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Simultaneous Facility Location and Path
Optimization in Static and Dynamic Networks

Amber Srivastava and Srinivasa M. Salapaka , Member, IEEE

Abstract—We present a framework for solving simultane-
ously the problems of facility location and path optimization
in static and dynamic spatial networks. In the static setting,
the objective is to determine facility locations and trans-
portation paths from each node to the destination via the
network of facilities such that the total cost of commodity
transportation is minimized. This is an NP-hard problem.
We propose a novel stage-wise viewpoint of the paths
which is instrumental in designing the decision variable
space in our framework. We use the maximum entropy
principle to solve the resulting optimization problem. In the
dynamic setting, nodes and destinations are dynamic. We
design an appropriate control Lyapunov function to deter-
mine the time evolution of facilities and paths such that the
transportation cost at each time instant is minimized. Our
framework enables quantifying attributes of the facilities
and transportation links in terms of the decision variables.
Consequently, it becomes possible to incorporate applica-
tion specific constraints on individual facilities, links, and
network topology. We demonstrate the efficacy of our pro-
posed framework through extensive simulations.

Index Terms—Dynamic programming, facility location,
maximum entropy principle (MEP), shortest path, spatial
network.

I. INTRODUCTION

M
ANY complex systems are modeled as spatial graphs

where nodes are embedded into a metric space [1]–[5].

Areas, such as supply chain networks [6]; vehicle routing [7];

industrial process monitoring and power grids [8]; battlefield

surveillance [9]; disaster management [10], [11]; small cell

network design in 5G networks [12]; wireless networks [13],

[14]; and last mile delivery [15], come under the purview of

spatial networks. Often in these areas a large number of spatially

scattered nodes need to transport a commodity (such as informa-

tion, raw, or processed goods) to a given destination (or central

processing center). Cost and implementation considerations in

these large networks result in nodes that can transport only to

nearby locations. This drawback is addressed by overlaying a
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Fig. 1. (a) Agricultural supply chain which comprises of several farm
nodes ni which transport commodities to the processing unit δ through
a network of warehouses fj . Objective is to determine warehouse
locations {yj} and design relevant transportation paths. (b) Battlefield
Surveillance - comprises of several nodes ni (with dynamics φi(t))
which communicates with the satellite δ (with dynamics ψ(t)) through
a network of facilities fj . Objective is to find the dynamics of the facility
locations {uj(t)} and time-varying communication paths.

much smaller network of facilities (special nodes) where each

facility has the resources to transport commodities to other

facilities even if they are far. These facilities also have resources

to collect commodities from the nearby nodes. Thus, a typical

transportation path in such a network would start at a node, go

through the network of facilities, and culminate at a destination

node [see Fig. 1(a)]. Therefore, designing of such a network

requires placement of facilities that cover all the nodes and

determining the shortest transportation path from each node to

the respective destination center.

The problem in the context of overlaying the network of

facilities over the network of nodes can be described in terms

of the following two objectives: 1) find locations of facilities

that cover a large set of underlying nodes and 2) design the

shortest transportation path from each node, via the network of

facilities, to the destination center such that the total cost of

transportation is minimized. For instance, Fig. 1(a) illustrates

an agricultural supply chain where the farm nodes ni, located

at xi, need to transport produce to a food processing center

δ located at z through the network of warehouses {fj}. To

minimize the cost incurred in the supply chain, the warehouse

locations {yj} and the transportation path from each farm node

ni to the processing center δ needs to be determined. Since all of

the nodes, destination center, and the facilities are static in this

problem, we refer to it as simultaneous facility location and path

optimization in static spatial networks, abbreviated as s-FLPO.
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In many application areas, such as battlefield reconnaissance

and disaster management, the nodes and the destination center

have associated dynamics. For instance, Fig. 1(b) illustrates a

scenario of battlefield surveillance where each node ni, with

dynamics φi(t), investigates the domain Ω and communicates

the relevant information in real time to the satellite δ with dynam-

ics ψ(t). The communication is facilitated through a network of

unmanned aerial vehicles (UAVs) {fj} and the objective is to

minimize the total cost of communication at each time instant.

This task requires determining the appropriate dynamicsuj(t)of

each UAV fj as well as the time-varying optimal communication

paths. We refer to this problem as the simultaneous facility

location and path optimization in dynamic spatial networks,

abbreviated as d-FLPO.

The goal of the facility location problem in s-FLPO is to

allocate a set of facilities {yj} to data points {xi} such that the

cumulative distance between data points and their nearest facility

is minimized. This is an NP-hard problem [16]. Another aspect

of s-FLPO is the shortest path design problem on a network graph

G(V,E) which aims to find a minimum cost path between any

two vertices v1, v2 ∈ V . This problem is solvable in polynomial

order of vertices and edges [17]. The additional objective of

determining the shortest path adds to the inherent complexity of

the facility location problem thereby resulting into a much more

complex s-FLPO problem where the cost functions are riddled

with multiple poor local minima. A straightforward method to

solve the s-FLPO problem would be to sequentially solve facility

location, and shortest path problems as done in [7] in the context

of multidepot vehicle routing. However, owing to the fact that

the two subproblems are coupled, such a sequential methodology

results in a solution with a much larger cost function value as

demonstrated later in our simulations.

There is extensive literature that addresses the facility location

problem [18]–[24] and the shortest path problem [25]–[27] indi-

vidually. But there is scant literature that solves the two problems

simultaneously. Our previous works in [28] and [29] are, to the

best of our knowledge, the only efforts along this direction in the

context of spatial networks. However, the framework proposed

in [28] does not scale with the number of facilities M and the

corresponding algorithm becomes computationally intractable

even for small values of M(≥ 15). This is because the frame-

work in [28] views every permutation and combination of theM
facilities as a feasible transportation path and requires each such

path to be represented by a separate decision variable; resulting

into a combinatorially large O(
∑M

k=1

(
M
k

)
k!) decision variable

space. In addition to that, the decision variables in [28] fail to

provide any quantitative insight at the level of the individual

facilities {fj} and the transportation links {(fi, fj)} such as the

usage of a particular facility or a transportation link; because

of this, the framework in [28] is not flexible to incorporate

application-specific capacity-based constraints on the facilities

and network topology.

On the other hand, the framework proposed in [29], though

scalable with decision variable space growing polynomially

O(M2), is applicable to only a restricted class of FLPO prob-

lems where all the transportation paths assume a specific struc-

ture. As a consequence of this structure, the framework in [29]

Fig. 2. Transportation path γ from the node n1 ∈ Γ0 to the destination
δ ∈ ΓM+1 via the stages {Γk}

M
k=1

.

prohibits all such paths where two distinct facilities fj1 and

fj2 establish a transportation link concurrently with the same

facility fj3 . The set of all feasible paths in [29] consists of only

a few ordered sequences of facilities where no facility can lie

in more than one sequence. Though enforcing the above path

structure in [29] over [28] reduces the decision variable space

from combinatorially large O(
∑M

k=1

(
M
k

)
k!) to polynomial size

O(M2), it results into suboptimal solutions when used for the

general class of FLPO problems that do not necessitate the path

structure assumed in [29]. We demonstrate this via simulations

in a later section.

In this work, we develop a scalable framework for the general

class of s-FLPO problem to overcome the limitations of [28]

and [29]. We achieve this by developing a novel stage-wise

viewpoint of the transportation paths (see Fig. 2) and exploiting

the constraint resulting from the nature of optimal transportation

paths. More specifically, the stage-wise viewpoint of the paths

allows us to impose the structure on the design of decision

variables that results from the law of optimality, that is, when

any two optimal transportation paths in the network intersect

at a particular stage then the subsequent route from the facility

at that stage to the destination will be the same for both paths.

The stage-wise viewpoint is the main mechanism that allows for

substantial reduction in the size of decision variable space from

O(
∑M

k=1

(
M
k

)
k!) in [28] to the orderO(M3) in the current work

without enforcing any path structure as in [29].

One of the salient features resulting from our stage-wise illus-

tration of the transportation paths is that it provides quantitative

insights into several parameters of the s-FLPO problem in terms

of the underlying decision variables. For instance, quantities

such as the number of transportation paths using a particular fa-

cility fj in a particular stage, fraction of nodes connected directly

to a given facility, and number of paths that include a particular

transportation link (fi, fj) at a particular stage can be efficiently

expressed in terms of the stage-wise decision variables. Note that

once quantifiable in terms of the decision variables, it is easier to

specify application-specific constraints on all such parameters.

In addition, we demonstrate the flexibility of our proposed

framework to incorporate various such capacity constraints on

facilities, transportation paths, and the network topology. We

illustrate this using networks where: 1) the maximum length of
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the transportation paths are restricted; 2) the network is partially

connected; and/or 3) the facilities and the transportation links

have maximum associated capacities. It must be noted that

incorporating these constraints causes no considerable changes

in the algorithm, making their implementation straightforward.

In the context of the d-FLPO problem, we show that the

relaxed cost function that appears in the solution framework

of the s-FLPO problem serves as a good candidate for a control-

Lyapunov function. We design a control law for the dynamics

{uj(t)} of the facilities which ensures that the time-derivative

of this Lyapunov function remains nonpositive at all times. The

time-varying transportation paths are then determined using the

facility locations {yj(t)} at each time instant. The important

aspects of our control design that we show are: 1) the asymptotic

tracking of the local minimum to d-FLPO problem (Theorem

3) and 2) nonconservative property (Theorem 4), i.e., if there

exists a Lipschitz control law that asymptotically tracks the local

optimal of the d-FLPO problem then the proposed control law

is also Lipschitz and bounded.

We present extensive simulations for the s-FLPO problem in

unconstrained and constrained scenarios to demonstrate the ef-

ficacy of our algorithm in terms of scalability, time-complexity,

and the quality of solutions. Also, a wide range of constraints

on the facilities, transportation path, and network topology are

demonstrated in our simulations. We demonstrate the efficacy

of our framework on a large-scale system with approximately

N = 17 000 nodes and allocate M = 50 facilities with the

cost function values that are approximately 25% better than the

solution obtained using [29]; note that the framework in [28]

results in (≈)1064 decision variables for this scenario and hence

the corresponding algorithm is severely intractable.

We compare our simulations of the d-FLPO problem with the

frame-by-frame approach where we solve the s-FLPO problem

at each time instant to estimate the dynamics of the facilities

and transportation paths. We show the considerable benefits of

our proposed methodology obtained with respect to algorithmic

run times and practicality of the dynamics of the facilities

in comparison to the frame-by-frame approach. The computa-

tional times are significantly reduced; as much as by 700 times

have been demonstrated. Also, the simulations show that the

frame-by-frame approach requires some facilities to undergo

a considerable spatial change in a very small interval of time

thereby resulting into a nonviable dynamics which do not occur

when using our methodology.

II. S-FLPO PROBLEM

The s-FLPO problem is characterized by overlaying a network

of M facilities on a network of large number N � M of nodes

and designing a path (single or multihop) from each node to the

destination via the network of facilities. Let the node ni be lo-

cated at xi ∈ R
d, 1 ≤ i ≤ N , and the destination δ be located at

z ∈ R
d. LetΓ0 = {n1, . . . , nN} denote the set of all nodes. The

twofold objective of the optimization problem is to determine

the location yj ∈ R
d of the facilities fj , 1 ≤ j ≤ M and design

transportation paths from each node ni to the destination δ via

the network of facilities such that the total cost of transportation

(as quantified later in this section) is minimized. A transportation

path

ni → fr1 → fr2 → · · · → frq → δ (1)

where rj ∈ {1, . . . ,M}, from the node ni ∈ Γ0 to the destina-

tion δ is an ordered sequence of q (≤ M) distinct facilities. For

such a path, we say that the path length (or number of hops) is

q. In our framework, we model a transportation path γ from a

node ni ∈ Γ0 to the destination δ as a sequence

γ = (γ1, . . . , γM ) (2)

where γk ∈ Γk ∀ 1 ≤ k ≤ M . Here the stage Γk is the col-

lection of all the facilities and the destination center, that is,

Γk = {f1, . . . , fM , δ} ∀ 1 ≤ k ≤ M (see Fig. 2). For the trans-

portation path in (1) γk = frk ∀ k ∈ {1, . . . , q} and γk = δ ∀
k ∈ {q + 1, . . . ,M}, i.e., in our representation of a transporta-

tion path we pad (1) with M − q many δ’s at the end. We define

ΓM+1 := {δ} as a singleton set comprising of the destination

center and G := {(γ1, . . . , γM ) : γk ∈ Γk∀1 ≤ k ≤ M} as the

set of all possible transportation paths. Please refer to Fig. 2 for

a pictorial illustration of a transportation path from n1 ∈ Γ0 to

destination δ ∈ ΓM+1 via the stages {Γk}
M
k=1. The objective of

the s-FLPO problem is to

min
{yj}

1≤j≤M

D0 :=
∑

γ0∈Γ0

⎡

⎣ργ0

∑

γ∈G

ν(γ|γ0)d(γ0, γ)

⎤

⎦ (3)

where ργ0
is a given relative weight of the node γ0 ∈ Γ0

ν(γ|γ0) =

{

1, if γ = argminγ ′∈G d(γ0, γ
′)

0, otherwise
(4)

and d(γ0, γ) =
∑M

k=0 dk(γk, γk+1) is the cost incurred along

the path γ = (γ1, . . . , γM ) from the node γ0 to the destination δ.

Here dk(·, ·) represents the cost of transportation from the stage

Γk to Γk+1. For notational simplicity we denote dk(γk, γk+1)
as dk wherever clear from the context. The framework pre-

sented in this article is applicable to any general cost function

dk(γk, γk+1); however, for the purpose of illustration we assume

it to be the squared Euclidean distance, i.e., dk(γk, γk+1) =
‖yrk − yrk+1

‖2, where γk = frk , γk+1 = frk+1
.

III. SOLUTION TO S-FLPO PROBLEM

A straightforward approach to solving the twofold objective

optimization problem (3) is to solve for the two objectives

sequentially, i.e., first allocate facilities to the nodes using any

of the facility location algorithms mentioned in Section I and

then find the shortest transportation path from each node to

the destination by solving the shortest path problem on the

resulting network graph [30]. However, this approach disregards

the fact that the two objectives are coupled and therefore result

in a suboptimal solution. Also, the algorithms mentioned in

Section I, which solve the facility location problem, are sub-

stantially dependent on the initialization step. For instance, in

Lloyd’s algorithm (or k-means algorithm) [23], [31], the initial

step consists of randomly choosing facility locations to form the

initial facility locations. Since the iterative scheme is such that
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only the “proximal” input points determine the facility location

and not the “distant” input points, the k-means algorithm has a

tendency to get trapped in the local minima.

The algorithm that we propose in this work is motivated

from the deterministic annealing (DA) algorithm for the facility

location problem [22]. In particular, the proposed algorithm

overcomes the local influence of the nodes on the solution to

s-FLPO problem by associating each node γ0 with all transporta-

tion paths through a weighting parameter p(γ|γ0). Without loss

of generality, we assume that
∑

γ∈G p(γ|γ0) = 1 ∀ γ0 ∈ Γ0 and

the proposed algorithm seeks to minimize the relaxed version of

the cost function in (3) given by

D =
∑

γ0∈S

ργ0

∑

γ∈G

p(γ|γ0)d(γ0, γ). (5)

It must be noted that the choice of association weights p(γ|γ0)
determines the tradeoff between the local influence (or the

initialization of the algorithm) and deviation from the original

cost function (3), i.e., if the association weights are uniformly

distributed p(γ|γ0) = 1/|G|, then the two cost functions differ

largely from each other; however, the minimization of the ob-

jective function (5) is independent of the initialization of the

algorithm as all possible paths from the nodes γ0 are given

equal weights. For the choice of association weights p(γ|γ0) =
ν(γ|γ0), the relaxed cost function (5) reduces back to the original

cost function (3).

It follows from the law of optimality that along an optimal

transportation path, the upcoming facility on the path is decided

solely by the current facility and is independent of the prior

facilities on that path. We impose this structure on our choice of

the association weights p(γ|γ0), which translates to a Markov

property. Thus, the association weight p(γ|γ0), which relates an

entire transportation path γ = (γ1, . . . , γM ) to the node γ0, can

be broken down into association weights {pk(γk+1|γk)}
M
k=1,

where pk(γk+1|γk) relates the stage Γk to Γk+1. More specifi-

cally

p(γ|γ0) =

M∏

k=0

pk(γk+1|γk). (6)

For notational simplicity, we denote pk(γk+1|γk) as pk when-

ever it is clear from the context. The association weights

pk(γk+1|γk) ∀ 0 ≤ k ≤ M − 1 along with the spatial coordi-

nates {yj}, 1 ≤ j ≤ M of the facilities comprise the decision

variable space of our optimization problem. The relaxed cost

function in (5) is now rewritten as

D =
∑

γ0∈Γ0

ργ0

∑

γ∈G

M∏

k=0

pkd(γ0, γ). (7)

Observe that the decision variable p(γ|γ0) in (5) is replaced

by the decision variable pk(γk+1|γk) in (7), thereby making

our optimization problem across all possible paths γ to an

optimization problem across consecutive stages Γk and Γk+1,

1 ≤ k ≤ M . This results in the reduction of decision variable

space from O(
∑M

k=1

(
M
k

)
k!) to O(M3).

We use the maximum entropy principle (MEP) [32], [33] to

design the association weights pk(γk+1|γk) such that the cost

function (7) attains a specified value. More specifically, MEP

determines the association weights by solving the following

associated optimization problem:

max
{pk}

H := −
∑

γ0∈S

ργ0

∑

γ∈G

(
M−1∏

k=0

pk

)

log

(
M−1∏

k=0

pk

)

(8)

s.t.D = c0 (9)

where c0 is a given value of the cost function. This problem is

solved repeatedly at decreasing values of c0, which is described

later in Section III. As the entropy term (8) quantifies for the

level of randomness, maximizing it at a fixed value c0 of the

cost function (7) results into association weights pk(γk+1|γk)
that ensures maximum uncertainty or uncommitted nature of

the algorithm toward any particular solution. The Lagrangian

corresponding to the optimization problem in (8) and (9) is given

by

F̄ = (D − c0)−
1

β
H (10)

where 1/β is the Lagrange multiplier. The Lagrangian F̄ is

convex in pk ∀ k and we determine the association weights by

setting ∂F̄
∂pk

= 0 which yields

pk =
(
e−βdk

)

∑

(σk+2,...,σM ):
σk+1=γk+1

e−β
∑M

t=k+1 dt(σt,σt+1)

∑

(σk+1,...,σM ):
σk=γk

e−β
∑M

t=k dt(σt,σt+1)
. (11)

In the expression of the unconstrained Lagrangian (10), we

refer to the lagrange parameter 1
β as the temperature and F̄ as the

Free energy because of their close analogies to statistical physics

[where free energy is enthalpy (D) minus the temperature times

entropy (TH)]. Substituting (11) into the expression of free

energy F̄ in (10), we obtain

F = −
1

β

∑

γ0∈Γ0

ργ0
log

∑

γ∈G

e−β
∑M

t=0 dt(γt,γt+1). (12)

Note that for brevity we ignore the constant term c0 in the above

expression of F . As illustrated later the Lagrange parameter β
implicitly decides the value of c0. Additionally, the above F can

be viewed as a relaxation of the cost function D in (7). In fact, as

β → ∞ we observe that F → D. We now minimize (locally) F
in (12) with respect to y = [yT1 , . . . , y

T
M ]T to obtain the spatial

coordinates of the facilities, i.e., we put ∂F
∂y = 0 to obtain

y = (2Â− B̂)−1( ˆ̄X + Ĉ) (13)

where Â = Id ⊗A, B̂ = Id ⊗B, ˆ̄X = Id ⊗ X̄ , Ĉ = Id ⊗ C,

and Id is an identity matrix of d× d dimension. The matri-

ces A,B ∈ R
M×M , X̄, C ∈ R

M×d depend on the association

weights pk(γk+1γk), the spatial coordinates of the nodes {xi}
and the destination location z. Please refer to the Appendix A

for the definitions of the above matrices and the proof that the

matrix (2Â− B̂) is positive definite (i.e., invertible).
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Algorithm 1: main(X , z, βmin, βmax).

1: Initialize β to the small value βmin.

2: Calculate the association weights {pk(γk+1|γk)} in

(11).

3: Calculate the facility locations y in (13).

4: Iterate between step 2 and 3 until convergence.

5: Increase β by a factor κ > 1; i.e., β ← κβ.

6: Stop if β ≥ βmax. Else go to step 2.

The constraint value c0 in (9) decides the temperature variable

T = 1/β. It follows from the sensitivity analysis [34] that the

lower value of c0 corresponds to the higher value of β. It is clear

from (10) that for small values of β (i.e., high values of c0), we

are mainly minimizing the convex function −H , which results

in uniformly distributed association weights. As β increases (c0
decreases), more and more weightage in (10) is given to the cost

function D, i.e., F closely approximates the nonconvex cost

function D. In the limit β → ∞, we have that F = D and we

obtain hard association weights pk(γk+1|γk) ∈ {0, 1}. The idea

is essentially to find the global minimum of the convex function

−H and then track the minimum ofF at successively increasing

values of β, until F → D. This is done in our algorithm via

iterating between (11) and (13) at a successively increasing

value of β, and using the solution from each β iteration as an

initialization for the next β iteration. The resulting annealing

algorithm is as follows.

Theorem 1: The iterations in step 4 of the Algorithm 1 are

equivalent to iterations of a descent method to solve the implicit

equation (13). Consequently Algorithm 1 converges.

Please refer to the Appendix B for the proof.

IV. PHASE TRANSITION PHENOMENON

The above algorithm upon implementation exhibits phase

transitions very similar to that seen when DA [22] is applied

to pure facility location problems. In the initial iterations of the

algorithm when β is very small, the cost function is dominated

by−H; minimizing this gives uniform distributions for the asso-

ciation weights pk(γk+1|γk). Also with this uniform distribution

of the association weights, all the facilities get allocated at the

same spatial coordinates given by (13) and all the corresponding

transportation paths are the same. Now as β is increased, the

simulations show that there is no perceptible change on the

facility locations till a critical value of β = βcr1 is reached;

beyond which the number of distinct facility locations and the

number of distinct transportation paths increases. Again as β
is increased further, there is no change in the facility location

and transportation paths till the next critical value of β = βcr2

is reached, where the number of distinct facility locations and

transportation paths increases again. These phase transitions

are of interest as they can help control the number of distinct

facilities that one may want to allocate to the network of nodes

and also help in speeding up the annealing process.

The critical values of β (βcr1, βcr2, . . .) are obtained by track-

ing the conditions for attaining the minimum of free-energy F .

Atβ = 0, the free-energy function is convex, and setting ∂F
∂y = 0

gives the global minimum, also the hessian ∂2F
∂y2 is positive

definite. As β increases, at a particular β = βcr1, ∂F
∂y = 0 and

the Hessian loses rank. Here bifurcation occurs leading to an

increase in the number of distinct facility locations. Using vari-

ational calculus, the necessary condition for y to be a minimum

of F requires that for all choices of finite perturbation ψ

∂Fε

∂ε

∣
∣
∣
ε=0

= 0, and (14)

∂2Fε

∂ε2

∣
∣
∣
ε=0

=
∑

γ∈G

p(γ)ΛT
γ (I − 2βΥγ)) Λγ

+ 2β
∑

γ0∈Γ0

ργ0

⎡

⎣
∑

γ∈G

p(γ|γ0)K
T
γ Λγ

⎤

⎦

2

> 0 (15)

where Fε = F (y + εψ), p(γ) =
∑

γ0
ρ(γ0)p(γ|γ0), Υγ =

∑

γ0
p(γ0|γ)KγK

T
γ and Λγ ,Kγ are as defined in the Appendix

C. We characterize phase transition as below.

Theorem 2: The critical value of β at which the Hessian

(15) is no longer positive definite, i.e., it loses rank is given

by βcr = maxγ(2λmax(Υγ))
−1 where λmax(Υγ) is the largest

eigenvalue of the matrix Υγ :=
∑

γ0
p(γ0|γ)KγK

T
γ .

See appendix C for proof.

V. ADDING MULTIPLE CAPABILITIES AND CONSTRAINTS TO

THE PROBLEM

In various applications involving spatial networks the overall

design goal includes efficient utilization of facilities and the

transportation paths. This often corresponds to incorporating

several application based constraints on the network topology

or on the facilities. In this section, we elucidate the flexibility of

our proposed approach in incorporating such constraints.

A. Restricted Number of Hops

In certain applications it is be beneficial to restrict the path

length q of the shortest transportation path as any extra-hop for

the commodity may involve associated penalties and overheads

such as processing energy cost and time delays. Let Lγ0
be

the given maximum allowable path length (or the number of

hops) for a commodity originating at a node γ0 ∈ Γ0. There-

fore all the transportation paths γ ∈ G with path length greater

than Lγ0
become invalid for γ0. This constraint enforces that

on an optimal transportation path the facility γk+1 depends

on the facility γk as well as the originating node γ0 which

results into the dissociation of the association weight p(γ|γ0)

as p(γ|γ0) =
∏M

k=0 pk(γk+1|γk, γ0). For notational simplicity

we denote pk(γk+1|γk, γ0) by pk,γ0
whenever it is clear from

the context. Using the MEP we obtain the association weights

pk,γ0
as the Gibbs distribution

pk,γ0
=

(
e−βdk

)

∑
σk+2,...,σLγ0
σk+1=γk+1

e−β
∑Lγ0

t=k+1 dt(σt,σt+1)

∑
σk+1,...,σLγ0

σk=γk

e−β
∑Lγ0

t=k
dt(σt,σt+1)

(16)
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Fig. 3. Fully connected and a partially connected network.

where σl ∈ Γl ∀ l ∈ {k + 1, . . . , Lγ0
}, which when substituted

into the expression of F̄ in (10) results into

F1 = −
1

β

∑

γ0

ργ0
log

∑

γ1,...,γLγ0

e−β
∑Lγ0

t=0 dt(γt,γt+1). (17)

Minimizing (locally) F1 in (17) by setting ∂F1

∂y = 0, we obtain

the facility locations y.

B. Structured (Partially Connected) Network

A transportation link (fi, fj) exists (or is active) if a com-

modity packet is permitted to hop between the facilities fi
and fj .

In a partially connected spatial network, some of the trans-

portation links are absent owing to which the corresponding

facility pairs are unable to send across commodities. Fig. 3

demonstrates a fully connected and a partially connected net-

work topology. To incorporate the partial connectivity of the

network as a constraint in the optimization problem (3) we

introduce a connectivity parameter ωfi,fj defined as

ωfi,fj =

{

1 if transportation link (fi, fj) exists

0 otherwise.

We incorporate the connectivity parameter ωfj ,fk into the ex-

pression of the association weights pk(γk+1|γk) (11) in such

a manner which assigns pk(fj |fi) = 0 ∀ k for the nonexistent

link (fi, fj) and rules out all transportation paths that consist of

the nonexistent link from the solution space, thus leading to the

following expression of the association weights:

pk = ωγk,γk+1
e−βdk

∑
σk+2,...,σM
σk+1=γk+1

∏M
t=k+1 ωσtσt+1

e−βdt

∑
σk+1,...,σM

σk=γk

∏M
t=k ωσtσt+1

e−βdt

.

(18)

We substitute the above association weights into the expression

of free energy F̄ in (10) to obtain F2, which is then minimized

(locally) by setting ∂F2

∂y = 0 to obtain the facility locations y.

C. Capacity Constraint on Facilities and Path Links

In certain applications, the capacity and cost constraints on the

facilities result in corresponding constraints on their usage by

transportation paths. For instance, the warehouses fj in Fig. 1(a)

may have limited storage capacity for agricultural goods col-

lected from the farms. The decision variables in our framework

appropriately quantify the usage C(fj) of each facility fj as

C(fj) =
∑

γ0

ργ0
p0(fj |n0) +

∑

γ0,γ1

ργ0
p0(γ1|γ0)p1(fj |γ1)

+ · · ·+
∑

γ0,...,γM−1

ργ0
p0(γ1|γ0) . . . pM−1(fj |γM−1)

(19)

where the first term in the above expression indicates the ef-

fective number of transportation paths passing over fj in the

stageΓ1, the second term indicates the effective number of paths

passing over fj in the stage Γ2, and so on until the last term

which indicates the effective number of paths passing over fj in

the last stage ΓM . We address the facility capacity constraint by

requiring the usage of the facility fj to be given by C(fj) = wj ,

where wj denotes the predefined capacity of the jth facility. The

corresponding unconstrained Lagrangian is given by

F̄3 = F̄ +
M∑

j=1

αfj (C(fj)− wj) (20)

where F̄ is given in (10). Minimizing F̄3 with respect to the

association weights {pk(γk+1|γk)}, we obtain

pk = e−β(dk+αγk+1
)

∑

(γk+2,...,γM )e
∑M

t=k+1 −β(dt+αγt+1
)

∑

(γk+1,...,γM )e
∑M

t=k −β(dt+αγt+1
)

(21)

where αγk
is a Lagrange multiplier in (20). We refer to ζγk

:=
e−βαγk∀γk ∈ Γk\{δ} as the weight parameter. Substituting (21)

in (20) to obtain F3 and minimizing (locally) F3 with respect

to y gives the expression for facility locations y. To obtain the

parameters ζfj , we substitute the association weights (21) in the

expression (19) of C(fj) and equate the subsequent expression

to wj (i.e., set C(fj) = wj). This results in the update equation

ζp+1
fj

= ζpfj
wj

C(fj)
, ∀j ∈ {1, 2, . . . ,M}. (22)

In our algorithm, we minimize the free-energy F̄3 at successively

increasing values of β by alternating between the expressions of

association weights in (21), facility locations y, and the update

equation for ζfj in (22).

Similarly, in certain application areas, the amount of traffic

ηfifj that a transportation link (fi, fj) is able to handle is known

a priori. Using the decision variables in our framework we

appropriately quantify the usage Cfifj of each transportation

link from fi to fj as

Cfifj = p1(fj |fi)
∑

γ0

ργ0
p0(fi|γ0)

+ p2(fj |fi)
∑

γ0,γ1

ργ0
p0(γ1|γ0)p1(fi|γ1) + · · ·

+ pM−1(fj |fi)
∑

γ0,...,γM−2

ργ0
p0(γ1|γ0) · · · pM−2(fi|γM−2)

(23)

where the first term in the above expression is the fraction of

total paths with node fi ∈ Γ1 and fj ∈ Γ2, i.e., the fraction of
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paths with (fi, fj) transportation link occurring in the hop from

stageΓ1 to stageΓ2. Similarly, the other subsequent terms count

the fraction of the transportation paths with (fi, fj) link in the

hop from stage Γk to Γk+1 for all k ∈ {2, . . . ,M − 1}. The

unconstrained Lagrangian in this case is given by

F̄4 = F̄ +
∑

i,j:i�=j

αfifj

(
Cfifj − ηfifj

)
(24)

where F̄ is given by (10). The association weights

{pk(γk+1|γk)} that minimize F̄4 are given by

pk = e−β(dk+αγkγk+1
)

∑

(γk+2,...,γM )e
∑M

t=k+1 −β(dt+αγt,γt+1)

∑

(γk+1,...,γM )e
∑M

t=k −β(dt+αγt,γt+1
)

(25)

where λγkγk+1
:= e−βαγkγk+1∀γk, γk+1 is referred to as the

weight parameter. Substituting (25) in the expression of free-

energy F̄4 (24) to obtainF4 and setting ∂F4

∂y = 0 gives the facility

locations y. To obtain the parameters λfifj , we substitute the as-

sociation weights (25) in the expression (23) ofCfifj and equate

the subsequent expression to ηfifj (i.e., set Cfifj = ηfifj ). This

results in the update equation

λ
p+1
fifj

= λ
p
fifj

ηfifj
Cfifj

. (26)

As before, our algorithm minimizes free-energy F̄4 at suc-

cessively increasing values of β by alternating between the

expressions of the association weights (25), facility locations

y and the update equation for λfifj in (26).

VI. EXTENSION TO DYNAMIC SPATIAL NETWORKS

In the case of dynamic spatial networks, the nodes and the

destination center have an associated dynamics given by con-

tinuously differentiable velocity fields φi(xi(t), t) ∈ R
d, 1 ≤

i ≤ N and ψ(z(t), t) ∈ R
d, respectively. The resulting facility

locations and the transportation paths are also time varying and

the entire dynamical system is represented as

ζ̇ = f(ζ(t), t) ⇐⇒

⎧

⎪⎨

⎪⎩

ẋ(t) = Φ(x(t), t)

ż(t) = Ψ(z(t), t)

ẏ(t) = u(x(t), z(t), y(t), t)

(27)

where x(t) = [xT
1 (t), . . . , x

T
N (t)]T ∈ R

Nd, Φ = [φT
1 (t), . . . ,

φT
N (t)]T ∈ R

Nd, u(t) = [uT
1 (t), . . . , u

T
M (t)]T ∈ R

Md, and

ζ(t) = [x(t)T , z(t)T , y(t)T ]T ∈ R
(N+1+M)d.

Similar to the static spatial networks, the problem of si-

multaneous facility location and path optimization in dynamic

spatial networks (d-FLPO) has twofold objectives: 1) allocate

facilities yj(t), 1 ≤ j ≤ M in the domain Ω; 2) design optimal

transportation path from each node ni to the destination center

δ such that the cost function (3) gets minimized at every time

instant t.
A straightforward approach to solve the d-FLPO problem is

to solve the s-FLPO problem at every time instant to determine

the facility locations and the transportation paths. However, it

is quite evident that such a methodology is computationally

expensive. A specific shortcoming of this method is that it

does not employ the past knowledge of facility locations and

transportation routes to determine the solution at current time

instant, which may potentially lead to big changes (jumps) in

facility locations over a very small time intervals; and may not

be practically achievable as shown in Section VII.

We propose a control-based framework to solve the d-FLPO

problem that builds upon the solution of the s-FLPO problem

obtained at the initial time instant t0. In our framework, we

use the free-energy function F (12) as a Lyapunov candidate

function for the dynamical system (27) and design the control

for facility dynamics ẏ(t) = u(t) such that Ḟ ≤ 0∀ t ≥ 0. Note

thatF is a smooth approximation ofD in (7) which incorporates

cost functions for both facility location and path optimization

problems. Once the dynamics of the facilities are known, the

time-varying transportation paths can be deduced from (11).

The following theorem justifies the choice of free-energy F as

a Lyapunov function.

Theorem 3: Let F be the free-energy function (12) corre-

sponding to the dynamical system (27) then

a) F (ζ)+ 1
β log |G| > 0 ∀ζ=[xT , yT , dT ]T ∈ R

(N+M+1)d

where G = {(γ1, . . . , γM ) : γk ∈ Γk∀1 ≤ k ≤ M} is the set of

all possible paths when M facilities are allocated.

b) The derivative

∂F

∂ζ
=

⎡

⎢
⎣

P̂γ0
−P̂ 0(γ1, γ0) 0

−P̂ 0(γ1, γ0)
T 2Â− B̂ −Ĉ

0 −ĈT I

⎤

⎥
⎦ (28)

is a symmetric matrix, where P̂γ0
= Id ⊗ Pγ0

, Pγ0
=

diag({ργ0
}), P̂0(γ1, γ0) = Id ⊗ P0(γ1, γ0), P0(γ1, γ0) =

[pγ0
p0(γ1|γ0)] and Id is an identity matrix of size d× d. Also

note that Ḟ (t) = 2ζT ∂F
∂ζ ζ̇.

c) There is no dynamic control authority at the facility

locations yc(t) = (2Â− B̂)−1(X̂ + Ĉ) obtained in (13), i.e.,
∂Ḟ
∂u = 0 at y(t) = yc(t).

Please refer the Appendix D for proof of the above theo-

rem. The facilities are at the positions yc(t) (13) only when

ȳ(t) := y(t)− yc(t) = 0. We transform the coordinates ζ =
[xT , yT , zT ]T to ζ̄ = [xT , ȳT , zT ]T , where ȳ = y − yc. In the

new coordinates, the dynamics of the facility locations are given

by

˙̄y(t) = ū(t)− (2Â− B̂)−1
[

(2
˙̂
A−

˙̂
B)yc

+
˙̂
P 0(γ1, γ0)

Tx+
˙̂
Cz

]

(29)

where ū = u− (2Â− B̂)−1(P̂ 0(γ1|γ0)
TΦ+ ĈΨ) and

Ḟ = (xT P̂γ0
− yTc P̂0(γ1|γ0)

T )Φ

+ [zT − yTc Ĉ]ψ + ȳT (2Â− B̂)ū(t). (30)

We take advantage of the affine dependence of Ḟ on ū(t) in

(30) to determine the choice of ū(t) such that Ḟ ≤ 0 [35]–[37].

More particularly, we choose control

ū(ζ̄) = −

[

K0 +
α+

√

|α|2 + (ȳ(2Â− B̂)ȳ)2

ȳT (2Â− B̂)ȳ

]

ȳ (31)
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Fig. 4. Nodes, facilities, and the destination center are represented by triangles, circles and diamond, respectively. (a) At β ≈ 0 all facilities are
coincident. (b) Phase transition phenomenon. (c) Facility locations and paths at β → ∞. The first facility to each node is colored identically to that
node. The commodity hops to the subsequent facilities from the first facility as denoted by the arrows. (d) Two-step methodology for s-RARO.
(e) Illustrates s-FLPO where Lγ0 = 3 ∀γ0 ∈ Γ0. (f) Partially connected network - pairs (f1, f2), (f4, f1), (f2, f3), (f4, f5) and (f5, f3) do not exist.
(g) Facility capacity constraint w1 : w2 : w3 : w4 : w5 = 4 : 2 : 2 : 1 : 1. (h) Facilities constrained as entry facilities in proportion 4:2:2.5:0.1:1.0 (i)
Transportation link capacity constraints ηf1f4 : ηf2f4 : ηf3,f4 : ηf5,f4 = 0.3 : 0.7 : 1 : 1; all other communication links have zero capacities. (j) For
comparing computation times with [28]. Our algorithm - 1.85s, algorithm in [28] - 24.86s. (k) Solution using framework from [29]. (l)–(m) Large scale
problem with N = 17028, M = 27 and M = 50 in (l) and (m), respectively. Solved using the algorithm in [29]. (n) and (o) Large scale problem with
N = 17028, M = 27 and M = 50 in (n) and (o), respectively. Solved using the algorithm in the current work. (p) Comparing the objective function
value (V1/V2) at various number of facilities M as given by algorithm in [29] (V1) and our current work (V2) for the previous large scale setting of
nodes and destination. (q) Flowchart of the proposed algorithm in the d-FLPO problem.

where ȳ �= 0, K0 > 0 and α = (xT P̂γ0
− yTc P̂0(γ1|γ0)

T )Φ +

[zT − yTc Ĉ]ψ. The following two theorems establish that the

facility locations y(t) converge asymptotically to yc(t) and the

control effort (31) is bounded near ȳ = 0.

Theorem 4: Asymptotic convergence: For the dynamical

system (27) the choice of control ū(ζ̄) in (31) results in Ḟ ≤ 0
∀ t ≥ 0 and ȳ(t) → 0 as t → ∞.

Theorem 5: Lipschitz continuity: If there exists a control
ˆ̄u : R

(N+M+1)d → R
Md Lipschitz at ζ̄ = 0 such that Ḟ ≤ 0 ∀

t ≥ 0 for ū = ˆ̄u, then the choice of control ū in (31) is Lipschitz

at ζ̄ = 0. That is, ∃ ε > 0 and a constant c0 such that ‖ū(ζ̄)‖ ≤
co‖ζ̄‖ for ‖ζ̄‖ ≤ ε.

Please refer to the Appendix D for the proof of the above

two theorems. Remarks: 1) The above control design method-

ology can be extended to the d-FLPO problems with additional

constraints over the network topology and facilities. In fact, our

simulations in Section VII demonstrate the d-FLPO problem

where the spatial network is partially connected. 2) Theorem 5

emphasizes the nonconversativeness of our solution; i.e., if there

exists a Lipschitz (bounded) solution such that Ḟ ≤ 0 then

Theorem 5 implies that our proposed solution is also Lipschitz

(bounded). 3) For the purpose of simulation, we discretize time

into ∆t intervals. At instants ȳ �= 0 we determine the dynamics

of y(t) using ū in (31). This results into Ḟ ≤ 0 at all such time

instants. For the time instants when ȳ = 0 we already have the

facilities at the locations yc. At such instants Ḟ may be positive,

negative or zero depending on the dynamics of the node and the

destination center.

VII. SIMULATION AND RESULTS

In this section, we simulate our proposed algorithms for the

s-FLPO and d-FLPO problems. We first illustrate the s-FLPO

problem. For the purpose of simulations we randomly distribute

200 nodes around 6 randomly chosen points in an 11× 8 square

unit area. The location of the destination (marked as δ) is

randomly chosen to be at (4, 7). For the purpose of illustration

we assume the cost function dk(·, ·) to be squared-euclidean

distance. Consider the scenario where we allocate M = 5 facil-

ities. As stated in Section IV, at low value of β, all the facilities

{fj}
5
j=1 get allocated at the same spatial coordinates as shown in

Fig. 4(a), where the triangles denotes the nodes, circle denotes

the facilities and the diamond denotes the destination. As the

value of β increases the number of distinct facility locations

increases [see Fig. 4(b)], and the final facility locations and

transportation paths are obtained as β becomes sufficiently large
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as shown in Fig. 4(c). In Fig. 4(c), a node of a particular color first

sends its commodity packet to the facility of the similar color

which then reaches the destination center via the path indicated

in the figure. Observe that in Fig. 4(c) all the nodes γ0 either opt

for the 4-hop path f4 → f5 → f1 → f3 → δ or the 3-hop path

f2 → f1 → f3 → δ. The total cost of transportation incurred is

12.58 units. Fig. 4(d) illustrates the solution to the same problem

using the sequential approach illustrated in Section III which

incurs a total transportation cost of 34.16 units, 2.7 times the

cost incurred in Fig. 4(c). This demonstrates that the sequential

approach results into a solution with a much higher cost as

compared to the simultaneous approach.

Restricted Number of Hops: Fig. 4(e) illustrates the solution to

the s-FLPO problem when the maximum path length is restricted

to 3 for all the nodes, i.e. Lγ0
= 3 ∀ γ0 ∈ Γ0. Observe that now

all the nodes opt for either f4 → f2 → f1 → δ or f5 → f3 →
f1 → δ paths, both of which have path length of 3. The total cost

in this case is 12.71 units, which is approximately 1% higher

than the scenario in Fig. 4(c) where there is no restriction on

the maximum path length. We can deduce the effectiveness of

restricting hops to 3 which only leads to about 1% cost increase;

that is marginal utility of adding more hops is only about 1%.

Partially Connected Network: Fig. 4(f) simulates a partially

connected spatial network. For the purpose of simulation, we

assume that the transportation links (f1, f2), (f2, f3), (f4, f1),
(f1, f3), (f4, f5), and (f5, f3) are absent. As shown in the figure,

the algorithm respects the constraint posed by the partially

connected network and assigns the facility locations and paths

correspondingly. The total cost of transportation is 12.92 units.

Note the difference with the facility location and transportation

path assignments in a fully connected network Fig. 4(c).

Capacity Constraints: Fig. 4(g) demonstrates the capac-

ity constraints on various facilities. Here, facility capacities

are distributed as w1 : w2 : w3 : w4 : w5 = 4 : 2 : 2 : 1 : 1. In

the figure, the final facility allocation and path design is

in such a way that C(f1) : C(f2) : C(f3) : C(f4) : C(f5) =
3.85 : 1.75 : 2.10 : 1 : 1.1 which is approximately as given in

the constraint. The slight mismatch in the values of the usage

C(fj) and capacities wj could be because of numerical issues in

MATLAB and we are currently looking into it. Similarly, Fig. 4(h)

demonstrates the scenario when the facilities are constrained

in their capacity to act as an entry facility of a node in the

proportion 4 : 2 : 2.5 : 0.5 : 1.0. The final solution is such that a

proportion 3.9 : 1.9 : 2.5 : 0.5 : 1.0 is achieved for the facilities

as the entry point for the nodes in the network. Note the color

changes for the nodes in comparison to Fig. 4(c), (f), and (g).

Fig. 4(i) illustrates the scenario when the capacities of the

transportation links are known a priori. We assume that all

the transportation links except (f1, f3), (f2, f3), (f3, f4) and

(f5, f4) have zero capacities and we constrain that ηf1f4 : ηf2f4 :
ηf3f4 : ηf5f4 = 3 : 7 : 10 : 10. Upon simulation, the facilities

are allocated and transportation paths are fixed in such a way that

theCf1f4 : Cf2f4 : Cf3f4 : Cf5f4 = 3.3 : 6.3 : 9 : 9, i.e., the so-

lution given by the algorithm complies with the constraint on the

communication link capacities. The total cost of communication

is 15.8 units.

Comparison With Previous Works: Next we compare our

proposed method with [28] and [29]. We begin with comparing

the computation time of the algorithm presented in this article

with the one proposed in [28]. The computation time for the

problem setting shown in Fig. 4(j) is 24.86 s, while the algorithm

presented in this article takes 1.85 s which is just 8% of the

former. Note that the [28] uses MATLAB to run the algorithm on

an Intel Core 2 Duo T5470 1.6-GHz processor with 2-GB RAM,

while we used MATLAB to code and run our algorithm on i3

2.3-GHz processor with 2-GB RAM. We note that the improve-

ment in the computation time comes from the scalability of the

algorithm proposed in this article, since the configuration of the

two machines used are almost similar. Fig. 4(k) demonstrates the

solution to the s-FLPO problem as given by the algorithm in [29].

Here, the total cost of transportation comes out to be 14.93,

which is 18% (or 2.35 units) more than the solution Fig. 4(c)

given by the algorithm presented in this article.

Large Scale Problems: Fig. 4(l)–(o) demonstrate a large scale

s-FLPO problem setting with N = 17 028 nodes as indicated

by the blue triangles. In Fig. 4(l) and (n), we allocate M = 27
facilities using the algorithm in [29] and our current work,

respectively. Note the qualitative difference between the two

solutions where the allocated facilities and the transportation

paths resulting from the latter are more distributed in the domain

as compared to [29]. The objective function value for the solution

in Fig. 4(l) is 1323.07 units and for Fig. 4(n) is 985.87 units;

which is a improvement of 25% over the former. Similarly,

in Fig. 4(m) and (o) we allocated M = 50 facilities using the

approach in [29] and our current algorithm, respectively. The

objective value for the solution in Fig. 4(m) is 864.35 and for

the solution in Fig. 4(n) is 582.70; approximately 33% lesser

objective function value is obtained using our current frame-

work. The above quantifies the fact that the framework devel-

oped in [29] results into suboptimal solutions as compared to our

current framework when applied to a general s-FLPO problem.

Also note that the framework presented in [28] is computation-

ally intractable for both the above cases ofM = 27 andM = 50
facilities as it requires 2.9× 1028 and 8.2× 1064 many decision

variables, respectively; the corresponding memory requirements

are unthinkable. Fig. 4(p) compares the cost function value of

the solutions obtained using [29] (V1) and our current work

(V2) for various number of facilities M allocated in the large

scale setting of nodes and destination illustrated in Fig. 4(l)–(o).

Note that the ratio η = V1/V2(> 1) increases with number of

allocated facilities and reaches close to 1.5 (i.e., 50% increase in

the cost function values in [29]) for values of M � 40—clearly

indicating suboptimality of the framework [29] when applied to

general s-FLPO problem setting.

d-FLPO in Partially Connected Network: We consider the

scenario of partially connected spatial network where the trans-

portation links (f1, f2), (f2, f3), (f4, f1), (f1, f3), (f4, f5),
and (f5, f3) are absent. The main steps of the algorithm are

summarized in Fig. 4(q). The sequence of images in Fig. 5

(a1)–(a4) demonstrate the dynamics of the facilities and the

transportation paths for randomly chosen dynamics of the nodes

and the destination center. The node and destination center

dynamics are simulated for a total duration of 20 s and the dy-

namics of the facilities and transportation paths are determined

using (31) after every time interval of ∆t = 0.03 s. Observe the

change in the entry facility of the nodes (marked by the change
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Fig. 5. (a1)–(a4) Solution to the d-FLPO problem. Observe the change in spatial coordinates of the nodes, destination center and the facilities.
Also, observe the change in the color of the triangles from (a2) to (a3) and (a3) to (a4), indicating the change in their transportation paths.
(b) Nonviable dynamics of the facility locations. Observe the considerable change in spatial location of f2 and f4 over a small interval of 0.03 s. (c)
Comparing distortion from the two approaches.

in their color) and their corresponding transportation path in

Fig. 5(a1)–(a4).

The frame-by-frame approach takes approximately 700 times

more computational time than our approach for the example

considered above. Fig. 5(c) compares the distortionD0 obtained

from our control-based approach and the frame-by-frame so-

lution. Apart from that, the simulations using frame-by-frame

approach show sudden jumps in positions which may be im-

practical for scenarios with bounded velocities, for instance in

Fig. 5(b), note the sudden jump in positions of facilities f2 and

f4 in the span of two time instants that are only 0.03 s apart.

VIII. ANALYSIS AND DISCUSSION

A. Flexibility of the Framework

The proposed framework is flexible to incorporate various

additional constraints on the s-FLPO and d-FLPO problems in

terms of the network topology, facilities, or the transportation

paths as illustrated in Section V. Our framework also generalizes

to different choices of distance functions dk(γk, γk+1) as against

the squared euclidean function considered in this article.

B. Robustness Analysis

The solutions obtained to s-FLPO and d-FLPO problems are

sensitive to various attributes of the nodes and the destination

center (such as spatial locations, dynamics, and distance cost

functions). This necessitates a study to classify such attributes,

that affect the final solution, into various categories of impor-

tance. Our framework easily facilitates such a study through the

free energy function F which is a smooth approximation of the

cost function D. For instance, the derivatives ∂F
∂xi

, ∂F
∂yj

, and ∂F
∂d

measure the sensitivity of the final solution to the spatial location

of the node ni, facility fj , and destination δ, respectively.

C. Uncertainty in Parameters

In certain applications, instead of the exact information about

various attributes of the nodes and the destination centre, a partial

knowledge in terms of distributions of these attributes may be

known. For instance, instead of the exact spatial locationxi of the

node ni, distribution p(xi|ni) for the spatial location is known.

Our proposed framework easily incorporates such uncertainties

in parameter values. For example, the above uncertainty in the

spatial locations of the nodes will result into replacing d(ni, fj)

with d′(ni, fj) =
∑

xi
p(xi|ni)d(ni, fj) and the remainder of

the problem solution follows as in Section III.

D. Application to Parameterized Finite Horizon Markov De-

cision Processes (MDPs): The stage-wise framework proposed

in Fig. 2 facilitates a viewpoint where in our MEP-based solution

approach for the FLPO problem is easily extendable to the class

of sequential decision making problems that are modeled as

finite horizon MDPs with parameterized state space. In partic-

ular, consider the MDP given by M = 〈S,A, c,P, H〉 where

S is the state space, ζ(s) for s ∈ S represents the unknown

parameter (e.g., facility locations in FLPO), A, c : S ×A → R,

P : S × S ×A → {0, 1}, and H , respectively, denote the set

of actions, the cost function, the state transition probability,

and maximum number of stages. The underlying FLPO-type

objective is to min{ζ(s)},{µt(s)} J :=
∑

s∈S ρ(s)J(s) where

J(s) =
∑

X

p̄µ(X|x0 = s)

[
H∑

t=0

c(xt, µt(xt))

]

(32)

ρ(s) denotes the weight of each state s ∈ S , µt(·) is the policy

under which the statext = s ∈ S is followed byxt+1 = µt(s) ∈
S , X := (x0, x1, . . . , xH) denotes a sequences of states and

p̄µ(·|s) is the distribution over the space of all possible sequences

X . Note the resemblance of the objective function here with

the cost function D in (5) of the FLPO problem where the

unknown parameters ζ(s) are the facility locations {yj} and the

policy µt(·) is analogous to the association weights {pk(·|·)}.

Hence, the solution methodology detailed out in Section III also

solves the optimization problem posed by the parameterized

finite horizon MDPs.

APPENDIX A

Definitions of matrices in the expression of y in (13)

1) A =
∑M

i=1 Ai, where Ai ∈ R
M×M is a diagonal matrix

such that (Ai)jj =
∑

γ0,γ1,...,γi−1
ργ0

p0(γ1|γ0) . . . pi−1

(fj |γi−1).

2) B =
∑M−1

i=1 (Bi +BT
i ) where Bi ∈ R

M×M is such that

(Bi)mn =
∑

γ0,γ1,...,γi−1
ργ0

p0(γ1|γ0) . . . pi−1(fm|γi−1)
pi(fn|fm).

3) X̄ ∈ R
M×n, where X̄mn=

∑

γ0
ργ0

p0(fm|γ0)(ξ(γ0))n,

and (ξ(γ0))n is the nth component of the spatial coordi-

nate of γ0.

4) C = B̄ +
∑M−1

i=2 B̃i +
∑M−1

j=2 B̌j + D̄ ∈ R
M×n,

where (B̄)mn =
∑

γ0
ργ0

p0(fm|γ0)p1(δ|fm)zn,
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(B̃i)mn =
∑

γ0,γ1,...,γi−1
ργ0

p0 . . . pi−2pi−1(fm|γi−1)
pi(δ|fm)zn,
(B̌i)mn =

∑

γ0,γ1,...,γi−1
ργ0

p0 . . . pi−2pi−1(δ|γi−1)pi
(fm|δ)zn,
(D̄)mn =

∑

γ0,...,γM−1
ργ0

p0 . . . pM−1(fm|γM−1)zn,
and zn denotes the nth coordinate of the destination δ.

The matrix C := 2Â− B̂ is such that for every ith row

in C the sum of absolute value of the off-diagonal entries

(
∑

j �=i |[C]ij |) is less than the absolute value of the diagonal

element (|[C]ii|) in that row, i.e.
∑

j �=i |[C]ij | < |[C]ii|. Thus,

by Gerhgorin’s circle theorem [38], all the eigenvalues of C are

positive and hence C is a positive definite matrix.

APPENDIX B

Proof of Theorem 1: As indicated in the algorithm, at each

value of the annealing parameter βt, where t denotes the tth
iteration, it is required to solve the following implicit equation

iteratively y = (2Â(y)− B̂(y))−1( ˆ̄X(y) + Ĉ(y)). The corre-

sponding iteration scheme (where n denotes the iterate number)

solves for yt at each value of βt

yt(n+ 1) = (2Ât(n)− B̂t(n))
−1( ˆ̄Xt(n) + Ĉt(n))

︸ ︷︷ ︸

=:Gt(yt(n))

where Ât(n), B̂t(n),
ˆ̄Xt(n) and Ĉt(n) are dependent

on yt(n). The free-energy at the nth iteration for

the annealing parameter βt is given by Ft(n) =

− 1
βt

∑

γ0∈S
ργ0

log
∑

γ∈G e
−βt

∑M
t=0 dt(γt(n),γt+1(n)) whose

gradient with respect to y is ∇Ft(n) = 2(2Ât(n)−
B̂t(n))(yt(n)− yt(n+ 1))

⇒ yt(n+ 1) = yt(n)−
1

2
(2Ât(n)− B̂t(n))

−1∇Ft(n),

which is of the form yt(n+ 1) = yt(n) + αkχt(n), where

χt(n) = −(2(At(n)−Bt(n))
−1∇Ft(n). The matrix Ct(n) =

(2At(n)−Bt(n)) ∈ R
M×M for every iteration n is such that,

for every ith row in Ct the sum of absolute value of off-diagonal

entries (
∑

j �=i |(Ct)ij |) is less than the absolute value of the diag-

onal element (|(Ct)ii|) in that row, i.e.
∑

j �=i |(Ct)ij | < |(Ct)ii|.
Thus, by Gerhgorin’s circle theorem [38], all the eigenvalues of

Ct(n) are positive. Hence, (Ct(n))
−1 is positive definite and the

descent direction χt(n) is such that χt(n)
T∇Ft(n) ≤ 0, where

the equality holds true only for the case when ∇Ft(n) = 0.

Therefore,χt(n) is the descent direction and the current iteration

scheme is a descent method which guarantees convergence to a

local minimum.

APPENDIX C

Definitions of Λγ , Kγ: Λγ ,Kγ ∈ R
M+1, [Λγ ]n = ψn −

ψn−1, [Kγ ]n = ξ(γn)− ξ(γn−1), I ∈ R
(M+1)×(M+1) is an

identity matrix, ξ(γk) is the spatial coordinate of γk, 0 ≤ k ≤
M + 1.

Proof of Theorem 2: The solution y to (13) no longer implies

a (local) minimum to the cost function as soon as the second

order condition in (15) fails. There exists a direction ψ along

which the cost can decrease, thereby implying that y is not

the minimum. In fact, perturbation of y at such critical β and

resolving (13) results in a new solution y. (as done in step 4

of the annealing algorithm), which has more number of distinct

locations {yj}. To obtain this critical value of β, we compute
∂2F
∂ε2 as in (15). We claim that the expression of hessian ∂2F

∂ε2

in (15) is non-negative for all finite perturbation ψ if and only

if the matrix [I − 2βΥγ ] is positive definite. The “If” part is

straightforward since the second term in the expression is non-

negative. For the “only If” part we show that when [I − 2βΥγ ]
is not positive definite, there exists a finite perturbation ψ such

that the second term becomes zero thereby making the entire

expression in (15) negative. Let us assume that there exists a

transportation path γ ∈ G with positive probability such that the

matrix [I − 2βΥγ ] is not positive definite. In fact, we assume

there are several coincident facilities which result into several

coincident transportation paths γ ∈ G such that [I − 2βΥγ ] is

not positive definite. Under such circumstances we see that for

the finite perturbation Λγ = 0 ∀ γ �= γ̂ and
∑

γ∈G:γ=γ̂ Λγ = 0,

the second term in (15) is zero. Thus, whenever the first term

in (15) is not positive definite we can construct the above

perturbation such that the second term vanishes. Hence the

positivity of the expression in (15) for all finite perturbations

ψ depends solely on the positive definiteness of [I − 2βΥγ ].
The phase transition occurs when the matrix [I − 2βΥγ ] loses

its positive definiteness; i.e., det[I − 2βΥγ ] = 0 ⇒ βcr(γ) =
1

2λmax(γ)
where λmax is the largest eigenvalue of Υγ . We con-

sider the βcr = maxγ βcr(γ) as we anneal β from a large value

to zero. The above derivation is analogous to the DA algorithm

in [22].

APPENDIX D

A. Theorem 3

Part (a), we note that e−β
∑M

t=0 dt(γt,γt+1) < 1 since dt(·, ·) ≥

0.Therefore, log
∑

G e
−β

∑M
t=0 dt(γt,γt+1) < log |G|. The result

follows since
∑

γ0
ργ0

= 1. Part (b) of the theorem follow

directly from the expression of F in (12). Part (c): At the instant

when y(t) = yc(t) we have that ȳ(t) = 0. Hence, the derivative

of free-energy Ḟ (t) is given by Ḟ = xT P̂γ0
Φ+ [zT − yTc Ĉ]ψ,

which is independent of ū. Hence ∂Ḟ
∂u = 0.

B. Theorem 4

Substituting ū(t) (31) in Ḟ we obtain Ḟ = −K0ȳ
T (2Â−

B̂)ȳ − (α2 + (ȳ(2Â− B̂)ȳ)2)1/2 where K0 > 0 and (2Â−
B̂) positive definite (as shown in Appendix A). Hence Ḟ ≤ 0.

We know from Theorem 3 that the free-energy function F
is lower bounded and from above we have that for the con-

trol ū(t) in (31) Ḟ ≤ 0. We conclude from here that F (t)
converges (say to F∞, where |F∞| < ∞) and |Ḟ (t)| → 0 as

t → ∞. Now since Ḟ = −K0ȳ
T (2Â− B̂)ȳ − (α2 + (ȳ(2Â−

B̂)ȳ)2)1/2, we have that K0ȳ
T (2Â− B̂)ȳ ≤ |Ḟ |. Thus we con-

clude that ȳ(t) → 0 as t → ∞.

C. Theorem 5

Note: The proof here is similar to the proof for [35, Prop.

3.43]. Since (2Â− B̂) and Φ are Lipschitz, it is enough

to show that ū is Lipschitz at ζ̄ = 0. Since û � û− (2Â−
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B̂)−1(P̂ 0(γ1, γ0)
TΦ+ Ĉψ) is Lipschitz at ζ̄ = 0, there ex-

ists a neighborhood Bδ � {ζ̄ : ‖ζ̄‖ ≤ δ} and k̄ > 0 such that

‖û(ζ̄)‖ ≤ k̄‖ζ̄‖ ∀ζ̄ ∈ Bδ. Also Ḟ = α+ ȳT (2Â− B̂)û(t) ≤
0 where α = [xT P̂γ0

− yTc P̂0(γ1|γ0)
T ]Φ + [zT − yTc Ĉ]ψ. If

α > 0, then |α| ≤ |ȳT (2Â− B̂)û| ≤ k̄1‖ȳ‖‖ζ̄‖∀ζ̄ ∈ Bδ where

k̄1 = kλmax(2Â− B̂). Thus, the control design ū (31) can be

bounded above as ‖ū‖ ≤ (2k̄ +K0 + 1)‖ζ̄‖. For the case when

α < 0, we have that ‖ū‖ ≤ (1 +K0)‖ȳ‖ ≤ (1 +K0)‖ζ̄‖.
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