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Macroscopic quantum phenomena, such as observed in superfluids and

superconductors, have led to promising technological advancements

and some of the most important tests of fundamental physics. At present,
quantum detection of light is mostly relegated to the microscale, where
avalanche photodiodes are very sensitive to distinguishing single-photon
events from vacuumbut cannot differentiate between larger photon-number
events. Beyond this, the ability to perform measurements to resolve

photon numbersis highly desirable for a variety of quantum information
applications, including computation, sensing and cryptography. True
photon-number resolving detectors do exist, but they are currently limited to
the ability toresolve on the order of 10 photons, which is too small for several
quantum-state generation methods based on heralded detection. Here we
extend photon measurement into the mesoscopic regime by implementing
adetection scheme based on multiplexing highly quantum-efficient
transition-edge sensors to accurately resolve photon numbers between
0and100. We then demonstrate the use of our system by implementing a
quantum random-number generator with no inherent bias. This method
isbased on sampling a coherent state in the photon-number basis and is
robust against environmental noise, phase and amplitude fluctuationsin
thelaser, loss and detector inefficiency as well as eavesdropping. Beyond
true random-number generation, our detection scheme serves as ameans to
implement quantum measurement and engineering techniques valuable for
photonic quantum information processing.

The nature of quantum mechanics dictates afundamental wave-par-
ticle duality for physical systems, which was first recognized by Ein-
stein through the understanding that light is composed of individual
energy quanta known as photons’. The ability to accurately measure
photons has led to checking the validity of the notion of ‘spooky
action at a distance”” and tremendous technological advancement
in quantum communication®, quantum metrology*° and quantum

computation”®. Much of this progress relies on the ability to measure
single photons, such as through the use of avalanche photodiodes’;
however, the ability to resolve arbitrary numbers of photons beyond
simply distinguishing vacuum from non-vacuum is highly desirable
for many quantuminformation applications®'°'%, The process of pro-
jecting a subset of modes of an entangled state onto the Fock basis
canallow for engineering non-Gaussian quantum states with negative
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Wigner functions”""—a requirement for any quantum speed-up in
continuous-variable quantuminformation'®. Recent claims of quantum
supremacy with Gaussian boson sampling devices’ canbe challenged
with substantially greater ease when threshold detectors are used
in place of photon-number-resolving detectors (PNRDs) . Finally,
sampling the photon number of a wave-like superposition such as a
coherent state reveals fundamentally random outcomes that can be
used to generate true random numbers's2°,

Thetransition-edge sensor (TES), whichisbased on a calorimeter
formed from a superconducting wafer held just below the critical
temperature, has arisen as a viable PNRD with quantum efficiency
approaching unity and entirely negligible dark counts* . Previous
results with TES systems show the ability to measure non-classical
systems with high mean photon numbers?**; however, these experi-
ments were based on methods requiring extensive post-processing
that give generally good estimates of photon-number measurements
but relatively low distinguishability between individual photon
counts above 10 photons®. For demanding applications requiring
photon-number resolution, even asingle-photon discrepancy destroys
quantum correlations. Current methods demonstrate the poten-
tial to accurately count photons in the low double digits (-16)”, but
certain proposals necessitate considerably higher detection events
for conditional-state preparation. One particularly salient example is
the preparation of a cubic-phase state tocomplete auniversal gate set
for continuous-variable quantum computation®, For the numerical
approximations used in this formalismto hold, one must detect alarge
number of photons—simulations suggest 50 or more”. The detection
scheme we demonstrate here now easily surpasses this previously
unreachable milestone.

In this Article, we extend the resolving capabilities of individual
TES detectors toamaximum of 37 photons per detection channel with
on-the-fly signal processing. We then multiplex three detectorsintoa
system capable of resolving 0-100 photons with detector quantum effi-
cienciesabove 90%. Furthermore, weiillustrate the utility of our scheme
towards quantum cryptography applications by creating a quantum
random-number generator (QRNG). The need for random numbers
arises in many applications including cryptography, simulation and
games of chance. Pseudo-random-number generators are not truly
randomand can, for example, lead to erroneous resultsin Monte Carlo
simulations®. The stochastic nature of quantum mechanics leads to
truerandomness, but many currentimplementations sample random
events from a non-uniform distribution, which can lead to bias that
must be corrected classically**?. Our method to implement a QRNG
is based on sampling the photon statistics of a coherent state and is
fundamentally unbiased, robust to experimental and environmental
noise, and invulnerable to eavesdropping.

The detection system used here is constructed by splitting a
laser pulse equally across three paths and sending each to a TES as
shown in Fig. 1a. Each TES is a PNRD that makes use of the extremely
temperature-dependent resistance of a superconductor near the
phase transition. Our TESs are composed of superconducting tung-
stenwafers that operate with acritical temperature near 100 mK. When
light is incident on a chip, the thermal energy of an absorbed photon
acts to locally break the superconducting state and induce a spot of
non-zero resistance, which increases nearly linearly with absorbed
energy”. This change in resistance is detected by a series of highly
sensitive superconducting quantum interference devices (SQUIDs)
and is then amplified and converted to an output voltage that is sent
to an external field-programmable gate array (FPGA) to extract key
signal parameters on the fly (system details in Methods). The detectors
used were optimized to be highly absorptive at the desired wavelength,
and while our detectors achieve above 90% quantum efficiency at the
target wavelength of 1,064 nm (details in Methods), TES systems have
achieved efficiencies of = 0.98 (ref. 22) and show the potential to
reachn>0.99 (ref. 33).

True photon-number-resolving measurements
Toresolve the absorbed photon number, information to distinguish dif-
ferent outputs must be extracted from the signal received by the FPGA.
Anexamplesignalis depictedin Fig. 1b. Traditionally, peak height has
been used for anindicator as the magnitude of the voltage is propor-
tional to the energy absorbed for low-photon numbers*. However, this
technique limits individual detector resolution due to the saturation
of the peak magnitudes beyond several photons, so recently, alterna-
tive methods have been explored for extracting useful information?.
Although the maximum voltage of the peak saturates, the electrical
resistance of the TES continues to change as it re-cools back to the
superconducting state, suggesting useful information is contained
beyond the peak as the cooling time will also depend on the energy
absorbed. Integrating the signalin the region above a pre-defined noise
thresholdyields information about both the maximum voltage and the
time to cool the TES; this peak area thus allows the resolution of many
more photons than height alone.

For asingle TES channel, the histogram of areas for 10® measure-
ment events of a pulsed coherent state is shownin Fig.1c. As the pulse
area monotonically increases with absorbed energy, the distinctly
separated bins correspond exactly to the quanta of energy detected and
canbe used toinform the number of photons measured. The location
of these bins can be determined by fitting the obtained histogram to
asum of Gaussian functions (red dotted line in the figure), where the
intersection of each normalized Gaussian gives the location of the bin
edge. The reason for a Gaussian distribution within each bin is due to
variationsinthe peak areasresulting fromelectronic and thermal noise
on the cooling tail of signal peaks. The Gaussian fitting breaks down
for large areas beyond the black dashed line in Fig. 1c, indicating that
the photon number can no longer be accurately determined for this
detector. The number of events beyond the detector resolution across
allthree TES channels accounts for less than 0.3% of events.

The normalized Gaussian fits to the histogram are shown in
Fig.1d, whereit canbe seen that the overlap of neighbouring Gaussian
peaks is quite small for the majority of bins, indicating high confidence
in correctly determining the true photon number for a given area
measurement. The confidence rate decreases with photon number but
remains above 90% for photon numbers from O to 20 in Fig. 1d. If one
is willing to post-select and slightly reduce count rates, the accuracy
ofagiven photon-number assignment can be substantially increased
by defining regions of uncertainty near the bin edges. If an event area
isrecorded in this uncertainty region, then the eventis discarded and
not considered in the statistics. Provided the regions of uncertainty
arescaledinterms of the fitted Gaussian widths corresponding to each
n-thphoton-number event, g,, then the measured probability distribu-
tion will not deviate from the true distribution and the accuracy of
individual photon-number assignment will increase. If the regions of
uncertainty are defined beyond +g,, then 32% of the datais discarded,
but the confidence rates increase to 99% or higher for the first
20 photons. Ifarea events are only kept within + 30,, of each peak, then
confidence rates furtherincrease to 99%out to 312photons.An example
forerror-reductionthrough post-selectionis shownin Extended Data
Fig.3, and the area histograms, Gaussian fits and quantitative overlap
errors for each of the three detection channels are given in Extended
DataFigs.4 and 5, respectively.

Post-selection of data was not necessary for the QRNG experiment
performed in this work as the results only required random parity
measurements, as will be described in the next section. Fortunately,
the well-centred Gaussian distributions in each histogram bin mean
that the probability to improperly count ann photoneventasann+1
event is approximately the same as the probability to mistakeann +1
event for an n photon count for all events away from the edge of the
detector range. Due to this effect and the predominance of detection
events away from the upper edge of the TES range, the statistical error
for the QRNG experiment was dominated by finite sampling.
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Fig.1|Detection scheme. a, Experimental set-up. A pulsed source is evenly
splitinto three segments and eachis coupled to a TES detector channel. I;, TES
bias current; Is, SQUID circuit bias current; I, flux bias current for SQUID
feedback circuit; Amp, room-temperature amplifier; V, signal voltage; t, time
of acquisition. b, Example event (blue) following the pulse trigger (green).

Pulse parametersincluding area and height are recorded if the signal passes a
specified threshold. ¢, Histogram of measured signal areas of 10® events for a
single TES channel where a sum of Gaussians (dashed red line) is used to fit the
data to determine binning for photon-number resolution. d, Bins are set at the
intersection of between the normalized Gaussians.

Quantum random-number generation

The prototypical photonic QRNG is based on sending a single photon
to a balanced beamsplitter and placing detectors on the output to
determine whether the photonwas transmitted or reflected®***. This is
atruly randomcoinflipintheideal case, butit comes with limitations,
such as the need for on-demand single photons, a perfectly balanced
beamsplitter and ideal detectors. Other optical techniques, such as
homodyne measurements to detect random vacuum fluctuations*ora
variation on the first method where weak light is spread across asensor
array” can also be used, but these methods also suffer from physical
limitations and noise thatlead to randomness with bias. The random-
ness achieved is not sampled from auniformdistribution and therefore
systematic bias must be removed with classical algorithms®**°, Beyond
reducing dataand requiring vulnerable classical schemes, systems with
inherent bias are at risk to quantum hacking*’, where anadversary can
effectively change the calibrated bias and use this to their advantage
to break encryption.

Here we implement a QRNG making use of the inherent random-
ness present in the parity of the Poissonian distribution of a coherent
state'”*°, When sampling the parity of the photon-number distribution,
theinherentbias vanishes exponentially quickly with increasing coher-
ent state intensity and asymptotically approaches a true coin flip. To
generate the random numbers, we simply convert a photon number
detection to a binary output, where each even photon-number event

is assigned an outcome of ‘0’ and odd photon numbers are assigned a
‘T’. This method is unaffected by experimental imperfections such as
photon loss, detector inefficiency, phase and amplitude noise, and
contamination by environmental noise. X

For the parity operator givenby 1T = (-1)" = el*'where 11 = d' dis
the photon-number operator and the operators d'and darethe respec-
tive bosonic creation and annihilation operators, we can examine the
expectation value of parity for acoherent state

1 i n
~Lia? a

lay=e"2 nzoﬁm).

If 7 = (r) is the mean photon number of the coherent state, then the
expectation of parity is given by

@

(ﬁ>=Pe_Po=e_2ﬁ’ (2)

where P.and P, are the probabilities to detect either even or odd photon
numbers, respectively.

InFig.2, we show the experimentally measured probability distribu-
tion for a large coherent state with 2 = 57, which allows us to make full
use of our PNRD and clearly resolve out to 100 photons. Although the
theoretical parity of this state is e ** ~ 10°, we cannot hope to reach this
precision due to finite sampling. With 10® measurement events, we
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Fig.2| Experimental photon-number distribution obtained by splittinga
coherent state of mean photon number 7 = 57 across three TES channels
over10® events. The red dashed line indicates the theoretical Poissonian
distribution with a mean of 57. Error bars shown are of 1s.d. and are obtained
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from finite sampling and photon-number binning errors. Inset: the measured
parity coherent states begins near one (vacuum) but tend to zero as the
amplitude increases. The measured parity for the 7 = 57 coheret state is
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Fig. 3| Randomness tests for the resultant bit strings from 10° events based
on assigning three bits of information to each event by taking the measured
photon number modulo 8. Datawere broken into segments of 7.5 x 10° bits and
each string was tested for randomness. The proportion (red markers), that s,
the percentage of trials that pass a test given a significance level of a = 0.01, falls
within the corresponding confidence interval for all tests considered, indicating
evidence of true randomness. The error bars for each proportion are computed
from the Wilson score (confidence) interval of equation (26), where n =431is

the total number of trials and n, (n¢) are the number of successful (failed) trials
for asignificance level of a = 0.01. Given repeated testing of the bit generation
method, the error bars denote the range for which the proportion s likely to fall.
On the horizontal axis, CuSum (F) and (B) denote the cumulative sum tests for
forward and backward propagation through the bit sequence, DFT denotes the
discrete Fourier transform (spectral) test, and Lin. complex denotes the linear
complexity test.

achieve a parity of zero to within uncertainty, with the measured value
of-7x107° £10™*. Inaddition, we first verify the parity of weaker coherent
states as shownin the inset of Fig. 2. As expected, the parity of vacuum
is1,and we are clearly able to match the trend of e~2*for increasing 1.

One unfortunate downside of TES detection systems is the slow
detectorresponse leading to lower generation rates. Recent advances
show that superconducting nanowire single-photon detectors have
the potential to be used as PNRDs that are orders of magnitude faster
than TESs*, but until this technology matures, we implement an alter-
native method toincreasing random-bit generation rates. As opposed
to binning the photon number result by parity, a uniformly random
distribution can also be obtained by taking the measurement result
and binning according to photon-number modulo 2?where d € Z.In
this way, we can generate a bit string of size d for each measurement.
As dincreases, the residual bias of the QRNG still asymptotes to zero
with increasing 7, but a larger coherent state amplitude is needed to
achieve asimilarly negligible bias. In this work witha maximum detec-
tion of 100 photons, we find that the residual bias for a coherent state
with 2 = 57isequivalentford € {1, 2, 3}, so we use modulo 8 binning to
generate random numbers.

We subject the ~3 x 10® random bits generated by our protocol
to aseries of tests taken from the National Institute of Standards and
Technology (NIST) suite of randomness tests. The proportion (thatis,
the percentage of tests that pass agiven test) is plotted in Fig. 3 for each
test, givenasignificancelevel of @ = 0.01. Incomputing the confidence
interval for Fig. 3 (dashed blue lines), we do not make the standard
approximation that the distribution of error about the binomially
weighted observation is given by that of a normal distribution, as our
sample size is small enough that such an approximation will be unreli-
able. Instead, we use the Wilson score (confidence) interval*?, which
hasbeenshowntobereliable for smaller sample sizes. The findingsin
Fig.3 demonstrate that our measurementsindicate randomness across
all tests considered (all proportions lie above the lower confidence
bound). We additionally show the results of randomness measures for
binningwithd € [1, 5]inthe Extended Data Fig. 2.

Robust nature of proposed method

On closer examination, we can see how our method here proves to be
quite robust against various sources of error. First, we can consider
phase and amplitude fluctuations originating either from the laser or
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fromany other experimentalinstability. This can be modelled by assum-
ing that a statistical mixture of coherent states impinges upon the
detector. We find that phase fluctuations have absolutely no bearing
ontherandomnessand still lead to the same residual bias of e=2% which
we experimentally verify as shown in the Extended Data Fig. 1. Ampli-
tude fluctuations similarly provide negligible impact. Suppose the
coherent state has mean photon number of 7iand there is asmallinten-
sity fluctuation of 6. The expectation of parity becomes
e~2+8) ~ e=27(1 + §), which tends to zero for sufficiently large 7.

Next, we can consider the effects of loss, detector inefficiency and
uneven splitting between the TES channels with imperfect beamsplit-
ters. We can always model a detector of efficiency nbyinserting aloss
channelinthe form of abeamsplitter of transmittivity n before a perfect
detector and performing a partial trace over the unmeasured output
port(Methods). Asthe coherent state, |a), maps to the smaller coherent
state, |\/n7a), after this loss, an imperfect detector still measures a
Poissonian photon-number distribution. Thus, to achieve quality ran-
domness with low residual bias, the coherent state used must be chosen
suchthat 2’ = pnis sufficiently large. As for uneven splitting or differing
detector efficiencies between channels, we can equivalently model the
process of measuring asingle coherent state distribution as the discrete
convolution of three smaller coherent state distributions. As allbeam-
splitter outputs are still detected, changing the beamsplitter reflectivi-
ties just acts to redistribute the photons among the TES channels.
Provided no single channel saturates, which is easily recognizable
through monitoring area measurements, sampling the summed output
of all channels will still yield a Poissonian distribution.

Anadditional concern of any quantum mechanical experimentis
thatof unintentional coupling to the environment. One possible effect
of such couplingis photon loss asaddressed in the previous paragraph.
Another effect is the addition of photons, such as coupling to an exter-
nalthermal bath, or some malicious observer attempting to inject light.
In place of measuring a coherent state, suppose that the detector is
sent the density operator p = p, ® p..,, Where p, = |a){a|is the density
operator for the coherent state and p.,,, is the density operator for some
unknown quantum state, not necessarily pure, originating from the
environment. The expectation value of parity for the whole system is
givenby (ei~ 2 %), where subscript k denotes the different subsystems.
Thisleads to an overall parity of

(I1) = €M [T)gpy. ©)

where (II),,,, is the parity of the environment alone and is bounded
between 1and -1. Thus environmental mixing will not degrade the
quality of the QRNG.

Asafinal concern, consider an eavesdropper attempting to deter-
mineinformation about the random numbers. Suppose an eavesdrop-
per uses a beamsplitter to sample the coherent light in an attempt to
predict the random number measured by the user. Due to the nature
of coherent states, the two beamsplitter outputs remainin a product
state, hence arenot correlated. Thus no information about the results
at one output port can be used to determine the results at the other,
preventing the eavesdropper from attaining useful information. Other
side-channel attacks, such as the insertion of different quantum states
by a nefarious party, can be readily mitigated as well. Although the
QRNG method utilizes only higher-order parity measurements, we
still have access to the full photon-number distribution from the TES,
which can be monitored to ensure that Poissonian statistics are still
obtained. This rules out any external manipulation as replacing or
interspersing the coherent state with a different state will yield a dif-
ferent distribution. In addition, the TES waveform response can be
concurrently monitored and frequently recalibrated to rule out signal
manipulation. Finally, as a coherent state is simply alaser output, the
source and detector can be fabricated in near proximity to one another
and protected from any realistic attack through appropriate shielding.

Recently, there has been some emphasis onthe use of Bellinequal-
ity violations to certify the quantum nature of a device and ensure
private randomness®*>*, Although this concept has merit, it requires
closing all experimental loopholes to eliminate alocal hidden variable
theory before it can truly validate a black box as a quantum device.
Furthermore, trust must be given at some point during any realistic
experiment as the classical signal used to enact Bell measurements
may itself be spoofed. In our implementation, the quantum nature
of the experiment is verified by the area histograms shown in Fig. 1c.
The origin of the separation between area measurements is the fun-
damental energy quantization of photons. An entirely classical signal
would yield a single broad Gaussian peak centred about the average
energy of the beam of light spanning a swath of areas due to classical
noise fluctuations as opposed to the multiple Gaussian fits for each
TES channel.

Inthis Article, we have demonstrated drasticimprovement to the
photon-number resolving capabilities of high-quantum-efficiency TES
systems and canaccurately resolve 0-100 photons. By post-selecting
data, one can achieve error rates below 1% on photon-number meas-
urements beyond 30 photons per detection channel withoutimpact-
ing the measurement distribution. These results have far-reaching
implications for quantum information applications by opening up
avenues in quantum sensing, such as reaching the Heisenberg limit with
large photon-number parity detection**, or through uses in photonic
quantum computation, such as efficiently simulating interactions
in quantum field theory*. Furthermore, we demonstrated the util-
ity of our detection scheme to make an unbiased QRNG by sampling
the parity of a coherent state. This technique is robust to a variety of
experimentalimperfections, and bit generation rates canbe improved
through binning with photon-number modulo 27,
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Methods

Theoretical background

Origin of randomness. The photon-number parity of a coherent
state tends towards a uniform distribution as the energy of the state

1 2 n
. . _,| | (o] o
increases. For a coherent state given by |a) = e72'* 3 = anda

parity operator givenby IT = (-1)" = ei*i, where i = d'dis the photon-
number operator, we can derive
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Fromthis, we see that for large 73, the parity expectation value can
bearbitrarily close to zero. To generate the random numbers we simply
output ‘O’ whenever we measure an even number or ‘1’ whenever we
measure odd.

Phase and amplitude fluctuations. First, we consider phase fluctua-
tions. Suppose we do not have a pure coherent state, but a statistical
mixture of coherent states with the same amplitude and arandom phase

Peon = % fozﬂ dep |rei®) (rei?|, @
where r = |a| = V/n.
Thisyields
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which shows that phase noise does not affect the parity expectation
value.

Second, we consider amplitude fluctuations. Changes in the ampli-
tude of the coherent state amount to changes in the mean photon
number 7. Forachange §in the mean photon number, the parity expec-
tation value becomes e-2™=&which is approximately e-2*for small 6.

Environmental noise. We now look at the expectation value of the
parity operator on the whole system where p = p.,, ® p.,, With
Deon = |@){al Deriving the expectation value of the new parity operator,
el~2 1, where subscript i denotes the different subsystems, we obtain

(e Xy = Tr[el™ipgo, @ e g, ]

= Trl(al ™ |a) ® €2y, |

Tr[e " ® e pepy ]

e M) ey

where (1), is bounded between1and 1. For large enough 7, the whole
expectation value goes to zero regardless of the form of p.,.

Loss and detector inefficiency. Consider animperfect detector with
quantum efficiency n < 1. This can be modelled by placing a fictitious
‘loss beamsplitter’ withreflectivity r = /T gand transmittivity ¢ = 1/
suchthat + £ =1infrontof a perfect detector and performing a partial
trace over the reflected mode. The beamsplitter operator acting on
bosonic modes aand bis given by

~ PSRN PN
Bay = ¥ ~'5), ®)

where r = cos6and ¢ = sin 6. Sending a coherent state, |a), to animper-
fect detectoris then the same as sending the density operator

P =T [Bap(le) @)y © (10)(OD)y B ®)
= Try [ (Ivra) (vral), ® (V=) (V= nal), @
= (Wna) (Val), ®

toaperfect detector. Thus, for coherent states, all measurements made
with PNRDs having 7 <1caninstead be treated asideal detectors where
the measured state is just a different coherent state.

Unbalanced splitting and efficiency. Suppose we send the coherent
state |a) to our three-detector system. Due to unbalanced splitting
between different paths or small variations in detector efficiency, each
TES may see a different signal. Together, the statistics of the photon
number summed across all three channels will still be that of acoherent
state but with potentially different effective amplitude.

Foraninput coherentstate and vacuumin the unused beamsplitter
ports, |a),|0),|0),, the beamsplitter system showninFig. 1a transforms
thestateto

BacBap|a)410),10), = |tit20) 1), |672Q),. 9)

wherer,andt,are the beamsplitter coefficients for beamsplitter k. Sup-
pose now that the three detectors have quantum efficiencies ,, 17, and
n.. Using equation (6) for each mode, the effective state sent to three
perfect detectorsisthen

) = 1Ba),1Bs),Bc). (10)
= e s bl io Omo % INa)ele)y 1), an
where
Ba = \t1t2a, (12)
By =npn1at, 13)
B. =+[nctina. 14)

The probability to measure the total photon number summed across
all detectors, m=n,+ n, +n,, is given by

1s)

P(m) = e~ lBabobel? i " |Bal*e |Bp |2 | B P re)
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which is the same probability distribution that would be obtained by

measuring a coherent state of amplitude a’ = +/|8,|2 + |8, ]2 + |B.|> with
asingle detector of efficiency p=1.

Experimental methods

The coherent state sent to the PNRD is generated by pulsing a
continuous-wave 1,064 nm laser using an acousto-optical modulator
as an optical switch. The pulse duration is set to be less than 100 ns,
which is well within the rising-edge time of the detection signal. The
pulses aresentatarepetitionrate of 12.5 kHz to ensure that the detec-
tor has re-cooled and thermal noise is at aminimum. This rate can be
increased to 50 kHz without incurring substantialill effects. Each split
pulseis coupled toaTES channel through standard single-mode opti-
cal fibre. Details on TES operation within a cryostat can be found in
refs. 6,23. Inthis work, we additionally filter the output signal to remove
the d.c. component and implement a low-noise external amplifier to
bring the signal to withina 500 mV range.

Data acquisition. The amplified output signalis sent to a custom-built
Ethernet-based flash analogue-to-digital converter (EFADC) capable
of collecting and processing TES signals for up to eight channels. The
deviceisbased on an FPGA, which samples a signal with 12-bit resolu-
tion at arate of 250 MHz. The internal memory and processing speed
allow the device to collect up to 32 ps worth of signal points, perform
rudimentary calculations on the data to determine key parameters,
and transfer the calculated parameters to a hard disk all before the
next signal pulse arrives.

The EFADCistriggered by an external pulse signal corresponding
to thearrival time of each coherent state pulse. If the incoming signal
rises above a user-defined noise threshold, the EFADC begins integrat-
ing the waveform until the signal falls below asecond threshold that can
besettoaccountfor hysteresis. Theintegrated signal area, maximum
peak height, signal duration, time stamp of signal start and time stamp
of signal maximum are all recorded. All parameters can be used for
additional signal characterization in post-processing, but we find that
pulse areais sufficient to achieve large photon-number resolution.

Efficiency calibration. Transition-edge sensors have managed toreach
up to 98% quantum efficiency?, but it is important to characterize
the precise response of our detection system at 1,064 nm. The power
in a given pulse sent to each TES detector is on the order of several
picowatts, so care must be taken to accurately calibrate the quantum
efficiency. First, we constructed and characterized a high-amplification
photodetection circuit with a low-power sensitivity threshold at
approximately 200 pW. Calibration for this detector was based on a
Scientech pyroelectric calorimeter and a series of precision attenua-
tors. The home-build photodetector was then used in conjunction with
the attenuatorsto calibrate each TES channel individually. Laser light
was split at a 95:5 beamsplitter where the stronger portion was sent
to the photodetector and the weaker portion was further attenuated
and sent to the TES. This calibrated attenuation included the effects
of imperfect fibre coupling so the TES quantum efficiency could be
directly measured.

Foreach detector, 10® pulses were sent simultaneously to the pho-
todetector and the TES channel under test. The mean photon number
was extracted from the PNRD and compared with the classical signal
power to determine the quantum efficiency. We measured aquantum
efficiency of 97(5)% for channel 1, 93(5)% for channel 2 and 91(5)% for
channel 3. The 5% uncertainly originates from the absolute error on
the Scientech pyroelectric calorimeter, uncertainty on splitting ratio
and error on the attenuation calibration. All channels used were thus
measured to have aquantum efficiency above 90%.

Phase randomization. Extended Data Fig. 1 shows the randomness
tests for datawhere phase noise has been introduced to the coherent

state. Thisisachieved by driving amirror-mounted piezoelectricactua-
tor to change the optical path length over arange of one wavelength,
or 1,064 nm. The piezoelectric actuator was driven with a 100 Hz
triangle-wave function, which was chosen to be much slower thanthe
pulse repetition rate to ensure all phases over the range from O to 21t
were equally represented among the entire dataset.

Randomness characterization. Here we follow the work detailed in
ref. 20 on how the photon-number counts were binned to generate
multiplicatively longer bit sequences as well as how the bit sequence
was tested for randomness. We start with the case of mod(2) binning,
inwhich each detection event corresponds to an outcome of even(0)
orodd(1), the measurement probabilities are given by

(2) 1 )
Pooy = (Pow) = 5 (1x ™) — PZ =

o) S+ evfe),

where riis the average photon number of the coherent state and

B = > 2m+ky(2m+ k],

m=0

(18)

aretheeven (k=0)and odd (k=1) projection operators. For large aver-
age photonnumbers, the balancement between even/odd probabilities
is maintained (that is, e=2* - 0). In terms of these pl‘OjeCtOI‘S the

corresponding parity operator is given by I7 = A 2 _ P1 Slmllarly, we
can define projectors for the case of mod(4) binning

54

P = Z [4m + k) (4m + k|, 19)

m=0

where each mod(2) bin is further broken down into bins containing
every other even/odd photon count. For example, the k= 0 binis com-
posed of the photon number counts {0, 4, 8, ...} while the k=2 bin
counts{2, 6,10, ...} and likewise for the odd counts. In this sense, mod(4)
binning is akin to a higher-order parity measurement. It is clear then
that the parity operator can be expressed as

~(4 ~(4 ~(4 ~(4 ~(2 ~(2
=5 + B - (Pi) p§>) sy -7, (20)
and the binning probabilities are in turn given by
(4 _ o Can+k
PO=F)=eny I
n=o (4n+k)! @1

=1(1+2e"cos(n-
< (

2)+ (-vfen).

The length of the bit sequence can then be made longer by taking the
remainders and mapping them to the dual-bit values according to
{0,1,2,3} - {00,01,10,11} . This same form of mapping holds for
higher-modulo binning. Note the largest biasing termin equation (21)
is larger than the mod(2) biasing term by a square root. This implies a
trade-off whenbinning the data: larger bit sequence generation comes
atthe costof requiringa higher coherent state average photon number.
This procedure can be generalized for mod(Q) where the projectors
aregiven by

A(Q)

i |Qm + k)(Qm + k|, (22)

and the corresponding parity operator canin turn be constructed as

P =Py - B

Q-1
_ Z kp(@ _ A(Z) 52) 23)
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Thetested datais based off 0f 107,911,769 photon-number counts from
acoherent source of average photon number 7 ~ 57. For a trial size of
7.5 x 105, this corresponds to n = {143, 287, 431, 575, 719} trials for
mod{2, 4, 8,16, 32}, respectively. We subject this data to asuite of ran-
domness tests outlined by NIST SP800-22*¢ to demonstrate that the
generated bit sequenceis truly random. We note that our methodology
for determining randomness is the same as that employed in testing
therandomness of bit sequences generated using the protocols of the
NIST encryption standard competition finalists, detailed in ref. 47,
utilized in the verification of new randomness tests by ref. 48 and
implemented in the cryptographically secure Intrinsic ID Zign
software-based random number generator®. In Extended Data Fig. 2,
we plot the results of these tests for mod{2, 4, 16, 32}. Note that the
mod(8) result can be found within the main text. Due to the large num-
ber of tests available for judging whether asequenceis randomor not,
thereis no‘complete’ or systematic approach to proving randomness.
Instead, one relies on providing sufficient evidence that a given
sequence is indeed random. For each trial, a series of tests are per-
formed and a P value is obtained for each test corresponding to the
probability that a perfect random-number generator would produce
asequencelessrandomthan the sequence being tested. If this Pvalue
is greater than the chosen significance level of « = 0.01(1%), the test is
considered passed (successful) and the trial is accepted as random.
The proportion is then defined as the ratio of successful trials to the
total number of trials (thatis, the success rate). Included in our analysis
is the confidence interval (Cl), that is, the range of estimation for the
success rate of a particular test given a 99% confidence level. Typically,
the Cl for a set of Bernoulli trials with a success rate of jcan be fairly
approximated by that of the normal distribution

Clzﬁizﬂw,

where n is the total number of trials and zis the 1 — £ quantile probit
function (thatis, the inverse cumulative distribution function for the
normal distribution). However, this approximation to the binomial
distribution, which is more representative of a set of Bernoulli trials,
is only valid when the number of trials is on the order of n 2 10* and/or
where the success rates are sufficiently far away from the boundary
values of 0, 1. This proves to be an insufficient approximation for our
data. Weinstead turn to the asymmetric Wilson score approximation*?
to the normal distribution given by

(24)

n . 22 zn pa-p) 22
= )+ =
n+zz<p+2n)_n+z2 n *
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Clys

The Wilson score confidence interval, Cl,,, for a99% confidence level
arerepresented by horizontal dashed bluelinesin Fig.3, and Extended
Data Figs. 1and 2. In addition, we plot for each test the equivalent
definition of the Cl,

ng + %zz

z ngne 22

Clys = + T (26)
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where ng, n;= n - n, are the number of successful and failed trials,
respectively. The successrateis then given by p = ny/n. This measure
provides arange for each testin which the mean proportionis likely
to fall given repeated testing of the bit generation method (that s,
more trials performed) and is represented by red error bars in
Fig. 3, and Extended Data Figs. 1 and 2. Sufficient evidence of ran-
domness exists if the proportion lies above the lower bound of the
Cl,, for all tests considered. By this criterion, we conclude that the
generated bit sequences for the cases of mod{2, 4, 8} binning
are random while the generated bit sequences for mod{16, 32, ...}
binning are not random.

To further validate our results, we reiterate that for the case of a
coherent state with average photon number 7 ~ 57, we expect the
balancement of binning probabilities to hold for up to mod(8) binning.
Higher-modulo binning will introduce larger degrees of bias into the
binning probabilities, as seen in equation (21). An approximate trend
isthat the largest biasing termin the binning probabilities for the case

of mod(Q) binning is « exp (—%’), such that if one wanted to maintain

the same degree of bias as the mod(2) binning case, one would need a
coherent state with an average photon number %Q-times larger. Fora
static 71, higher-modulo binning will subsequently resultina generated
bit sequence that does not display randomness as there will be a sig-
nificant amount of bias in the higher-modulo binning probabilities.
Forreference, theimpact of bias on the randomness of the bit sequence
isreflected in Extended Data Fig. 2, where as predicted the mod(16)
and mod(32) binning cases show evidence that the generated bit
sequenceis not random as for both cases several test proportions fall
outside of the Cl,,.. Even more specifically, only a few tests fail for the
mod(16) case and most fail for the mod(32), reflecting that more bias
isintroduced as a function of the modulo binning size. Likewise, this
alsofurther strengthens the argument that the mod{2, 4, 8} cases result
inarandom-bit sequence, as our experimental data align perfectly with
theoretical predictions.

Additional data

Further analyses of experimental data are shown in Extended Data.
Full characterization of the randomness tests on all data is shown in
Extended DataFigs.1and 2. The effect of error-rate reduction through
binning modificationsis shownin Extended DataFig. 3 with the normal-
ized Gaussian fitting for all three TES channels shownin Extended Data
Fig.4.Specificerrorrates for different photon-number measurements
on each channel based on different histogram binning are shown in
Extended Data Fig. 5. Theoretical residual bias for photon-number
measurements modulo dwithanupperlimit of 100 resolvable photons
areshownin Extended Data Fig. 6.

Data availability

The data supporting plots within this paper are available at https://doi.
org/10.6084/m9.figshare.21304524.v1 and https://doi.org/10.6084/
mo.figshare.21291318. Additional data used for detector calibration can
be obtained from the corresponding authors on reasonable request.

Code availability
The codes used to process and analyse the data can be obtained from
the corresponding authors on reasonable request.
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Extended Data Fig. 1| NIST randomness tests for phase-averaged data.
Randomness tests for bit strings obtained from modulo 2 binning the sampled
photon number from a mixture of coherent states with randomized phase. All
tests pass indicating phase stability has no bearing on the quality of QRNG. The
error bars for each proportion are computed from the Wilson score interval of
equation (26) where n =143 is the total number of trials and n; (ny)are the

Test

number of successful (failed) trials for a significance level of & = 0.01. Given
repeated testing of the bit generation method, the error bars denote the range
for which the proportionis likely to fall. On the horizontal axis, CuSum (F) and (B)
denote the cumulative sum tests for forward and backward propagation through
the bit sequence, DFT denotes the discrete Fourier transform (spectral) test and
Lin. Complex denotes the linear complexity test.
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Extended Data Fig. 2| NIST tests of randomness. Randomness tests for the
resultant bit strings based on how the measured data is binned (Mod 8 data
shown in the main text). Mod 2, Mod 4, and Mod 8 tests all indicate randomness,
while some tests begin to fail for Mod 16 and Mod 32. This is expected due to the
non-zero residual biases for a coherent state distribution with mean photon
number 2 = 57and a PNRD limit of 100 photons. The error bars for each
proportion are computed from the Wilson score (confidence) interval of
equation (26) where n = {143, 287, 575, 719}is the total number of trials for

mod{2, 4,16, 32}binning, respectively, and ng (ny)are the number of successful
(failed) trials for asignificance level of a = 0.01. Given repeated testing of the bit
generation method, the error bars denote the range for which the proportionis
likely to fall. On the horizontal axis, CuSum (F) and (B) denote the cumulative sum
tests for forward and backward propagation through the bit sequence, DFT
denotes the discrete Fourier transform (spectral) test and Lin. Complex denotes
the linear complexity test.
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Extended Data Fig. 3 | Binning error reduction. Error-rate reduction on Thelocation of the new binning thresholds must be the same fraction of the
photon-number resolution through post-selection of data. (a) By excluding Gaussian peak width, o, for each bin. Here, 20, is chosen. (b) Error rate to
data points with measured areas further from the centre of each bin, the incorrectly characterize atrue 25 photon event as a function of the proportion of
portion of overlap from neighbouring Gaussians can be substantially reduced. measurement data kept.
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electronics noise such that zero photon events have a measured area of zero. For

Extended Data Fig. 4 | Gaussian overlaps for all detector channels. Normalized
Gaussian fits for the histogrammed area measurements TES channel1(a), 2 (b),

channel 2, electronics noise can drift slightly above the set voltage threshold so

that small, non-zero areas are recorded for zero photon events.

and 3 (c). Note that for channels1and 3, the FPGA thresholds are set above the
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Channel 1 Channel 2 Channel 3

n Error,, Error,, Error,, n Error,, Error,, Error,, n Error,, Error,, Error,,
0 <1E-5% | <1E-5% | <1E-5% 0 0.16505% | 0.00904% | 0.00443% 0 0.00016% | <1E-5% | <1E-5%
1 0.00323% | <1E-5% | <1E-5% 1 0.05360% | <1E-5% | <1E-5% 1 1.48394% | 0.05080% |0.00971%
2 0.00337% | <1E-5% | <1E-5% 2 0.00422% | <1E-5% | <1E-5% 2 1.58273% | 0.02465% |0.00281%
3 0.00606% | <1E-5% | <1E-5% 3 0.01519% | <1E-5% | <1E-5% 3 0.43777% | 0.00032% |0.00003%
4 0.12408% | 0.00005% | <1E-5% 4 0.24684% | 0.00022% | 0.00002% 4 0.37926% | 0.00016% |0.00001%
5 0.40158% | 0.00038% |0.00003% 5 0.69270% | 0.00138% | 0.00013% 5 0.39887% | 0.00019% |0.00001%
6 0.76496% | 0.00163% |0.00015% 6 1.08336% | 0.00453% | 0.00048% 6 0.44089% | 0.00028% |0.00002%
7 1.18980% | 0.00640% [0.00072% 7 1.35976% | 0.00844% | 0.00093% 7 0.48277% | 0.00037% |0.00003%
8 1.59754% | 0.01444% (0.00176% 8 1.74642% | 0.01792% | 0.00215% 8 1.07570% | 0.01913% |0.00414%
9 1.99698% | 0.02717% [0.00355% 9 2.24348% | 0.03934% | 0.00548% 9 4.86415% | 0.75226% |0.18864%
10 2.46313% | 0.04999% |0.00712% 10 2.67735% | 0.06201% | 0.00886% 10 10.00977%| 2.39729% |0.57133%
11 2.92733% | 0.08202% |0.01249% 11 3.17022% | 0.10150% | 0.01555% 11 12.99089%| 4.23998% |1.16158%
12 3.38050% | 0.12056% |0.01897% 12 3.74374% | 0.15965% | 0.02598% 12 12.23206%| 3.74354% |0.94267%
13 3.82676% | 0.17018% |0.02819% 13 4.32444% | 0.23883% | 0.04093% 13 11.71984%| 3.28820% |0.87955%
14 4.26184% | 0.22828% |0.03883% 14 4.91033% | 0.33929% | 0.06098% 14 12.14633%| 3.56774% |1.00551%
15 4.76323% | 0.31062% |0.05509% 15 5.50332% | 0.46070% | 0.08641% 15 11.98636%| 3.48938% |0.89375%
16 5.29303% | 0.41246% |0.07629% 16 6.14017% | 0.61542% | 0.12057% 16 12.31270%| 3.71189% |0.98322%
17 5.84855% | 0.54010% |0.10365% 17 6.76565% | 0.80202% | 0.16266% 17 12.53381%| 3.90230% |1.03879%
18 6.43810% | 0.69847% |0.13860% 18 7.43999% | 1.02582% | 0.21652% 18 12.89334%| 4.16052% |1.11179%
19 7.02718% | 0.88229% |0.18133% 19 8.12803% | 1.28837% | 0.28310% 19 13.33620%| 4.53110% |1.25031%
20 7.67397% | 1.11349% |0.23902% 20 8.80006% | 1.59444% | 0.36344% 20 13.63416%| 4.80738% |1.31482%
21 8.33058% | 1.37321% |0.30043% 21 9.44801% | 1.91218% | 0.44474% 21 14.23810%| 5.29031% |1.50045%
22 9.06531% | 1.72533% |0.39977% 22 10.13576%| 2.27646% | 0.54859% 22 14.71015%| 5.74825% |1.63897%
23 9.71082% | 2.04220% |0.48005% 23 10.78673%| 2.68344% | 0.66457% 23 15.35154%| 6.36062% |1.86422%
24 10.39516% | 2.44039% [0.59682% 24 11.43643%| 3.10811% | 0.79199% 24 15.79179%| 6.91107% |1.98914%
25 10.98424% | 2.79816% |0.69679% 25 12.12337%| 3.58303% | 0.93612% 25 17.62951%| 8.32499% |2.88164%
26 11.60429% | 3.19400% [0.82521% 26 12.82011%| 4.10727% | 1.09553% 26 15.86059%| 8.39646% |1.95142%
27 12.02390% | 3.54259% |0.89904% 27 13.56510%| 4.72383% | 1.29533% 27 21.31844%| 11.52445% | 4.87493%
28 12.99672% | 4.21978% |1.16603% 28 14.36295%| 5.40639% | 1.55068% 28 16.24228%| 9.37796% |2.18805%
29 13.22495% | 4.51885% |1.15847% 29 14.76240%| 5.94518% | 1.61591% 29 24.01478%| 14.02259% | 6.54019%
30 14.95028% | 5.70299% |1.87684% 30 17.22925%| 7.81656% | 2.74031% 30 16.13940%| 13.40093%| 2.90600%
31 11.81587% | 3.57955% |0.75042% 31 15.42488%| 11.06632%| 2.09260% 31 28.29595%|19.30811%|9.57075%
32 14.34333% | 5.46466% |1.61618% 32 27.31078%| 16.69295%| 9.17559% 32 23.68172%|15.52840% | 6.19073%
33 16.29129% | 7.33867% |2.19949% 33 15.25798%| 12.39242% | 4.12422% 33 22.26482%| 7.99003% [2.11533%
34 19.02733% | 9.67386% |3.56896% 34 32.96108%|22.82930% | 14.26695%

35 16.03542% [ 15.29955% | 2.69396% 35 12.37675%| 9.35277% | 7.95803%

36 28.15765% |17.54685% |9.97878% 36 54.07997%| 45.62961% | 40.43541%

37 23.28622% | 2.50462% |0.37663%

Extended Data Fig. 5| Photon-number error rates for all detectors. Errorrates  each Gaussianin the histogram fit. The thrown-out events account for 32% of

for all detection channels depending on binning. Error percentages indicate allmeasurements. The Error,, discards area events occurring outsides of alo

the probability to incorrectly count ameasurement that was a true n photon width centred around each Gaussian in the histogram fit. This removes 62% of the
event. Error, includes all areas and uses the Gaussian intersections to place bins. measured databut drastically reduces counting errors.

Error,,discards area events occurring outsides of a 2o width centred around
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Extended Data Fig. 6 | Residual bias due to energy truncation. Residual bias number distribution beyond 100 photons. The vertical dashed line indicates a
based on modulo binning of a photon number distribution for coherent state of coherent state with 7 = 57such as used in this experiment where the residual bias
mean photon number 7. Markers indicate the theoretical deviation from a for mod 2, mod 4, and mod 8 binning are the same. The two plots are identical
uniformly random distribution if one had infinite photon-number resolving with the plot at left showing log scale.

capability while solid lines give the expected bias with a truncation of the photon
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