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Human spatial learning strategies in wormhole virtual 
environments
Christopher Widdowsona and Ranxiao Frances Wanga,b

aDepartment of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, USA; bBeckman 
Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA

ABSTRACT
Humans can learn spatial information through navigation in the 
environment. The nature of these spatial representations is 
constantly debated, including whether they conform to 
Euclidean geometry. The present study examined the types of 
Euclidean representations people may form while learning vir
tual wormhole mazes. Participants explored Euclidean or non- 
Euclidean tunnel mazes and drew maps of the landmark layout 
on a 2D canvas. The results showed that people have different, 
consistent strategies, some mainly preserving distance informa
tion while others mainly preserving turning angles. The straight
ness of the segments was mostly preserved. These results 
suggest that representations of non-Euclidean space may be 
highly variable across individuals, and possible Euclidean solu
tions need to be carefully examined before testing Euclidean vs 
alternative models.

KEYWORDS 
Spatial representation; 
Euclidean geometry; 
wormhole; cognitive map; 
virtual reality

1. Introduction

Spatial knowledge is central to the way in which humans perceive and reason 
about the physical world, and people develop a rich set of skills to learn the 
spatial environment. For example, people can recognize places, remember 
landmarks, recall past navigation experiences such as turns made at particular 
intersections, returning home using path integration, etc. Among these skills, 
the ability to construct a representation of the environment to guide flexible 
path planning (such as novel shortcuts) has often been considered the highest 
achievements of spatial cognition. However, the nature of such representa
tions has been the subject of constant debate (Bennett, 1996; Burgess, 2006; 
Gallistel, 1989; O’Keefe & Nadel, 1978; Shelton & McNamara, 2001; Tolman, 
1948; Wang, 2012, 2016; Wang & Spelke, 2002; Warren, 2019; Wehner & 
Menzel, 1990).

One of the main issues about these cognitive maps is whether they conform 
to Euclidean geometry, and finding experimental paradigms that can address 
this question has been very challenging. For example, some recent studies 
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provided evidence against the traditional Euclidean map hypothesis using the 
wormhole technique in Virtual Reality. In particular, Warren, Rothman, 
Schnapp and Ericson (2017) examined how people perform route and shortcut 
tasks in Euclidean vs Non-Euclidean environments with wormholes. 
Participants explored various locations in both Euclidean and non-Euclidean 
Virtual Environments (VEs). The non-Euclidean VEs contained wormholes 
which linked spatially distant parts of the environment via a teleportation 
mechanism. During the test phase, participants completed a route task and 
a shortcut task. In the route task, participants walked to a target location along 
corridors in the virtual maze. In the shortcut task, participants walked to 
a target location in a direct path after features of the environment were 
removed. Results showed comparable learning for both environments. 
Shortcuts for the non-Euclidean group were biased toward the wormhole 
location, which was taken as indicating a violation of the metric assumptions 
of positivity and triangle inequality. Moreover, shortcuts to multiple targets 
showed “folds,” i.e., ordinal reversals, which was again taken as evidence 
against the Euclidean map hypothesis.

There is a potential caveat in this approach, however. That is, given the non- 
Euclidean nature of the wormhole environment, it is not clear what the 
Euclidean map should look like. Without knowing how participants may 
interpret such an extraordinary space in a Euclidean fashion, it is not clear 
what the predictions of the Euclidean map hypothesis should be. For example, 
Figure 1(a) shows a simple maze with one wormhole in it (P-P’). According to 
Warren et al. (2017), the Euclidean map hypothesis should predict shortcut 
directions from H in the order of A, B, C, as indicated in the drawing of 
Figure 1(a). However, Figure 1(b) shows a possible mental representation of 
such a maze, which is not veridical but perfectly Euclidean. Such 
a representation could be derived if the recalibration process (Wang, 2016) 
or regularization process (Warren, 2019) of the path integration system 
attributes the discrepancy/error to mis-perception of the turning angles of 
segment ABC on the left and makes the adjustment by increasing/decreasing 
the angles to create a corrected representation (see Appendix for a detailed 
walk-through of how such a representation is constructed). This potential 
Euclidean map of the wormhole maze actually predicts shortcut directions in 
the order of A, C, B, which contains the same type of ordinal reversals 
observed in Warren et al. (2017). This example shows that different 
Euclidean interpretations of the wormhole mazes can make drastically differ
ent predictions of the spatial judgment tasks, and rips and folds themselves do 
not necessarily disprove the Euclidean map hypothesis.

The lack of unique Euclidean solution to represent a non-Euclidean envir
onment also lies in the fact that for a given virtual maze, the position and 
number of wormholes cannot be defined uniquely in the inertial reference 
frame. Figures 1(c,d) show two design blueprints (i.e., the spatial model the 
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programmer uses to create the wormhole maze in virtual reality) of the same 
virtual maze, with drastically different target locations in the inertial reference 
frame. That is, if one cuts off a piece of the maze at one end of a wormhole 
(e.g., the small segment containing target A at the left side of wormhole W), 
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Figure 1. An example of a Euclidean map for a wormhole environment that contains folds (panels 
a & b), and an example of two isomorphic design blueprints for the same virtual wormhole maze 
with different shortcut directions in the inertial reference frame (panels c & d). Panel (a) shows 
a wormhole tunnel containing 5 segments. The navigators will be transported instantaneously to 
P’ when they reach P, and vice versa (wormhole effect). Using the coordinates of A, B, C, H in this 
inertia reference frame, the pointing directions from H to A, B, and C has the ordinal relationship of 
HA-HB-HC. Panel (b) shows a potential Euclidean representation people may construct (e.g., by 
someone prioritizing distance information) for the wormhole environment in panel (a) that 
preserves all the distance information while sacrificing the turning angles (see more discussion 
in the results section below about strategy and cognitive style). In this representation, the ordinal 
relationship is HA-HC-HB, which is a “fold” according to Warren et al. (2017). Therefore Euclidean 
representations can also produce rips and folds. Panels (c, d) are different design blueprints of the 
same wormhole environment. In both cases, the navigator is transported instantaneously across 
the wormhole (W or W’), resulting in identical navigation experience of a maze with three regular 
length legs and a shortened leg connected by 90° turns. Using the inertial coordinates in the 
design blueprints (i.e., positions on the paper), the directions of B from A are different, again 
suggesting wormhole environments don’t have unique Euclidean predictions.
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and attaches it to the other end to close it, one will remove the original 
wormhole (e.g., wormhole W) and create a new set of wormhole(s) (e.g., 
wormhole W’ in Figure 1(d)). The new design blueprint will generate exactly 
the same virtual environment as the original one, and an observer traveling in 
the maze will have no means to differentiate the two. In other words, the 
design blueprint is merely a convenient way for the programmer to construct 
a 3D model to generate the relevant computer graphics, and there are many 
design blueprints corresponding to a given virtual wormhole environment, 
each with different structure and target layout in the inertial reference frame.

The lack of unique design blueprint for a given wormhole environment 
means that the target positions in the inertial reference frame in a specific 
design blueprint the experimenter happens to choose are merely accidental 
and arbitrary, and calculations of the shortcut errors can be drastically differ
ent across different versions of the design blueprints. For example, the shortcut 
directions from Figure 1(c) are about 45 deg diagonal, while those from 
Figure 1(d) are about 15 deg from vertical, even though both should be 
considered the Euclidean map prediction according to Warren et al. (2017). 
This example shows that using the target coordinates in the inertial reference 
frame of a given design blueprint can be very misleading.

The difficulty in defining the Euclidean map for a non-Euclidean wormhole 
environment highlights the importance of understanding how people accom
modate conflicting/inconsistent perceptual information during spatial learn
ing in such environments. A few studies have examined the type of 
information preserved in human spatial learning of non-Euclidean space 
using virtual reality (VR) technology. For example, Kluss, Marsh, Zetzsche 
and Schill (2015; also see Zetzsche, Wolter, Galbraith, & Schill, 2009) had 
participants navigate in a rectangular or triangular tunnel maze that was either 
Euclidean or non-Euclidean (through portals) in nature. After exploration, 
participants reproduced the maze by walking along the learned paths around 
the tunnel maze. The results showed that people preserved the number of 
segments and the turning angle between segments. These results were taken as 
evidence that people do not need to convert the impossible VEs into 
a “possible” Euclidean format.

There are two potential limitations in these studies. One limitation is the 
reproduction task. It has been shown that people can remember and repro
duce motion profiles such as velocity/acceleration over time (Berthoz et al., 
1995). Therefore, it is possible that participants simply reproduced the motion 
sequences stored in the motor system, which is not a demonstration of the type 
of cognitive map representation examined here. The second limitation is that 
different types of spatial information (such as distance vs turning angles) were 
not examined in the same study, therefore it is difficult to know whether 
people simultaneously preserved both types of information or not.
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The present study aimed to further examine what types of potential 
Euclidean representations people may construct when learning non- 
Euclidean virtual environments using impossible spaces similar to those 
used in Kluss et al. (2015). Participants were tested across four VEs, three of 
which contained wormhole path segments, resulting in violations of Euclidean 
geometry. Participants’ spatial knowledge was assessed using a map-drawing 
task, wherein participants illustrated a configuration of landmarks to indicate 
the global shape of each environment. Basic geometric properties of the 
environment, such as distances, angles, and straightness were then derived 
for subsequent analysis to see what type of information is preserved and what 
is not when people have to produce a Euclidean map.

2. Methods

2.1. Participants

The experiment was conducted in the Virtual Reality and Spatial Cognition 
Lab in the Department of Psychology at the University of Illinois at 
Urbana-Champaign. A total of 29 participants completed the experiment. 
All participants were screened for color blindness using pseudoisochromatic 
color plates and had self-reported normal or corrected-to-normal visual 
acuity. All participants received course credit for their participation. This 
research complied with the American Psychological Association Code of 
Ethics and was approved by the Institutional Review Board at the 
University of Illinois at Urbana-Champaign. Informed consent was 
obtained from each participant.

2.2. Virtual environments (VE)

Four virtual environments were constructed using Hammer World Editor 
software from Valve Corporation (see Figure 2(a)). Each VE consisted of 
four hallways joined at orthogonal angles to form a closed loop populated by 
twelve landmarks including the four corners. The starting location was indi
cated by a checkered pattern and each subsequent corner was marked by 
a unique number, i.e., 01, 02, and 03, respectively. The remaining eight land
marks consisted of four colors (i.e., blue, red, yellow, or black) and four tiled 
patterns (i.e., vertical stripes, horizontal stripes, triangles, or circles) that 
marked the VE walls at arbitrary locations. Landmarks were positioned such 
that only two landmarks could appear between two corners. One environment 
formed a square shape (Euclidean space), while the other three contained 
a contracted or expanded path segment so that the overall shape of the 
environment violated the principles of Euclidean geometry. A portal was 
introduced between seams of the contracted or expanded path segment to 
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achieve this effect. For the contracted VE, one path segment was reduced by 
fifty percent of the original path length. For the two expanded VEs, one path 
segment was increased by fifty percent of the original path length. 
Additionally, the positions of two landmarks for the expanded path segment 
were manipulated across the two expanded VEs. This manipulation was done 
for a theoretical reason that is beyond the scope of the present paper and the 
two VEs were combined in the data analyses. Geometry in each VE used unlit 
shaders (i.e. no lighting or shading was present in the scene); however, the 
walls and ceiling were colored in contrast with the floor to indicate where 
surfaces met to form edges. Participants freely traversed each VE from a first- 
person perspective on a desktop computer using a keyboard and mouse. The 
player camera was controlled by a mouse and movement was controlled using 
the up, down, left, and right arrow keys.

2.3. Gardony Map Drawing Analyzer (GMDA)

The GMDA is a software that analyzes digital conversions of hand drawn 
sketch maps (Gardony, Taylor & Bruny, 2016). The interface consists of 
a 700 × 700 (pixel) canvas in which participants can drag-and-drop numbered 
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Figure 2. (a) Schematic depiction of the four VEs used in the experiment in clockwise order: 
Euclidean, contracted, expanded (v1), and expanded v2. The maps represent an overhead, 
perspective view of the mazes, and the bent portion of each landmark is on the inner vertical 
wall. Wormholes are indicated by red circles. An array of numbered tiles corresponding to the 
GMDA landmark list is placed next to each landmark in the Euclidean map for easier comparison to 
Figure 2(b). The number-landmark pairing was different for each environment. (b) a screen shot of 
a map drawing produced by one participant for the Euclidean environment, as an illustration of 
the user interface for the Gardony Map Drawing Analyzer (GMDA) depicting interactable num
bered tiles representing landmarks from the VE. Note the drawing was rotated 90° clockwise 
relative to the Euclidean map in Figure 2(a). Participants could place the tiles anywhere on the 
canvas.
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tiles into a configuration that represents the global shape of an environment 
(see Figure 2(b)). The software calculates pairwise landmark comparisons to 
estimate canonical and bidimensional regression coefficients, including 
Euclidean distance and angle information for each pair. For this study, only 
observed distance and observed angle were used for analysis.

2.4. Procedure

The experiment was divided into two repeating phases: a study phase and 
a test phase. During the study phase, participants were assigned to one of the 
four VEs in pseudo-random order. That is, the Euclidean maze was always 
tested first, while the three non-Euclidean mazes were tested in a random 
order. Participants were required to traverse the environment for at least 
three minutes prior to testing but were allowed additional time if requested. 
For the test phase, participants were asked to draw a map of the studied 
environment using the GMDA. To do this, participants dragged-and-dropped 
labeled markers into a configuration that best represented the environment 
that they experienced. This process was repeated until each participant had 
navigated and mapped all four VEs. The entire experiment lasted approxi
mately sixty minutes.

2.5. Data analysis

Three basic geometric properties of the environment were examined as 
the dependent measures, namely the angle, distance, and straightness of 
path segments depicted in the map-drawing task. The angle refers to the 
corner angles and is operationalized in terms of the angle formed by 
a corner landmark (a vertex) and its two flanking landmarks (the legs) 
(see Figure 3(b)). Four angle values were computed from the map draw
ings, one for each corner. The derived angle was then subtracted from 90° 
to calculate an error term (absolute error) for each corner. This measure 
was computed to quantify how much participants preserved the size of the 
turning angle of the virtual spaces they learned through navigation.

Distance information was operationalized in terms of the ratio of a path 
segment divided by the perimeter of the sketch map (hereafter referred to as 
normalized distance); the normalization was applied to equate sketch maps 
that would otherwise vary in scale, while preserving comparisons for relative 
segment length features. A path segment was defined as the sum of the sub- 
segments between landmarks that lie between two adjacent corners (i.e., the 
sum of the distance between 2–4, 4–8, 8–10 in Figure 3(c)). The perimeter was 
defined as the total distance between all landmarks that formed the boundary 
of the sketch map. Normalized distance was also computed for the four 
original maze maps to derive the correct distance ratio. The difference of the 
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normalized distance between the observed (drawing) and target maps was 
calculated as an error term for each of the four path segments. This measure 
was computed to characterize how much participants preserved the distance 
relations in the four learned environments.
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Figure 3. (a) a map of the contracted maze with corresponding landmark labels. (b) A sample 
drawing of the contracted maze (rotated 90° counter-clockwise relative to the map) illustrating the 
calculation of the angular error θ, which is the difference between the observed angle formed by 
a corner and its two adjacent landmarks (solid) and the actual turning angle (90°, dashed). The 
angular error was calculated for each corner and the four absolute errors were averaged as the 
mean angular error for each drawing. (c) illustration of the normalized distance calculation for 
a given segment as the path segment length (solid) divided by the perimeter (solid + dashed). The 
distance error is defined as the normalized distance for the drawing minus the normalized distance 
for the corresponding map. The distance error was calculated for each segment, and the four 
absolute errors were averaged as the mean distance error for each drawing. (d) an illustration of 
the straightness index calculation. Mean vector (thick shaded arrow) is derived from unit vectors 
between adjacent landmarks along a path segment (solid, dashed, and dotted lines). When the 
vectors are not aligned, as shown in the circle at the top, the mean vector is smaller than 1, and the 
segment is not straight. The more aligned the vectors, the larger the mean vector (up to 1), and the 
straighter the line is.
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Straightness was operationalized in terms of a mean vector derived from the 
direction between landmarks along a path segment (see Figure 3(d)). The 
magnitude of the mean vector is one type of measurements of angular disper
sion and ranges from 0 (uniform dispersion) to 1 (complete concentration in 
one direction) (Mahan, 1991). If the path segment is straight, then the 3 
direction vectors should be collinear, and the mean vector length should be 
1. Thus, as the value of the mean vector increases, a given path segment is said 
to be increasing in straightness, and vice versa. This measure was computed to 
quantify how much participants preserved the linearity/straightness of path 
segments in their map drawings.

3. Results

Data from each dependent measure were analyzed separately in a one-way 
repeated measures ANOVA with environment type as the factor. Significant 
results were followed up with post-hoc pairwise t-tests with Bonferroni cor
rections to identify the sources of the effects. Bayes Factor analysis was also 
conducted (with default prior r = 0.707 using the BayesFactor package in R) 
for each pairwise comparison to evaluate the relative evidence for the alter
native vs null hypothesis as a Bayesian alternative to the classical hypothesis 
testing. Moreover, the proportion of participants having at least one ordinal 
error for landmark identity per VE was higher than expected. These errors 
occurred equally often in the Euclidean environment as in the non-Euclidean 
environments, and were not related to the nature of the environment. 
Therefore, dependent measures were calculated for landmark positions inde
pendent of landmark identity. Data from all participants (N = 29) were 
included in the final analysis. Significance was tested at α = 0.05.

The angular error analysis examined whether the turning angles (90°) were 
preserved in the map drawings in the non-Euclidean environments as well as in 
the Euclidean environment. As shown in Figure 4(a), mean absolute angular 
error was significantly different among the three VE types; F(2, 54) = 14.582, 
p < .001. Paired t-tests comparing Contracted to Euclidean, Expanded to 
Euclidean, and Contracted to Expanded all revealed statistically significant 
differences in terms of mean absolute angular error; t(27) = 4.407, p < .001, 
BF>100; t(28) = 2.672, p = .037, BF = 3.8 and t(27) = 3.361, p < .01, BF = 16.1, 
respectively. Thus, participants were worse in preserving the corner angle in the 
non-Euclidean mazes than in the Euclidean maze. Moreover, they were more 
likely to preserve the angular properties of the corners of the environment when 
the space had been expanded rather than contracted by a similar factor.

The distance error analysis examined whether the distance information was 
preserved in the map drawings in the non-Euclidean environments as well as in the 
Euclidean environment. As shown in Figure 4(b), mean distance error was sig
nificantly different among the three VEs; F(2, 54) = 17.108, p < .001. Paired t-tests 
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comparing Contracted to Euclidean and Expanded to Euclidean both revealed 
significant differences in terms of mean distance error; t(27) = 4.732, p < .001, 
BF>100 and t(28) = 5.647, p < .001, BF>100, respectively, but not between 
Contracted and Expanded (t(27) = 1.488, p = .445, BF = 0.54). Thus, participants 
were worse in preserving the distance information for the non-Euclidean environ
ments compared to the square (Euclidean) environment, regardless of whether the 
manipulated path segment was contracted or expanded.

The straightness analysis examined whether the straightness of the segments 
was preserved in the map drawings in the non-Euclidean environments as well as 
in the Euclidean environment. The repeated measures ANOVA on the straightness 
index showed significant effect of environment type (F(2, 54) = 3.348, p = .043) 
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Figure 4. (a) Mean absolute angular error for the map drawing task across environment type. (b) 
Mean absolute distance error for the map drawing task across environment type. (c) The straight
ness index (average mean vector length) for the map drawing task across environment type. Note 
the floor of the y-axis is raised to make the difference between conditions more discernible. The 
error bars are between-subject standard errors.
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(Figure 4(c)). However, paired t-tests did not show significant difference between 
any environment pairs, with or without Bonferroni corrections (all ts <2.025, 
ps>.158 with Bonferroni corrections, BFs = 0.64, 0.95 and 1.18 for Contracted vs 
Expanded, Expanded vs Euclidean, and Contracted vs Euclidean, respectively). 
Overall, these results suggest that participants generally preserved the straightness 
of the maze segments for the non-Euclidean environments as well as the square 
(Euclidean) environment, regardless of whether the manipulated path segment 
was contracted or expanded.

To find out whether there was any relationship between participants’ pre
servation of the distance relationship and the corner angles, follow-up correla
tion analyses were conducted on the angle and distance data to examine 
whether participants employed different strategies in drawing their spatial 
maps. As can be seen in Figures 5(a,b), there was a significant negative 
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Figure 5. (a) Correlation between mean absolute angular error and distance error for the 
contracted maze. (b) Correlation between mean absolute angular error and distance error for 
the expanded maze. (c) participant #100 in the contracted maze condition preserved the turning 
angles but had high distance error. (d) participant #401 in the contracted maze condition 
preserved the distance relationship but showed large errors in the turning angles.
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correlation between the mean absolute angular error and distance error (for 
the Contracted and Expanded VEs: r = −.793, p < .001 and r = −.499, p < .01, 
respectively). This correlation means that as angular error increases, distance 
error decreases, and vice versa. This pattern of results suggested that some 
participants prioritized preserving the linear distance information, while 
others prioritized preserving angular relationships. Two representative map 
drawings were shown in Figures 5(c,d) for these two types of prioritizations.

Moreover, there is also a significant correlation between the angular error 
and the straightness index (for Contracted maze: r = −0.536, p < .01; for 
Expanded maze: r = −0.530, p < .01), but not between the distance error and 
the straightness index (for the Contracted maze: r = .213, p = .276; for 
Expanded maze: r = 0.185, p = .336). These data suggest that people showing 
higher angular error also tended to have less straight segments, but there is no 
relationship between the distance error and straightness of the map drawings.

Additional correlation analyses were conducted on the angle, straightness 
and distance data across environment types to see whether participants were 
consistent in applying these strategies across the non-Euclidean environments. 
Results indicated a significant correlation between the Contracted and 
Expanded environments in terms of the mean absolute angular error and 
the distance errors (r = .503, p < .01 and r = .583, p < .001 after removing 
one outlier, respectively). There was no correlation between the straightness 
index in the Contracted and Expanded mazes (r = −.066, p = .737). Overall, 
participants did seem to apply a consistent cognitive style in producing 
Euclidean maps for the non-Euclidean environments.

4. General discussion

The present study examined the types of Euclidean representations people 
may form while learning virtual wormhole mazes that violate the principles of 
Euclidean geometry. Participants explored a simple square tunnel maze 
(Euclidean) and three non-Euclidean mazes, one with one of the legs con
tracted and two with one of the legs expanded by wormholes. After learning 
each maze, they drew a map of the landmark layout on a 2D canvas. 
Examination of the map drawings showed that when confronted with spatial 
information that is inconsistent with Euclidean space, certain geometric prop
erties are emphasized more often than others. Some participants were more 
likely to distort representations of angularity while minimizing distortions of 
distance information, while the opposite was true for others. Across all con
ditions, the representation of straightness was generally preserved. That is, the 
linearity, or straightness, of path segments was consistent with what was 
observed during navigation, at least in simple rectilinear mazes tested in the 
present study, although those with larger angular errors also tended to have 
slightly less straight segments. It can also be seen by correlations for angular 
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and distance errors between Contracted and Expanded mazes that participants 
generally applied a consistent cognitive strategy across the different environ
ment types. These results suggest that representations of non-Euclidean space 
may be highly variable across individuals, and possible Euclidean solutions 
need to be carefully examined before testing different models.

The main challenge of learning wormhole environments in a Euclidean 
fashion is that it is not possible to construct a Euclidean representation of 
a non-Euclidean environment with all spatial information retained veridically, 
therefore whatever Euclidean representation one might form of a wormhole 
environment must have some spatial relations distorted. In other words, 
a non-Euclidean environment will create spatial conflicts that are not compa
tible with a Euclidean system, such as a segment of a maze cannot be so long 
given the spatial structure of other parts of the maze, a corner angle cannot be 
so small, etc. However, which part of the maze is “wrong” is ambiguous; it 
could be that this segment is too long, or the segment on the opposite side is 
too short. How to make accommodations is the fundamental problem on what 
type of Euclidean representation people may form while learning a non- 
Euclidean space.

For example, while encountering conflicting information during navigation 
in these wormhole mazes, the veridicality of at least one of the parameters – 
angle, distance, or straightness – needs to be distorted to preserve consistency 
in the others. If individuals prioritize distance relations and straightness in 
their representation, then concomitant changes in angularity must be made. If 
individuals prioritize angularity and straightness in their representation, then 
concomitant changes in distance relations must be made. If individuals prior
itize angularity and distance relations in their representation, then concomi
tant changes in straightness must be made. The exact trade-off people chose to 
make would reflect their individual difference and cognitive style.

The selection of the trade-off strategies does not necessarily require con
scious awareness of the conflict. That is, violation of the Euclidean principles 
may be detected by the path integration/spatial learning system, and the 
conflict resolved through the recalibration process to generate a non- 
veridical but coherent Euclidean representation, all outside people’s conscious 
awareness of these processes. Therefore, lack of explicit awareness of the 
violation does not necessarily mean people are insensitive to Euclidean prin
ciples. Whether people can detect the violation is an interesting question by 
itself, but it does not say much about whether people follow Euclidean 
principles in their spatial representations or not.

Another important theoretical concept needing clarification is the distinc
tion between Euclidean vs. non-Euclidean geometry and metric vs non-metric 
space (e.g., Montello, 1992). A metric space satisfies the following properties: 1) 
the distance from A to B is zero if and only if A and B are the same point; 2) the 
distance between two distinct points is positive (positivity); 3) the distance 
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from A to B is the same as the distance from B to A (symmetry); and 4) the 
distance from A to B is less than or equal to the distance from A to B via any 
third point C (triangle inequality). A Euclidean space is a type of metric space 
that also satisfies the parallel postulate, therefore a space can be Euclidean, 
non-Euclidean but metric, or non-metric at all. A spatial representation that 
does not conform to Euclidean geometry can have violations specific to 
Euclidean metric (e.g., parallel postulate), or violations of general metric 
principles that are not specific to Euclidean geometry (e.g., symmetry or 
triangle inequality). Therefore, it is important to distinguish between 
Euclidean vs non-Euclidean and metric vs non-metric spaces. When the 
experimental evidence only involves violation of the general metric properties, 
it is more appropriate to call it “non-metric” than non-Euclidean, and the 
theoretical distinction should be referred to as metric vs non-metric instead of 
Euclidean vs non-Euclidean.

There are many tasks that can be used to examine people’s spatial repre
sentations. Map drawing tasks have been commonly used to assess people’s 
spatial knowledge of an environment (Axia, Bremner, Deluca & Andreasen, 
1998; Coluccia, Bosco & Brandimonte, 2007; Coluccia, Iosue & Brandimonte, 
2007; Pazzaglia & Taylor, 2007; Sugimoto & Kusumi, 2014; van Asselen, 
Fritschy & Postma, 2006). Because our research goal was to examine “IF 
people were to form Euclidean representations for non-Euclidean environ
ments, what would these representations look like,” we deliberately chose 
a map drawing task to force participants to produce a map in a Euclidean 
space. If participants actually formed Euclidean representations of the non- 
Euclidean environments, then the map they produced most likely reflected 
their actual underlying representation. If they did not have Euclidean repre
sentations of the non-Euclidean environments, then the map they produced 
would reflect the most likely Euclidean representation they would have con
structed if they were to form one, either through conscious, high-level strate
gies or through unconscious, implicit corrections.1 Regardless of whether 
participants had Euclidean representations or not, the drawings they produced 
can provide an estimation of the most likely Euclidean representation people 
may have for non-Euclidean environments.

Besides map drawing, various other spatial tasks such as JRD and in- 
environment target localization are also commonly used to examine spatial 
representations. However, they do not necessarily produce Euclidean maps, 
and therefore do not suit our research goal in the present study. Like the map 
drawing task, these tasks are also subject to influences of the responding 

1Because the same type of high level strategies can also be used naturally without a map drawing task (e.g., 
participants may detect a conflict while learning a non-Euclidean maze and spontaneously adjust their mental map 
of the space with these strategies), we consider such strategies to be legitimate cognitive processes/mechanisms 
for constructing a Euclidean representation of non-Euclidean space and not an artifact introduced by the map 
drawing task per se.
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processes beyond the representation itself such as inferences, reasoning, and 
strategies, and violations of Euclidean principles do not necessarily reflect the 
nature of the underlying spatial representations (McNamara & Diwadkar, 
1997; Montello & Battersby, 2022; Sampaio & Wang, 2009; Widdowson & 
Wang, 2022, etc.). Moreover, like the map drawing task, these tasks also do not 
necessarily rely on existing representations, and solutions may be calculated/ 
constructed a posteriori during the responding process. Therefore, these tasks 
are not necessarily more valid than the map drawing task. Nevertheless, 
forcing people to produce Euclidean representations in a map drawing task 
limits the scope of what one can conclude about the geometry of human spatial 
knowledge. Future research combining and comparing other tasks with the 
map drawing task can be fruitful in further understanding the nature of 
people’s spatial representations.

Because the goal of the present research was not about pinpointing whether 
people form Euclidean representations, these data do not (and were not meant 
to) directly address the Euclidean vs alternative theories. Instead, our findings 
help shed light on what the hypothetical Euclidean representation should be. 
As discussed in the introduction, there are many possible Euclidean represen
tations one may construct based on path integration information for a non- 
Euclidean environment, depending on how the recalibration/regularization 
process attributes sources of the errors and how corrections are made. The 
present study showed that people treated different geometrical features of the 
environment differently. That is, the straightness of the path was generally 
preserved, while the distance ratio and turning angles were preserved by some 
participants but not the others, resulting in different, consistent cognitive 
styles/strategies across participants. The priority of the spatial information 
people preserved might reflect the salience and/or reliability of the informa
tion they perceived. For example, the straightness of the path was perceptually 
salient and un-mistakable, while the size of the turning angle and distance 
ratio between paths required measurements over time/movements, and there
fore less certain/less reliable. As a result, people may give more priority in 
preserving the straightness of the path when constructing a Euclidean map for 
non-Euclidean environments. If this hypothesis is true, then people’s different 
style/strategy on preserving distance vs angle information may reflect their 
perceptual ability in measuring these two spatial properties. That is, those 
preserving distance ratio may be better at linear distance estimation, while 
those preserving turning angles may be better at estimating turns, and each 
group preserved the spatial information they were most confident about. 
Moreover, which information people choose to preserve may depend on the 
nature of the environment such as complexity and the source of the informa
tion. For example, when body-based cues are the primary source of self- 
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motion information, straightness of the path is also a property that has to be 
measured over time, and may not be prioritized as in purely visual navigation. 
Future research is need to further test these hypotheses.

The present study used the desktop VR system with purely visual navigation 
due to difficulties in implementing non-Euclidean environments in Euclidean 
physical space. Path integration can use multiple cues, such as visual, vestib
ular, proprioceptive, motor command, etc., and performance is generally 
better when more cues are available. Although it has been shown that body- 
based cues are important sources of information for path integration and can 
improve navigation performance, it has also been shown that path integration 
and spatial learning tasks can be performed effectively with visual information 
alone, especially when stable landmarks are present, as in the present study 
(e.g., Riecke, Veen & Bülthoff, 2002). Moreover, desktop VR has been widely 
used to study spatial representations, spatial learning and navigation, both in 
basic research and in applied settings such as education and training (e.g., 
Hegarty, Montello, Richardson, Ishikawa & Lovelace, 2006; Jansen-Osmann, 
2002; Otto et al., 2003; Wiener & Mallot, 2006; Zhao et al., 2020). In addition, 
performance of the Euclidean condition in the present study also showed that 
participants were capable of learning the environment based on pure visual 
navigation. Thus, we believe the usage of the desktop VR in the present study 
is valid and the findings are meaningful. Future research incorporating body- 
based cues can further examine the effects of different self-motion cues on the 
type of information people would preserve when constructing Euclidean 
representations of non-Euclidean environments.

In summary, our study examined what Euclidean representations of non- 
Euclidean environments should be if people were to conform to Euclidean 
principles by forcing them to produce Euclidean maps of non-Euclidean 
wormhole environments using a map drawing task. The results suggested 
that people preserve certain geometrical properties more than others when 
encountering conflicting spatial information that violates Euclidean geometry, 
and people may prioritize different spatial information differently according to 
their own strategy and cognitive style. These findings suggest that possible 
Euclidean solutions need to be carefully examined before testing Euclidean vs 
alternative models of spatial representations.
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Appendix: A Euclidean representation with rips and folds

Suppose a navigator is placed in a wormhole tunnel maze depicted in Figure A1 (left panel) and 
navigates around the maze while trying to learn the landmark locations using the path 
integration system. For convenience, the following example is based on an allocentric reference 
frame using Cartesian coordinate system, although an egocentric updating system as described 
in Wang (2016) and other coordinate systems will generate the same results.

As the navigator moves from the origin O to turning points C, B, A, and passes by landmark 
H, everything is normal as in an ordinary Euclidean environment. Assuming the navigator uses 
a Cartesian coordinate system with origin at O, s/he can build a representation of these 
locations with the coordinates shown in the left panel. However, when the navigator reaches 
P, the wormhole will instantaneously transport him/her to P’, creating a non-perceptible 
translation of 1 m in the negative Y direction. In other words, the position of the navigator 
will change from (0, 2) to (0, 1) instantaneously with no perceptual information indicating this 
change, therefore the path integration system still has his/her position at (0, 2). From that 
moment on the navigator will continue the trip on the other side of the wormhole as if the gap 
does not exist. Perceptually, the navigator simply walks to corner P, turns around by 90°, and 
sees the origin O 1 m away (instead of 2 m away in a normal Euclidean space).

Because of the wormhole effect, the navigator now has a conflict between the perceptual 
system and the path integration system when s/he reaches the origin O. According to the path 
integration system, which is calculated based on self-motion information along the journey, the 
origin should still be 1 m away. However, the perceptual system indicates that the navigator is 
already at O. To resolve this conflict, the navigator has to make some assumptions about where 
this discrepancy came from and make a correction accordingly. This correction process is 
known as the resetting/recalibration process (e.g., Wang, 2016) or regularization process 
(Warren, 2019), and is part of the normal operation of the path integration system to correct 
for accumulated errors in ordinary Euclidean space.

C (-1.5, 0)

H (-1, 2)A (-1.5, 2)

B (-1.4, 1)

P (0, 2)

P’ (0, 1)
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O (0, 0)

H (-1, 1)A (-1.5, 1)

B (-0.6, 0.5)

C (-1.5, 0)
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Figure A1. (left) a design blueprint of a wormhole tunnel maze with a wormhole between P and P’, 
so that the navigator is transported instantaneously to P’ when arriving at P, and vice versa. The 
numbers in the parenthesis are the x and y coordinates of each point in the inertial reference 
frame. (right) a possible Euclidean representation of the wormhole maze that preserves the length 
of each segment but sacrifices the turning angles at corners A, B and C. This representation 
contains “rip and fold” (i.e., change in ordinal relationship in pointing directions from H to A, B and 
C) comparing to the design blueprint representation in the left panel.

SPATIAL COGNITION & COMPUTATION 19



The conflict between the perceptual and path integration system during wormhole naviga
tion is also similar to the situation of cue conflict, where a set of landmarks is moved/ 
manipulated during navigation without the navigator’s knowledge. How the navigator resolves 
the conflict depends on where the path integration system attributes the source of the error. For 
example, if the path integration system assumes that the error mainly came from the distance 
estimation in the last leg, i.e., the navigator actually moved 2 m, while the odometer somehow 
only recorded 1 m, then it could make a correction by simply resetting the representation of the 
navigator’s location to (0, 0) upon arriving at O, and leaving the representations of all other 
landmarks in the previous legs unaffected. As a result, this navigator will represent the maze as 
start corner O (0, 0), first corner C (−1.5, 0), second corner B (−1.4, 1), third corner A (−1.5, 2), 
landmark H (−1, 2), and fourth corner P (0, 2). When asked to point to A, B, and C from H, this 
navigator will point in the order of A, B, and C counterclockwise. This is the “Euclidean 
prediction” assumed by Warren et al. (2017), which is based on the design blueprint 
representation.

However, this is not the only way a navigator may resolve the conflict and build a Euclidean 
representation of this wormhole maze. For example, if the path integration system attributes 
the error/conflict to misperception of the turning angles at corners A, B and C, instead of to 
misperception of distance, then it can make some adjustments/corrections to the angles at 
these corners while preserving all the distance information. This strategy was actually observed 
in some participants in the present study (see the results section). A resulting representation 
from this recalibration process is depicted in the right panel. This representation is not 
veridical, but perfectly legitimate and Euclidean. When asked to point to A, B and C from H, 
this navigator will point in the order of A, C and B counterclockwise, which constitutes a “rip 
and fold” according to the definition in Warren et al. (2017). This example shows that 
Euclidean representations of non-Euclidean environments based on the path integration 
system can contain rips and folds, therefore the presence of rips and folds does not necessarily 
rule out the Euclidean hypothesis.

It should be noted that these are not the only two solutions of the recalibration process. In 
fact, there are infinite ways the recalibration process could operate, including which distance 
and angles to adjust and by how much, resulting in an infinite number of potential Euclidean 
representations a navigator may form of non-Euclidean environments.

Moreover, the lack of unique Euclidean representation for non-Euclidean environments 
does not depend on the type of cues available for path integration, and the presence of body- 
based cues is not necessarily helpful for establishing a unique solution from all these possibi
lities. For example, when the navigator moves from O to C to B to A to H, the body-based cues 
will indicate the same self-motion information and result in the same coordinates for these 
locations. Moreover, when the navigator arrives at P, s/he will be visually transported to P’ in 
the virtual maze, but physically remain at the same location in the real environment because it 
is not possible to instantaneously transport one physically to P’. As a result, when the navigator 
continues to move from P/P’ toward O, s/he will move 1 m when arriving at O, both visually 
and physically. That is, regardless of whether the path integration system uses visual informa
tion or body-based cues, the vector summation process will always result in the same error of 
1 m when the perceptual system indicates that the navigator has already reached O. Therefore 
body-based cues can provide important information for path integration and improve perfor
mance, but they cannot solve the fundamental issue on the lack of unique Euclidean repre
sentation for non-Euclidean environment.
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