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Abstract 
The physical sciences community is increasingly taking advantage of the possibilities offered by 
modern data science to help meet challenges in experimental chemistry and potentially change the 
way we design, conduct, and understand results from experiments.  Successfully exploiting these 
opportunities involves significant challenges.  In this Expert Recommendation, we provide 
examples of how data science is changing the way we conduct experiments, and outline  
opportunities for further integrating data science and experimental chemistry to advance both of 
these fields.  Our roadmap includes establishing stronger links between chemists and data 
scientists, developing chemistry-specific data science methods, integrating algorithms, software, 
and hardware to “co-design” chemistry experiments from inception, combining diverse and 
disparate data sources into a data network for chemistry research. 
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1. Introduction 
 
Data-driven techniques, such as machine-learning (ML) and artificial-intelligence (AI), are rapidly 
becoming indispensable tools for scientific research,1 and have been the topic of national2 and 
international3 reports, recent review and perspective articles,4-6 and tutorial guides.7,8  With some 
exceptions,9 most work has focused on ML approaches trained on synthetic datasets, and used to 
accelerate computer simulations.  However, emerging data-driven approaches for synthesis, 
spectroscopic interpretation, and optimal experimental design now highlight the potential to 
advance experimental chemistry with data-driven methods.10,11 [add cites to: Cernak & Doyle & 
co. 
10.1038/ s43586-021-00022-5 & Nichols10.1016/bs.pmch.2021.01.003 (also used later)]  For 
example, combining such data analytical methods with automation or laboratory robotics could 
enable quasi autonomous research with minimal human input.12,13  Improved data analytics and 
data sharing/reuse in experimental chemistry offer the opportunity to increase the rate and lower 
the cost of scientific discovery, and grow research productivity. 

Parallel advances in data science and in experimental chemistry have rapidly expanded the 
opportunity to integrate these fields     .  Given the diversity of experimental methods, data 
acquisition techniques, and their assembly into experimental workflows,14 the realm of possible 
workflows and methods for designing experiments far exceeds those realized by human 
researchers to-date.  Data science methods are poised to aid workflow design and active steering 
of experiments to broaden the reach of experimental chemistry and enhance the rate and efficacy 
with which chemists explore the often daunting parameter spaces of experiment and synthesis.  
Capitalizing on these opportunities will require fundamental advances in both chemistry and data 
science, as well as changing how we conduct experiments, especially the development of 
technologies to facilitate large-scale data collection, sharing, and analysis.  At the same time, 
validating outcomes of data science-based interpretation and prediction will be essential.  

Here, we include key highlights from “At the Tipping Point: A Future of Fused Chemical 
and Data Science”, a September 2020 workshop supported by the Council on Chemical Sciences, 
Geosciences, and Biosciences and sponsored by the Chemical Sciences, Geosciences, and 
Biosciences (CSGB) Division, Office of Basic Energy Sciences Office of Science U.S. Department 
of Energy. Participants from academia, industry, and national laboratories assessed opportunities 
and key research needs for the use of data science for new experimental approaches in chemistry 
and biochemistry, at experimental scales ranging from single-PI laboratories to large user facilities. 
We focus on experimental chemistry, and discuss how data science is changing the way we conduct 
experiments using case studies, and summarize what is required to take advantage of the significant 
advances  in both fields.   
 
2. A Broad Perspective of Data science 
 



Science has always been driven by the interplay of data and theory.  Data, which can come from 
observations, simulations, or experiment, aid in hypothesis and theory development.  Theories 
codify understanding, offer predictions which can often help extrapolate into experimentally 
unexplored domains, and provide conceptual frameworks for suggesting new experiments and 
regions of possible interest.  This interplay is central to scientific understanding.  
 The challenges and opportunities offered by this interplay have been accelerated by 
technological advances in detectors, computation, and algorithms, which have significantly 
changed data acquisition rates and the range of tools available to classify, analyze, and interpret 
data.  In some experiments, acquiring many types of experimental data is no longer “expensive,” 
and vast amounts can be easily accumulated.  In other areas, the equipment and the experiments 
themselves are so expensive or over-subscribed that one must carefully choose which experiments 
to perform.  The growing field of “data science” offers possibilities to combine opportunities 
enabled by advances in algorithms, hardware, and vast data sources.  Further advances  in chemical 
sciences will require exploiting and developing these efforts, augmenting the traditional approach 
of theory to selectively guide investigations with new approaches that can handle both large 
amounts of data, and the vast landscape of possibilities. 
 One important component of data-driven science is the perspective that data itself can shed 
light on processes and mechanisms, without requiring accompanying theories and models.  
Analyzing data without a theory-based roadmap is critical to making sense of the ever-increasing 
influx of data.  This sounds more radical than it really is: relying on observations to frame (and 
sometimes justify) expectations has often outpaced theory and models.  Data science embraces the 
importance of classification and identification of robust correlations in large, complex datasets that 
historically have been a pillar of theoretical advances, but now require new methods to deal with 
vast new quantities of data and accelerating acquisition rates.  
 The need for advanced techniques able to interpret and categorize data is an increasingly 
critical part of the scientific process.  Advances in mathematical algorithms, broadly defined to 
include core mathematical ideas such as approximation theory, linear algebra, and differential 
equations, as well as statistics, signal and image processing, machine learning (ML) and artificial 
intelligence (AI), have been instrumental in extracting knowledge from data, and accelerating 
scientific progress in the data-experiment-theory interplay.  As experiments become more 
complex, and instruments and detectors faster and more resolved, these needs will become 
increasingly prevalent.   
 Whether data science interpretations become an incremental step towards traditional 
model-based scientific understanding, or ultimately stand on an equal footing, and in some arenas, 
surpass model-based understanding remains unclear.  Even in the absence of a data science 
revolution, data science will lead to evolution in how we generate and interpret scientific data.  The 
challenge is to have some reliable way of saying whether one has enough experiments, or enough 
data, or enough observations, to justify making predictions with quantified  uncertainty.  While 
there is no single route to estimating the uncertainty (error) in the outcome of AI/ML approaches, 
good-practice methods range from the simple (and transparent) to the sophisticated (and generally 



less transparent).  Some of the best approaches rely on independently known “ground-truths” to 
estimate the error in the outcome of data-driven analysis in comparison with the available ground 
truths.  Such estimates assess, in essence, the interpolation error.  The assessment of predictions 
outside the training range entails additional complexities.  At the end of the day, the current state 
of the art is such that one extrapolates beyond the training domain at one’s own risk.   

In the most radical  interpretation , AI and ML techniques suggest that one need not have 
any preconceived notion of what experiments to perform, what variables to observe, and what 
weights to put on gathered information.  Of course, ML/AI algorithms rely on hidden assumptions 
and biases, including, for example, definitions of closeness, similarities, and structures.  
Nonetheless, the idea and promise of these approaches are that the algorithms themselves will 
detect the important relationships, even if these relationships are not revealed in the standard form 
of analytical models, communicable principles, and foundational theories. 
 While there are many challenges associated with ML (Box 1) and no clear path on how to 
simultaneously address them, the opportunities are hard to ignore: an increasing amount of data is 
available, and better ways to use it will provide new insights.  Three modalities by which data 
science could transform experimental chemistry are listed in Box 2.  The hope and expectation are 
that data science methods can learn important relationships at previously unachieved speed and 
scale, and that those relationships can then be exploited to accelerate scientific progress.  

In the following sections, we provide some chemical sciences case studies of advances and 
potential of interaction of experiments and data sciences, and discuss the challenges for moving 
the path forward. 
 
3. Data science and chemical sciences 
 
ML proponents promise profound advances within chemical sciences in arenas such as extracting 
collective coordinates, reaction paths, energy landscapes, and dynamics from lots of heterogeneous 
observations.  Broadly speaking, it is expected to bring at least three important objectives within 
reach (Box 2).  In the chemical sciences, there have been remarkable steps toward meeting these 
objectives, and the promise and potential is significant.9,15-18  At the same time, there are limitations 
and pitfalls—We try to give examples in multiple different fields. Of course, these objectives stem 
from a continuum, rather than a discrete spectrum of possibilities, but it is helpful to independently 
address each objective. 
 
3.1 ML-guided discovery 
 

Experiments are traditionally either steered by intuition or by schemes in which a 
measurement plan is selected and implemented in advance, independent of the measurement 
results.  Neither is efficient: the intuitive approach demands constant attention by a highly trained 
expert, and the exhaustive approach wastes instrument time by collecting a large amount of 
possibly redundant data. 



           As experiments become more complex, these approaches become even more problematic.  
Rather than simply being a question of efficiency, the central issue is that the combinatorics of 
high-dimensional parameter spaces yield a set of possible configurations that is too large to 
systematically explore with pre-arranged strategies.  

 
Goal - Autonomous, Self-Guiding Laboratories.  Instead, imagine a process by which a set of 
previously performed experiments is used to suggest what to try next.  These suggestions may, for 
example, come from surrogate models, which represent lower-dimensional approximations to the 
landscape of collected data from sparsely sampled high-dimensional parameter space.  Taking as 
input the available experimental data, both from the current experiment and available literature, as 
well as previously established scientific information, these models can then suggest experiments 
able to accomplish different or multiple goals, including:  

• Aim new experiments at under-explored parts of the high-dimensional parameter space.  
These new experiments would configure the experimental parameters to examine under-
sampled possibilities.  The goal is to make sure that a full range of scientific results across 
the parameter space is collected efficiently.  

• As experiments are performed and analyzed, focus new experiments on profitable 
configurations that are yielding, as experiments are performed and analyzed, insight into 
particularly desirable results. 

One important goal is to couple this autonomous steering to advanced simulations and feedback 
metrics to allow experiments to discover regions in high dimensional configuration space that zero 
in on optimal parameters, such as those required to achieve desired results.  A recent two-part 
review of autonomous discovery in the chemical sciences can be found in the literature,19,20 as well 
as targeted reviews on autonomous materials science [cite:doi:10.1016/j.matt.2021.06.036], 
organic synthesis planning and optimization [cite: Cernak & Doyle & co.10.1038/ s43586-021-
00022-5], medicinal chemistry [cite: Nichols 10.1016/bs.pmch.2021.01.003 ] and 
formulations[cite: 10.1002/aic.17248]. While this is often caricatured  as “getting humans out of 
the process”, hybrid approaches offer a valuable path forward.  For example, combined human-
algorithm teams can more efficiently identify crystallization and self-assembly conditions for 
inorganic synthesis compared to human-only or algorithm-only approaches.20     
 
What is needed. Taking full advantage of these possibilities requires multiple advances, 
including: (a) configuring the data as it is collected so that it can be easily interpreted; (b) fast 
techniques for building representative surrogate models on-the-fly as data are collected; (c) 
examining these models to determine and suggest new experimental measurements; and (d) 
laboratory automation software and hardware that allow suggestions to become physical 
experiments (FIG. 1). 
 
A pivotal role for ML and AI.  Advances in ML and AI offer opportunities to achieve these goals.  
First, given the output of an experiment, these techniques can assess the collected data in the 



context of other experiments and simulation results.  As an example, suppose an experiment under 
a given set of input parameters yields a particular scattering pattern, spectrum measurement, or 
chemical signature.  A robust and accurate machine learning algorithm can interpret these results 
in the context of known available data, detecting similarities and patterns which can evaluate the 
outcome. For example, models trained on crystallographic data can be used to predict 
crystallographic dimensionality and space group from thin-film x-ray diffraction.[cite: 
10.1038/s41524-019-0196-x] Second, given the analyzed output of an experiment,  emerging data 
science techniques can be used to efficiently build surrogate models.  Suitably designed, they can 
take the analyzed output data and quickly estimate results that can steer the experiment. 

This ability to automatically evaluate data as it is collected, and then suggest new 
directions, has applications across experimental science, including: 

(1) Query and steer multi-dimensional processes; 
(2) Suggest placement of sensors and data collection, determining which locations give the 

newest information;  
(3) Efficiently construct surrogate models, especially when collecting information across 

multiple modalities, such as through combining imaging with chemical and materials databases.  
Considerable information can be gleaned by querying high-dimensional state space with many 
different techniques, such as tomography, mass spectrometry, and high-resolution IR imaging.  
Broad dissemination of such approaches can be utilized at multiple scales, from operation of single 
instruments to collections of instruments in individual labs and large-scale facilities. For example, 
successful demonstrations to date span autonomous benchtop chemical synthesis to the 
synchrotron experiment case study discussed below. 
 
Case study 1: Autonomous experiments in traditional laboratories. Within a single laboratory, 
autonomy can couple control and measurement, delivering purpose-built experiments.  Examples 
include microfluidic systems for synthesis and characterization of colloidal nanoparticles coupled 
to machine learning-based optimization of the optoelectronic properties,21-23 and computer-
controlled test stands for creating and electrochemically characterizing arbitrary liquid electrolyte 
solutions coupled with online optimization.24 Autonomous organic synthesis optimizations in 
flow-based reactors have been demonstrated for a number of different systems,[cite: 
10.1039/C9RE00096H & 10.1021/acs.joc.8b01821]  and software has been developed to 
autonomously steer commercially available equipment in performing organic synthesis 
optimizations.[cite: Lapkin 10.1002/cmtd.202000044]   Even when commercially available 
equipment does not exist, it is possible to combine existing equipment with only minimal 
modification. In one recent example, an autonomous system for optimizing Suzuki-Miyaura 
coupling reactions was created by combining commercial liquid handling and high performance 
liquid chromatography (HPLC) systems; the only hardware modification needed was to install an 
HPLC valve on the robot deck and incorporate relay switches to trigger the chromatographic 
equipment.[cite:10.1038/s42004-021-00550-x] A more wide-reaching approach exploits general 
purpose robots that interact with existing laboratory equipment2: in one configuration, a robot 
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synthesized 688 photocatalysts over 8 days using a Bayesian optimization scheme without human 
intervention, leading to a 6-fold increase in desirability compared to the initial compounds.  Even 
with limitations in how existing knowledge, theory, and physical models are implemented in the 
autonomous search, such examples illustrate a time-efficient cost-effective use of available 
resources, shortening a project from months and years to a week.  Ideally, in the future, the 
combination of advances in knowledge, theory and models) will enable optimized synthesis of 
novel compounds with targeted properties.  However, even the development of autonomous 
processes for individual analytical subtasks within a research project—such as determining the 
solubility [cite: 10.1016/j.isci.2021.102176] and determining kinetics models by HPLC 
experiments[cite:  10.1039/C8RE00345A ]—can be useful both for accelerating research progress 
and as building blocks for future systems. 
 
Case study 2: Autonomous steering at synchrotron light sources. One current example of 
autonomous steering is provided by the gpCAM mathematical, algorithmic, and software 
framework26 which has been used for a wide variety of experiments across the United States and 
abroad (FIG. 2).  First, measurements of an autonomous experiment are chosen based on previous 
measurements.  Next, surrogate model functions are computed by machine learning-based 
Gaussian process prediction, which can be constrained by domain-knowledge. Hybrid 
optimization methods are then used to locate the next best measurements.  Finally, choices for 
optimal measurements are determined as a function of the surrogate model, its uncertainty, and the 
costs of a measurement. Using this approach and software framework, beam utilization was 
increased at Brookhaven’s Center for Functional Nanomaterials and National Synchrotron Light 
Source-II from 15 percent to over 80 percent26,27 with a five-fold decrease in the number  of 
required experiments to obtain the same results.  At the Berkeley Synchrotron Infrared Structural 
Biology beamline at the Lawrence Berkeley Laboratory’s Advanced Light Source, the required 
amount of biological spectroscopy data  that needed be collected was reduced as much as 50-fold.28  
At neutron sources at the Institut Laue-Langevin, experiment durations have been reduced from 
days to one night. 

   
3.2. Harnessing complexity with data science 
 

One well-traveled road in chemical experimental science has focused on optimizing control 
over the sample and the experimental apparatus.  These efforts have emphasized the control of a 
limited set of critical parameters, which, in turn, imposes limits on the analysis by highlighting a 
few outputs with high signal to noise ratio to enhance interpretability.  This constrains 
experimental methods to maximize control and homogeneity and minimize noise, fluctuations, and 
heterogeneity.  

The scientific usefulness of this framework derives directly from how successfully the 
critical properties of experiment can be controlled.  While this approach has generated many 
impressive successes, the inevitable limitations in sample and experimental control present 
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significant limitations to experimental design.  Data science approaches can augment and expand 
the scope of experimental science by both accelerating the analysis and interpretation of 
experiments and enabling experiments to be performed successfully where control is impractical 
or risks undesirable alteration of the phenomena under study. As an example, current data science 
techniques applied to structure and image reconstructions are able to extract information from 
measurements recorded with far more noise and uncertainty than previously possible, greatly 
increasing the set of “viable” and productive experiments.    

Clear cases where data science approach would be valuable include, but are not limited to, 
experiments using stochastic or noisy instrumentation like X-ray free electron lasers (see case 
study below), and field studies where natural variations in the environment provide an alternative 
means of determining how chemical systems respond to changing environmental conditions.  In 
these examples, control of the relevant experimental parameter space cannot or should not be 
exercised ; the parameter space must be fully measured and correlated with the relevant 
experimental observables.  This approach to experimentation greatly increases both the data 
volume and the challenges in identifying correlations between the measured, rather than 
controlled, variables with the experimental observables.  The payoff is that information can be 
extracted that would be lost to traditional techniques of averaging over uncontrolled fluctuations 
or left unexplored by an experimenter with full control of the sampling of parameter space.  

 
Goal - Relax requirements for experimental control and a priori design. The adoption of data-
science methods in experimental planning and analysis enables scientists to reimagine the way we 
design and perform experiments by shifting the focus away from controlling the critical parameter 
to measuring fluctuations within the critical parameter space.  Measuring, rather than controlling, 
the critical parameter space of the experiment shifts the emphasis of experimental design to data-
intensive diagnostics that must be integrated into the experiment.  This also requires significant 
changes in analysis, since the absence of control can generate significantly larger datasets with 
more complex correlations between the chemical properties of the sample being measured in the 
experiment and the instrument sampling of parameter space measured with diagnostics.  An 
example, designed to mitigate the significant shot-to-shot variation of X-ray free electron lasers, 
can be found in FIG. 3.  This approach may be a product of necessity instruments with delicate 
stability regimes, but it also presents the opportunity to identify unexpected correlations, since  
natural fluctuations in the experimental apparatus may generate experimental results a scientist 
may be biased to avoid.  By providing real-time sampling of a complex experimental parameter 
space, pre-planned experiments are replaced with on-the-fly adaptive methods that reduce the time 
to acquire a signal and  reduce problems of data redundancy.  Furthermore, instead of relying upon 
a single high signal-to-noise output, alternative approaches might rely on many more weak (but 
easy to collect) signals to make chemical measurements.29  FIG. 3 shows how the integration of 
fast ML/AI enabled analysis can lead to data-driven autonomous experimental workflows.   
 



What is needed. To take full advantage of the above possibilities requires multiple advances, 
including: (a) development and implementation of diagnostics for measuring all experimental 
parameters that would have traditionally been controlled; (b) integration of these diagnostic signals 
with the experimental observables; and (c) fast analysis techniques for correlating the data from 
the diagnostics with the experiment to enable real-time assessment of experimental progress 
building representative surrogate models on-the-fly as data is collected. 
 
A pivotal role for ML and AI.  ML and AI techniques offer powerful chances to identify 
unexpected or hidden correlations revealed by the fluctuations in the experimental parameter 
space. Two examples include: 
 
Case study 3:  Identifying natural experiments from laboratory metadata.  Chemical reactions 
can be highly sensitive to environmental conditions such as humidity.  The typical experimental 
control strategy is to perform reactions in a glovebox, but this presents operational challenges. An 
alternative, demonstrated recently in the context of halide perovskite crystal growth, is to capture 
comprehensive electronic records of laboratory conditions associated with each experiment over 
an extended period of time.[cite: doi:10.1063/5.0059767 ]  Using a dataset of 8470 experiments 
captured over a 20 month period, it was possible to identify statistical anomalies in reaction 
outcome that were correlated with laboratory humidity.  The researchers confirmed this hypothesis 
by performing deliberate interventional experiments, and in the process, discovered systems in 
which water interfered with inverse temperature crystallization, contrary to previously 
hypothesized mechanisms. 
 
Case study 4: X-ray Free Electron Lasers (XFELs). XFELs have transformed x-ray science by 
producing the world’s brightest x-ray beams. The lasing process that generates these beams also 
leads to significantly larger fluctuations in key experimental parameters, particularly compared to 
synchrotron-based x-ray sources.  Attempts to control key beam properties like pulse spectra, 
intensity, and duration have only led to partial success to date.  As an alternative, one could instead 
measure large fluctuations in pulse properties on every shot, and then use data science methods to 
deconvolve the influence of pulse fluctuations for the observed experimental signal.  In addition 
to reducing the experimental requirements for XFEL performance, this approach has the benefit 
of using every photon and thus giving an automatic brightness upgrade; for an XFEL this is a 100x 
improvement.  Furthermore, this has the benefit of improving temporal resolution.   

The above opportunities come with challenges.  The inability to control the experimental 
apparatus necessitates the performance of two parallel measurements: one on the x-ray beam and 
the other on the sample being interrogated by the x-ray beam.  Additionally, the success of the 
experiment requires high fidelity diagnostics and analysis methods to ensure x-ray beam 
fluctuations can be robustly differentiated from variations in the sample properties being 
investigated.  Furthermore, adopting a supervised learning approach would initially require 
conducting parallel experiments using a traditional apparatus so as to build an appropriate training 



set; as a result, cost savings would not be immediately realized, but would come when this 
information is applied to future sites.  The planning stages of this type of work would require deep 
involvement of data science and modeling experts to assure stakeholders that algorithms will be 
able to perform this task robustly and reproducibly.30  

Another advancement made by the XFELs is the application of X-ray sciences in the 
chemical phenomena in the femtosecond time regime.  Ever since the launch of “femtochemistry” 
by Zewail and others, the ultrafast interactions initiated by the absorption of a photon have driven 
a quest to understand, and ultimately control the ultrafast structural dynamics of photoactivated 
molecular systems [see, e.g., 10.1146/annurev-physchem-032210-103522].  This quest has made 
it imperative to deal with noisy, incomplete, and fleeting signals recorded with substantial timing 
uncertainty.  While experimental attempts to deal with such signals will continue to advance, 
recent AI/ML approaches have brought the greatest rewards [see, e.g., 10.1038/nature17627,  
https://doi.org/10.1101/2020.11.13.382218].  

The measurement of dynamics is an important case in point.  Since the celebrated work of 
Takens,31,32 it has been recognized mathematically that the evolution of a wide range of dynamical 
systems is tightly constrained.  As such, much less data is needed to recover dynamical information 
than currently thought necessary for proper experimental analysis.  Takens showed that a series of 
snapshots, each representing a subset of the system variables, suffice to determine the behavior of 
dynamical systems as though all system variables had been measured.  The ML-based realizations 
of this remarkable possibility are now being applied to ultrafast chemistry data previously thought 
too noisy, too incomplete, and too imprecise to be useful.18  Extensions of this approach have been 
used to estimate the gestational age of fetuses with unprecedented accuracy,33 indicating the 
generality of the algorithmic methods. 

3.3. Data-driven experimental discovery 

 
Not all important challenges in science conform to easily testable hypotheses.  Research in 
chemistry often targets critical metrics, such as a specific photovoltaic energy conversion 
efficiency or a specific selectivity for a catalytic reaction.  These metrics require materials to 
achieve performance beyond what has been demonstrated previously, so interpolation is not an 
effective strategy.  Extrapolating from known materials and known phenomena may prove 
insufficient to hit a challenging performance target and motivate exploration off the well-beaten 
path.  Hypothesis-driven research, which is generally derived from prior knowledge, and relies on 
testing a postulated outcome, may restrict inquiry and exploration.34  
 
Goal - Automated Serendipity. In the absence of a hypothesis, trial and error becomes intractable 
as the search space increases.  Efforts in lab automation can reduce the time needed for synthesis, 
characterization, and data-interpretation, thus increasing the rate at which new trials can be 
performed (this builds upon the lab automation efforts discussed in Section 3.1.).  More broadly, 
data science approaches can be used to automate the process of extracting new “ideas” to try based 



on collected datasets.11[also add relevant cites to: doi:10.1063/5.0059767  --cited above & 10.1038/s41524-019-0196-x --cited below]  
Comprehensive data management (discussed in Section 4) facilitates the process of identifying 
unexpected variations that can suggest directions for more deliberate inquiry.  For this type of 
application, prediction accuracy is less critical because it suffices to be wrong less often, so as to 
focus on a more tractable portion of the available parameter space for experimental validation.   
 
What is needed. Enhancing metric-driven research requires: (a) efficient and unbiased search and 
analysis tools, or at least tools whose bias is clearly delineated and transparent, (b) implementation 
of ML methods to identify unexpected or hidden correlations revealed by the fluctuations in the 
experimental parameter space, and (c) autonomous direction of search based on prior findings. 
 
A pivotal role for ML and AI. Instead of performing a few experiments carefully selected by the 
chemist, this approach favors performing larger-scale combinatorial experiments to explore a 
broader and less biased search space.  A short-term goal is merely to perform more experiments 
over the broadest possible search space, which is the goal of “classical” high-throughput 
experimentation or combinatorial chemistry.35  More long-term goals use ML and AI to accelerate 
the characterization process and optimal selection of new experiments.  Finally, there is a need for 
machine learning interpretability, and explainable AI (XAI) to inform humans: this may 
necessitate chemistry-specific interpretable machine learning methods.36  Some early realizations 
of this in experimental chemistry include extracting hypotheses about organic molecular structure 
determinants of energy levels and solubility[cite: 10.1088/2632-2153] and human-algorithm teaming for 
synthesis of polyoxometalates.[cite: 10.1021/acs.jcim.9b00304] 
 
Case Study 5 - Serendipity-driven reaction discovery. This type of non-selective “automated 
serendipity” has been successful in discovering organic reactions for photoredox catalyzed C-H 
arylation,37 and palladium catalyzed C-N cross coupling.38,39  For a general review, see Ref. 40.  
Each of these have relied upon experimental hardware developments to perform synthesis and 
characterization with greater parallelism and smaller quantities of reagents.  Data interpretation is 
accelerated by using  data-science methods to identify when a reaction has occurred. In its simplest 
form this can entail looking for differences in product and reactant spectra and using this to 
prioritized subsequent experimental rounds,41 with the understanding that this can provide only a 
preliminary investigation, and that subsequent human reinvestigations may be necessary to 
confirm the spectral interpretations.42  A more sophisticated approach would use this data to 
construct empirical relationships between catalyst and substrate structures and the catalytic 
efficiency;43 the resulting structure-property models can then serve to prioritize subsequent 
experimentation.  Finally, a higher level goal is to perform autonomous optimization of the 
catalyst, substrate, and reaction condition designs using automated experimentation and planning 
algorithms.44  In materials science, a similar progression from high-throughput synthesis and 
characterization, to increasing automated interpretation, to autonomy has  also been reviewed,12; 



again, this is enabled by increased adoption of machine learning methods throughout the discovery 
lifecycle.8,45 
 Data-science approaches can help facilitate this serendipitous discovery process by 
reducing the need to “know” what one is looking for ahead of time.  An example comes from the 
development of rare-earth-free permanent magnet materials.46  A wide variety of Fe-Co-X alloys 
are synthesized combinatorially, resulting (in some cases) in one or more phases: many of these 
are unknown.  Using non-negative matrix factorization methods, diffraction spectra are 
decomposed into estimates of the pure material spectra (which may never be previously observed, 
or can be matched against known databases) and estimates of the relative contribution of those 
phases.  While the goal is to produce a phase diagram of different compositions, building a 
complete map over the compositions requires too much instrument time.  Instead, a further 
improvement uses active learning approaches and Bayesian optimization methods to prioritize the 
(automated) acquisition of new experimental data points.47  Reducing the number of diffraction 
measurements that must be acquired by several orders of magnitude reduces the amount of 
beamtime required or even enables the using of a single-PI scale diffractometer instead of a 
beamline source. 
  
3.4. Data management and networking  
 

Realizing new experimental paradigms for chemistry requires human and AI researchers 
to access a broad range of chemical information.  Optimally, such information would include a 
variety of process and characterization data, as well as the metadata providing context for the 
experiments. We refer to this as a “data network” to invoke the imagery of a network wherein 
nodes are data from chemistry experiments and connections between nodes encode how the data 
are related.  Scientific knowledge emerges from the relationships between material observations 
and interpretation, and data science can help shed light on these relationships.48  Data networks 
leverage the scale and variety of modern chemistry data to enhance the utility of data-driven 
methods in chemistry experiments: here, we describe some important experimental and data 
science efforts needed to enable key efforts such as building a repository of knowledge by 
networking data, encoding the current state of a scientific field, and facilitating adoption of data 
science methods in chemistry experiments. 

 
Goal - Repositories of knowledge. The primary goal of networking data is to share accumulated 
results to enable humans and machines to derive new knowledge from old data.  Such an 
environment will allow scientists to directly explore and visualize the state of the field from such 
repositories and obtain faster access to details essential to research projects (as a complement to 
traditional literature search).  
 Traditionally, chemistry knowledge repositories are aggregated by a single organization 
and take the form of licensed datasets, reference volumes, or reference websites; some widely-
used examples are the Powder Diffraction File,49 the CRC Handbook, and the NIST Chemistry 
WebBook.50  In some sense, these repositories reflect refined chemical knowledge.  As an 



example, consider the trajectory of experimental data from raw data acquisition to 
contextualization, analysis, interpretation, and validation through additional experiments.  
Repositories understandably have focused on only the final outcome of this data funnel.  Instead, 
managing and cataloging data throughout these phases of knowledge refinement can help address 
issues of data scarcity that arise in the adoption of data science.  

Given the volume of data now being generated by chemistry experiments, and the desire 
to accelerate the research workflow, there has been an increasing number of crowd-sourced efforts 
to build knowledge repositories at the same pace as research.  Many such repositories in the 
chemistry domain are just getting started, however, one especially successful past example from 
the biology domain is the Protein Data Bank (PDB), a database that contains up-to-date structural 
data for large molecules.51  Deposition into the PDB is a requirement for publication, resulting in 
at least $12 billion worth of research data contributed to the database over the past 40 years, and 
this  a central repository produces $2.5 billion worth of increased research productivity annually 
(as of 2017).52  Furthermore, this accumulated data enabled the development of the recent 
AlphaFold[cite: 10.1038/s41586-021-03819-2] and RoseTTAFold[cite: 10.1126/science.abj8754] 
models for predicting the three-dimensional structure of proteins based solely on amino acid 
sequence.  Beyond data management, the biological and pharmaceutical fields have successfully 
created data networks and knowledge graphs that when coupled with rapidly evolving graph 
learning methods enable learning of new biological features, drug properties, etc.53  Analogous 
advancements with experimental chemistry data would be a watershed advancement for 
incorporation of data science.  To date, the most successful repositories of experimental chemistry 
data are structural databases such as the Cambridge Structure Database and ICSD, and spectral 
databases, such as the NMRShiftDB.[cite:https://nmrshiftdb.nmr.uni-koeln.de][cite:  
10.1002/mrc.4263]  An IUPAC project on “Development of a standard for FAIR data management 
of spectroscopic data” (FAIRSpec) was founded in 2019,[cite: https://iupac.org/project/2019-031-
1-024]  and progress is described in a recent report.[cite:https://doi.org/10.1255/sew.2021.a9] 
Databases of organic synthesis (such as Reaxys) are proprietary, and do not allow for free 
contribution and use.  Comprehensive community repositories of chemical processes do not yet 
exist, but may emerge from nascent efforts at developing schema for representing laboratory 
actions such as XDL,[cite: 10.1126/science.abc2986] IBM/RXN,[cite:10.1038/s41467-020-
17266-6] Autoprotocol,[cite: https://autoprotocol.org] and the ESCALATE materials/action 
specification[cite: ESCALATE paper], may serve as the basis for these types of projects. The 
advent of the Department of Energy PuRe Data Resources embodies an important step in this 
direction.[cite: https://www.energy.gov/science/office-science-pure-data-resources ]  

Once data networks are available, they can be used to accelerate the generation and testing 
of hypotheses via AI-driven encapsulation of existing knowledge. For instance, a network based 
on high-throughput density functional theory calculations can be explored by humans through 
web-based visualizations as illustrated in FIG. 4,54 while its network metrics can  also be used in 
a machine learning model to predict (or hypothesize) the synthesizability of new inorganic 
compounds.55  This  mode of hypothesis testing, which builds upon the concepts of Section 3.3, is 

https://nmrshiftdb.nmr.uni-koeln.de/
https://iupac.org/project/2019-031-1-024
https://iupac.org/project/2019-031-1-024
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significantly different from the cycle of first proposing a hypothesis and then designing and 
completing experiments before any validation takes place.  Instead, with a network of data, one 
can identify existing knowledge that accelerates hypothesis testing, adding value to data that were 
collected for a different purpose.  

Data networks can also enhance the development of accurate predictive models to the 
benefit of the autonomous experimentation described in Section 3.1.  While a single lab may 
possess insufficient data for training surrogate models, data networks may contain auxiliary data 
to augment the single lab’s data.  Of course, this has its own challenges: training models using data 
from multiple sources is non-trivial, and developing techniques for utilizing and linking 
heterogeneous from various sources is a major undertaking.  

A final data science challenge that can be addressed with data networks relates to the 
frequent need for predictive models to extrapolate beyond the existing corpus of chemistry 
knowledge, as discussed in Section 3.3.  While true extrapolations may be wildly inaccurate, data 
networks can be constructed with the appropriate connections, so that apparent extrapolations may 
in reality lie comfortably within the domain of validity of existing models.  For instance, a given 
property of a given chemical may not have been measured by a given technique, but previous 
experiments that share the same property, chemical, or method may be of value; this assumes a 
shared framework for expressing the relationships upon which data science methods can be built. 
 
What is needed. Realizing data networks and their benefits will require a variety of cultural and 
technical advancements.  Many of the relationships among chemical experiments lay in their 
metadata, which includes details of the instruments and their settings, including essentially any 
knowledge required to reproduce the data.  Agreed-upon software formats for recording  
experiment parameters, as opposed to manual setting of multiple knobs whose data record is 
limited to written notes, will greatly facilitate consistent tracking of experiment metadata. Data 
management programs such as ESCALATE[cite] and ESAMP[cite: 
10.26434/chemrxiv.14583258.v1] are exemplars of this approach for chemistry and materials data, 
and further…” the data stewardship by making the data and metadata inseparable; an example of 
the rich types of interactive experiment description reporting that this enables can be found in the 
electronic Supporting Information of Ref. 57 

The chemical and analysis provenance of data is also critical.  From lab notes to 
publications, chemicals are often labelled by what they are intended to be, and data annotations 
such as “background-subtracted” are often aspirational.  From a data science perspective, the 
chemical under investigation in an experiment is most well-defined by the sequence of prior 
processes and experiments that produced the chemical.  Assessing this provenance from literature 
data is often difficult if not impossible, motivating a re-thinking of how experimental data should 
be recorded and tracked. 

Regarding data processing and interpretation, there are complementary challenges.  Expert 
decisions during data analysis, for example in identifying which  portion of a spectrum to analyze 
or what data artifacts may be present, are based on experience-based knowledge.  Tracking the 



provenance of data analysis will facilitate removal of human basis and uncover valuable 
information from raw data.  On the other hand, application of expert prior knowledge may be 
necessary to gain traction in data analysis, and encoding this knowledge in data science algorithms 
is a major yet crucial challenge.   Ultimately, artificial intelligent algorithms will have their own 
experience-based chemical knowledge, but only if we can provide the same quantity and quality 
of data, metadata, and provenance that underlies the knowledge progression of expert scientists. 

We note that there are numerous practical challenges related to the ingestion and 
management of metadata and data provenance, additional imperfections of the data itself, as well 
as less technical considerations such as intellectual property and incentivization schemes.  We 
refer to a recent DOE report “BES Roundtable on Producing and Managing Large Scientific Data 
with Artificial Intelligence and Machine Learning” for recommendations on technical aspects of 
the data pipeline and network,58 and Ref. 59 for a survey of motivations for building a data network. 

 
A pivotal role for ML and AI. To establish data networks that enable scientists to aggregate and 
search relevant chemical  knowledge, data science must be incorporated in data management to 
learn the relevance of metadata, provenance, and domain knowledge so that they can be 
appropriately modeled in data networks.  Networking data should commence with models of 
relationships encoded in existing theories, as was recently demonstrated by PropNet,60 which is 
built on the foundation of symbolic equations from materials physics.  Bringing this network 
concept to express interrelationships of experimental data is a new paradigm in data management 
for chemical sciences.  
 
Case study 6: X-ray absorption spectroscopy: XAS is a ubiquitous chemistry experiment 
technique: data science methods could facilitate faster data analysis and chemical feature 
recognition in measured elemental patterns.  Machine learning models have been developed that 
can predict chemical features from XAS patterns collected under the same conditions as a 
relatively large training set, which for this application has been the computational XAS.61-64  
Expanding the scope of these models to experimental spectra could be enabled by aggregating 
XAS data from dozens of beamlines worldwide that collectively have acquired many thousands or 
perhaps millions of spectra to-date.  However, variants of the technique rapidly complicate the 
problem, from fluorescence to electron detection modes, and from hard X-ray-open-atmosphere to 
soft X-ray-vacuum, and to various in situ and operando measurements of chemicals/materials in 
chemical reactors or other actively controlled conditions.  As a result, beyond the challenge of 
aggregating the data itself, defining and representing the context of every XAS measurement is 
quite difficult and must begin with well-tracked and machine-readable metadata.  Nevertheless, 
recent progress has been made on this front,65 which is a critical step on the path to an XAS data 
network. 
 
4.  Recommendations  
 



Regardless of the potential and limitations of ML and AI, there are still some uncertainties about 
how these approaches are transforming chemistry research.  Just as Bayesian inference has 
impacted our inferential understanding, ML is rapidly changing the meaning of experimental 
knowledge. Such wide-ranging transformations provide a rich environment that should be part of 
every scientist’s toolbox.  To be sure, the limitations of ML are manifest.  These include: whether 
an algorithm trained on one dataset can be used to produce reliable answers about a different 
dataset; whether a particular algorithm is robust against noise or attempts to deceive it; what the 
basis is for the answers an algorithm provides; and whether these answers are free of bias.   
 Transformation of experimental chemistry by ML requires active engagement in utilizing 
existing tools, injecting domain-specific knowledge into their design, and co-opting rather than 
avoiding their increasingly powerful impact (FIG. 5).  We hope that these recommendations 
contribute to facilitating this engagement.                              

  
● Develop data science methods for chemistry.  Chemists are increasingly incorporating 

data science techniques into their research.  Many early applications used off-the-shelf 
methods to achieve dramatic advances, but there is a critical need to understand the 
limitations of existing algorithms for chemical datasets and develop specific ML tools for 
chemical problems that require new approaches.  Methods are needed that incorporate 
relevant physical laws and other constraints to produce physically reasonable solutions, 
provide internal consistency, and capture experimental uncertainty. This may include 
representations that incorporate the appropriate symmetry behavior of structures and 
physical interactions [cite: 10.1021/acs.chemrev.1c00021] (such as 
invariance/equivariance[cite: review 10.1016/j.trechm.2020.10.006] and 
isometry[arXiv:2108.07233]), and periodic relationships of elements[cite: 
10.1063/1.5108803] Such methods can form the basis for new modes of experiment, such 
as the case in Section 3.2 where relaxing experiment control enables the acquisition of a 
larger information throughput.  
 
Recommendation: Develop new ML/AI representations and techniques specific to 
chemistry by partnering together with data scientists, and help train a complementary 
workforce of interdisciplinary experts that can leverage the methods in experiment design 
and analysis. As an example of the value of these interdisciplinary approaches,  a recent 
breakthrough, called "DeePMD-kit" (https://ieeexplore.ieee.org/document/9355242/) 
combines ab initio modeling, high performance computing and machine learning to tackle 
“first principles” molecular dynamics simulations by  approximating ab initio data with 
deep neural networks, allowing far more extensive calculations and offering a bridge 
between machine learning and physical modeling. Similar types of combinations of ab 
initio results with data science methods and autonomous experimentation have been used 
to accelerate chemical optimization tasks.[cite: 10.1016/j.matt.2021.01.008]  Building such 
bridges for experimental chemistry data will enhance the interpretability of data science 
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models and enable their deployment with smaller datasets since models are well 
conditioned by the incorporated chemistry. 

  
● Extend the reach and applicability of data-driven approaches in the chemical 

sciences.  Data-driven approaches are by nature interpolative, and typically obtain results 
by capitalizing on a library of dense, nearby, known solutions.  With large enough datasets, 
this is often sufficient for solving many scientific problems.  However, purely interpolative 
methods fail when one needs to extend predictions into new and unexplored regions of 
parameter space, or when dramatic changes happen between sparse elements.  There is an 
interpolative power of data science that can be used to direct future research outside the 
bounds of current measurement and observation.[cite: supporting example "Can machine 
learning find extraordinary materials?"  10.1016/j.commatsci.2019.109498]  As illustrated 
in Section 3.3, research in this direction can potentially be applied to accelerate discovery. 
 
Recommendation: Develop methods that can work with sparse representations in high-
dimensional parameter spaces, providing guideposts for understanding the accuracy of 
interpolative measurements, and the applicability of extrapolative methods.  

  
● Transform research workflows by integrating measurement and observation tools, 

robotics, data-pipelines, and compute resources.  Data science methods can accelerate 
decision-making.  To take advantage of this possibility, we need integrated laboratory 
automation systems that give algorithms and workflow a way of enacting processes in the 
laboratory, monitoring the results, and depositing the resulting data into shared 
repositories.  As described in Section 3.1, accelerating the experiment cycle is especially 
valuable in shared facilities (e.g., synchrotrons), but equally needed in single-PI 
laboratories.  Taken together, these integrated systems have the potential to unleash a 
virtuous cycle—experiments conducted by automated systems or robots are “born digital”, 
reducing barriers to data sharing and reuse, and facilitating the development of better data 
science methods—but there are significant technical barriers. In addition to depositing data 
and software in FAIR repositories, open hardware should be encouraged, with relevant 
CAD files and control code deposited. Currently this type of data often appears in 
supporting information, but could also be the primary topic of articles in journals such as 
HardwareX [cite: https://www.journals.elsevier.com/hardwarex] exist for creating citable 
records for these types of efforts. 
 
Recommendation:  Encourage a co-design approach to hardware, software, and 
algorithm development. Interdisciplinary teams can often reimagine the entire range of 
experimental workflow to embrace a new accelerated approach that integrates 
measurements, data, algorithms, and computing.  Develop both modular and complete 
solutions, with an emphasis on interoperable and open hardware and software. 

https://www.journals.elsevier.com/hardwarex


  
● Integrate diverse data sources.  Chemical data are diverse, consisting of spectroscopic 

observations, structural information, processes descriptions, and many other types of 
measurements.  Combining different types of data sources provides stronger evidence than 
any single data type.  Often, crucial details are present only in unpublished “failures”, 
calibrations, or metadata.  While specific types of chemical data have been aggregated 
(e.g., crystallographic data), there are currently only limited automated mechanisms by 
which individual experiments consisting of diverse elements can contribute to a broader 
whole.  Human researchers excel at placing a new piece of data in the context of the data 
and knowledge of their field, but their underlying reasoning about prior knowledge to make 
these assessments suffers from being slow, costly, biased, and inconsistent.  AI methods 
for contextualizing data should be developed, requiring establishment of a foundation for 
automatic management of relationships in chemistry data, in order to achieve the goal of a 
network of data described in Section 3.4. 
 
Recommendation:  Develop better ways of representing networks of data that encode the 
relationships between evidence in a machine-readable way.  Create incentives for 
comprehensive data-sharing and reduce technical and social barriers to data deposition and 
access, through the creation of shared repositories and other mechanisms.   
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Figures: 
 

 
FIG. 1: Role of Data Sciences in Experimental Processes. Data science can play many roles in 
experimental processes, such as the autonomous synthesis and characterization  (Section 3.1).  To 
accomplish the experimental tasks (yellow arrows), several technologies (a)-(d) are required, 
necessitating data flows (red arrows) to and from repositories (Section 3.4).  
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG. 2: AI/ML to accelerate, autonomously control, and understand experiments, using 
state-of-the-art mathematics coupled to advances in data science.  Multi-tiered iterative 
projections (M-TIP) accurately interpret scattering images from light source experimental data, 
and Gaussian processes (gpCAM) suggest and drive new experiments --- working together in an 
autonomous loop, they optimizing the use of complex equipment (Figure made by J. Donatelli, M. 
Noack and J.A. Sethian (Univ. of California, Berkeley and Lawrence Berkeley National 
Laboratory). 
 
 



FIG. 3: Application of ML to carry out new types of experiments at X-ray free electron laser 
facilities. (a) Detecting small number of photons (signal) from a large instrument background in a 
single snapshot for imaging66; (b) X-ray spectroscopy that uses a stochastic nature of the XFELs, 
taking advantage of the random spikes of each XFEL pulse as a unique fingerprint, and correlating 
with outgoing emission signals from the system to construct spectra67; (c) An example of the 
heterogeneity in the unit cell distribution of Photosystem II crystals and its diffraction quality in 
serial crystallography where each XFEL pulse gives one diffraction image and in total about 3M 
data are plotted.  From this visualization,  one  can learn that there are 5 different possible crystal 
isoforms.  The authors of Ref. 68 later identified that dehydration was a critical parameter for 
shifting the isoform population.  This on-line analysis of data is used to provide immediate 
feedback to determine subsequent sample preparation conditions for  the best resolution.  (d) 
Pump-probe ghost imaging.  Similar to (b), this approach uses random spikes of XFEL pulses, and 
studies its interaction with matter.  It can be used to map the full evolution of the system over 
time.69  Image courtesy of Greg Stewart, SLAC National Accelerator Laboratory  
(https://www.energy.gov/science/articles/ghostly-images-could-ease-tracking-fleeting-reactions). 



 
FIG. 4: MaterialNet - Materials Similarity Network, an early demonstration of the many 
interrelationships that exist among materials and chemicals.  Networks can capture more 
relationships than a human could comprehend, and data science tools can learn from these 
relationships. From 54 (maps.matr.io).  Reproduced under CC-BY license. 
 

 
 
FIG. 5: Interplay of experiments, workflow, and data. 
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Box 1: Challenges associated with ML/AI. 
ML has been typically applied to use-cases where the price of being wrong is small. In science—
as in other fields—this is not always the case.  With  this in mind, important questions to critically 
evaluate the suitability of ML methods for application in scientific or other domains include: 
• What criteria should be used to trust the output of a ML/AI analysis?  That is, what level 
of verification is necessary and to what extent does that compromise the utility of the ML/AI 
approach? 
• What evidence underlies how these methods make predictions?  When is it reasonable or 
necessary to ask this question? 
• Can AI/ML be used to predict, with quantifiable confidence, phenomena outside the 
domain used for constructing the algorithm?  Currently, AI/ML are inherently designed for 
interpolation — given a big enough library of inputs matched with outputs, these algorithms can 
take a new input and combine information at nearby inputs to predict a possibly viable output. 
Scientific discovery, however, inherently involves investigation of new spaces (extrapolation or 
prediction), which stands in contrast to the primary focus of ML algorithm development to-date.  
• An oft-stated virtue of these methods is the idea that they are transferable: predictive 
schemes in one field may be applied in other fields that appear to be unrelated.  How can one know 
if and when predictions are transferable between fields? 
 
 
Box 2: Three modalities by which data science could transform experimental chemistry. 
Extract more information from existing, imperfect experimental data 

In the most straightforward settings,  data conforms to simple statistical expectations, with 
each snapshot representing an instance of noise added to a measurement of all relevant 
system variables.  Such data rarely exist.   

In reality, each snapshot represents an incomplete, noise-limited measurement of a 
subset of system variables.  Real data are also often inhomogeneous, in the sense that each 
snapshot pertains to an unknown set of unintentionally changed system variables.   

In other words, real data are incomplete (not all relevant system parameters 
measured), inhomogeneous (the snapshots emanate from differing values of one or more 
often unknown variables), and noisy (non-Gaussian pixel noise, inaccurate timestamps).  
Standard approaches to data analysis often successively reject “outliers” in order to obtain 
a sufficiently homogeneous dataset amenable to traditional analysis by averaging.   

ML approaches, in contrast, attempt to “learn” the space spanned by the data, such 
as in identifying reaction coordinates (“collective variables”) at work during the 
experiment, and use the information content of the entire dataset to reconstruct the system 
at any point in the space of reaction coordinates.9,15-18  This offers a noise-robust approach 
to extracting far more information from the data than possible with traditional methods. 

Optimally design experiments and workflow 



Complex experiments with many input parameters generate sample points in high-
dimensional spaces: the challenge of systematically navigating these spaces is rapidly 
outpacing human capabilities.  Data-driven approaches can learn and exercise optimal 
control of experiments in real time, incorporating prior knowledge to efficiently find under-
resolved regions and/or regions of interest.  Such “on-the-fly” data methods can help 
experiments efficiently cover the landscapes on which the system of interest undergoes 
important, functionally relevant changes.9,17  

Offer entirely new experimental modalities 
The new generation of high-throughput instruments combined with the algorithmic ability 
to rapidly analyze very large datasets offers entirely new experimental modalities.  As an 
example, chemical reaction events often take place via rarely sighted transition states.  Up 
to now, one has resorted to complex time-resolved experiments to obtain snapshots of a 
system as it is driven over a transition state.  In equilibrium, however, a collection of 
snapshots includes all states of the system, including those at high energies, albeit with 
exponentially diminishing probability.9  A “sufficiently large” dataset of snapshots will 
thus include high-energy conformations.  States at energies comparable with that released 
by ATP hydrolysis, for example, begin to appear in datasets with ~ 109 single-particle 
snapshots from an equilibrium ensemble of molecules.  This offers the possibility to 
investigate important chemical processes without having to “track” each process in time.  
The key is the ability to collect and analyze billion-strong collections of single-particle 
snapshots, as dictated by the underlying statistical mechanics.   
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