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Resolution of 100 photons and quantum 
generation of unbiased random numbers

Miller Eaton    1,6  , Amr Hossameldin    1,6  , Richard J. Birrittella2,3, 
Paul M. Alsing2, Christopher C. Gerry    4, Hai Dong5, Chris Cuevas5 & 
Olivier Pfister1

Macroscopic quantum phenomena, such as observed in super!uids and 
superconductors, have led to promising technological advancements 
and some of the most important tests of fundamental physics. At present, 
quantum detection of light is mostly relegated to the microscale, where 
avalanche photodiodes are very sensitive to distinguishing single-photon 
events from vacuum but cannot di"erentiate between larger photon-number 
events. Beyond this, the ability to perform measurements to resolve 
photon numbers is highly desirable for a variety of quantum information 
applications, including computation, sensing and cryptography. True 
photon-number resolving detectors do exist, but they are currently limited to 
the ability to resolve on the order of 10 photons, which is too small for several 
quantum-state generation methods based on heralded detection. Here we 
extend photon measurement into the mesoscopic regime by implementing 
a detection scheme based on multiplexing highly quantum-e#cient 
transition-edge sensors to accurately resolve photon numbers between 
0 and 100. We then demonstrate the use of our system by implementing a 
quantum random-number generator with no inherent bias. This method 
is based on sampling a coherent state in the photon-number basis and is 
robust against environmental noise, phase and amplitude !uctuations in 
the laser, loss and detector ine#ciency as well as eavesdropping. Beyond 
true random-number generation, our detection scheme serves as a means to 
implement quantum measurement and engineering techniques valuable for 
photonic quantum information processing.

The nature of quantum mechanics dictates a fundamental wave–par-
ticle duality for physical systems, which was first recognized by Ein-
stein through the understanding that light is composed of individual 
energy quanta known as photons1. The ability to accurately measure 
photons has led to checking the validity of the notion of ‘spooky 
action at a distance’2 and tremendous technological advancement 
in quantum communication3, quantum metrology4–6 and quantum 

computation7,8. Much of this progress relies on the ability to measure 
single photons, such as through the use of avalanche photodiodes9; 
however, the ability to resolve arbitrary numbers of photons beyond 
simply distinguishing vacuum from non-vacuum is highly desirable 
for many quantum information applications8,10–12. The process of pro-
jecting a subset of modes of an entangled state onto the Fock basis 
can allow for engineering non-Gaussian quantum states with negative 

Received: 27 May 2022

Accepted: 11 October 2022

Published online: xx xx xxxx

 Check for updates

1Department of Physics, University of Virginia, Charlottesville, VA, USA. 2Information Directorate, Air Force Research Laboratory, Rome, NY, USA.  
3National Academy of Sciences, Washington DC, USA. 4Department of Physics and Astronomy, Lehman College, The City University of New York, Bronx, 
NY, USA. 5Thomas Jefferson National Accelerator Facility, Newport News, VA, USA. 6These authors contributed equally: Miller Eaton, Amr Hossameldin. 

 e-mail: me3nq@virginia.edu; ah6sr@virginia.edu

http://www.nature.com/naturephotonics
https://doi.org/10.1038/s41566-022-01105-9
http://orcid.org/0000-0001-6374-5032
http://orcid.org/0000-0002-4342-8870
http://orcid.org/0000-0002-4390-6721
http://crossmark.crossref.org/dialog/?doi=10.1038/s41566-022-01105-9&domain=pdf
mailto:me3nq@virginia.edu
mailto:ah6sr@virginia.edu


Nature Photonics

Article https://doi.org/10.1038/s41566-022-01105-9

True photon-number-resolving measurements
To resolve the absorbed photon number, information to distinguish dif-
ferent outputs must be extracted from the signal received by the FPGA. 
An example signal is depicted in Fig. 1b. Traditionally, peak height has 
been used for an indicator as the magnitude of the voltage is propor-
tional to the energy absorbed for low-photon numbers23. However, this 
technique limits individual detector resolution due to the saturation 
of the peak magnitudes beyond several photons, so recently, alterna-
tive methods have been explored for extracting useful information27. 
Although the maximum voltage of the peak saturates, the electrical 
resistance of the TES continues to change as it re-cools back to the 
superconducting state, suggesting useful information is contained 
beyond the peak as the cooling time will also depend on the energy 
absorbed. Integrating the signal in the region above a pre-defined noise 
threshold yields information about both the maximum voltage and the 
time to cool the TES; this peak area thus allows the resolution of many 
more photons than height alone.

For a single TES channel, the histogram of areas for 108 measure-
ment events of a pulsed coherent state is shown in Fig. 1c. As the pulse 
area monotonically increases with absorbed energy, the distinctly 
separated bins correspond exactly to the quanta of energy detected and 
can be used to inform the number of photons measured. The location 
of these bins can be determined by fitting the obtained histogram to 
a sum of Gaussian functions (red dotted line in the figure), where the 
intersection of each normalized Gaussian gives the location of the bin 
edge. The reason for a Gaussian distribution within each bin is due to 
variations in the peak areas resulting from electronic and thermal noise 
on the cooling tail of signal peaks. The Gaussian fitting breaks down 
for large areas beyond the black dashed line in Fig. 1c, indicating that 
the photon number can no longer be accurately determined for this 
detector. The number of events beyond the detector resolution across 
all three TES channels accounts for less than 0.3% of events.

The normalized Gaussian fits to the histogram are shown in  
Fig. 1d, where it can be seen that the overlap of neighbouring Gaussian 
peaks is quite small for the majority of bins, indicating high confidence 
in correctly determining the true photon number for a given area 
measurement. The confidence rate decreases with photon number but 
remains above 90% for photon numbers from 0 to 20 in Fig. 1d. If one 
is willing to post-select and slightly reduce count rates, the accuracy 
of a given photon-number assignment can be substantially increased 
by defining regions of uncertainty near the bin edges. If an event area 
is recorded in this uncertainty region, then the event is discarded and 
not considered in the statistics. Provided the regions of uncertainty 
are scaled in terms of the fitted Gaussian widths corresponding to each 
n-th photon-number event, σn, then the measured probability distribu-
tion will not deviate from the true distribution and the accuracy of 
individual photon-number assignment will increase. If the regions of 
uncertainty are defined beyond ±σn, then 32% of the data is discarded, 
but the confidence rates increase to 99% or higher for the first  
20 photons. If area events are only kept within ± 1

2

σ

n

 of each peak, then 
confidence rates further increase to 99% out to 31 photons. An example 
for error-reduction through post-selection is shown in Extended Data 
Fig. 3, and the area histograms, Gaussian fits and quantitative overlap 
errors for each of the three detection channels are given in Extended 
Data Figs. 4 and 5, respectively.

Post-selection of data was not necessary for the QRNG experiment 
performed in this work as the results only required random parity 
measurements, as will be described in the next section. Fortunately, 
the well-centred Gaussian distributions in each histogram bin mean 
that the probability to improperly count an n photon event as an n + 1 
event is approximately the same as the probability to mistake an n + 1 
event for an n photon count for all events away from the edge of the 
detector range. Due to this effect and the predominance of detection 
events away from the upper edge of the TES range, the statistical error 
for the QRNG experiment was dominated by finite sampling.

Wigner functions13–15—a requirement for any quantum speed-up in 
continuous-variable quantum information16. Recent claims of quantum 
supremacy with Gaussian boson sampling devices7 can be challenged 
with substantially greater ease when threshold detectors are used 
in place of photon-number-resolving detectors (PNRDs) 17. Finally, 
sampling the photon number of a wave-like superposition such as a 
coherent state reveals fundamentally random outcomes that can be 
used to generate true random numbers18–20.

The transition-edge sensor (TES), which is based on a calorimeter 
formed from a superconducting wafer held just below the critical 
temperature, has arisen as a viable PNRD with quantum efficiency 
approaching unity and entirely negligible dark counts21–23. Previous 
results with TES systems show the ability to measure non-classical 
systems with high mean photon numbers24,25; however, these experi-
ments were based on methods requiring extensive post-processing 
that give generally good estimates of photon-number measurements 
but relatively low distinguishability between individual photon 
counts above 10 photons26. For demanding applications requiring 
photon-number resolution, even a single-photon discrepancy destroys 
quantum correlations. Current methods demonstrate the poten-
tial to accurately count photons in the low double digits (~16)27, but  
certain proposals necessitate considerably higher detection events 
for conditional-state preparation. One particularly salient example is 
the preparation of a cubic-phase state to complete a universal gate set 
for continuous-variable quantum computation28. For the numerical 
approximations used in this formalism to hold, one must detect a large 
number of photons—simulations suggest 50 or more29. The detection 
scheme we demonstrate here now easily surpasses this previously 
unreachable milestone.

In this Article, we extend the resolving capabilities of individual 
TES detectors to a maximum of 37 photons per detection channel with 
on-the-fly signal processing. We then multiplex three detectors into a 
system capable of resolving 0–100 photons with detector quantum effi-
ciencies above 90%. Furthermore, we illustrate the utility of our scheme 
towards quantum cryptography applications by creating a quantum 
random-number generator (QRNG). The need for random numbers 
arises in many applications including cryptography, simulation and 
games of chance. Pseudo-random-number generators are not truly 
random and can, for example, lead to erroneous results in Monte Carlo 
simulations30. The stochastic nature of quantum mechanics leads to 
true randomness, but many current implementations sample random 
events from a non-uniform distribution, which can lead to bias that 
must be corrected classically31,32. Our method to implement a QRNG 
is based on sampling the photon statistics of a coherent state and is 
fundamentally unbiased, robust to experimental and environmental 
noise, and invulnerable to eavesdropping.

The detection system used here is constructed by splitting a 
laser pulse equally across three paths and sending each to a TES as 
shown in Fig. 1a. Each TES is a PNRD that makes use of the extremely 
temperature-dependent resistance of a superconductor near the 
phase transition. Our TESs are composed of superconducting tung-
sten wafers that operate with a critical temperature near 100 mK. When 
light is incident on a chip, the thermal energy of an absorbed photon 
acts to locally break the superconducting state and induce a spot of 
non-zero resistance, which increases nearly linearly with absorbed 
energy21. This change in resistance is detected by a series of highly 
sensitive superconducting quantum interference devices (SQUIDs) 
and is then amplified and converted to an output voltage that is sent 
to an external field-programmable gate array (FPGA) to extract key 
signal parameters on the fly (system details in Methods). The detectors 
used were optimized to be highly absorptive at the desired wavelength, 
and while our detectors achieve above 90% quantum efficiency at the 
target wavelength of 1,064 nm (details in Methods), TES systems have 
achieved efficiencies of η = 0.98 (ref. 22) and show the potential to 
reach η > 0.99 (ref. 33).
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Quantum random-number generation
The prototypical photonic QRNG is based on sending a single photon 
to a balanced beamsplitter and placing detectors on the output to 
determine whether the photon was transmitted or reflected34,35. This is 
a truly random coin flip in the ideal case, but it comes with limitations, 
such as the need for on-demand single photons, a perfectly balanced 
beamsplitter and ideal detectors. Other optical techniques, such as 
homodyne measurements to detect random vacuum fluctuations36 or a 
variation on the first method where weak light is spread across a sensor 
array37 can also be used, but these methods also suffer from physical 
limitations and noise that lead to randomness with bias. The random-
ness achieved is not sampled from a uniform distribution and therefore 
systematic bias must be removed with classical algorithms38,39. Beyond 
reducing data and requiring vulnerable classical schemes, systems with 
inherent bias are at risk to quantum hacking40, where an adversary can 
effectively change the calibrated bias and use this to their advantage 
to break encryption.

Here we implement a QRNG making use of the inherent random-
ness present in the parity of the Poissonian distribution of a coherent 
state19,20. When sampling the parity of the photon-number distribution, 
the inherent bias vanishes exponentially quickly with increasing coher-
ent state intensity and asymptotically approaches a true coin flip. To 
generate the random numbers, we simply convert a photon number 
detection to a binary output, where each even photon-number event 

is assigned an outcome of ‘0’ and odd photon numbers are assigned a 
‘1’. This method is unaffected by experimental imperfections such as 
photon loss, detector inefficiency, phase and amplitude noise, and 
contamination by environmental noise.

For the parity operator given by ̂Π = (−1)

̂
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n⟩ is the mean photon number of the coherent state, then the 
expectation of parity is given by
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where Pe and Po are the probabilities to detect either even or odd photon 
numbers, respectively.

In Fig. 2, we show the experimentally measured probability distribu-
tion for a large coherent state with ̄

n = 57, which allows us to make full 
use of our PNRD and clearly resolve out to 100 photons. Although the 
theoretical parity of this state is e−114 ≈ 10−50, we cannot hope to reach this 
precision due to finite sampling. With 108 measurement events, we 
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Fig. 1 | Detection scheme. a, Experimental set-up. A pulsed source is evenly 
split into three segments and each is coupled to a TES detector channel. IB, TES 
bias current; ISQ, SQUID circuit bias current; IFB, flux bias current for SQUID 
feedback circuit; Amp, room-temperature amplifier; V, signal voltage; t, time 
of acquisition. b, Example event (blue) following the pulse trigger (green). 

Pulse parameters including area and height are recorded if the signal passes a 
specified threshold. c, Histogram of measured signal areas of 108 events for a 
single TES channel where a sum of Gaussians (dashed red line) is used to fit the 
data to determine binning for photon-number resolution. d, Bins are set at the 
intersection of between the normalized Gaussians.
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achieve a parity of zero to within uncertainty, with the measured value 
of −7 × 10−5 ± 10−4. In addition, we first verify the parity of weaker coherent 
states as shown in the inset of Fig. 2. As expected, the parity of vacuum 
is 1, and we are clearly able to match the trend of e−2 ̄

n for increasing ̄n.
One unfortunate downside of TES detection systems is the slow 

detector response leading to lower generation rates. Recent advances 
show that superconducting nanowire single-photon detectors have 
the potential to be used as PNRDs that are orders of magnitude faster 
than TESs41, but until this technology matures, we implement an alter-
native method to increasing random-bit generation rates. As opposed 
to binning the photon number result by parity, a uniformly random 
distribution can also be obtained by taking the measurement result 
and binning according to photon-number modulo 2d where 

d ∈ ℤ

. In 
this way, we can generate a bit string of size d for each measurement. 
As d increases, the residual bias of the QRNG still asymptotes to zero 
with increasing ̄

n, but a larger coherent state amplitude is needed to 
achieve a similarly negligible bias. In this work with a maximum detec-
tion of 100 photons, we find that the residual bias for a coherent state 
with ̄n = 57 is equivalent for d ∈ {1, 2, 3}, so we use modulo 8 binning to 
generate random numbers.

We subject the ~3 × 108 random bits generated by our protocol 
to a series of tests taken from the National Institute of Standards and 
Technology (NIST) suite of randomness tests. The proportion (that is, 
the percentage of tests that pass a given test) is plotted in Fig. 3 for each 
test, given a significance level of α = 0.01. In computing the confidence 
interval for Fig. 3 (dashed blue lines), we do not make the standard 
approximation that the distribution of error about the binomially 
weighted observation is given by that of a normal distribution, as our 
sample size is small enough that such an approximation will be unreli-
able. Instead, we use the Wilson score (confidence) interval42, which 
has been shown to be reliable for smaller sample sizes. The findings in 
Fig. 3 demonstrate that our measurements indicate randomness across 
all tests considered (all proportions lie above the lower confidence 
bound). We additionally show the results of randomness measures for 
binning with d ∈ [1, 5] in the Extended Data Fig. 2.

Robust nature of proposed method
On closer examination, we can see how our method here proves to be 
quite robust against various sources of error. First, we can consider 
phase and amplitude fluctuations originating either from the laser or 
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evidence of true randomness. The error bars for each proportion are computed 
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the total number of trials and ns (nf) are the number of successful (failed) trials 
for a significance level of α = 0.01. Given repeated testing of the bit generation 
method, the error bars denote the range for which the proportion is likely to fall. 
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forward and backward propagation through the bit sequence, DFT denotes the 
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from any other experimental instability. This can be modelled by assum-
ing that a statistical mixture of coherent states impinges upon the 
detector. We find that phase fluctuations have absolutely no bearing 
on the randomness and still lead to the same residual bias of e−2 ̄

n, which 
we experimentally verify as shown in the Extended Data Fig. 1. Ampli-
tude fluctuations similarly provide negligible impact. Suppose the 
coherent state has mean photon number of ̄n and there is a small inten-
sity fluctuation of δ. The expectation of parity becomes 
e

−2(

̄

n±δ)

≈ e

−2

̄

n

(1 ± δ), which tends to zero for sufficiently large ̄

n.
Next, we can consider the effects of loss, detector inefficiency and 

uneven splitting between the TES channels with imperfect beamsplit-
ters. We can always model a detector of efficiency η by inserting a loss 
channel in the form of a beamsplitter of transmittivity η before a perfect 
detector and performing a partial trace over the unmeasured output 
port (Methods). As the coherent state, |α⟩, maps to the smaller coherent 
state, |

|

√

ηα⟩, after this loss, an imperfect detector still measures a  
Poissonian photon-number distribution. Thus, to achieve quality ran-
domness with low residual bias, the coherent state used must be chosen 
such that ̄

n

′

= η

̄

n is sufficiently large. As for uneven splitting or differing 
detector efficiencies between channels, we can equivalently model the 
process of measuring a single coherent state distribution as the discrete 
convolution of three smaller coherent state distributions. As all beam-
splitter outputs are still detected, changing the beamsplitter reflectivi-
ties just acts to redistribute the photons among the TES channels. 
Provided no single channel saturates, which is easily recognizable 
through monitoring area measurements, sampling the summed output 
of all channels will still yield a Poissonian distribution.

An additional concern of any quantum mechanical experiment is 
that of unintentional coupling to the environment. One possible effect 
of such coupling is photon loss as addressed in the previous paragraph. 
Another effect is the addition of photons, such as coupling to an exter-
nal thermal bath, or some malicious observer attempting to inject light. 
In place of measuring a coherent state, suppose that the detector is 
sent the density operator ρ = ρα ⊗ ρenv, where ρ

α

=

|

α⟩ ⟨α

| is the density 
operator for the coherent state and ρenv is the density operator for some 
unknown quantum state, not necessarily pure, originating from the 
environment. The expectation value of parity for the whole system is 
given by ⟨ei𝜋𝜋∑ ̂

n

k

⟩, where subscript k denotes the different subsystems. 
This leads to an overall parity of

⟨

̂Π⟩ = e

−2

̄

n

⟨

̂Π⟩

env

, (3)

where ⟨ ̂Π⟩

env

 is the parity of the environment alone and is bounded 
between 1 and −1. Thus environmental mixing will not degrade the 
quality of the QRNG.

As a final concern, consider an eavesdropper attempting to deter-
mine information about the random numbers. Suppose an eavesdrop-
per uses a beamsplitter to sample the coherent light in an attempt to 
predict the random number measured by the user. Due to the nature 
of coherent states, the two beamsplitter outputs remain in a product 
state, hence are not correlated. Thus no information about the results 
at one output port can be used to determine the results at the other, 
preventing the eavesdropper from attaining useful information. Other 
side-channel attacks, such as the insertion of different quantum states 
by a nefarious party, can be readily mitigated as well. Although the 
QRNG method utilizes only higher-order parity measurements, we 
still have access to the full photon-number distribution from the TES, 
which can be monitored to ensure that Poissonian statistics are still 
obtained. This rules out any external manipulation as replacing or 
interspersing the coherent state with a different state will yield a dif-
ferent distribution. In addition, the TES waveform response can be 
concurrently monitored and frequently recalibrated to rule out signal 
manipulation. Finally, as a coherent state is simply a laser output, the 
source and detector can be fabricated in near proximity to one another 
and protected from any realistic attack through appropriate shielding.

Recently, there has been some emphasis on the use of Bell inequal-
ity violations to certify the quantum nature of a device and ensure 
private randomness31,32,43. Although this concept has merit, it requires 
closing all experimental loopholes to eliminate a local hidden variable 
theory before it can truly validate a black box as a quantum device. 
Furthermore, trust must be given at some point during any realistic 
experiment as the classical signal used to enact Bell measurements 
may itself be spoofed. In our implementation, the quantum nature 
of the experiment is verified by the area histograms shown in Fig. 1c. 
The origin of the separation between area measurements is the fun-
damental energy quantization of photons. An entirely classical signal 
would yield a single broad Gaussian peak centred about the average 
energy of the beam of light spanning a swath of areas due to classical 
noise fluctuations as opposed to the multiple Gaussian fits for each  
TES channel.

In this Article, we have demonstrated drastic improvement to the 
photon-number resolving capabilities of high-quantum-efficiency TES 
systems and can accurately resolve 0–100 photons. By post-selecting 
data, one can achieve error rates below 1% on photon-number meas-
urements beyond 30 photons per detection channel without impact-
ing the measurement distribution. These results have far-reaching 
implications for quantum information applications by opening up 
avenues in quantum sensing, such as reaching the Heisenberg limit with 
large photon-number parity detection44, or through uses in photonic 
quantum computation, such as efficiently simulating interactions 
in quantum field theory45. Furthermore, we demonstrated the util-
ity of our detection scheme to make an unbiased QRNG by sampling 
the parity of a coherent state. This technique is robust to a variety of 
experimental imperfections, and bit generation rates can be improved 
through binning with photon-number modulo 2d.
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Methods
Theoretical background
Origin of randomness. The photon-number parity of a coherent 
state tends towards a uniform distribution as the energy of the state 

increases. For a coherent state given by |α⟩ = e
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From this, we see that for large ̄n, the parity expectation value can 

be arbitrarily close to zero. To generate the random numbers we simply 
output ‘0’ whenever we measure an even number or ‘1’ whenever we 
measure odd.

Phase and amplitude fluctuations. First, we consider phase fluctua-
tions. Suppose we do not have a pure coherent state, but a statistical 
mixture of coherent states with the same amplitude and a random phase
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which shows that phase noise does not affect the parity expectation 
value.

Second, we consider amplitude fluctuations. Changes in the ampli-
tude of the coherent state amount to changes in the mean photon 
number ̄n. For a change δ in the mean photon number, the parity expec-
tation value becomes e−2( ̄

n±δ) which is approximately e−2 ̄

n for small δ.

Environmental noise. We now look at the expectation value of the 
parity operator on the whole system where ρ = ρcoh ⊗ ρenv with 
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where ⟨ ̂Π⟩

env

 is bounded between 1 and −1. For large enough ̄n, the whole 
expectation value goes to zero regardless of the form of ρenv.

Loss and detector inefficiency. Consider an imperfect detector with 
quantum efficiency η < 1. This can be modelled by placing a fictitious 
‘loss beamsplitter’ with reflectivity r = √1 − η and transmittivity t =

√

η 
such that r2 + t2 = 1 in front of a perfect detector and performing a partial 
trace over the reflected mode. The beamsplitter operator acting on 
bosonic modes a and b is given by
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where r = cosθ and t = sinθ. Sending a coherent state, |α⟩, to an imper-
fect detector is then the same as sending the density operator
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to a perfect detector. Thus, for coherent states, all measurements made 
with PNRDs having η < 1 can instead be treated as ideal detectors where 
the measured state is just a different coherent state.

Unbalanced splitting and efficiency. Suppose we send the coherent 
state |α⟩ to our three-detector system. Due to unbalanced splitting 
between different paths or small variations in detector efficiency, each 
TES may see a different signal. Together, the statistics of the photon 
number summed across all three channels will still be that of a coherent 
state but with potentially different effective amplitude.

For an input coherent state and vacuum in the unused beamsplitter 
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where rk and tk are the beamsplitter coefficients for beamsplitter k. Sup-
pose now that the three detectors have quantum efficiencies ηa, ηb and 
ηc. Using equation (6) for each mode, the effective state sent to three 
perfect detectors is then
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The probability to measure the total photon number summed across 
all detectors, m = na + nb + nc, is given by

P(m) = e

−|β

a

β

b

β

c

|

2

m

∑

n

a

=0

m−n

a

∑

n

b

=0

|β

a

|

2n

a

|β

b

|

2n

b

|β

c

|

2(m−n

a

−n

b

)

n

a

!n

b

!(m − n

a

− n

b

)!

(15)

= e

−|β

a

β

b

β

c

|

2

(|β

a

|

2

+ |β

b

|

2

+ |β

c

|

2

)

m

m!

, (16)

http://www.nature.com/naturephotonics


Nature Photonics

Article https://doi.org/10.1038/s41566-022-01105-9

which is the same probability distribution that would be obtained by 
measuring a coherent state of amplitude α′ = √
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2 with 
a single detector of efficiency η = 1.

Experimental methods
The coherent state sent to the PNRD is generated by pulsing a 
continuous-wave 1,064 nm laser using an acousto-optical modulator 
as an optical switch. The pulse duration is set to be less than 100 ns, 
which is well within the rising-edge time of the detection signal. The 
pulses are sent at a repetition rate of 12.5 kHz to ensure that the detec-
tor has re-cooled and thermal noise is at a minimum. This rate can be 
increased to 50 kHz without incurring substantial ill effects. Each split 
pulse is coupled to a TES channel through standard single-mode opti-
cal fibre. Details on TES operation within a cryostat can be found in  
refs. 6,23. In this work, we additionally filter the output signal to remove 
the d.c. component and implement a low-noise external amplifier to 
bring the signal to within a 500 mV range.

Data acquisition. The amplified output signal is sent to a custom-built 
Ethernet-based flash analogue-to-digital converter (EFADC) capable 
of collecting and processing TES signals for up to eight channels. The 
device is based on an FPGA, which samples a signal with 12-bit resolu-
tion at a rate of 250 MHz. The internal memory and processing speed 
allow the device to collect up to 32 µs worth of signal points, perform 
rudimentary calculations on the data to determine key parameters, 
and transfer the calculated parameters to a hard disk all before the 
next signal pulse arrives.

The EFADC is triggered by an external pulse signal corresponding 
to the arrival time of each coherent state pulse. If the incoming signal 
rises above a user-defined noise threshold, the EFADC begins integrat-
ing the waveform until the signal falls below a second threshold that can 
be set to account for hysteresis. The integrated signal area, maximum 
peak height, signal duration, time stamp of signal start and time stamp 
of signal maximum are all recorded. All parameters can be used for 
additional signal characterization in post-processing, but we find that 
pulse area is sufficient to achieve large photon-number resolution.

Efficiency calibration. Transition-edge sensors have managed to reach 
up to 98% quantum efficiency22, but it is important to characterize 
the precise response of our detection system at 1,064 nm. The power 
in a given pulse sent to each TES detector is on the order of several 
picowatts, so care must be taken to accurately calibrate the quantum 
efficiency. First, we constructed and characterized a high-amplification 
photodetection circuit with a low-power sensitivity threshold at 
approximately 200 pW. Calibration for this detector was based on a 
Scientech pyroelectric calorimeter and a series of precision attenua-
tors. The home-build photodetector was then used in conjunction with 
the attenuators to calibrate each TES channel individually. Laser light 
was split at a 95:5 beamsplitter where the stronger portion was sent 
to the photodetector and the weaker portion was further attenuated 
and sent to the TES. This calibrated attenuation included the effects 
of imperfect fibre coupling so the TES quantum efficiency could be 
directly measured.

For each detector, 106 pulses were sent simultaneously to the pho-
todetector and the TES channel under test. The mean photon number 
was extracted from the PNRD and compared with the classical signal 
power to determine the quantum efficiency. We measured a quantum 
efficiency of 97(5)% for channel 1, 93(5)% for channel 2 and 91(5)% for 
channel 3. The 5% uncertainly originates from the absolute error on 
the Scientech pyroelectric calorimeter, uncertainty on splitting ratio 
and error on the attenuation calibration. All channels used were thus 
measured to have a quantum efficiency above 90%.

Phase randomization. Extended Data Fig. 1 shows the randomness 
tests for data where phase noise has been introduced to the coherent 

state. This is achieved by driving a mirror-mounted piezoelectric actua-
tor to change the optical path length over a range of one wavelength, 
or 1,064 nm. The piezoelectric actuator was driven with a 100 Hz 
triangle-wave function, which was chosen to be much slower than the 
pulse repetition rate to ensure all phases over the range from 0 to 2π 
were equally represented among the entire dataset.

Randomness characterization. Here we follow the work detailed in 
ref. 20 on how the photon-number counts were binned to generate 
multiplicatively longer bit sequences as well as how the bit sequence 
was tested for randomness. We start with the case of mod(2) binning, 
in which each detection event corresponds to an outcome of even(0) 
or odd(1), the measurement probabilities are given by
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are the even (k = 0) and odd (k = 1) projection operators. For large aver-
age photon numbers, the balancement between even/odd probabilities 
is maintained (that is, e−2 ̄
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→ 0). In terms of these projectors, the  
corresponding parity operator is given by ̂Π =
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. Similarly, we 
can define projectors for the case of mod(4) binning
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where each mod(2) bin is further broken down into bins containing 
every other even/odd photon count. For example, the k = 0 bin is com-
posed of the photon number counts {0, 4, 8, ...} while the k = 2 bin 
counts {2, 6, 10, ...} and likewise for the odd counts. In this sense, mod(4) 
binning is akin to a higher-order parity measurement. It is clear then 
that the parity operator can be expressed as
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and the binning probabilities are in turn given by
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The length of the bit sequence can then be made longer by taking the 
remainders and mapping them to the dual-bit values according to 
{0, 1, 2, 3} → {00,01, 10, 11} . This same form of mapping holds for 
higher-modulo binning. Note the largest biasing term in equation (21) 
is larger than the mod(2) biasing term by a square root. This implies a 
trade-off when binning the data: larger bit sequence generation comes 
at the cost of requiring a higher coherent state average photon number. 
This procedure can be generalized for mod(Q) where the projectors 
are given by
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and the corresponding parity operator can in turn be constructed as
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The tested data is based off of 107,911,769 photon-number counts from 
a coherent source of average photon number ̄

n ≈ 57. For a trial size of 
7.5 × 105, this corresponds to n = {143, 287, 431, 575, 719} trials for 
mod{2, 4, 8, 16, 32}, respectively. We subject this data to a suite of ran-
domness tests outlined by NIST SP800-2246 to demonstrate that the 
generated bit sequence is truly random. We note that our methodology 
for determining randomness is the same as that employed in testing 
the randomness of bit sequences generated using the protocols of the 
NIST encryption standard competition finalists, detailed in ref. 47, 
utilized in the verification of new randomness tests by ref. 48 and 
implemented in the cryptographically secure Intrinsic ID Zign 
software-based random number generator49. In Extended Data Fig. 2, 
we plot the results of these tests for mod{2, 4, 16, 32}. Note that the 
mod(8) result can be found within the main text. Due to the large num-
ber of tests available for judging whether a sequence is random or not, 
there is no ‘complete’ or systematic approach to proving randomness. 
Instead, one relies on providing sufficient evidence that a given 
sequence is indeed random. For each trial, a series of tests are per-
formed and a P value is obtained for each test corresponding to the 
probability that a perfect random-number generator would produce 
a sequence less random than the sequence being tested. If this P value 
is greater than the chosen significance level of α = 0.01 (1%), the test is 
considered passed (successful) and the trial is accepted as random. 
The proportion is then defined as the ratio of successful trials to the 
total number of trials (that is, the success rate). Included in our analysis 
is the confidence interval (CI), that is, the range of estimation for the 
success rate of a particular test given a 99% confidence level. Typically, 
the CI for a set of Bernoulli trials with a success rate of ̂

p can be fairly 
approximated by that of the normal distribution

CI ≈

̂

p ± z

√

̂

p (1 −

̂

p)

n

, (24)

where n is the total number of trials and z is the 1 − α

2

 quantile probit 
function (that is, the inverse cumulative distribution function for the 
normal distribution). However, this approximation to the binomial 
distribution, which is more representative of a set of Bernoulli trials, 
is only valid when the number of trials is on the order of n ≳ 104 and/or 
where the success rates are sufficiently far away from the boundary 
values of 0, 1. This proves to be an insufficient approximation for our 
data. We instead turn to the asymmetric Wilson score approximation42 
to the normal distribution given by

CI
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=

n

n + z

2

(

̂

p +

z

2

2n

) ±

zn

n + z

2

√

̂

p (1 −

̂

p)

n

+

z

2

4n

2

. (25)

The Wilson score confidence interval, CIws, for a 99% confidence level 
are represented by horizontal dashed blue lines in Fig. 3, and Extended 
Data Figs. 1 and 2. In addition, we plot for each test the equivalent 
definition of the CIws

CI
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=

n

s

+

1

2

z

2
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2
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z

n + z
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n

s

n
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+
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2

4

, (26)

where ns, nf = n − ns are the number of successful and failed trials, 
respectively. The success rate is then given by ̂

p = n

s

/n. This measure 
provides a range for each test in which the mean proportion is likely 
to fall given repeated testing of the bit generation method (that is, 
more trials performed) and is represented by red error bars in  
Fig. 3, and Extended Data Figs. 1 and 2. Sufficient evidence of ran-
domness exists if the proportion lies above the lower bound of the 
CIws for all tests considered. By this criterion, we conclude that the 
generated bit sequences for the cases of mod{2, 4, 8} binning  
are random while the generated bit sequences for mod{16, 32, ...} 
binning are not random.

To further validate our results, we reiterate that for the case of a 
coherent state with average photon number ̄

n ≈ 57, we expect the 
balancement of binning probabilities to hold for up to mod(8) binning. 
Higher-modulo binning will introduce larger degrees of bias into the 
binning probabilities, as seen in equation (21). An approximate trend 
is that the largest biasing term in the binning probabilities for the case 

of mod(Q) binning is ∝ exp (−

4

̄

n

Q

)

, such that if one wanted to maintain 

the same degree of bias as the mod(2) binning case, one would need a 
coherent state with an average photon number 1

2

Q-times larger. For a 
static ̄n, higher-modulo binning will subsequently result in a generated 
bit sequence that does not display randomness as there will be a sig-
nificant amount of bias in the higher-modulo binning probabilities. 
For reference, the impact of bias on the randomness of the bit sequence 
is reflected in Extended Data Fig. 2, where as predicted the mod(16) 
and mod(32) binning cases show evidence that the generated bit 
sequence is not random as for both cases several test proportions fall 
outside of the CIws. Even more specifically, only a few tests fail for the 
mod(16) case and most fail for the mod(32), reflecting that more bias 
is introduced as a function of the modulo binning size. Likewise, this 
also further strengthens the argument that the mod{2, 4, 8} cases result 
in a random-bit sequence, as our experimental data align perfectly with 
theoretical predictions.

Additional data
Further analyses of experimental data are shown in Extended Data. 
Full characterization of the randomness tests on all data is shown in 
Extended Data Figs. 1 and 2. The effect of error-rate reduction through 
binning modifications is shown in Extended Data Fig. 3 with the normal-
ized Gaussian fitting for all three TES channels shown in Extended Data 
Fig. 4. Specific error rates for different photon-number measurements 
on each channel based on different histogram binning are shown in 
Extended Data Fig. 5. Theoretical residual bias for photon-number 
measurements modulo d with an upper limit of 100 resolvable photons 
are shown in Extended Data Fig. 6.

Data availability
The data supporting plots within this paper are available at https://doi.
org/10.6084/m9.figshare.21304524.v1 and https://doi.org/10.6084/
m9.figshare.21291318. Additional data used for detector calibration can 
be obtained from the corresponding authors on reasonable request.

Code availability
The codes used to process and analyse the data can be obtained from 
the corresponding authors on reasonable request.
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Extended Data Fig. 1 | NIST randomness tests for phase-averaged data. 
Randomness tests for bit strings obtained from modulo 2 binning the sampled 
photon number from a mixture of coherent states with randomized phase. All 
tests pass indicating phase stability has no bearing on the quality of QRNG. The 
error bars for each proportion are computed from the Wilson score interval of 
equation (26) where n = 143 is the total number of trials and n

s

(n

f

) are the 

number of successful (failed) trials for a significance level of α = 0.01. Given 
repeated testing of the bit generation method, the error bars denote the range 
for which the proportion is likely to fall. On the horizontal axis, CuSum (F) and (B) 
denote the cumulative sum tests for forward and backward propagation through 
the bit sequence, DFT denotes the discrete Fourier transform (spectral) test and 
Lin. Complex denotes the linear complexity test.
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Extended Data Fig. 2 | NIST tests of randomness. Randomness tests for the 
resultant bit strings based on how the measured data is binned (Mod 8 data 
shown in the main text). Mod 2, Mod 4, and Mod 8 tests all indicate randomness, 
while some tests begin to fail for Mod 16 and Mod 32. This is expected due to the 
non-zero residual biases for a coherent state distribution with mean photon 
number ̄

n = 57 and a PNRD limit of 100 photons. The error bars for each 
proportion are computed from the Wilson score (confidence) interval of 
equation (26) where n = {143, 287, 575, 719} is the total number of trials for 

mod{2,4, 16, 32} binning, respectively, and n
s

(n

f

) are the number of successful 
(failed) trials for a significance level of α = 0.01. Given repeated testing of the bit 
generation method, the error bars denote the range for which the proportion is 
likely to fall. On the horizontal axis, CuSum (F) and (B) denote the cumulative sum 
tests for forward and backward propagation through the bit sequence, DFT 
denotes the discrete Fourier transform (spectral) test and Lin. Complex denotes 
the linear complexity test.
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Extended Data Fig. 3 | Binning error reduction. Error-rate reduction on 
photon-number resolution through post-selection of data. (a) By excluding 
data points with measured areas further from the centre of each bin, the 
portion of overlap from neighbouring Gaussians can be substantially reduced. 

The location of the new binning thresholds must be the same fraction of the 
Gaussian peak width, σn, for each bin. Here, 2σn is chosen. (b) Error rate to 
incorrectly characterize a true 25 photon event as a function of the proportion of 
measurement data kept.

http://www.nature.com/naturephotonics
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Extended Data Fig. 4 | Gaussian overlaps for all detector channels. Normalized 
Gaussian fits for the histogrammed area measurements TES channel 1 (a), 2 (b), 
and 3 (c). Note that for channels 1 and 3, the FPGA thresholds are set above the 

electronics noise such that zero photon events have a measured area of zero. For 
channel 2, electronics noise can drift slightly above the set voltage threshold so 
that small, non-zero areas are recorded for zero photon events.

http://www.nature.com/naturephotonics
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Extended Data Fig. 5 | Photon-number error rates for all detectors. Error rates 
for all detection channels depending on binning. Error percentages indicate 
the probability to incorrectly count a measurement that was a true n photon 
event. Errorall includes all areas and uses the Gaussian intersections to place bins. 
Error2σ discards area events occurring outsides of a 2σ width centred around 

each Gaussian in the histogram fit. The thrown-out events account for 32% of 
all measurements. The Error1σ discards area events occurring outsides of a 1σ 
width centred around each Gaussian in the histogram fit. This removes 62% of the 
measured data but drastically reduces counting errors.

http://www.nature.com/naturephotonics
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Extended Data Fig. 6 | Residual bias due to energy truncation. Residual bias 
based on modulo binning of a photon number distribution for coherent state of 
mean photon number ̄

n. Markers indicate the theoretical deviation from a 
uniformly random distribution if one had infinite photon-number resolving 
capability while solid lines give the expected bias with a truncation of the photon 

number distribution beyond 100 photons. The vertical dashed line indicates a 
coherent state with ̄

n = 57 such as used in this experiment where the residual bias 
for mod 2, mod 4, and mod 8 binning are the same. The two plots are identical 
with the plot at left showing log scale.
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