
1.  Introduction
Global warming and subsequent increases in heat stress reduce workers' ability to perform labor in conditions 
that lack climate control. Many studies suggest that these reductions in labor capacity will be significant (Dunne 
et al., 2013; Kjellstrom et al., 2009, 2016, 2018; Parsons et al., 2022). Kjellstrom et al.  (2018) suggest labor 
capacity losses in the range of 4%–12%, varying regionally, under 2.7°C mean global warming in a subset of 
models from the fifth Coupled Model Intercomparison Project (CMIP5) under Representative Concentration 
Pathway (RCP) 6.0. As workers' capacities are diminished, cascading global economic effects, driven by sectoral 
and regional interdependencies, result. Recent studies have made important contributions toward assessing the 
subsequent output and GDP losses across the globe using general equilibrium (GE) methods (de Lima et al., 2021; 

Abstract  This paper assesses the poverty implications of heat stress-related labor capacity losses based 
on simulations using a global general equilibrium economic model. Compared with past studies, we use a 
more precise measurement of heat stress, assign labor capacity losses to specific labor types by sector, and 
employ an economic model that contains highly disaggregated economic sectors and regions. This model 
allows us to determine global and regional economic impacts that account for international dependencies. We 
focus attention on seven West African countries for which we determine the implied changes in real incomes 
of households near the poverty line. For these countries, we use household microsimulations to determine 
potential impacts on the poverty headcount. In our results, poverty impacts are heterogeneous across countries 
and earning sources-based household strata. A key channel behind this heterogeneity is how loss of labor 
productivity affects the relative returns to factors of production. We find that unskilled agricultural wages could 
increase, as loss of productivity in the face of inelastic food demand induces increased labor demand in order 
to dampen agricultural output losses. In our experiments, even neglecting potential increases in mortality and 
morbidity, poverty increases range from 2.3% in Cameroon to up to 7.2%–9.2% in Ghana and Nigeria. In one of 
the seven countries considered, Guinea, poverty sees little change due to the mitigating effects of rising labor 
wages.

Plain Language Summary  With global warming, laborers will experience increasing heat stress 
and reduced capacity. This will cause economic losses, especially in sectors with high exposure in hot, 
humid regions. The uneven distributional implications of this, especially on lower-middle income countries, 
are of special interest. Here, we assess the poverty implications of heat stress on labor globally but with an 
emphasis on seven West African countries. To estimate poverty impacts in West Africa, we construct global 
projections of future heat stress and associated labor capacity losses. Surveys of workers provide work intensity 
and  outdoor exposure rates, allowing us to determine which type of workers in which sectors would be affected 
most. Using a global economic model, we assess the resulting impacts on production, GDP, prices, wages, 
and incomes. In turn, income changes determine poverty changes. Using recent survey data from seven West 
African countries, we determine how many households are pushed into poverty under a +3°C global warming 
scenario. Neglecting potential increases in mortality and morbidity rates, poverty increases in six countries by 
between 2.3% and 9.2%, while in one country, Guinea, there is little change. In Guinea, agricultural workers can 
see their wages increase due to increased demand aimed at mitigating food production losses.
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Knittel et al., 2020; Orlov et al., 2020). According to these assessments, the largest GDP declines would occur 
in Africa and South Asia. These regions comprise low-income economies that are home to a large share of the 
world's present-day poor, which raises questions as to the extent to which international poverty reduction goals 
could face significant headwinds due to this aspect of climate change. It has been proposed that heat stress is a 
great driver of inequality since it harms those most vulnerable (Alizadeh et al., 2022; Rogers et al., 2021) and this 
is further supported and quantified in our study.

In this paper, we assess the poverty implications of heat stress-induced labor capacity losses in seven West Afri-
can countries: Ghana, Burkina Faso, Cameroon, Cote d’Ivoire, Guinea, Nigeria, and Senegal. The focus of this 
paper is on the potential for heat stress-induced labor capacity losses to increase poverty rates and the economic 
channels that would drive these increases. We focus on the West African region, given that existing poverty rates 
in the region are among the highest in the world, and levels of national income (e.g., as measured by GDP per 
capita) are among the lowest. Arguably, this makes the region among the least capable of responding to heat stress 
with capital intensification.

We use a global GE macroeconomic model to assess economic impacts, including expected changes in prices of 
commodities and returns to factors of production globally. More specifically, within such a model, we simulate 
the labor productivity losses of heat stress consistent with a 3°C warmer world, where the estimated changes in 
labor capacity account for heterogeneities across labor types, sectors, and countries. By using a GE approach, 
we account for the complete circular flow of income and of goods and services within countries as well as 
globally. This is important, since impacts in one sector produce ripple effects flowing into other sectors through 
input-output relationships as well as competition for labor and other resources. Second, we account for regional 
dependencies and changing comparative advantage, which are important to consider when assessing global 
climate change impacts. In this regard, West Africa is not alone in experiencing increases in heat stress. While 
any given country may suffer economic consequences from increased heat stress within its borders, it will also 
be affected through changing world prices induced by developments in other countries. The economic impacts 
reported in this analysis account for such interlinkages.

The changes in prices of commodities and factors of production assessed using this GE approach are then used 
as inputs into a household microsimulation exercise for each of the seven countries using the latest available 
household income survey data. In this way, we assess how significantly the poverty headcount is affected, within 
this experimental setting, across these different countries that vary in economic structure and in the number and 
composition of poor households. We also explore how poverty impacts vary across different household types 
within each country. (Present-day poverty rates within and across these seven countries are provided in Table S1 
and Figure S1 in Supporting Information S1).

Given this ultimate objective, a static GE model has been employed. That is, we do not examine the path of adjust-
ment from the current economy to a future economy burdened by climate change, only the final outcome. We 
simulate the effects of projected future heat stress on the present-day economy and examine the final outcome. 
This approach of imposing a future scenario on the present-day economy (similar to that used by de Lima 
et al., 2021 and Hertel et al., 2010) has the advantage of allowing us to decompose observed outcomes to reveal 
which factors and economic features would drive changes in poverty when labor is affected by heat stress. We 
recognize that the composition of poverty, as well as sources of earnings and spending patterns, will change in the 
future, but there is no established methodology for predicting these changes at the level of individual households. 
Therefore, our estimates should not be construed as forecasts of future poverty rates, rather we seek to highlight 
the mechanisms through which a warming climate will likely affect the poorest households in West Africa.

We find that poverty impacts are heterogeneous in size across countries in our experiment and that it is possible 
for some households to be unexpected monetary beneficiaries from climate-induced heat stress. Therefore, to 
gain a better understanding of the mechanisms and household features that drive country-level poverty changes 
and how benefits can also theoretically arise, we highlight the impacts in the largest country in terms of popula-
tion, Nigeria, where we fully decompose the drivers of poverty changes.
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2.  Materials and Methods
2.1.  Overview of Methods

To assess the poverty implications of heat stress-induced labor capacity losses, this paper broadly follows a path 
similar to that of the recent economic assessments (de Lima et al., 2021; Knittel et al., 2020; Orlov et al., 2020). 
This entails the following major steps: (A) We first quantify heat stress intensification by comparing a base-
line period (1961–1990) with a 3°C global mean warming scenario. Heat stress is measured by the Wet Bulb 
Globe Temperature (WBGT) using Liljegren et al. (2008)'s formulation, which as described in Kong and Huber 
(2022) avoids the ad hoc approximations used in prior studies (de Lima et al., 2021; Knittel et al., 2020; Orlov 
et al., 2020). (B) The resulting labor capacity losses are then determined using a labor response function. In this 
paper, we apply the ISO Standard 7243 (ISO, 2017) using the approach of Bröde et al. (2018). ISO 7243 is an 
international standard providing guidance on the assessment and control of hot environments based on WBGT 
(ISO, 2017). This assumes that workplace safety standards designed to prevent increases in mortality and morbid-
ities are followed. In a sensitivity analysis, we also consider economic impacts when an alternative labor response 
function based on empirical measurements of labor productivities under heat is employed. (C) These labor capac-
ity losses are then used as inputs into a global GE economic model, dubbed GTAP-POV (Hertel et al., 2011). (D) 
The central innovation in this paper, in addition to the more accurate WBGT formulation, is the assessment of 
impacts on impoverished households, as well as the overall poverty headcount. We assess these using price and 
wage changes determined by the main global GE model as inputs into a microsimulation module (described in 
later sections) that permits us to make inferences about changes in the poverty headcount nationally as well as 
by type of household. These steps—the broad methods and key data sources used—are summarized in Figure 1 
while more detailed descriptions are provided in the sections that follow.

While the primary objective and innovation of this study are the assessment of poverty impacts, the methods 
used in steps (A–C) extend those used in prior studies in several ways. First, in step (A), we use a more accurate 
approach to calculate WBGT. Second, for step (C), we use an improved approach to assign labor capacity losses 
(under different work intensities and indoor/outdoor conditions) to specific economic sectors and labor types. 
We also use an economic model with far greater detail that allows us to assess economic impacts at the level of 
137 individual countries/regions and 65 sectors. This study therefore also serves to provide new, more refined 
assessments of the global economic impacts of human heat stress from climate change.

Figure 1.  Overview of methods and data used.
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2.2.  Estimation of Heat Stress

As mentioned, in this study, heat stress is measured by WBGT, which is a widely used heat stress metric incorpo-
rating the effects of all four ambient factors (temperature, humidity, wind, and radiation). It has well-established 
safety thresholds within the athletic (American College of Sports Medicine,  1984), occupational (Coco 
et al., 2016), and military settings (Sawka et al., 2003). However, WBGT is not available as a routine meteor-
ological measurement, and various approaches have been developed to approximate it. The simplified WBGT 
(ABM, 2010) and environment stress index (Moran et al., 2001, 2003) represent two relatively simple ad hoc 
approximations. However, these are subject to potentially large biases when used out of the conditions under 
which they were developed (Grundstein & Cooper, 2018; Havenith & Fiala, 2011; Kong & Huber, 2022). As 
demonstrated recently in Kong and Huber (2022), use of simplified WBGT leads to large and systematic over-
estimates of labor capacity reductions which materially impacts the interpretations of prior work using that 
metric (Altinsoy & Yildirim, 2015; Chavaillaz et al., 2019; de Lima et al., 2021; Lee & Min, 2018; Liu, 2020; 
Matsumoto et al., 2021; Zhang & Shindell, 2021; Zhu et al., 2021).Instead, we use a physically based model 
developed by Liljegren et al. (2008) to directly simulate WBGT measurements, which is expected to render more 
accurate WBGT estimates than past studies.

Liljegren's model has been extensively calibrated and validated (with an RMS difference of less than 1°C) and 
has seen increasing applications in recent years (Casanueva et al., 2020; Takakura et al., 2017). Kong and Huber 
(2022) developed a Python implementation of Liljegren's code (originally in FORTRAN and C language), which 
is especially suitable for processing large-size climate model output and is adopted in this paper. For the detailed 
calculation procedure of WBGT, see Liljegren et al. (2008) and Kong and Huber (2022).

2.3.  Heat Stress Projection

Heat stress intensification is quantified by focusing on a 3°C warming of global mean surface air temperature 
compared to the baseline period 1961–1990, which corresponds to a near upper-bound projection of global warm-
ing by the end of this century based on recent estimates of possible emission pathways (Moore et al., 2022). The 
CMIP6 historical and SSP585 scenarios are adopted for heat stress evaluation under baseline and 3°C warming, 
respectively. To locate the period corresponding to a 3°C warming, we index each year in SSP585 simulations by 
the degree of warming (compared with the baseline period) and select years falling into a range of 2.75–3.25°C 
warming which are then used to represent a 3°C warming world.

However, our results are not sensitive to the driving scenario since the GCM results are scaled to specific warm-
ing levels and these responses are robust (Buzan & Huber, 2020). This approach is becoming common in climate 
change impact studies (e.g., Parsons et al., 2021; Schwingshackl et al., 2021). By focusing on labor loss at a certain 
warming target, we decouple our analysis from the time path of forcing, thereby reducing uncertainties caused by 
model spread due to climate sensitivity. This removes issues related to “when does warming happen” and “what 
scenario of emissions is being followed.” In addition, bias correction is conducted by adding WBGT anomalies 
from CMIP6 climate models onto a common ERA5 reanalysis baseline (1961–1990) (Hersbach et al., 2018). For 
model details of bias correction procedure, please refer to Text S1 in Supporting Information S1.

2.4.  Estimation of Labor Capacity Losses

Next, the projections of heat stress/WBGT are translated into projections of labor capacity losses. Multiple labor 
response functions (LRFs) have been proposed for this purpose (Bröde et al., 2018; Dunne et al., 2013; Foster 
et  al.,  2021; ISO,  2017; Kjellstrom et  al.,  2018). However, largely different estimates of heat stress-induced 
labor loss are generated by these LRFs. Here, we use two LRFs, namely the one based on ISO7243 standard 
(ISO-LRF) (Bröde et al., 2018; ISO, 2017) and the one adopted in recent reports of the Lancet Countdown on 
health and climate change (Lancet-LRF) (Romanello et  al.,  2021; Watts et  al.,  2021), which is based on the 
work of Kjellstrom et al. (2018). By adopting two LRFs, we provide an assessment of the uncertainty stemming 
from assumptions on the functional relationship between heat stress and labor performance. The two chosen 
approaches are the most widely adopted and represent very different philosophies in quantifying heat impact on 
labor. ISO-LRF was designed to prevent heat injury by implementing work-rest cycles and is designed to avoid 
health risk; Lancet-LRF is based on a statistical fitting on labor productivity measurements within observed 
workplaces (Kjellstrom et al., 2018; Sahu et al., 2013; Wyndham, 1969) and thus is less restrictive but also more 
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likely to be associated with the adverse health impacts that are amply evidenced (Flouris et al., 2018; Romanello 
et al., 2021). An excellent discussion of the relative merits of these two different approaches is included within 
Ioannou et al., 2022 and we will not recapitulate it here. A comparison of labor capacities as a function of WBGT 
as predicted by both LRFs is demonstrated in Figure S2 in Supporting Information S1.

ISO-LRF starts with 𝐴𝐴 WBGTlim corresponding to the upper limit of the prescriptive zone. Workers are recom-
mended to work for only a fraction of each hour when the environment WBGT values exceed this reference 
value. 𝐴𝐴 WBGTlim can be calculated by the equation below which is adopted by both the ISO 7243 (INS, 2017) and 
NIOSH (Coco et al., 2016):

WBGTlim = 56.7 − 11.5log10 (�)� (1)

where 𝐴𝐴 𝐴𝐴 refers to metabolic heat production rates in Watts. Labor capacity can be then obtained by the following 
equation:

������������� = max
{

0,min
[

1;
WBGTlim,���� −WBGT
WBGTlim,���� −WBGTlim

]}

� (2)

where 𝐴𝐴 WBGTlim,rest refers to the limit WBGT value when people are at rest (𝐴𝐴 𝐴𝐴 = 117𝑊𝑊  ).

Lancet-LRF follows the “hothap” LRF developed by Kjellstrom et al. (2018) except without the cutoff at 10% and 
90% of labor productivity (Romanello et al., 2021; Watts et al., 2021):

��������� � ������� = 1
2

[

1 + erf

(

WBGT − �

�
√

2

)]

� (3)

where erf is a cumulative normal distribution function; 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 denote the mean and standard deviation of the 
associated normal distribution and are tabulated in Table S2 in Supporting Information S1 for different levels of 
working intensity.

In implementing the LRFs as described above, assumptions must be made with regards to the intensity of 
physical activity, the conditions under which this activity takes place: Outdoors or indoors (shaded, without 
air-conditioning) and the working profile. In this study, we estimate, for each grid cell, labor capacity declines 
for four different levels of work intensity ranging from light to very heavy work (metabolic outputs of 200, 300, 
and 400W). Each of these is estimated under both indoor without air-conditioning and outdoor conditions. Since 
people mostly work during the daytime (especially in heavily affected sectors such as agriculture and construc-
tion), the calculation only includes daytime hours. We recognize that night-shifting has been proposed as a poten-
tial adaptation strategy to increasing heat stress (Takakura et al., 2018). However, there exist large uncertainties 
regarding when and to what extent night-shifting can be implemented. Therefore, this is not considered in this 
study in keeping with other similar studies (Watts et al., 2021). The percentage decline in labor capacity under 
3°C warming is estimated relative to baseline period labor capacity.

In past studies, simplistic assumptions were used to assign these labor capacity losses to economic sectors, such 
as assuming all agricultural labor is done at a single work intensity and entirely indoors or outdoors. For our 
analysis, rather than apply one intensity-exposure profile to each sector, we use data from the US Bureau of Labor 
Statistics (BLS, 2020) to assign weights to these different estimates and produce labor capacity losses that apply 
to specific labor types within specific sectors and countries. The BLS data identify the types of workers employed 
in different sectors and provide descriptors regarding their intensity of work (ranging from “sedentary” to “very 
heavy”) and their exposure to the outdoors (ranging from “never” to “constant”). We map these descriptors to 
specific assumptions about metabolic output (e.g., we assume “heavy” to “very heavy work” is equivalent to 
metabolic output of 400W). These assumptions are described further in Text S2 in Supporting Information S1.

Formally, we estimate using the following equation:

𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =
∑

𝑐𝑐

∑

𝑖𝑖

𝑧𝑧
𝑖𝑖𝑖𝑖𝑖

𝑟𝑟𝑟𝑟𝑟𝛼𝛼
𝑐𝑐

𝑙𝑙𝑙𝑙𝑙
𝛽𝛽
𝑖𝑖

𝑙𝑙𝑙𝑙𝑙� (4)

where 𝐴𝐴 𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is the labor capacity loss of labor type 𝐴𝐴 𝐴𝐴 in activity 𝐴𝐴 𝐴𝐴 in grid cell 𝐴𝐴 𝐴𝐴 of region 𝐴𝐴 𝐴𝐴 . These sector specific 
labor capacity losses are obtained by weighting 𝐴𝐴 𝐴𝐴

𝑖𝑖𝑖𝑖𝑖

𝑟𝑟𝑟𝑟𝑟 : The percentage decline in labor capacity in grid cell 𝐴𝐴 𝐴𝐴 (in 
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region 𝐴𝐴 𝐴𝐴 ), for work performed at intensity 𝐴𝐴 𝐴𝐴 where � =
{

200� , 300� , 400� , 600�
}

 , and in indoor or outdoor 
conditions indicated by the index 𝐴𝐴 𝐴𝐴 where 𝐴𝐴 𝐴𝐴 = {indoors, outdoors} , under heat stress levels consistent with 3°C 
mean global warming. The weights in question are 𝐴𝐴 𝐴𝐴

𝑐𝑐

𝑙𝑙𝑙𝑙𝑙
 , the portion of time that labor type 𝐴𝐴 𝐴𝐴 in activity 𝐴𝐴 𝐴𝐴 is exposed 

to work conditions 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴
𝑖𝑖

𝑙𝑙𝑙𝑙𝑙
 , the portion of work of labor type 𝐴𝐴 𝐴𝐴 in activity 𝐴𝐴 𝐴𝐴 that is performed at work intensity 𝐴𝐴 𝐴𝐴 .

The BLS data are, however, specific to the U.S. economy and the shares 𝐴𝐴 𝐴𝐴
𝑐𝑐

𝑙𝑙𝑙𝑙𝑙
 that measure exposure to outdoor 

work of different labor types in different sectors could be a poor approximation of work conditions in low-income 
countries. This is especially true for agricultural workers whose exposure to the outdoors is likely to be far more 
frequent in low-income countries than in the United States. We therefore adjust the shares of outdoor work by 
assuming that these decline with a country's GDP per capita. This captures approximately the higher rates of 
mechanization and other technological improvements in higher income economies that may allow labor to be 
less exposed to outdoor conditions. More specifically, we assume that there exists an exponential decay rela-
tionship that relates outdoor work share and GDP per capita. The specific assumptions made in order to perform 
this adjustment of outdoor labor shares are described within Text S2 in Supporting Information S1, along with 
alternatives considered, and the sensitivity of our results to this assumption regarding functional form is shown 
in Figures S5 and S6 in Supporting Information S1.

Finally, we aggregate the grid-level labor capacity losses (𝐴𝐴 𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ) over grid cells to obtain region, sector, and 
labor specific capacity losses (𝐴𝐴 𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ). To do so, grid cells are weighted by their population when aggregating 
labor capacity losses for nonagricultural activities and by their share in national agricultural production when 
aggregating labor capacity losses for agricultural activities. Further details are provided in Text S3 in Supporting 
Information S1.

2.5.  Economic Framework

2.5.1.  Overview of Economic Approach

As described in the previous section, we determine labor capacity losses that are specific to countries, labor 
types, and sectors. These losses are treated as labor productivity shocks in a global GE economic model, 
GTAP. However, given the importance of labor markets to our findings, we depart from the standard GTAP 
model assumption of perfect labor mobility across sectors. We do this by incorporating elements of GTAP-AGR 
(Keeney & Hertel,  2005) that allow for labor market segmentation such that workers are imperfectly mobile 
across agricultural and nonagricultural sectors, resulting in wage differentials between these sectors.

For the estimation of poverty impacts, we use elements of GTAP-POV (Hertel et al., 2011), an extended version 
of the standard GTAP model (Corong et al., 2017; Hertel, 1997). The -POV extension to GTAP estimates changes 
in the real incomes of households near the poverty line, and the resulting poverty changes using an elasticity 
approach. However, we deviate from the standard GTAP-POV elasticity approach and, for greater precision, 
instead use a household microsimulation that is described in the next section.

The underlying economic database of the global economic model is version 10 of the GTAP database (Aguiar 
et al., 2019), which has a base year of 2014. As noted earlier, the analysis undertaken here is comparative static 
such that we impose labor capacity losses associated with a future climate (one of 3°C mean global warming) on 
the present-day economy. This allows us to identify the mechanisms that drive our results with relative clarity 
and avoid uncertainties associated with projecting what the global economy—as well as patterns of poverty and 
household earnings—might look like in a distant future (when an outcome such as 3°C mean global warming 
might come to pass). In order to assess poverty impacts, such a projection would require us to somehow estimate 
who will be poor in the future, where they live, how they earn their income, and so on. Taking this approach 
would introduce enormous uncertainties and make results difficult to interpret since they would be driven by a 
combination of economic mechanisms and the assumptions made to achieve a projection of the future economy. 
By taking a comparative static approach, this complication is avoided and the economic mechanisms at play are 
easier to identify.

2.5.2.  Estimation of Poverty Impacts

Changes in poverty are estimated using a household microsimulation approach as follows. The GTAP global 
economic model determines economic impacts that include changes in the prices of consumption goods and 
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factors of production. In turn, these price changes are used as inputs to estimate how real incomes of households 
close to the poverty line change, using the GTAP-POV extension. Finally, changes in real income are used to esti-
mate changes in poverty using a microsimulation approach. This last step departs from the standard GTAP-POV 
approach that estimates poverty impacts using an elasticity approach, which can be seen as an approximation 
of the microsimulation approach adopted here. Key elements of these steps are summarized as follows, while a 
detailed exposition of GTAP-POV is provided in Hertel et al. (2011).

For each country included in the poverty module, we employ household survey data to identify households that 
are “in the neighborhood of the poverty line.” This is defined as the decile of households that encompass the 
$1.90-per-day international poverty line as defined by the World Bank (Ferreira et al., 2016). These households 
are then classified into seven strata based on how they earn their income. For example, households are classified 
as “agricultural” if they earn 95% or more of their income from agricultural self-employment and as “urban 
labor” if they reside in urban areas and earn 95% or more of their income from wages. If households are not 
specialized, such that they do not earn 95% or more of their income from either self-employment or wages, then 
they are classified as rural or urban diverse (See Table 1 for definitions of all seven strata).

In this way, the module takes into account the heterogeneity in how the poor earn their income. As we will 
see below, this is an important factor in assessing the poverty impacts of human heat stress. Next, the specific 
profile of households within each stratum in terms of earning shares is determined. For example, for house-
holds in the agricultural stratum in each country, we determine the share of their income they earn from land, 
capital, unskilled agricultural labor, unskilled wage labor, etc. The real income of households within each 
stratum (within each country of focus) depends on these earning shares, and for our analysis we must also 
account for the loss of earnings from labor due to the direct effect of heat stress-induced productivity loss. 
Formally, we determine the percentage change in the real income of households in a stratum 𝐴𝐴 𝐴𝐴 (in region 𝐴𝐴 𝐴𝐴 ) 
as follows:

𝑦̂𝑦𝑟𝑟𝑟𝑟𝑟 =
∑

𝑗𝑗

𝛼𝛼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

(

𝑊̂𝑊𝑟𝑟𝑟𝑟𝑟 − 𝑍̂𝑍𝑟𝑟𝑟𝑟𝑟 − 𝐶̂𝐶𝑟𝑟

)

� (5)

where 𝐴𝐴 𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 are the aforementioned earnings' shares, that is, 𝐴𝐴 𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is the share of income of households in stratum 𝐴𝐴 𝐴𝐴 
in region 𝐴𝐴 𝐴𝐴 earned from factor 𝐴𝐴 𝐴𝐴 . 𝐴𝐴 𝑊̂𝑊𝑟𝑟𝑟𝑟𝑟 is the percentage change in the price of (returns to) factor 𝐴𝐴 𝐴𝐴 determined from 
the main macro model, and 𝐴𝐴 𝑍̂𝑍𝑟𝑟𝑟𝑟𝑟 is the loss of productivity of factor 𝐴𝐴 𝐴𝐴 reflecting diminished working hours. Earn-
ings are also adjusted by 𝐴𝐴 𝐶̂𝐶𝑟𝑟 , the change in the real cost of living of households at the poverty line given changes 
in consumption prices and consumption patterns of poor households in region 𝐴𝐴 𝐴𝐴 .

Given these changes in the real incomes of households, we determine changes in the poverty headcount using a 
microsimulation approach. This approach is used in place of the elasticity approach that is implemented in the 
GTAP-POV model. The household microsimulation approach is more direct and exhaustive: We consider each 
individual household in the neighborhood of poverty; shock its income by the size of 𝐴𝐴 𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑟 ; and count the number 

No. Stratum name (short name) Description

1 Agricultural Households (AGRICULT) Households that earn more than 95% of their income from 
agricultural self-employment.

2 Nonagricultural households (NNAGRICULT) Households that earn 95% of their income from 
non-agricultural self-employment.

3 Urban Labor households (URBLABOR) Households located in urban areas that earn 95% of their 
income from wage labor.

4 Rural Labor households (RURLABOR) Households located in rural areas that earn 95% of their 
income from wage labor.

5 Transfer Income households (TRANSFER) Households that earn 95% of their income from transfers.

6 Urban Diverse households (URBDIVRS) Urban households that do not fall under any other category.

7 Rural Diverse households (RURDIVRS) Rural households that do not fall under any other category.

Table 1 
Definitions of Household Strata
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of households whose incomes fall below the poverty line. This has the advantage that it uses individual observa-
tions in the household survey, thereby utilizing the actual distribution of household observations as opposed to 
summarizing the distribution in a single elasticity metric.

The microsimulation approach is illustrated for the case of Nigeria's rural diverse stratum in Figure 2 below. It 
shows the distribution of rural diverse households around the poverty line, and how this distribution shifts when 
the incomes of households in the “neighborhood of poverty” fall by the relevant 𝐴𝐴 𝐴𝐴𝐴𝑟𝑟𝑟𝑟 . As will be detailed in the 
results sections, this approach suggests a 15.8% increase in poverty among rural diverse households in Nigeria.

This exercise must be done individually for all households in each country for which poverty impacts are to be 
assessed. It is for this reason that our analysis of poverty is limited to seven countries for which the necessary 
household survey data are available and have been stratified and processed in the manner required for this mode-
ling framework.

2.6.  Data

The specific data sources used at each step of this study are detailed as follows:

2.6.1.  Climate Data

CMIP6 data were retrieved at 3-hourly frequency to estimate WBGT using the Liljegren approach. A sample of 
10 climate models (13 ensemble members) are included which represent all models with all necessary input vari-
ables archived at the required temporal resolution. The models and ensemble members used are listed in Table S4 
in Supporting Information S1. The retrieved inputs include 2m air temperature, surface specific humidity, surface 
pressure, 10m wind, and surface downward and upwelling components of both short- and long-wave radiation. 
WBGT is calculated under both outdoor and indoor conditions. For indoor conditions, solar radiation is set to 
zero and wind speed is fixed at 1 m/s, a typical value for air speed relative to an indoor laborer.

Figure 2.  Household microsimulation for Nigeria's rural diverse households. Notes: Figure uses data from Nigeria's General 
Household Survey, 2018 (NBS, 2018). Only households with per capita incomes less than ₦500 are shown. Red vertical line 
indicates the poverty line in terms of Nigerian Naira consistent with a 39.1% poverty rate as reported by the World Bank's 
World Development Indicators for the year 2018 based on the $1.90 per day international poverty line. Green bars show the 
original ex ante survey-based income distribution of households. Red bars show the ex post distribution of households after 
implementing income shock estimated using Equation 5.
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2.6.2.  BLS Data

To estimate labor capacity losses specific to labor types and economic sectors within each region, we estimate 
indoor/outdoor exposure and work intensity shares (𝐴𝐴 𝐴𝐴

′

𝑠𝑠 and 𝐴𝐴 𝐴𝐴
′

𝑠𝑠 in Equation 3) using data from the Occupational 
Requirements Survey 2020 from the U.S. Bureau of Labor Statistics (BLS, 2020). These are described in Text S2 
in Supporting Information S1.

2.6.3.  World Gridded Population Data

To calculate the country-level weighted average of capacity losses for nonagricultural activities, we use the Grid-
ded Population of the World (CIESIN, 2018) for the year 2010. The data are aggregated from the 5 arcmin origi-
nal resolution to the climate data resolution (30 arcmin and 60 arcmin). Here, we assume the spatial distribution 
pattern of the population stays the same. Note that this information is used for calculating a spatially weighted 
average, thus while the pattern is important, the total population has no impact on the final calculation. The coun-
try and regional boundaries for aggregation are obtained from Baldos (2017).

2.6.4.  World Gridded Agricultural Production Data

To calculate the country-level weighted average of capacity losses for agricultural activities, we calculate the grid-
ded value of agricultural production following the method used in the SIMPLE-G data set (Baldos et al., 2020; 
Haqiqi et al., 2020). The value of production is calculated based on the gridded information about harvested area 
by crop, yield by crop, and the average national price of crops. The harvested area and yields are obtained from 
Global Crop Water Model outputs (Siebert & Döll, 2010) combined with country-level information on prices 
from FAO (FAO, 2020).

2.6.5.  GTAP Database

In our implementation of the GTAP-POV model, we use version 10 of the GTAP database (Aguiar et al., 2019). 
For the implementation of the -POV module, see GTAP-POV technical paper (Hertel et al., 2011).

2.6.6.  Household Income Survey Data Sets

For the seven West African countries of focus, the household survey data sets used are as follows: Ghana Living 
Standard Survey 2017 (GSS, 2018), Burkina Faso 2014 (INSD, 2014), Fourth Cameroon Household Survey 2014 
(INS, 2017), Cote d’Ivoire Household Standard of Living Survey 2015 (INS-CI, 2015), Guinea Poverty Assess-
ment Survey 2012 (INS-Guinée,  2012), Nigeria General Household Survey 2018 (NBS,  2018), and Senegal 
Poverty Monitoring Survey 2015 (ANSD, 2011).

2.6.7.  Poverty Data

Poverty headcount ratio at $1.90 a day (2011 PPP) (% of population) was obtained from the World Bank World 
Development Indicators database (https://databank.worldbank.org/source/world-development-indicators) 
retrieved in December 2021.

Thus, our results are based on the underlying assumption that the “present-day” economy is broadly reflected by 
economic conditions of 2014 and population distribution (at the grid-cell level) of 2010 (which are used in order 
to aggregate grid-cell level capacity losses in order to obtain country-level estimates). In the case of poverty data, 
we sought the latest available information regarding the levels and distribution of poverty in each of our countries 
of interest. While these underlying data relate to different years, we believe the mismatch is not of great signifi-
cance for our objectives of delineating the mechanisms that drive poverty impacts. Furthermore, broad economic 
structures (as captured by the GTAP database in our case) do not change rapidly from year to year. Hence, the 
advantages of seeking economic, population, and poverty data from a single year (likely an impossible task) 
would be minimal.
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Also note that throughout this paper, we refer to 3°C warming relative to the base period 1961–1990. Relative to 
2010–2020, this is approximately equivalent to 2.3°C of warming.

3.  Results
3.1.  Labor Capacity and GDP Losses

Given the various methodological improvements that have been made over past studies in estimating labor capac-
ity losses, we begin with briefly reporting our estimates of the projected labor reduction relative to the 1961–1990 
baseline across the globe to allow for comparison with previous estimates. In terms of broad aggregates, our results 
are consistent with past studies (ILO, 2019; Orlov et al., 2020; Parsons et al., 2021): The largest labor capacity 
losses are in South Asia and parts of the Middle East followed by Southeast Asia and West Africa (Figure 3). We 
find that the worst affected countries are (in descending order, starting from most affected) Bahrain, Cambodia, 
Pakistan, Qatar, and the UAE which lose 11%–15% of their annual labor capacity relative to the baseline.

However, GDP losses (Figure 4) are most pronounced in West Africa. Across the seven countries of focus, labor 
capacity losses range from 5% to 9.4% while their GDP losses constitute some of the largest GDP losses across 
the 139 countries/regions in our model (See Table S5 in Supporting Information  S1). Nigeria, in particular, 
suffers the largest annual GDP decline in the world (tied with Cambodia), exceeding 5% in our experiments. The 

Figure 3.  Country-level labor capacity losses. Note: Labor capacity losses are relative to 1961–1990. Country-level labor capacity losses are constructed as weighted 
average of labor capacity losses across all 65 sectors and four labor types using employment shares from GTAP database version 10 as weights.

Figure 4.  Country-level GDP losses.
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remaining six West African countries of focus experience GDP losses ranging from 2.9% (in Senegal) to 4.3% 
(in Ghana). The more pronounced GDP losses in West Africa stem from the relatively greater dependence on 
agriculture and high levels of unskilled labor concentrated in agriculture. These features lend further support to 
our focus on this region for the ensuing poverty assessments.

As detailed in the methods section, these results are based on the ISO-LRF approach to measuring labor capac-
ity losses. As such, they should be interpreted as the economic costs of averting loss of life and adverse health 
outcomes. Using the alternative, empirically determined Lancet-LRF, labor capacity and GDP losses are predict-
ably smaller since workplace safety standards are not necessarily followed and hence workers work more than 
the recommended amount. Under the Lancet-LRF approach, in the seven West African countries labor losses 
range from 2.2% to 5.2%. That is, in these seven countries, country-level labor capacity losses are on average 44% 
smaller than the ISO-LRF approach. (See Figure S7 in Supporting Information S1). The resulting GDP losses are 
similarly smaller as are country-level poverty increases (see Figure S8 in Supporting Information S1). However, 
these losses do not factor in the adverse health outcomes that will inevitably follow from the failure to provide 
workers with sufficient rest times and this approach therefore provides an incomplete assessment of the long run 
impacts of human heat stress on the economy and poverty. It is for this reason that we focus on ISO-based results.

3.2.  Sectoral Drivers of Labor Capacity Losses in West Africa

Country-level aggregate results such as those shown in the preceding section can mask disparities across sectors 
within a country. A sectorally disaggregated view of labor capacity losses in West Africa is provided in Figure 5. 
It shows that in terms of broadly defined sectors, agriculture is generally the most affected and will suffer espe-
cially large capacity losses in West African countries. Among the seven countries of focus, the single largest 
percentage reduction in labor capacity, of 17.4%, occurs in Burkina Faso's agricultural sector. Agriculture activity 
in the other West African countries sees labor capacity losses ranging between 9% and 16%. Cameroon is the 
exception in our subsample where agriculture sees a relatively smaller 5% labor capacity loss. After agriculture, 
the construction and mining sectors tend to be the most affected; however, labor capacity losses in these sectors 
rarely exceed 6% in West Africa.

Figure 5.  Labor capacity losses (left panel) and change in employment (right panel) by region and aggregate sectors in West Africa. Note: Figure shows labor capacity 
and employment changes by region and aggregated sector by averaging over labor types and subsectors using employment in the base as weights. Labor capacity losses 
are relative to 1961–1990. The mapping from the 65 GTAP sectors to the five aggregate sectors shown is reported in Table S7 in Supporting Information S1.
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Furthermore, in addition to loss of labor capacity, some sectors can lose workers in the face of price-induced 
market responses, while others can see labor employment increase in order to partially mitigate the effects of the 
labor capacity losses. Across the seven West African countries of focus, employment shifts across sectors are 
mixed (see Figure 5b). For example, in Ghana labor productivity losses in agriculture are compounded further by 
the loss of labor to other sectors; but the reverse is true in Nigeria where labor is drawn into agriculture due to the 
strong increase in food prices and farm wages. This ambiguity in employment outcomes across regions highlights 
the role of competing economic forces: On the one hand, loss of labor productivity warrants an increase in labor 
numbers to compensate for lost productivity; on the other hand, there are pressures to cede labor to competing 
sectors where labor can be more valuable.

The results in Figure 5 have been aggregated for the sake of exposition. However, our economic model disaggre-
gates each country into 65 sectors allowing us to identify more specifically which economic activities are most 
vulnerable in West Africa. These more detailed results across 65 sectors are provided in Figure S9 in Supporting 
Information S1 which further emphasizes the outsized role of agriculture in West Africa's overall labor produc-
tivity losses. Raw milk and fishing are the farm and food subsectors contributing most to West Africa's labor 
capacity losses, but we find that all agricultural subsectors in the region are vulnerable.

Our model also permits analysis of other aspects of economic impacts including changes in global bilateral 
trade. However, we restrict the focus of this paper on poverty and its drivers. A summary of the trade impacts 
of the regional impacts of global human heat stress from climate changes is provided in Table S6 in Supporting 
Information S1. We find that across all seven West African countries, there is a consistent decline in agricultural 
exports (that exceed declines in overall exports) while agricultural imports are less affected—implying a rise in 
net food imports (or a decline in net exports).

Figure 6.  Changes in the poverty headcount (percentage change), by country (left) and by country and strata (right). Notes: Bubbles in right panel represent strata 
where location of midpoint/center of bubble on the y-axis shows percentage change in poverty for the stratum (e.g., the nonagricultural stratum in Nigeria sees a 
poverty increase of 33.8% as shown by the data label in some illustrative cases); and size of bubble is proportionate to the stratum's percentage share in baseline 
poverty levels in West Africa (e.g., the agricultural stratum of Nigeria accounts for 25% of West Africa's poverty in the base). Negative poverty changes occur only in 
Guinea. Thus, higher and larger bubbles represent strata that are larger contributors to overall poverty increases in West Africa. Household strata are defined as follows. 
AGRICULT: households that earn more than 95% of their income from agricultural self-employment; NNAGRICULT: households that earn 95% of their income from 
nonagricultural self-employment; URBLABOR: urban households that earn 95% of their income from wage labor; RURLABOR: rural households that earn 95% of 
their income from wage labor; TRANSFER: households that earn 95% of their income from transfers; and URBDIVRS and RURDIVRS: urban and rural households 
that do not fall under any other category.
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3.3.  Poverty Impacts Across Countries

As described in earlier sections, we assess poverty impacts in seven West African countries using a household 
microsimulation approach. In six of the seven countries, poverty is increased as a result of heat stress-induced 
labor capacity losses in our experiments. However, our results suggest that it is possible in some cases that 
poverty of income sees little change (and in theory can even fall). As detailed below, this is because labor produc-
tivity losses can in fact raise the monetary incomes of some households as more labor is needed to maintain 
agricultural production and higher returns to labor are needed to induce increased employment in agriculture.

The countries that see the largest poverty headcount increases are Ghana and Nigeria where poverty increases by 
9.2% and 7.2%, respectively. See Figure 6. The remaining countries (Senegal, Burkina Faso, Cote d’Ivoire, and 
Cameroon) see poverty increases of 2.3%–5.1%. The exception in our sample is Guinea, where poverty sees little 
change. As before, these results are based on the ISO-LRF approach. Poverty results are necessarily smaller if the 
Lancet-LRF is adopted (see Figure S8 in Supporting Information S1) but in this case increases in mortality and 
morbidities would accompany the poverty increase.

Figure 6 also shows poverty changes at the stratum level (right panel). It reveals that some household types are 
far more affected by heat stress: Rural diverse and nonagricultural households suffer most. In Nigeria, most of 
the increase in poverty can be attributed to the rural diverse and the nonagricultural strata. It is these two strata 
that drive approximately 70% of the country level poverty increase. In contrast, the smallest poverty increases are 
among households that fall under the agricultural stratum, and in the case of Guinea, poverty in the agricultural 
stratum actually declines. In the next section, the poverty changes in Nigeria are fully decomposed and this helps 
highlight the household features and economic mechanisms driving these results.

3.3.1.  Drivers of Poverty—Nigeria as a Case Study

To better develop our understanding of how heat stress-induced labor capacity losses drive changes in poverty, we 
use the case of Nigeria to fully describe how an individual country's poverty impacts are determined.

As described in the methods section, the starting point for determining poverty is the change in consumption 
prices and wages (returns to factors of production) determined by the global GE model. In Figure 7, changes 
in consumer prices are compared across the seven countries of focus. It shows that in Nigeria's case, the price 
of crops increases far more sharply than the other countries. This commodity group accounts for 52% of poor 
households' spending budget in Nigeria (not shown) and thus the cost of living at the poverty line increases 
far more sharply. This increase in cost of living acts as a deflator for the “nominal” factor returns/income in 
Equation 4, pushing down real returns to all factors of production. Changes in real factor returns in Nigeria are 
summarized in Figure 8, left panel. It shows that real returns to agricultural unskilled labor increase. This is the 
result of increased demand for this type of labor. The increased demand stems from the fact that labor capacity 
losses in agriculture and for “blue collar”/unskilled workers are especially high relative to other sectors, with 

Figure 7.  Changes in consumer prices, by commodity group and country.
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labor capacity losses acting as a reduction in effective labor supply and hence income. Furthermore, given that 
agricultural production is a necessity, as each unit of labor becomes less productive, more must be drawn into 
the sector to dampen output losses necessitating higher returns for agricultural labor. This increase in returns to 
unskilled agricultural labor therefore also occurs in other countries (not shown).

These wage and price changes determine changes in real incomes of the seven household types, taking into 
account their earning shares (see Equation 4 in the methods section). This approach accounts for the fact that 
changes in wages of skilled labor play a larger role for households that earn most of their income from skilled wage 
employment and less of a role for households that earn most of their income from agricultural self-employment. 
Figure 8b shows the earning shares of households near the poverty line in Nigeria. We see that the agricultural 
stratum earns most of its income from unskilled labor; the factor that sees its returns increase. This explains why 
the agricultural stratum tends to show improvements in poverty in our results: Incomes for households in this 
stratum rise as they earn a large portion of their income from agricultural unskilled labor; the factor of production 
that experiences increasing returns. In contrast, the rural diverse stratum in Nigeria earns a significant portion of 
its income from capital, returns to which can be seen in Panel A to be declining by much larger margins than the 
increase in returns to agricultural labor.

As a result, in Nigeria, all households near the poverty line, except those that fall under the agricultural stratum, 
see large decreases in real income. Figure 9 shows the decline in real incomes by stratum in Nigeria as well as 
the other six West African economies considered in the poverty analysis. It is these changes in income that we 
utilize in the household microsimulation. We then determine how many households fall into (and out of) poverty 
as a result. The income changes shown in Figure 9 explain in large part the patterns of poverty changes reported 
in Figure 6: The large increases in poverty in Nigeria.

4.  Discussion
In this study, we have assessed the potential poverty consequences of heat stress-induced labor capacity losses, 
with a focus toward determining the economic channels and factors that determine these poverty outcomes. 
We therefore assess poverty at the level of earning sources-based household strata. This undertaking inevitably 
presents a number of uncertainties including the following: Uncertainties in the estimation and projections of 
heat stress itself, labor capacity losses associated with heat stress—for which there are a variety of alternative 

Figure 8.  Real returns to factors (left panel) and factor earning shares by household stratum (right panel) in Nigeria.
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methodologies, there is limited data regarding work intensities and outdoor exposure rates of workers across 
the globe, and the economic model employs critical assumptions that will affect estimated results. Given the 
prominence of wage changes associated with the projected losses in labor capacity, the assumptions regarding 
the mobility of labor across sectors, and how global economic structures and the distribution and composition 
of poverty will evolve over time, are all important considerations when assessing the robustness of the findings 
provided here.

As described at length under the methods section, uncertainties surrounding the estimation of heat stress have 
been carefully addressed for this study using more accurate estimates of the WBGT, based on the latest methods 
(Kong & Huber, 2022). However, there remains considerable uncertainty about how these changes in WBGT 
will affect labor capacities across labor types and sectors. To address this issue, we considered an alternative 
labor response function to estimate labor capacity losses. Implicit in our primary labor capacity calculations and 
the results reported above is the assumption that ISO standards for shaded rest are followed. In practice, workers 
may adjust their work pace when exposed to high levels of heat and humidity without referring to any standards, 
some workers may tend to overwork under heat. Using an alternative assessment of labor capacity losses based 
on an empirically determined labor response function (Romanello et al., 2021; Watts et al., 2021), the magnitudes 
of immediate labor capacity changes are necessarily smaller: Poverty increases by 6.4% in Nigeria followed 
by Ghana and Senegal where poverty increases by 3.2%–3.3% (see Figure S8 in Supporting Information S1). 
However, if the ISO guidelines are not followed, then the increases in poverty would coincide with increases in 
worker mortality and morbidities that remain unaccounted. Future work should include health and mortality costs 
associated with labor outcome.

Additional uncertainties associated with labor capacity changes are associated with alternative assumptions 
regarding outdoor exposure rates of workers across the globe as well as alternative assumptions regarding labor 
mobility across sectors. Here, we have relied on empirical evidence from just a few countries. However, these 
characteristics are likely to vary greatly across regions and income levels. However, sensitivity analysis presented 
in the supplementary materials (Texts S2 and S3 in Supporting Information S1) show that alternative assumptions 
about these factors do not affect results as substantially.

Another important limitation of this study is the reliance on a comparative static, global static, and GE model to 
assess the impacts of a future climate scenario (one of 3°C mean global warming) on the present-day economy. 
This comparative static approach allows us to clearly identify the mechanisms that drive our results with relative 
clarity and avoids the tremendous uncertainties involved in projecting the composition and distribution of poverty 

Figure 9.  Real incomes near the poverty line by household stratum and country.
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and economic structures in the distant future. Indeed, the precise date at which 3°C mean global warming might 
come to pass is itself quite uncertain, leaving further challenges for economic models seeking for forecast future 
poverty outcomes. These challenges, together with the capability to readily identify the economic mechanisms 
driving poverty changes, provide the rationale for the comparative static approach presented in this paper.

Based on this approach, at the national level, most countries considered in our poverty analysis see poverty levels 
increase. While we allow for some forms of adaptation, the GTAP model allows for greater mechanization (i.e., 
capital-labor substitution in the face of diminished labor productivity), movement of labor across sectors, and 
changes in consumption patterns, these are insufficient to prevent significant output reductions in key sectors. We 
acknowledge, however, that there are many other adaptation options for workers including shifting to night work 
(Takakura et al., 2018) and various others (Day et al., 2019), not accounted for in our results. The resulting GDP 
and output losses are most pronounced in West Africa due to its dependence on agriculture and the prevalence of 
highly exposed, low-skilled labor employed in this sector. In our sample of seven West African countries, Ghana 
and Nigeria are most concerning as we see large percentage increases in poverty of 11.7% and 10% respectively. 
Other countries in our sample see poverty increases ranging between 3.7% and 5.6%. The exception is Guinea 
which experiences little change in poverty.

Focusing on Nigeria, one of the most populous countries in the world, we fully decompose the underlying drivers 
of poverty. Nigeria's poverty outcome is driven by a sharp rise in food prices and a strong increase in the real 
cost of living at the poverty line. This is further exacerbated by a large concentration of households just above the 
poverty line. More generally, we find that the impact of labor productivity losses on relative factor returns is a 
key mechanism that determines the direction and magnitude of poverty headcount changes. Hourly wage rates for 
unskilled agricultural labor can increase as more labor must be drawn into agriculture to maintain food produc-
tion. However, households are able to work fewer hours under these new conditions. Rising wage costs result in 
lower returns to other factors of production and so households that are diversified and rely on land, capital, and 
nonfarm wages are most adversely affected in our experiments. In conclusion, how households at the poverty line 
earn their income is key in determining the extent to which a country's poverty headcount will be affected by heat 
stress-induced losses in labor capacity under a warming climate.

Data Availability Statement
Coupled Model Intercomparison Project Phase 6 (CMIP6) data set can be retrieved from the open-source link, 
https://esgf-node.llnl.gov/search/cmip6/. Users should select the models (source ID) and variant label as indi-
cated in Table S4 in Supporting Information S1, the frequency as 3 hourly (3 hr), and the experiment ID as 
either historical or ssp585. Variables needed include 2m temperature (tas), specific humidity (huss), 10m wind 
speed (uas and vas), surface downwelling shortwave flux (rsds), surface upwelling shortwave flux (rsus), surface 
downwelling longwave flux (rlds), and surface upwelling longwave flux (rlus). Data can be downloaded as 
NetCDF files that appear in the search outputs. ERA5 reanalysis data were downloaded from the Copernicus 
Climate Change Service (C3S) Climate Data Store (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanal-
ysis-era5-single-levels?tab=form). The results contain modified Copernicus Climate Change Service informa-
tion 2020. Neither the European Commission nor ECMWF is responsible for any use that may be made of the 
Copernicus information or data it contains. The WBGT calculation code along with a Jupyter notebook intro-
ducing its usage is deposited in Zenodo (https://zenodo.org/record/5980536). The BLS Occupational Require-
ment Survey data for 2021 are available at https://www.bls.gov/ors/data.htm. Household survey data sets for the 
seven West African countries can be obtained as follows. Ghana: https://www2.statsghana.gov.gh/nada/index.
php/catalog/97; Burkina Faso: https://microdata.worldbank.org/index.php/catalog/2538; Cameroon: http://slmp-
550-104.slc.westdc.net/∼stat54/nada/index.php/catalog/114; Cote d’ Ivoire: http://catalog.ihsn.org/catalog/7330; 
Guinea: https://catalog.ihsn.org/catalog/5122; Nigeria: https://microdata.worldbank.org/index.php/catalog/3557; 
and Senegal: https://catalog.ihsn.org/catalog/4311. GTAP simulation results can be reproduced using the 
GTAP archive provided at https://www.gtap.agecon.purdue.edu/resources/res_display.asp?RecordID=6478. 
The  archive contains the model code, data, and experiment files. A GTAP database license is required for 
access to data and a GEMPACK license is required to reproduce results using the runGTAP software available 
at https://www.gtap.agecon.purdue.edu/products/rungtap/default.asp. Stata do files for processing the household 
survey data and reproducing poverty results using household microsimulations are also provided at https://www.
gtap.agecon.purdue.edu/resources/res_display.asp?RecordID=6478. Analyses of CMIP data were performed 

 23284277, 2022, 11, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022EF002777 by Purdue U

niversity (W
est Lafayette), W

iley O
nline Library on [22/12/2022]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

https://esgf-node.llnl.gov/search/cmip6/
https://cds.climate.copernicus.eu/cdsapp
https://cds.climate.copernicus.eu/cdsapp
https://zenodo.org/record/5980536
https://www.bls.gov/ors/data.htm
https://www2.statsghana.gov.gh/nada/index.php/catalog/97
https://www2.statsghana.gov.gh/nada/index.php/catalog/97
https://microdata.worldbank.org/index.php/catalog/2538
http://slmp-550-104.slc.westdc.net/%7Estat54/nada/index.php/catalog/114
http://slmp-550-104.slc.westdc.net/%7Estat54/nada/index.php/catalog/114
http://catalog.ihsn.org/catalog/7330
https://catalog.ihsn.org/catalog/5122
https://microdata.worldbank.org/index.php/catalog/3557
https://catalog.ihsn.org/catalog/4311
https://www.gtap.agecon.purdue.edu/resources/res_display.asp?RecordID=6478
https://www.gtap.agecon.purdue.edu/products/rungtap/default.asp
https://www.gtap.agecon.purdue.edu/resources/res_display.asp?RecordID=6478
https://www.gtap.agecon.purdue.edu/resources/res_display.asp?RecordID=6478


Earth’s Future

SAEED ET AL.

10.1029/2022EF002777

17 of 19

on Purdue University's high-performance computing cluster using Python (Van Rossum & Drake,  2009) and 
CDO (Schulzweida, 2019). The following Python packages were utilized: Numpy (Harris et al., 2020), Scipy 
(Virtanen et al., 2020), Xarray (Hoyer & Hamman, 2017), Dask (Dask Development Team, 2016), Matplotlib 
(Hunter, 2007), and Cartopy (Met Office, 2010–2015). The gridded data analysis for labor type and economic 
sectors is done in R (R Core Team, 2021) using the following packages: terra (v1.5-21, Hijmans et al., 2022), 
raster (v3.5-11, Hijmans et al., 2021), and reshape2 (v 1.4.4, Wickham, 2020).
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