wt in the instantaneous cost ct, and obtaining
faster convergence. However, the resulting stochastic policy
and soft-max approximation of the value function J are not in
compliance with the MEP applied to the distribution over the
paths of MDP. Thus, the resulting stochastic policy is biased
in its exploration over the paths of the MDP. Our simulations
demonstrate the benefit of unbiased exploration (in our frame-
work) in terms of faster convergence and better performance
in the noisy environment in comparison to the ER benchmark
algorithm.
Related Work in Parameterized MDPs and RL: The existing

solution approaches [2]–[4] can be extended to the parameter-
ized MDPs by discretizing the parameter domain. However,
the resulting problem is not necessarily an MDP as every
transition from one state to another is dependent on the path
(and the parameter values) taken to the current state. Other
related approaches for parameterized MDPs are case specific;
for instance, [32] presents action-based parameterization of
state space with applications to service rate control in closed
Jackson networks, and [33]–[38] incorporate parameterized
actions that are applicable in the domain of RoboCup soc-
cer, where at each step, the agent must select both the discrete
action it wishes to execute as well as continuously valued
parameters required by that action. On the other hand, the
class of parameterized MDPs that we address in this arti-
cle predominantly originate in network-based applications that
involve simultaneous routing and resource allocations and
pose additional challenges of nonconvexity and NP-hardness.
We address these MDPs in both the scenarios, where the
underlying model is known as well as unknown.
Maximum Entropy Principle: We briefly review the

MEP [6] since our framework relies heavily upon it. MEP
states that for a random variable X with a given prior
information, the most unbiased probability distribution given
prior data is the one that maximizes the Shannon entropy.
More specifically, let the known prior information of the ran-
dom variable X be given as constraints on the expectation of
the functions fk : X → R, 1 ≤ k ≤ m. Then, the most unbiased
probability distribution pX (·) solves

max{pX (xi)}
H(X ) = −

n∑

i=1

pX (xi) ln pX (xi)

subject to
n∑

i=1

pX (xi)fk(xi) = Fk ∀ 1 ≤ k ≤ m (1)

where Fk, 1 ≤ k ≤ m, are known expected
values of the functions fk. The above optimization
problem results into Gibbs’ distribution [39] pX (xi) =
([exp{−∑k λkfk(xi)}]/[

∑n
j=1 exp{−∑k λkfk(xj)}]), where λk,

1 ≤ k ≤ m, are the Lagrange multipliers corresponding to the
inequality constraints in (1).

III. MDPS WITH FINITE SHANNON ENTROPY

A. Problem Formulation

We consider an infinite horizon discounted MDP that com-
prises of a cost-free termination state δ. We formally define
this MDP as a tuple 〈S,A, c, p, γ 〉, where S = {s1, . . . , sN =
δ}, A = {a1, . . . , aM}, and c : S × A × S → R, respec-
tively, denote the state space, action space, and cost function;
p : S×S×A → [0, 1] is the state transition probability func-
tion and 0 < γ ≤ 1 is the discounting factor. A control policy
μ : A× S → {0, 1} determines the action taken at each state
s ∈ S, where μ(a|s) = 1 implies that action a ∈ A is taken
when the system is in the state s ∈ S and μ(a|s) = 0 indicates
otherwise. For every initial state x0 = s, the MDP induces a
stochastic process, whose realization is a path ω—an infinite
sequence of actions and states, that is

ω = (u0, x1, u1, x2, u2, . . . , xT , uT , xT+1, . . .) (2)

where ut ∈ A, xt ∈ S for all t ∈ Z≥0 and xt = δ for all t ≥ k
if and when the system reaches the termination state δ ∈ S in
k steps. The objective is to determine the optimal policy μ∗
that minimizes the state value function

Jμ(s) = Epμ

[ ∞∑

t=0

γ tc(xt, ut, xt+1)
∣
∣x0 = s

]

∀ s ∈ S (3)

where the expectation is with respect to the probability distri-
bution pμ(·|s) : ω → [0, 1] on the space of all possible paths
ω ∈ � := {(ut, xt+1)t∈Z≥0 : ut ∈ A, xt ∈ S}. In order to ensure
that the system reaches the cost-free termination state in finite
steps and the optimal state value function Jμ(s) is finite, we
make the following assumption throughout this section.
Assumption 1: There exists atleast one deterministic proper

policy μ̄(a|s) ∈ {0, 1} ∀ a ∈ A, s ∈ S such that
mins∈S pμ̄(x|S| = δ|x0 = s) > 0. In other words, under the
policy μ̄, there is a nonzero probability to reach the cost-free
termination state δ, when starting from any state s.
We consider the following set of stochastic policies μ:

� := {π : 0 < π (a|s) < 1 ∀ a ∈ A, s ∈ S} (4)

and the following lemma ensures that under Assumption 1 all
the policies μ ∈ � are proper.
Lemma 1: For any policy μ ∈ � as defined in (4),

mins∈S pμ(x|S| = δ|x0 = s) > 0, that is, under each policy
μ ∈ �, the probability to reach the termination state δ in
|S| = N steps beginning from any s ∈ S, is strictly positive.

Proof: Refer to Appendix A.
We use the MEP to determine the policy μ ∈ � such that the

Shannon entropy of the corresponding distribution pμ is max-
imized and the state value function Jμ(s) attains a specified
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value J0. More specifically, we pose the following optimization
problem:

max{pμ(·|s)}:μ∈�
Hμ(s) = −

∑

ω∈�

pμ(ω|s) log pμ(ω|s)

subject to Jμ(s) = J0. (5)

Well Posedness: For the class of proper policy μ ∈ �, the
maximum entropy Hμ(s) ∀ s ∈ S is finite as shown in [40]
and [41]. In short, the existence of a cost-free termination
state δ and a nonzero probability to reach it from any state
s ∈ S ensures that the maximum entropy is finite. Refer
to [40, Th. 1] or [41, Proposition 2] for further details.
Remark 1: Though the optimization problem in (5) consid-

ers the stochastic policies μ ∈ �, our algorithms presented in
the later sections are designed such that the resulting stochastic
policy asymptotically converges to a deterministic policy.

B. Problem Solution

The probability pμ(ω|s) of taking the path ω in (2) can
be determined from the underlying policy μ by exploiting the
Markov property that dissociates pμ(ω|s) in terms of the policy
μ and the state transition probability p as

pμ(ω|x0) =
∞∏

t=0

μ(ut|xt)p(xt+1|xt, ut). (6)

Thus, in our framework, we prudently work with the policy μ

which is defined over finite action and state spaces as against
the distribution pμ(ω|s) defined over infinitely many paths ω ∈
�. The Lagrangian corresponding to the above optimization
problem in (5) is Vμ

β (s) = Jμ(s) − 1/βHμ(s) =

E

[ ∞∑

t=0

γ tcutxtxt+1
+ 1

β

(
log μut|xt + log putxtxt+1

)∣
∣x0 = s

]

(7)

where β is the Lagrange parameter. Here, we have not included
the constant value J0 in the cost Lagrangian Vμ

β (s) for sim-
plicity. We refer to the above Lagrangian Vμ

β (s) (7) as the
free-energy function and 1/β as temperature due to their
close analogies with statistical physics [where free energy
is enthalpy (E) minus the temperature times entropy (TH)].
To determine the optimal policy μ∗

β that minimizes the
Lagrangian Vμ

β (s) in (7), we first derive the Bellman equation
for Vμ

β (s).
Theorem 1: The free-energy function Vμ

β (s) in (7) satisfies
the following recursive Bellman equation:

Vμ
β (s) =

∑

a,s′∈A,S
μa|spass′

(

c̄ass′ + γ

β
log μa|s + γVμ

β (s′)
)

(8)

where μa|s = μ(a|s), pass′ = p(s′|s, a), and c̄ass′ = c(s, a, s′) +
γ /β log p(s′|s, a) for simplicity in notation.

Proof: Refer to Appendix A for details. It must be noted
that this derivation shows and exploits the algebraic structure∑

s′ p
a
ss′H

μ(s′) =∑s′ p
a
ss′ log pass′ + log μa|s + λs as detailed in

Lemma 2 in the Appendix.

Now, the optimal policy satisfies [∂Vμ
β (s)/∂μ(a|s)] = 0,

which results into Gibb’s distribution

μ∗
β (a|s) = exp

{−(β/γ )�β (s, a)
}

∑
a′∈A exp

{−(β/γ )�β (s, a′)
} , where (9)

�β (s, a) =
∑

s′∈S
pass′
(
c̄ass′ + γV∗

β (s′)
)

(10)

is the state–action value function, pass′ = p(s′|s, a), cass′ =
c(s, a, s′), c̄ass′ = cass′ +γ /β log pass′ and V∗

β (= V
μ∗

β

β ) is the value
function corresponding to the policy μ∗

β . To avoid notional
clutter, we use the above notations wherever it is clear from
the context. Substituting the policy μ∗

β in (9) back into the
Bellman equation (8), we obtain the implicit equation

V∗
β (s) = −γ

β
log

(
∑

a∈A
exp

{

−β

γ
�β (s, a)

})

. (11)

To solve for the state–action value function �β (s, a) and free-
energy function V∗

β (s), we substitute the expression of V∗
β (s)

in (11) into the expression of �β (s, a) in (10) to obtain the
implicit equation �β (s, a) =: [T�β ](s, a), where

[
T�β

]
(s, a) =

∑

s′∈S
pass′

(

cass′ + γ

β
log pass′

)

− γ 2

β

∑

s′∈S
pass′ log

∑

a′∈A
exp

{

−β

γ
�β (s′, a′)

}

.

(12)

To solve the above implicit equation, we show that the map T
in (12) is a contraction map and, therefore, �β can be obtained
using fixed-point iterations, which guarantee converging to
the unique fixed point. Consequently, the global minimum V∗

β

in (11) and the optimal policy μ∗
β in (9) can be obtained.

Theorem 2: The map [T�β ](s, a) as defined in (12) is a
contraction mapping with respect to a weighted maximum
norm, that is, ∃ a vector ξ = (ξs) ∈ R

|S| with ξs > 0 ∀ s ∈ S
and a scalar α < 1 such that

∥
∥
∥T�β − T�′

β

∥
∥
∥

ξ
≤ α

∥
∥
∥�β − �′

β

∥
∥
∥

ξ
(13)

where ‖�β‖ξ = maxs∈S,a∈A([|�β (s, a)|]/[ξs]).
Proof: Refer to Appendix B for details.
Remark 2: It is known from the sensitivity analysis [39]

that the value of the Lagrange parameter β in (7) is inversely
proportional to the constant J0 in (5). Thus, at small values
of β ≈ 0 (equivalently large J0), we are mainly maximizing
the Shannon entropy Hμ(s) and the resultant policy in (9)
encourages exploration along the paths of the MDP. As β

increases (J0 decreases), more and more weight is given to
the state value function Jμ(s) in (7) and the policy in (9) goes
from being exploratory to being exploitative. As β → ∞,
the exploration is completely eliminated and we converge to
a deterministic policy → μ∗ that minimizes Jμ(s) in (3).

Remark 3: We briefly draw readers’ attention to the value
function Y(s) = E[

∑∞
t=0 γ t(cutxtxt+1 + (1/β) log μut|xt )] consid-

ered in the ER methods [14]. Note that in Y(s) the discounting
γ t is multiplied to both the cost term cutxtxt+1 as well as the
entropy term (1/β) log μut|xt . However, in our MEP-based
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method, the Lagrangian Vμ
β (s) in (7) comprises of discount-

ing γ t only over the cost term cutxtxt+1 and not on the entropy
terms (1/β) log μut|xt and (1/β) log putxtxt+1 . Therefore, the pol-
icy in [14] does not satisfy MEP applied over the distribution
pμ; consequently their exploration along the paths is not as
unbiased as our algorithm.

C. Model-Free Reinforcement Learning Problems

In these problems, the cost function c(s, a, s′) and the
state-transition probability p(s′|s, a) are not known a priori;
however, at each discrete-time instant t, the agent takes an
action ut under a policy μ and the environment (underlying
stochastic process) results into an instantaneous cost cutxtxt+1

and the subsequently moves to the state xt+1 ∼ p(·|xt, ut).
Motivated by the iterative updates of the Q-learning algo-
rithm [2], we consider the following stochastic updates in our
Algorithm 1 to learn the state–action value function in our
methodology:

�t+1(xt, ut) = (1 − νt(xt, ut))�t(xt, ut)

+ νt(xt, ut)

[

cutxtxt+1
− γ 2

β
log

∑

a′∈A
exp

{−β

γ
�t(xt+1, a

′)
}]

(14)

with the stepsize parameter νt(xt, ut) ∈ (0, 1], and show that
under appropriate conditions on νt (as illustrated shortly), �t

will converge to the fixed point �̄∗
β of the implicit equation

�̄β (s, a) =
∑

s′∈S
pass′

(

cass′ − γ 2

β
log
∑

a′
exp

(−β

γ
�̄β (s′, a′)

))

=:
[
T̄�̄β

]
(s, a). (15)

The above equation comprises of a minor change from the
equation �β (s, a) = [T�β ](s, a) in (12). The latter has an
additional term γ /β

∑
s′ p

a
ss′ log pass′ which makes it difficult

to learn its fixed point �∗
β in the absence of the state tran-

sition probability pass′ itself. Since in this work we do not
attempt to determine (or learn) either the distribution pass′ (as
in [42]) from the interactions of the agent with the envi-
ronment, we work with the approximate state–action value
function �̄β in (15) where �̄β → �β for large β values
[since γ

β
(
∑

s′ p
a
ss′ log pass′ ) → 0 as β → ∞]. The following

proposition elucidates the conditions under which the updates
�t in (14) converge to the fixed point �̄∗

β .
Proposition 1: Consider the class of MDPs illustrated in

Section III-A. Given that
∞∑

t=0

νt(s, a) = ∞,

∞∑

t=0

ν2
t (s, a) < ∞ ∀ s ∈ S, a ∈ A

the update �t(s, a) in (14) converges to the fixed point �̄∗
β of

the map T̄�̄β → �̄β in (15) with probability 1.
Proof: Refer to Appendix D.
Remark 4: Note that the stochasticity of the optimal policy

μ∗
β (a|s) (9) depends on γ value which allows it to incorporate

for the effect of the discount factor on its exploration strategy.
More precisely, in the case of large discount factors, the time
window T , in which instantaneous costs γ tc(st, at, st+1) are

Algorithm 1: Model-Free Reinforcement Learning

Input: N, νt(·, ·), σ ; Output: μ∗, �̄∗
Initialize: t = 0, �0 = 0, μ0(a|s) = 1/|A|.
for episode = 1 to N do

β = σ × epsiode; reset environment at state xt
while True do

sample ut ∼ μt(·|xt); obtain cost ct and xt+1
update �t(xt, ut), μt+1(ut|xt) in (14) and (9)
break if xt+1 = δ; t ← t + 1

considerable (i.e., γ tcatstst+1 > ε ∀ t ≤ T), is large and, thus,
the stochastic policy (9) performs higher exploration along
the paths. On the other hand, for small discount factors, this
time window T is relatively smaller and, thus, the stochastic
policy (9) inherently performs lesser exploration. As illustrated
in the simulations, this characteristic of the policy in (9) results
into even faster convergence rates in comparison to benchmark
algorithms as the discount factor γ decreases.

IV. MDPS WITH INFINITE SHANNON ENTROPY

Here, we consider the MDPs where the Shannon entropy
Hμ(s) of the distribution {pμ(ω|s)} over the paths ω ∈ �

is not necessarily finite (for instance, due to the absence of
the absorption state). To ensure the finiteness of the objective
in (5), we consider the discounted Shannon entropy [43], [44]

Hμ
d (s) = −E

[ ∞∑

t=0

αt
(

log μut|xt + log putxtxt+1

)∣
∣x0 = s

]

(16)

with a discount factor of α ∈ (0, 1) which we chose to be inde-
pendent of the discount factor γ in the value function Jμ(s).
The free-energy function (or, the Lagrangian) resulting from
the optimization problem in (5) with the alternate objective
function Hμ

d (s) in (16) is given by

Vμ
β,I(s) = E

[ ∞∑

t=0

γ tĉutxtxt+1
+ αt

β
log μ(ut|xt)

∣
∣x0 = s

]

(17)

where ĉutxtxt+1 = cutxtxt+1 + (γ t/βαt) log putxtxt+1 , and the subscript
I stands for the “infinite entropy” case. Note that the free-
energy functions (7) and (17) differ only with regards to the
discount factor α and, thus, our solution methodology in this
section is similar to the one in Section III-B.
Theorem 3: The free-energy function Vμ

β,I(s) in (17) satis-
fies the recursive Bellman equation

Vμ
β,I(s) =

∑

a,s′
μa|spass′

(

čass′ + γ

αβ
log μa|s + γVμ

β,I

(
s′
)
)

(18)

where čass′ = cass′ + γ /αβ log pass′ .
Proof: See Appendix C. The above derivation shows

and exploits the algebraic structure α
∑

s′ p
a
ss′H

μ
d (s′) =∑

s′ p
a
ss′ log pass′ + log αμ(a|s) + λs (Lemma 4).
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The optimal policy satisfies (∂Vμ
β,I(s))/(∂μ(a|s)) = 0, which

results into Gibb’s distribution

μ∗
β,I(a|s) =

exp
{
−βα

γ
�β (s, a)

}

∑
a′∈A exp

{
−βα

γ
�β (s, a′)

} , where (19)

�β (s, a) =
∑

s′∈S
pass′
(
čass′ + γV∗

β,I

(
s′
))

(20)

is the corresponding state–action value function. Substituting
the μ∗

β,I in (19) in the Bellman equation (18) results into the

following optimal free-energy function V∗
β,I(s)(:= V

μ∗
β,I

β,I (s)):

V∗
β,I(s) = − γ

αβ
log

∑

a′∈A
exp

(−αβ

γ
�β (s, a′)

)

. (21)

Remark 5: The subsequent steps to learn the optimal pol-
icy μ∗

β,I in (19) are similar to the steps demonstrated in
Section III-C. We forego the similar analysis here.
Remark 6: When α = γ the policy μ∗

β,I in (19), state–
action value function �β in (20), and the free-energy function
V∗

β,I in (21) corresponds to the similar expressions that are
obtained in the ER methods [14]. However, in this article, we
do not require that α = γ . On the other hand, we propose
that α should take up large values. In fact, our simulations
in Section VI demonstrate better convergence rates that are
obtained when γ < α = (1 − ε) as compared to when γ = α.

V. PARAMETERIZED MDPS

A. Problem Formulation

As stated in Section I, many application areas, such as small
cell networks (Fig. 1), pose a parmaterized MDP that requires
simultaneously determining the 1) optimal policy μ∗ and 2) the
unknown state and action parameters ζ = {ζs} and η = {ηa}
such that the state value function

Jμ
ζη(s) = Epμ

[ ∞∑

t=0

γ tc(xt(ζ ), ut(η), xt+1(ζ ))|x0 = s

]

(22)

is minimized ∀ s ∈ S, where xt(ζ ) denotes the state xt ∈ S
with the associated parameter ζxt and ut(η) denotes the action
ut ∈ A with the associated action parameter value ηut . As
in Section III-A, we assume that the parameterized MDPs
exhibit atleast one deterministic proper policy (Assumption 1)
to ensure the finiteness of the value function Jμ

ζη(s) and the
Shannon entropy Hμ(s) of the MDP for all μ ∈ �. We
further assume that the state-transition probability {pass′ } is
independent of the state and action parameters ζ, η.

B. Problem Solution

This problem was solved in Section III-B, where the states
and actions were not parameterized, or equivalently can be
viewed as if parameters ζ and η were known and fixed. For
the parameterized case, we apply the same solution methodol-
ogy, which results in the same optimal policy μ∗

β,ζη as in (9)
as well as the corresponding free-energy function V∗

β,ζη(s)
in (11) except that now they are characterized by the param-
eters ζ and η. To determine the optimal (local) parameters

ζ and η, we set
∑

s′∈S ([∂V∗
β,ζη(s′)]/[∂ζs]) = 0 ∀ s, and∑

s′∈S ([∂V∗
β,ζη(s′)]/[∂ηa]) = 0 ∀ a, which we implement by

using the gradient descent steps

ζ+
s = ζs − η

∑

s′∈S
Gβ

ζs

(
s′
)
, η+

a = ηa − η̄
∑

s′∈S
Gβ

ηa

(
s′
)
. (23)

Here, Gβ
ζs

(s′) := ([∂V∗
β,ζη(s′)]/[∂ζs]) and Gβ

ηa (s′) :=
([∂V∗

β,ζη(s′)]/[∂ηa]). The derivatives Gβ
ζs

and Gβ
ηa are assumed

to be bounded (see Proposition 2). We compute these
derivatives as Gβ

ζs
(s′) = ∑

a′ μa′|s′Kβ
ζs

(s′, a′) and Gβ
ηa (s′) =

∑
a′ μa′|s′Lβ

ηa (s′, a′) ∀ s′ ∈ S, where Kβ
ζs

(s′, a′) and Lβ
ηa (s′, a′)

are the fixed points of their corresponding Bellman equa-
tions Kβ

ζs
(s′, a′) = [T1K

β
ζs

](s, a) and Lβ
ηa (s′, a′) = [T2L

β
ηa ](s′, a′)

where

[
T1K

β
ζs

](
s′, a′) =

∑

s′′
pa

′
s′s′′

[
∂ca

′
s′s′′

∂ζs
+ γGβ

ζs

(
s′′
)
]

[
T2L

β
ηa

](
s′, a′) =

∑

s′′
pa

′
s′s′′

[
∂ca

′
s′s′′

∂ηa
+ γGβ

ηa

(
s′′
)
]

. (24)

Note that in the above equations we have suppressed the
dependence of the instantaneous cost function ca

′
s′s′′ on the

parameters ζ and η to avoid notational clutter.
Theorem 4: The operators [T1K

β
ζs

](s′, a′) and [T2L
β
ηa ](s′, a′)

defined in (24) are contraction maps with respect to a weighted
maximum norm ‖·‖ξ , where ‖X‖ξ = maxs′,a′ (X(s′, a′)/ξs′ ) and
ξ ∈ R

|S| is a vector of positive components ξs.
Proof: Refer to Appendix D for details.
As previously stated in Section I, the state value function

Jμ
ζη(·) in (22) is generally nonconvex function of the param-

eters ζ and η and riddled with multiple poor local minima
with the resulting optimization problem being possibly NP-
hard [27]. In our algorithm for parameterized MDPs we anneal
β from βmin to βmax, similar to our approach for nonpa-
rameterized MDPs in Section III-B, where the solution from
the current β iteration is used to initialize the subsequent β

iteration. However, in addition to facilitating a steady transition
from an exploratory policy to an exploitative policy, anneal-
ing facilitates a gradual homotopy from the convex negative
Shannon entropy function to the nonconvex state value func-
tion Jμ

ζη which prevents our algorithm from getting stuck in a
poor local minimum. The underlying idea of our heuristic is
to track the optimal as the initial convex function deforms to
the actual nonconvex cost. Also, minimizing the Lagrangian
V∗

β (s) at β = βmin ≈ 0 determines the global minimum thereby
making our algorithm insensitive to initialization. Algorithm 2
illustrates steps to determine policy and parameters for a
parameterized MDP.

C. Parameterized Reinforcement Learning

In many applications, formulated as parameterized MDPs,
the explicit knowledge of the cost function cass′ , its dependence
on the parameters ζ and η, and the state-transition probabil-
ities {pass′ } are not known. However, for each action a, the
environment results into an instantaneous cost based on its
current xt, next state xt+1 and the parameter ζ , η values which
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Algorithm 2: Parameterized Markov Decision Process

Input: βmin, βmax, τ ; Output: μ∗, ζ and η.
Initialize: β = βmin, μa|s = 1

|A| , and ζ, η to 0
while β ≤ βmax do

while True do
while until convergence do

update �β ,μβ ,Gβ
ζs

,Gβ
ηa in (10), (9) and (24)

update ζ, η in (23) if ‖Gζs‖, ‖Gηa‖ < ε, break
β ← τβ

can subsequently be used to simultaneously learn the policy
μ∗

β,ζη and the unknown state and action parameters ζ and η via
stochastic iterative updates. At each β iteration in our learning
algorithm, we employ the stochastic iterative updates in (14)
to determine the optimal policy μ∗

β,ζη for given ζ , η values
and subsequently employ the stochastic iterative updates

Kt+1
ζs

(xt, ut) = (1 − νt(xt, ut))K
t
ζs
(xt, ut)

+ νt(xt, ut)

[
∂cutxtxt+1

∂ζs
+ γGt

ζs
(xt+1)

]

(25)

where Gt
ζs

(xt+1) = ∑
a μa|xt+1K

t
ζs

(xt+1, a) to learn the deriva-

tive Gβ∗
ζs

(·). Similar updates are used to learn Gβ∗
ηa (·). The

parameter values ζ and η are then updated using the gradient
descent step in (23). The following proposition formalizes the
convergence of the updates in (25) to the fixed point Gβ∗

ζs
.

Proposition 2: For the class of parameterized MDPs con-
sidered in Section V-A given that:

1)
∑∞

t=0 νt(s, a) = ∞,
∑∞

t=0 ν2
t (s, a) < ∞ ∀s ∈ S, a ∈ A;

2) ∃ B > 0 such that
∣
∣
∣∂c(s′, a′, s′′)/∂ζs

∣
∣
∣ ≤ B ∀ s, s′, a′, s′′;

3) ∃ C > 0 such that
∣
∣
∣∂c(s′, a′, s′′)/∂ηa

∣
∣
∣ ≤ C ∀ a, s′, a′, s′′;

the updates in (25) converge to the unique fixed point Gβ∗
ζs

(s′)
of the map T1 : Gζs → Gζs in (24).
Proof: Refer to Appendix D for details.
Algorithmic Details: Refer to Algorithm 3 for a complete

implementation. Unlike the scenario in Section III-C where the
agent acts upon the environment by taking an action ut ∈ A
and learns only the policy μ∗, here the agent interacts with the
environment by 1) taking an action ut ∈ A and also provid-
ing 2) estimated parameter ζ , η values to the environment;
subsequently, the environment results into an instantaneous
cost and the next state. In our Algorithm 3, we first learn the
policy μ∗

β at a given value of the parameters ζ and η using

the iterations (14) and then learn the fixed points Gβ∗
ζs

, Gβ∗
ζa

using the iterations in (25) to update the parameters ζ and η

using (23). Note that the iterations (25) require the derivatives
∂c(s′, a′, s′′)/∂ζs and ∂c(s′, a′, s′′)/∂ηa which we determine
using the instantaneous costs resulting from two ε-distinct
environments and finite difference method. Here, the ε-distinct
environments represent the same underlying MDP but are dis-
tinct only in one of the parameter values. However, if two
ε-distinct environments are not feasible one can work with

Algorithm 3: Parameterized Reinforcement Learning

Input: βmin, βmax, τ , T , νt; Output: μ∗, ζ , η

Initialize: β = βmin, μt = 1
|A| , and ζ, η,Gβ

ζ ,Gβ
η , Kβ

ζ ,Lβ
η ,

�̄β to 0.
while β ≤ βmax do

Use Algorithm 1 to obtain μ∗
β,ζη at given ζ , η, β.

Consider env1(ζ ,η), env2(ζ ′, η′); set ζ ′ = ζ , η′ = η

while {ζs}, {ηa} converge do
for ∀s ∈ S do

for episode = 1 to T do
reset env1, env2 at state xt,
while True do

sample action ut ∼ μ∗(·|xt).
env1: obtain ct, xt+1.
env2: set ζ ′

s = ζs + �ζs, get c′
t, xt+1.

find Gt+1
ζs

(xt) with
∂cutxtxt+1

∂ζs
≈ c′t−ct

�ζs
.

break if xt+1 = δ; t ← t + 1.

Similarly learn Gβ
ηa . Update {ζs}, {ηa} in (23).

β ← τβ

a single environment where the algorithm stores the instanta-
neous costs and the corresponding parameter values upon each
interaction with the environment.
Remark 7: Parameterized MDPs with infinite Shannon

entropy Hμ can be analogously addressed using the above
methodology.
Remark 8: The MDPs addressed in Sections III–V consider

different variants of the discounted infinite horizon problems.
MDPs in Section III address the class of sequential problems
that have a nonzero probability of reaching a cost-free ter-
mination state (i.e., a finite Shannon entropy value). MDPs
considered in Section IV need not reach a termination state
(possibly infinite value of Shannon entropy), and the under-
lying sequential decision problem continues for the length of
horizon determined by the discounting factor γ . Parameterized
MDPs in Section V can have finite or infinite Shannon entropy,
but they comprise of states and actions that have an unknown
parameter associated to them.

VI. SIMULATIONS

We broadly classify our simulations into two categories.
First, in the model-free RL setting, we demonstrate our
Algorithm 1 to determine the control policy μ∗ for the finite
and infinite Shannon entropy variants of the Gridworld envi-
ronment in Fig. 2. Each cell in the Gridworld denotes a state.
The cells colored black are invalid states. An agent can choose
to move vertically, horizontaly, diagonally, or stay at the cur-
rent cell. Each action is followed by a probability to slip in
the neighboring states [probability of 0.05 to slip in each
of the vertical and horizontal directions, and probability of
0.025 to slip in each of the diagonal directions—cumulative
p(slip) ≈ 0.3]. For the finite entropy case, each step incurs a
unit cost. The process terminates when the agent reaches the
terminal state T. For the infinite entropy case, each step incurs
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Fig. 2. Gridworld environment.

a unit reward. Second, in the parameterized MDPs and RL set-
ting, we demonstrate our Algorithms 2 and 3 in designing a
5G small cell network. This involves simultaneously determin-
ing the locations of the small cells in the network as well as
the optimal routing path of the communication packets from
the base station to the users.

We compare our MEP-based Algorithm 1 with the bench-
mark algorithms ER G-learning (also referred to as Soft
Q-learning) [14], Q-learning [5], and Double Q-learning [13].
Note that our choice of the benchmark algorithm G-learning
(or, ER Soft Q presented in [14]) is based on its common-
ality to our framework as discussed in Section III-B, and
the choice of algorithms Q-learning and Double Q-learning
is based on their widespread utility in the literature. Also,
note that the work done in [14] already establishes the effi-
cacy of the G-learning algorithm over the following algorithms
in literature Q-learning, Double Q-learning, �-learning [45],
Speedy Q-learning [46], and the consistent Bellman Operator
TC of [47]. Below, we highlight features and advantages of
our MEP-based Algorithm 1.
Faster Convergence to Optimal J∗: Fig. 3(a1)–(a3) (finite

entropy variant of Gridworld) and Fig. 3(b1)–(b3) (infinite
entropy variant of Gridworld) illustrate the faster convergence
of our MEP-based Algorithm 1 for different discount factor
γ values. Here, at each episode, the percentage error �V/J∗
between the value function Vμ

β corresponding to the learned
policy μ = μ(ep) in the episode ep, and the optimal value
function J∗ is given by

�V(ep)

J∗ = 1

N

N∑

i=1

∑

s∈S

∣
∣Vμ(ep)

β,i (s) − J∗(s)
∣
∣

J∗(s)
(26)

where N denotes the total experimental runs and i indexes
the value function Vμ

β,i for each run. As observed in
Fig. 3(a1)–(a3), and (b1)–(b3), our Algorithm 1 converges
even faster as the discount factor γ decreases. We characterize
the faster convergence rates also in terms of the convergence
time—more precisely the percentage Ēpr of total episodes
taken for the learning error �V/J∗ to reach within 5% of the
best [see Fig. 3(a4) and (b4)]. As is observed in the figures,
the performance of our (MEP-based) algorithm in comparison
to ER G learning is better across all values (0.65–0.95) of
discount factor γ . Note that the performance of Algorithm 1
obtains even better with decreasing γ values where the smaller
discount factor values occur in instances such as the context of

recommendation systems [48], and teaching RL-agents using
human-generated rewards [49].
Robustness to Noise in Data: Fig. 3(c1)–(c4) demonstrate

robustness to noisy environments; here, the instantaneous cost
c(s, a, s′) in the finite horizon variant of Gridworld is noisy.
For the purpose of simulations, we add the Gaussian noise
N (0, σ 2) with σ = 1 for vertical and horizontal actions, and
σ = 0.5 for diagonal movements. Here, at each episode, we
compare the percentage error �V/J∗ in the learned value
functions Vβ [corresponding to the state–action value estimate
in (14)] of the respective algorithms. Similar to our obser-
vations and conclusions in Fig. 3(a1)–(a3) and (b1)–(b3), we
see faster convergence of our MEP-based algorithm over the
benchmark algorithms in Fig. 3(c1)–(c3) in the case of the
noisy environment. Also, Fig. 3(c4) demonstrates that across
all discount factor values (0.65–0.95), Algorithm 1 converges
faster than the ER Soft Q learning.
Simultaneously Determining the Unknown Parameters and

Policy in Parameterized MDPs: We design the 5G small cell
network (see Fig. 1) both when the underlying model (cass′ and
pass′ ) is known (using Algorithm 2) and as well as unknown
(using Algorithm 3). In our simulations, we randomly dis-
tribute 46 user nodes {ni} at {xi} and the base station δ at z
in the domain � ⊂ R

2 as shown in Fig. 4(a). The objective
is to determine the locations {yj}5

j=1 (parameters) of the small
cells {fj}5

j=1 and determine the corresponding communication
routes (policy). Here, the state space of the underlying MDP is
S = {n1, . . . , n46, f1, . . . , f5} where the locations y1, . . . , y5 of
the small cells are the unknown parameters {ζs} of the MDP,
the action space is A = {f1, . . . , f5}, and the cost function
c(s, a, s′) = ‖ρ(s)−ρ(s′)‖2

2 where ρ(·) denotes the spatial loca-
tion of the respective states. The objective is to simultaneously
determine the parameters (unknown small cell locations) and
the control policy (communication routes in the 5G network).
We consider two cases where 1) pass′ is deterministic, that is,
an action a at the state s results into s′ = a with probability
1 and 2) pass′ is probabilistic such that action a at the state s
results into s′ = a with probability 0.9 or to the state s′ = f1
with probability 0.1. In addition, due to the absence of prior
work in the literature on network design problems modeled as
parameterized MDPs, we compare our results only with the
solution resulting from a straightforward sequential methodol-
ogy [as shown in Fig. 4(a)] where we first partition the user
nodes into five distinct clusters to allocate a small cell in each
cluster, and then determine optimal routes in the network.
Deterministic p(s, a, s′): Fig. 4(b) illustrates the alloca-

tion of small cells and the corresponding communication
routes (resulting from optimal policy μ∗) as determined by
Algorithm 2. Here, the network is designed to minimize the
cumulative cost of communication from each user node and
small cell. As denoted in the figure, the route δ → y3 →
y4 → y1 → ni carries the communication packet from the
base station δ to the respective user nodes ni as indicated by
the gray arrow from y1. The cost incurred here is approxi-
mately 180% lesser than that in Fig. 4(a) clearly indicating
the advantage obtained from simultaneously determining the
parameters and policy over a sequential methodology. In the
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Fig. 3. Performance of the MEP-based algorithm. Illustrations on the Gridworld environment in Fig. 2. (a1)–(a3) Finite Entropy Variant: Illustrates faster
convergence of Algorithm 1 (MEP) at different γ values. (a4) Demonstrates faster rates of convergence of Algorithm 1 (MEP) for γ values ranging from 0.65
to 0.95. (b1)–(b3) Infinite Entropy Variant: Demonstrates faster convergence of Algorithm 1 (MEP) to J∗. (b4) Illustrates the consistent faster convergence
rates of MEP with γ ranging from 0.65 to 0.95. (c1)–(c4) Finite Entropy Version (with added Gaussian noise): Similar observations as in (a1)–(a4) with
significantly higher instability in learning with the Double Q algorithm.

Fig. 4. Parameterized MDPs and RL—design of 5G small cell network. State space S = {{ni}, {fj}, δ} comprises of the user nodes {ni}, small cells {fj},
and base station δ. The unknown parameters ζs denote the locations {yj} of the small cells. Action space comprises of the small cells A = {fj}. Based
on our modeling of the network, there are no unknown action parameters {ηa}. (a) Small cell locations {yj} and communication routes determined using a
straightforward sequential methodology. (b) and (c) Small cells at {yj} and communication routes (as illustrated by arrows) resulting from policy obtained
from Algorithm 2 (model-based) and Algorithm 3 (model-free), respectively, when the pass′ is deterministic. (d) and (e) Solutions obtained using Algorithms 2
and 3, respectively, when pass′ is probabilistic. (f) Sensitivity analysis of the solutions with respect to user node locations {xi}. (g) and (h) Network design
obtained when considering the entropy of the distribution over the control actions and paths of the MDP, respectively. (i) Network design obtained without
annealing in Algorithm 2. (j) Simulation on a larger dataset (user base increased by more than ten times).

model-free RL setting where the functions c(s, a), pass′ , and
the locations {xi} of the user nodes {ni} are not known, we
employ our Algorithm 3 to determine the small cell locations
{yj}5

j=1 as well as the optimal policy {μ∗(a|s)} as demon-
strated in Fig. 4(c). It is evident from Fig. 4(b) and (c) that
the solutions obtained when the model is completely known
and unknown are approximately the same. In fact, the solu-
tions obtained differ only by 1.9% in terms of the total cost∑

s∈S Jμ
ζη(s) (22) incurred, clearly indicating the efficacy of

our model-free learning Algorithm 3.

Probabilistic p(s, a, s′): Fig. 4(d) illustrates the solution as
obtained by our Algorithm 2 when the underlying model
(c(s, a), pass′ , and {xi}) is known. As before, here the network
is designed to minimize the cumulative cost of communication
from each user node and small cell. The cost associated to the
network design is approximately 127% lesser than in Fig. 4(a).
Fig. 4(e) illustrates the solution as obtained by Algorithm 3
for the model-free case [c(s, a), pass′ , and {xi} are unknown].
Similar to the above scenario, the solutions obtained for this
case using Algorithms 2 and 3 are also approximately the same
and differ only by 0.3% in terms of the total cost

∑
s J

μ
ζη(s)
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incurred; thereby, substantiating the efficacy of our proposed
model-free learning Algorithm 3.
Sensitivity Analysis: Our algorithms enable categorizing

the user nodes {ni} in Fig. 4(b) into the categories of 1) low;
2) medium; and 3) high sensitiveness such that the final solu-
tion is least susceptible to the user nodes in 1) and most
susceptible to the nodes in 3). Note that the above sensitivity
analysis requires to compute the derivative

∑
s′ ∂V

μ
β (s′)/∂ζs,

and we determine it by solving for the fixed point of the
Bellman equation in (24). The derivative

∑
s′ ∂V

μ
β (s′)/∂ζs

computed at β → ∞ is a measure of sensitivity of the solu-
tion to the cost function

∑
s J

μ
ζη(s) in (22) since Vμ

β in (11) is
a smooth approximation of Jμ

ζη(s) in (22) and Vμ
β → Jμ

ζη(s) as
β → ∞. A similar analysis for Fig. 4(c)–(e) can be done if the
locations {xi} of the user nodes {ni} are known to the agent.
The sensitivity of the final solution to the locations {yj}, z of
the small cells and the base station can also be determined in
a similar manner.
Entropy Over Paths Versus Entropy of the Policy: We

demonstrate the benefit of maximizing the entropy of the dis-
tribution {pμ(ω|s)} over the paths of an MDP as compared to
the distribution {μ(a|s)} over the control actions. Fig. 4(g)
demonstrates the 5G network obtained by considering the
distribution over the control policy, and Fig. 4(h) illustrates
the network obtained by considering the distribution over the
entire paths. The network cost incurred in Fig. 4(h) is 5% less
than the cost incurred in Fig. 4(g). Here, we have considered
the above demonstrated probabilistic pass′ scenario and mini-
mized the cumulative communication cost incurred only from
the user nodes.
Avoiding Poor Local Minima and Large-Scale Setups: As

noted in Section V-B, annealing β from a small value βmin(≈ 0)
to a large value βmax prevents the algorithm from getting stuck
at a poor local minima. Fig. 4(i) demonstrates the network
design obtained where Algorithm 2 does not anneal β, and
iteratively solves the optimization problem at β = βmax. The
resulting network incurs a 11% higher cost in comparison to
the network obtained in 4(h) where Algorithm 2 anneals β from
a small to a large value. Fig. 4(j) demonstrates the 5G network
design obtained using Algorithm 2 when the user nodes are
increased by around 12 times (610), and the allocated small
cells are doubled to 10.

VII. ANALYSIS AND DISCUSSION

1) Mutual Information Minimization: The optimization
problem (5) maximizes the Shannon entropy Hμ(s) under a
given constraint on the value function Jμ. We can similarly
pose and solve the mutual information minimization problem
that requires to determine the distribution pμ∗ (P|s) (with con-
trol policy μ∗) over the paths of the MDP that is close to some
given prior distribution q(P|s) [15], [16]. Here, the objec-
tive is to minimize the KL-divergence DKL(pμ‖q)) under the
constraint J = J0 [as in (5)].

2) Nondependence on Choice of J0 in (5): In our frame-
work, we do not explicitly determine and work with the value
of J0. Instead we work with the Lagrange parameter β in
the Lagrangian Vμ

β (s) in (7) corresponding to the optimization

problem (5). It is known from the sensitivity analysis [6] that
the small values of β correspond to the large values of J0,
and the large values of β correspond to the small values of J0.
Thus, in our algorithms, we solve the optimization problem (5)
beginning at small values of β = βmin ≈ 0 (that corresponds
to some feasible large J0), and anneal it to a large value βmax
(that corresponds to a small J0 value) at which the stochastic
policy μ in (9) converges to either 0 or 1. Also at β ≈ 0,
the stochastic policy μ∗

β in (9) follows a uniform distribution,
which implicitly fixes the value of J0. Therefore, the initial
value of J0 in the proposed algorithms is fixed and is not
required to be prespecified.

3) Computational Complexity: Our MEP-based
Algorithm 1 performs exactly the same number of compu-
tations as the Soft Q-learning algorithm [14] for each epoch
(or, iteration) within an episode. In comparison to the Q
and Double Q learning algorithms, our proposed algorithm,
apart from performing the additional minor computations of
explicitly determining μ∗ in (9), exhibits a similar number of
computational steps.

4) Scheduling β and Phase Transition: In our Algorithm 1,
we follow a linear schedule βk = σk (σ > 0) as suggested
in the benchmark algorithm [14] to anneal the parameter β.
In the case of parameterized MDPs (Algorithms 2 and 3), we
geometrically anneal β (i.e., βk+1 = τβk, τ > 1) from a small
value βmin to a large value βmax at which the control policy μ∗

β

converges to either 0 or 1. Several other MEP-based algorithms
(that address problems akin to parameterized MDPs) such as
deterministic annealing [7], incorporate geometric annealing
of β. The underlying idea in [7] is that the solution undergoes
significant changes only at certain critical βcr (phase transi-
tion) and shows insignificant changes between two consecutive
critical βcrs. Thus, for all practical purposes, geometric anneal-
ing of β works well. Similar to [7], our Algorithms 2 and 3
also undergo the phase transition and we are working on its
analytical expression.

5) Capacity and Exclusion Constraints: Certain parameter-
ized MDPs may pose capacity or dynamical constraints over
its parameters. For instance, each small cell fj allocated in
Fig. 4 can be constrained in capacity to cater to maximum cj
fraction of user nodes in the network. Our framework allows to
model such a constraint as qμ(fj) :=∑a,ni μ(a|ni)p(fj|a, ni) ≤
cj where qμ(fj) measures the fraction of user nodes {ni} that
connect to fj. In another scenario, the locations {xi} of the user
nodes could be dynamically varying as ẋi = f (x, t). The result-
ing policy μ∗

β and small cells {yj} will also be time varying.
We treat the free-energy function Vμ

β in (11) as a control-
Lyapunov function and determine time varying μ∗

β and {yj}
such that V̇μ

β ≤ 0.

6) Uncertainty in Parameters: Many application areas
comprise of states and actions where the associated param-
eters are uncertain with a known distribution over the set of
their possible values. For instance, a user nodes ni in Fig. 4
may have an associated uncertainty in its location xi due to
measurement errors. Our proposed framework easily incorpo-
rates such uncertainties in parameter values. For example, the
above uncertainty will result into replacing c(ni, s′, a) with

Authorized licensed use limited to: University of Illinois. Downloaded on December 22,2022 at 04:39:52 UTC from IEEE Xplore.  Restrictions apply. 



SRIVASTAVA AND SALAPAKA: PARAMETERIZED MDPs AND REINFORCEMENT LEARNING PROBLEMS—MEP-BASED FRAMEWORK 9349

c′(ni, s′, a) = ∑
xi∈Xi p(xi|ni)c(ni, s′, a) where p(xi|ni) is the

distribution over the set Xi of location xi. The subsequent
solution approach remains the same as in Section V-B.

APPENDIX A
PROOF OF LEMMA 1

Let x̄0 = s. By Assumption 1 ∃ a path ω =
(ū0, x̄1, . . . , x̄N = δ) such that pμ̄(ω|x0 = s) > 0 which implies
p(xk+1 = x̄k+1|xk = x̄k, uk = ūk) > 0 by (6). Then, the prob-
ability pμ(ω|x0 = s) of taking path ω under the stochastic
policy μ ∈ � in (4) is also positive.

Proof of Theorem 1: The following lemma is needed.
Lemma 2: The Shannon entropy Hμ(·) corresponding to

the MDP illustrated in Section III-A satisfies the algebraic
expression

∑
s′ p

a
ss′H

μ(s′) =∑s′ p
a
ss′ log pass′ + log μa|s + λs.

Proof: Hμ(·) in (5) satisfies the recursive Bellman equation

Hμ
(
s′
) =

∑

a′s′′
μa′|s′pa

′
s′s′′
[
− log pa

′
s′s′′ − log μa′|s′ + Hμ

(
s′′
)]

.

On the right-hand side of the above Bellman equation, we
subtract a zero term

∑
s λs(

∑
a μa|s − 1) that accounts for

normalization constraint
∑

a μa|s = 1 ∀ s and λs are some
constants. Taking the derivative of the resulting expression,
we obtain

∂Hμ
(
s′
)

∂μa|s
= ρ(s, a)δss′ +

∑

a′,s′′
μa′|s′pa

′
s′s′′

∂Hμ
(
s′′
)

∂μa|s
− λs (27)

where ρ(s, a) = −∑s′′ p
a
ss′′ (log pass′′ −Hμ(s′′)) − log μa|s. The

subsequent steps in the proof involve algebraic manipulations
and makes use of the quantity pμ(s′) := ∑

s pμ(s′|s) where
pμ(s′|s) = ∑

a p
a
ss′μa|s. Under the trivial assumption that for

each state s′ there exists a state–action pair (s, a) such that
the probability of the system to enter the state s′ upon taking
action a in the state s is nonzero [i.e., pass′ > 0] we have that
pμ(s′) > 0. Now, we multiply (27) by pμ(s′) and add over all
s′ ∈ S to obtain

∑

s′
pμ

(
s′
)∂Hμ

(
s′
)

∂μa|s
= pμ

(
s′
)
ρ(s, a) +

∑

s′′
pμ

(
s′′
)∂Hμ

(
s′′
)

∂μa|s
− λs

where pμ(s′′) = ∑
s′ pμ(s′)pμ(s′′|s′). The derivative terms on

both sides cancel to give pμ(s′)ρ(s, a) −λs = 0 which implies∑
s′ p

a
ss′H

μ(s′) =∑s′ p
a
ss′ log pass′ + log μa|s + λs.

Now consider the free energy function Vμ
β (s) in (7) and

separate out the t = 0 term in its infinite summation to obtain

Vμ
β (s) =

∑

a,s′
μa|spass′

[

ĉass′ + 1

β
log μa|s + γVμ

γβ

(
s′
)
]

(28)

where ĉass′ = cass′ + 1/β log pass′ and Vμ
γβ (s′) = Vμ

β (s′) −
1 − γ /γβH(s′). Substituting Vγβ (s′) and the algebraic expres-
sion obtained in Lemma 2 in (28), we obtain

Vμ
β (s) =

∑

a,s′
μa|spass′

[

c̄ass′ + γ

β
log μa|s + γVμ

β

(
s′
)
]

.

APPENDIX B
PROOF OF THEOREM 2

The following lemma is used.
Lemma 3: For every policy μ ∈ � defined in (4) there

exists a vector ξ = (ξs) ∈ R
|S|
+ with positive components

and a scalar λ < 1 such that
∑

s′ p
a
ss′ξs′ ≤ λξs for all s ∈ S

and a ∈ A.
Proof: Consider a new MDP with state transition proba-

bilities similar to the original MDP and the transition costs
cass′ = −1−1/β log(|A||S|) except when s = δ. Thus, the free-
energy function Vμ

β (s) in (7) for the new MDP is less than or
equal to −1. We define −ξs � V∗

β (s) [as given in 11)] and use
LogSumExp [50] inequality to obtain −ξs ≤ mina �β (s, a) ≤
�β (s, a) ∀ a ∈ A where �β (s, a) is the state action value func-
tion in (12). Thus, −ξs ≤∑s′ p

a
ss′
(
cass′+γ /β log pass′−γ ξs′

)
and

upon substituting cass′ we obtain −ξs ≤ −1 − γ
∑

s′ p
a
ss′ξs′ ≤

−1 −∑s′ p
a
ss′ξs′

⇒
∑

s′∈S
pass′ξs′ ≤ ξs − 1 ≤

[

max
s

ξs − 1

ξs

]

ξs =: λξs.

Since V∗
β (s) ≤ −1 ⇒ ξs − 1 ≥ 0 and thus λ < 1.

Next, we show that T : �β → �β in (12) is a contraction
map. For any �̂β and �̌β , we have that [T�̂β − T�̌β ](s, a)

= −γ 2

β

∑

s′∈S
pass′ log

∑
a exp

(
− β

γ
�̂β

(
s′, a

))

∑
a′ exp

(
− β

γ
�̌β(s′, a′)

)

≥ γ
∑

s′,a′
pass′μ̂a′|s′

(
�̂β

(
s′, a′)− �̌β

(
s′, a′)) =: γ�μ̂ (29)

where we use the Log sum inequality to obtain (29),
and μ̂a|s is the stochastic policy in (9) corresponding
to �̂β (s, a). Similarly, we obtain [T�̌β − T�̂β ](s, a) ≥
−γ

∑
s′,a′ pass′μ̌a′|s′ (�̂β (s′, a′) − �̌β (s′, a′)) =: −γ�μ̌ where

μ̌a|s is the policy in (9) corresponding to �̌β (s, a). Now,
from γ�μ̂ ≤ [T�̂β − T�̌β ](s, a) ≤ γ�μ̌, we conclude
that |[T�̂β − T�̌β ](s, a)| ≤ γ�μ̄(s, a) where �μ̄(s, a) =
max{|�μ̂(s, a)|, |�μ̌(s, a)|} and we have |[T�̂β − T�̌β ](s, a)|

≤ γ
∑

s′,a′
pass′μ̄a′|s′ |�̂β

(
s′, a′)− �̌β

(
s′, a′)| (30)

≤ γ
∑

s′,a′
pass′ξs′μ̄a′|s′

∥
∥
∥�̂β − �̌β

∥
∥
∥

ξ
(31)

where ‖�β‖ξ = maxs,a(�β (s, a)/ξs) and ξ ∈ R
S is as given

in Lemma 3. Further, from the same lemma, we obtain
∣
∣
∣
[
T�̂β − T�̌β

]
(s, a)

∣
∣
∣ ≤ γ λξs

∑

a′∈A
μ̄a′|s′

∥
∥
∥�̂β − �̌β

∥
∥
∥

ξ
(32)

⇒
∥
∥
∥T�̂β − T�̌β

∥
∥
∥

ξ
≤ γ λ

∥
∥
∥�̂β − �̌β

∥
∥
∥

ξ
with γ λ < 1. (33)

APPENDIX C
PROOF OF THEOREM 3

The proof follows the similar idea as the proof for
Theorem 1 in Appendix A and, thus, we do not explain it in
detail except the following lemma that illustrates the algebraic
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structure of the discounted Shannon entropy Hμ
d (·) in (16)

which is different from that in Lemma 2 and also required
in our proof of the said theorem.
Lemma 4: The discounted Shannon entropy Hμ

d (·) corre-
sponding to the MDP in Section IV satisfies the algebraic
term α

∑
s′ p

a
ss′H

μ
d (s′) =∑s′ p

a
ss′ log pass′ + log αμ(a|s) + λs.

Proof: Define a new MDP that augments the action and state
spaces (A,S) of the original MDP with an additional action
ae and state se, respectively, and derives its state-transition
probability {qass′ } and policy {ζa|s} from original MDP as

qass′ =

⎧
⎪⎪⎨

⎪⎪⎩

pass′ ∀s, s′ ∈ S, a ∈ A
1, if s′, a = se, ae
1, if s′ = s = se
0, otherwise

ζa|s =

⎧
⎪⎨

⎪⎩

αμa|s ∀(s, a) ∈ (S,A)
1 − α, if a = ae, s ∈ S
0, if a ∈ A, s = se
1, if a = ae, s = se.

Next, we define Tμ := αHμ
d that satisfies

Tμ(s′) =∑a′s′′ ηa′|s′pa
′

s′s′′ [−log pas′s′′ − log ηa′|s′ + Tμ(s′′)] der-
ived using (16) where ηa′|s′ = αμa′|s′ . The subsequent steps
of the proof are same as the proof of Lemma 2.

APPENDIX D
PROOF OF PROPOSITION 1

The proof in this section is analogous to the proof
of [2, Proposition 5.5]. Let T̄ be the map in (15).
The stochastic iterative updates in (14) can be rewrit-
ten as �̄t+1(xt, ut) = (1 − νt(xt, ut))�̄t(xt, ut) +
νt(xt, ut)

(
[T̄�̄t](xt, ut) + wt(xt, ut)

)
where wt(xt, ut) =

cutxtxt+1 − γ 2/β log
∑

a exp(−β/γ �̄t(st+1, a)) − T̄�̄t(xt, ut).
Let Ft represent the history of the stochastic updates,
that is, Ft = {�̄0, . . . , �̄t,w0, . . . ,wt−1, ν0, . . . , νt},
then E[wt(xt, ut)|Ft] = 0 and E[w2

t (xt, ut)|Ft] ≤
K(1 + maxs,a �̄2

t (s, a)), where K is a constant. These
expressions satisfy the conditions on the expected value and
the variance of wt(xt, ut) that along with the contraction
property of T̄ guarantees the convergence of the stochastic
updates (14) as illustrated in [2, Proposition 4.4].
Proof of Theorem 4: We show that the map T1 in (24) is a

contraction map. For any Kβ
ζs

and K̄β
ζs

, we obtain that |[T1K
β
ζs

−
T1K̄

β
ζs

](s′)| ≤ γ
∑

a,s′′ p
a
s′s′′μa|s′ |Kβ

ζs
(s′′, a) − K̄β

ζs
(s′′, a)|. Note

that this inequality is similar to the one in (30); thus, we follow
the exact same steps from (30)–(33) to show that ‖T1K

β
ζs

−
T1K̄

β
ζs
‖ξ ≤ γ λ‖Kβ

ζs
− K̄β

ζs
‖ξ and γ λ < 1.

Proof of Proposition 2: The proof in this section is similar
to the proof of Proposition 1 in Appendix D. Additional con-
ditions on the boundedness of the derivatives

∣
∣∂cass′/∂ζl

∣
∣ and∣

∣∂cass′/∂ηk
∣
∣ are required to bound the variance E[w2

t |Ft].
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