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Introduction
Avoiding consumers is paramount for organisms, and many 

species possess adaptations such as spines, thorns, hardened 
exoskeletons, or distasteful chemicals to deter them (Hay 2009, 
Scherer and Smee 2016). These adaptations often come at a 
cost of reduced growth or fecundity (Relyea 2002, Miner et al. 
2005), and in habitats where risk of consumption is high, these 
types of adaptations are more common and stronger than in 
habitats with low consumption rates (Coley et al. 1985, Bolser 
and Hay 1996). Because risk of consumers is variable and re-
sponding to them is costly, many prey species use inducible or 
plastic defenses that are only expressed when the risk posed by 
consumers is high (Relyea 2002, Miner et al. 2005, Weissburg 
et al. 2014). Inducible defenses allow prey to avoid unnecessary 
costs and prioritize critical life history processes like foraging, 
mating, or growth when the risk from consumers is low, and 
concentrate on defenses to increase survival when risk is high. 

Inducible defenses require prey to evaluate risk posed by 
consumers and react appropriately by allocating resources 
to defense when necessary but prioritizing other life history 
processes when risk is low (Relyea 2002, Miner et al. 2005). 
Prey overwhelmingly rely on chemical cues to evaluate and 
respond to risk (Weissburg et al. 2014), and these cues may 
emanate from predators and injured prey (Scherer and Smee 
2016). Expression of predator avoidance or deterrence may be 
influenced by numerous factors such as prey physiological state 
(Lima and Dill 1990), temporal variation in risk (Ferrari et al. 
2008), and environmental conditions (Smee et al. 2010) as well 
as the age or vulnerability of the organism (Scherer et al. 2018). 
However, it is not understood how life stage and development 
may affect the ability of prey to manage defense mechanisms. 

Oysters are ecosystem engineers that build habitat for nu-
merous other species and provide a host of benefits including 
shoreline protection and water filtration (Grabowski and Pe-
terson 2007). In addition to their ecological importance, oys-
ters remain a profitable fishery through both wild harvesting 
and aquaculture (Grabowski et al. 2012). However, oyster reef 
habitats have declined in the Gulf of Mexico (zu Ermgassen et 

al. 2013), and considerable investments have been made to re-
store oyster populations and recover lost benefits (Grabowski 
and Peterson 2007, Grabowski et al. 2012). Remote setting of 
spat—on—shell is often employed to reestablish reefs in spat—
limited areas. In this process, oysters are settled on shells or 
other hard substrates in a nursery, grown until they reach a 
suitable size to place in the field (~2 weeks), and then placed in 
the field. Despite these investments, reef restorations often fail 
(LaPeyre et al. 2014), and predation on newly settled oysters 
is a common source of mortality (Bisker and Castagna 1987). 
Previous work suggests using predator cues in the nursery can 
strengthen oyster shells and reduce mortality and may aug-
ment aquaculture and restoration efforts (Combs et al. 2019, 
Belgrad et al. 2021). However, the effectiveness of using preda-
tor cues to reduce mortality may vary with different nursery 
practices such as rearing time. Therfore, there is clear need to 
understand how temporal exposure of oyster spat to predation 
risk in nurseries influences oyster growth and morphology. 

In this study, we assessed responses of Eastern oysters 
(Crassostrea virginica, hereafter oysters) to temporal variation 
in predation risk. Oysters react to predation risk by building 
heavier, stronger shells that effectively deter predators and 
increase survival (Robinson et al. 2014, Ponce et al. 2020, 
Belgrad et al. 2021). Predation on newly settled oysters is a 
common source of mortality (Bisker and Castagna 1987), but 
predation is variable and shell building is costly (Scherer et al. 
2018). Oysters cease responding morphologically to predator 
risk after reaching ~3 cm in shell length (Johnson and Smee 
2012, Scherer and Smee 2017). This response suggests there is 
a critical time in development when predator exposure induces 
shell changes, but the timing of defense development is un-
known. In this study we asked 2 questions: 1) does predator ex-
posure immediately after settlement have larger effects on oys-
ter morphology compared to exposure later in development? 
and 2) once exposed, can oysters stop responding to predation 
risk if risk cues are removed? Here, we exposed oyster spat to 
predation risk cues using blue crabs (Callinectes sapidus) actively 
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feeding on oysters or controls for 4 weeks, but we swapped 
half the oyster spat between predator and control tanks after 
2 weeks to determine if the initial 2—week exposure or the 
second 2—week exposure had different effects on shell mor-
phological changes.

Materials and Methods
Nursery rearing
Oyster larvae were settled onto 4.5 cm x 4.5 cm marble 

tiles at the Auburn University Shellfish Laboratory (AUSL) on 
Dauphin Island, AL in May 2021. Following settlement and 
metamorphosis into spat, oysters were placed into a flow—
through unfiltered seawater system at the Dauphin Island Sea 
Lab (DISL) which pumped water directly from Mobile Bay and 
maintained natural abiotic water conditions. Oyster spat were 
exposed to predation risk from actively feeding blue crabs or 
a no—predator control in 4 flow—through mesocosms (2.0 m 
diameter, water depth = 0.4 m) with water flow ~25 L/min. 
Within each tank, oyster spat were held in 10 plastic cages (64 
x 23 x 14 cm), and each cage contained 52 tiles with oyster spat 
(520 tiles per tank, 2080 total tiles). The number of oyster spat 
per tile varied greatly from 0–50, and we elected to maintain 
this variation to mimic natural settlement and reef restoration 
practices. Cages were suspended above the substrate to reduce 
sediment build—up. Tanks were drained daily, and oysters 
rinsed to remove sediment. Two tanks contained adult blue 
crabs (6 crabs per tank in 3 cages that partitioned individu-
als apart), while 2 tanks held empty cages and served as con-
trols without predators. Predator cages were distributed evenly 
along the tank edges. Crabs were fed recently shucked oyster 
tissue 3 times per week (6, ~5.0 cm oysters were used per tank). 
Oyster spat react to both blue crab cues and cues from injured 
conspecifics, and thus we elected to feed crabs oysters in situ 
to make the cue strong and to simulate crabs actively eating 
oysters on a reef (Scherer et al. 2018). Crabs were replaced dur-
ing the experiment as needed due to mortality. Oyster cages 
were rotated daily within their respective tank to prevent tank 
placement artifacts.

Oyster spat were reared in the DISL mesocosm for 4 weeks 
under these conditions. After 2 weeks, half of the oyster tiles 
from control tanks were moved to tanks with blue crabs and 
half of the oyster tiles with blue crabs were moved to controls. 
This created 4 treatments: controls without predators (i.e., no 
exposure), oysters exposed to predators for 2 weeks and then 
controls for 2 weeks (i.e., early predator exposure), oysters ex-
posed to controls for 2 weeks followed by 2 weeks of predator 
exposure (i.e., late predator exposure), and oysters exposed to 
predators for 4 weeks (constant exposure). 

Shell morphology measurements
After 2 weeks, 175 oyster spat from controls and another 

175 from blue crab treatments were haphazardly selected for 
analyses for shell size and hardness. Then, after 4 weeks, 875 
oyster spat were haphazardly selected for analysis: 275 from 
controls, 175 from early exposure, 175 from late exposure, and 
250 from full exposure. At this size, oysters are roughly round 
(Figure 1), and shell diameter was measured to the nearest hun-

dredth of a mm using digital calipers from the umbo to the 
outer shell edge. We then quantified the force needed to break 
each oyster shell using a penetrometer (Kistler force sensor 
9207 and a Kistler charge amplifier 5995). A small blunt probe 
was placed centrally to be equidistant from the shell edges and 
perpendicular to the shell surface (Figure 1). Gentle and con-
sistent pressure was applied until the shell cracked, and the 
maximum force (N) needed to break the shell recorded, which 
is a standard proxy for shell hardness (Robinson et al. 2014). 
Because larger individuals have a stronger shell as a byproduct 
of their size, we divided shell crushing force by shell diameter 
to produce a size—standardized metric of shell strength (i.e., 
standardized crushing force, sensu Belgrad et al. 2021). Care 
was taken to avoid measuring oysters surrounded by other oys-
ters to ensure shell growth or shape was not limited by space. 

 We compared shell length and standardized crushing force 
among predator exposure treatments for 2 and 4 weeks cultur-
ing in 4 separate generalized mixed—effects models (one model 
for each time period and shell characteristic; GLMMs; R pack-
age lme4). Predator exposure treatment was set as a fixed effect 
while holding cage nested in tank were treated as random ef-
fects to account for nonindependence among oysters. Tukey’s 
multiple comparison tests were run on models to determine 
significantly different groupings using the general linear hy-
potheses function in the R package multcomp. All statistical 
analyses were conducted in R version 4.0.0 (R Core Develop-
ment Team 2020). 

Results and Discussion
Oyster spat shells were not significantly larger (Figure 2A, 

difference of < —0.01 mm, t = —0.78, p = 0.433) or harder (Fig-
ure 2C, difference of 0.23 N/mm, t = 1.34, p = 0.181) after 2 

SC2

FIGURE 1. Oyster spat growing on marble tile. The line represents a typi-
cal measurement of shell size and the circle indicates the location where 
hardness would be measured via crushing with a penetrometer.
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weeks of predator exposure. Oyster spat had signifi-
cantly harder shells when reared with blue crabs for 4 
weeks (Figure 2D, 0.25 N/mm compared to controls, 
t = 2.40, p = 0.017), consistent with previous studies 
(Combs et al. 2019, Ponce et al. 2020, Belgrad et al. 
2021). Conversely, oysters reared without predators 
were ~10% larger than those reared with predators, 
regardless of exposure time (Figure 2B, size differ-
ence of controls compared to predator—exposed = 
0.01, t = 1.53, p = 0.034). Oysters reared with preda-
tors for 4 weeks had the hardest shells (21% stron-
ger) but were not significantly different from spat ex-
posed to crab cues for just the second 2—week period 
(Figure 2B), implying that the second 2—week period 
was important for shell induction. Interestingly, 
oysters exposed to predators for 2 weeks and then 
placed into tanks with no predator cues for another 
2 weeks did not produce harder shells than control 
oysters (Figure 2D). Oysters exposed to predators for 
2 weeks in both early and late treatments had signifi-
cantly shorter shell lengths than controls (but not as 
short as the constant predator treatment, Figure 2B), 
suggesting that in both instances oysters were initiat-
ing reactions to predators. Yet, the early exposure did 
not produce harder shells despite the shorter length, 
suggesting that oysters can stop shell induction when 
predation risk is removed. In contrast, spat exposed 
for only 2 weeks in the later treatment produced 
shells that were significantly harder than controls 
and not significantly different from those reared 
with blue crabs for 4 weeks, indicating that oysters 
can also start shell induction if risk is introduced af-
ter settlement. In summary, at least within the first 4 
weeks after settlement, oysters can initiate and cease 
shell changes depending upon the presence of preda-
tion risk.

Oysters can alter their shells by incorporating 
additional inorganic material (i.e., calcium carbon-
ate), which increases their size and may help defend 
against crushing predators that may be size limited. 
Adding calcium carbonate to shells is often energetically cheap 
(Currey and Taylor 1974, Frieder et al. 2016) and can be pro-
duced quickly under favorable conditions to increase shell size 
(Lee et al. 2011, Frieder et al. 2016). For instance, the snail 
Nucella lapillus can rapidly increase shell size by adding a ho-
mogenous calcium carbonate layer to reach a size refuge (Avery 
and Etter 2006). Bivalves, including oysters, also make larger 
shells by adding inorganic shell material (Scherer et al. 2018). 
Thus, building a larger shell is likely the initial step in respond-
ing to risk, but building the shell quickly produces shells that 
are weaker per unit area (Scherer et al. 2018). Shell strength is 
increased substantially by adding additional organic material 
to the shell, which is twice as energetically costly as adding cal-
cium carbonate (Lee et al. 2016, Frieder et al. 2016), and tends 
to be limited in oysters to situations when risk is high and con-

stant (Newell et al. 2007, Scherer et al. 2018). Unlike previous 
studies, oysters had smaller shells in all risk treatments in our 
experiments (e.g., Robinson et al. 2014), and further experi-
ments are necessary to better understand this discrepancy.

In nature, risk posed by consumers is commonly temporally 
variable, and responding to predators requires prey to evalu-
ate risk and respond appropriately (Preisser et al. 2005, Weiss-
burg et al. 2014). Organisms that rely on behavioral changes to 
avoid consumers can quickly adjust behavior to avoid preda-
tors when risk is present (Weissburg et al. 2014), while organ-
isms that depend on morphological changes to deter consum-
ers are less able to quickly adjust to temporal variations in risk 
(Scherer and Smee 2016). However, our data suggest oyster spat 
can start and stop a morphological response, at least in their 
early development, to adjust to changes in predator regime. 
Additional research is needed to better test oyster responses 

FIGURE 2. Mean (± SE) measurements of oyster (Crassostera virginica) spat cul-
tured for 2 or 4 weeks with or without predators. A. Shell length (mm) of oysters 
nursed in the hatchery for 2 weeks (n = 175). B. Shell length (mm) of oysters nursed 
in the hatchery for 4 weeks (n = 275, 175, 175, and 250 respectively). C. Crushing 
force standardized by shell length (N/mm) of oysters nursed in the hatchery for 2 
weeks (n = 175). D. Crushing force standardized by shell length (N/mm) of oysters 
nursed in the hatchery for 4 weeks (n = 275, 175, 175, and 250 respectively). Let-
ters reflect significant differences among groups (Tukey’s multiple comparison tests). 
constant—constant exposure to blue crab (Callinectes sapidus) predators; early—ex-
posure to blue crab predators for the first 2 weeks of the study; late—exposure to blue 
crab predators for the last 2 weeks of the study.
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to temporal variation in risk, and experiments rearing oysters 
under natural variation to reproductive age would be beneficial 
to better measure changes in costs and benefits of induction in 
terms of survival, marketability, and fecundity.

Predation can be a significant hurdle to success in remote 
setting programs that use spat—on—shell to rebuild oyster reefs. 
Preadapting oysters to predators by exposing them to predator 
cues in the hatchery may be a useful tool to increase effective-
ness of spat—on—shell programs (Belgrad et al. 2021). However, 
it is common to hold spat in nurseries for 2 weeks before place-
ment in the field as this time allows the maximum number of 
spawns each season. Yet, our results demonstrate that 2 weeks 

is insufficient time for predator induction to work, and oysters 
are substantially smaller, weaker, and more vulnerable to preda-
tors after 2 weeks in the nursery vs. 4 weeks. These findings 
indicate that restoration operations that are limited in spawns 
will likely have the greatest cost—benefit when oysters are 
nursed for 4 weeks and future studies should investigate if the 
differences in survival by growing spat—on—shell for 4 weeks 
increases survival enough to justify having fewer spawns each 
year in operations that are not spawn limited. Finally, costs as-
sociated with using predator cues to induce oyster spat could 
be reduced by limiting exposure only during the final 2 weeks 
of rearing.
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