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Simultaneous Facility Location and Path
Optimization in Static and Dynamic Networks

Amber Srivastava

Abstraci—We present a framework for solving simultane-
ously the problems of facility location and path optimization
in static and dynamic spatial networks. In the static setting,
the objective is to determine facility locations and trans-
portation paths from each node to the destination via the
network of facilities such that the total cost of commodity
transportation is minimized. This is an NP-hard problem.
We propose a novel stage-wise viewpoint of the paths
which is instrumental in designing the decision variable
space in our framework. We use the maximum entropy
principle to solve the resulting optimization problem. In the
dynamic setting, nodes and destinations are dynamic. We
design an appropriate control Lyapunov function to deter-
mine the time evolution of facilities and paths such that the
transportation cost at each time instant is minimized. Our
framework enables quantifying attributes of the facilities
and transportation links in terms of the decision variables.
Consequently, it becomes possible to incorporate applica-
tion specific constraints on individual facilities, links, and
network topology. We demonstrate the efficacy of our pro-
posed framework through extensive simulations.

Index Terms—Dynamic programming, facility location,
maximum entropy principle (MEP), shortest path, spatial
network.

[. INTRODUCTION

ANY complex systems are modeled as spatial graphs
M where nodes are embedded into a metric space [1]-[5].
Areas, such as supply chain networks [6]; vehicle routing [7];
industrial process monitoring and power grids [8]; battlefield
surveillance [9]; disaster management [10], [11]; small cell
network design in 5G networks [12]; wireless networks [13],
[14]; and last mile delivery [15], come under the purview of
spatial networks. Often in these areas a large number of spatially
scattered nodes need to transport a commodity (such as informa-
tion, raw, or processed goods) to a given destination (or central
processing center). Cost and implementation considerations in
these large networks result in nodes that can transport only to
nearby locations. This drawback is addressed by overlaying a
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Fig. 1. (a) Agricultural supply chain which comprises of several farm

nodes n; which transport commodities to the processing unit § through
a network of warehouses f;. Objective is to determine warehouse
locations {y;} and design relevant transportation paths. (b) Battlefield
Surveillance - comprises of several nodes n; (with dynamics ¢;(t))
which communicates with the satellite 6 (with dynamics v (t)) through
a network of facilities f;. Objective is to find the dynamics of the facility
locations {u;(t)} and time-varying communication paths.

much smaller network of facilities (special nodes) where each
facility has the resources to transport commodities to other
facilities even if they are far. These facilities also have resources
to collect commodities from the nearby nodes. Thus, a typical
transportation path in such a network would start at a node, go
through the network of facilities, and culminate at a destination
node [see Fig. 1(a)]. Therefore, designing of such a network
requires placement of facilities that cover all the nodes and
determining the shortest transportation path from each node to
the respective destination center.

The problem in the context of overlaying the network of
facilities over the network of nodes can be described in terms
of the following two objectives: 1) find locations of facilities
that cover a large set of underlying nodes and 2) design the
shortest transportation path from each node, via the network of
facilities, to the destination center such that the total cost of
transportation is minimized. For instance, Fig. 1(a) illustrates
an agricultural supply chain where the farm nodes n;, located
at z;, need to transport produce to a food processing center
0 located at z through the network of warehouses {f;}. To
minimize the cost incurred in the supply chain, the warehouse
locations {y; } and the transportation path from each farm node
n; to the processing center § needs to be determined. Since all of
the nodes, destination center, and the facilities are static in this
problem, we refer to it as simultaneous facility location and path
optimization in static spatial networks, abbreviated as s-FLPO.
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In many application areas, such as battlefield reconnaissance
and disaster management, the nodes and the destination center
have associated dynamics. For instance, Fig. 1(b) illustrates a
scenario of battlefield surveillance where each node n;, with
dynamics ¢;(t), investigates the domain €2 and communicates
the relevant information in real time to the satellite § with dynam-
ics ¥ (t). The communication is facilitated through a network of
unmanned aerial vehicles (UAVs) {f;} and the objective is to
minimize the total cost of communication at each time instant.
This task requires determining the appropriate dynamics u (t) of
each UAV f; as well as the time-varying optimal communication
paths. We refer to this problem as the simultaneous facility
location and path optimization in dynamic spatial networks,
abbreviated as d-FLPO.

The goal of the facility location problem in s-FLPO is to
allocate a set of facilities {y; } to data points {z;} such that the
cumulative distance between data points and their nearest facility
is minimized. This is an NP-hard problem [16]. Another aspect
of s-FLPO is the shortest path design problem on a network graph
G(V, E) which aims to find a minimum cost path between any
two vertices vy, v € V. This problem is solvable in polynomial
order of vertices and edges [17]. The additional objective of
determining the shortest path adds to the inherent complexity of
the facility location problem thereby resulting into a much more
complex s-FLPO problem where the cost functions are riddled
with multiple poor local minima. A straightforward method to
solve the s-FLPO problem would be to sequentially solve facility
location, and shortest path problems as done in [7] in the context
of multidepot vehicle routing. However, owing to the fact that
the two subproblems are coupled, such a sequential methodology
results in a solution with a much larger cost function value as
demonstrated later in our simulations.

There is extensive literature that addresses the facility location
problem [18]-[24] and the shortest path problem [25]-[27] indi-
vidually. But there is scant literature that solves the two problems
simultaneously. Our previous works in [28] and [29] are, to the
best of our knowledge, the only efforts along this direction in the
context of spatial networks. However, the framework proposed
in [28] does not scale with the number of facilities M and the
corresponding algorithm becomes computationally intractable
even for small values of M (> 15). This is because the frame-
work in [28] views every permutation and combination of the M
facilities as a feasible transportation path and requires each such
path to be represented by a separate decision variable; resulting
into a combinatorially large O(3"p; (/) k!) decision variable
space. In addition to that, the decision variables in [28] fail to
provide any quantitative insight at the level of the individual
facilities { f; } and the transportation links {( f;, f;)} such as the
usage of a particular facility or a transportation link; because
of this, the framework in [28] is not flexible to incorporate
application-specific capacity-based constraints on the facilities
and network topology.

On the other hand, the framework proposed in [29], though
scalable with decision variable space growing polynomially
O(M?), is applicable to only a restricted class of FLPO prob-
lems where all the transportation paths assume a specific struc-
ture. As a consequence of this structure, the framework in [29]

Fig. 2. Transportation path ~+ from the node n; € I'g to the destination
5 € I'pr4q via the stages {I'y }M .

prohibits all such paths where two distinct facilities f;, and
fj, establish a transportation link concurrently with the same
facility f},. The set of all feasible paths in [29] consists of only
a few ordered sequences of facilities where no facility can lie
in more than one sequence. Though enforcing the above path
structure in [29] over [28] reduces the decision variable space
from combinatorially large O( ,Iyzl (J,\f) k!) to polynomial size
O(M?), it results into suboptimal solutions when used for the
general class of FLPO problems that do not necessitate the path
structure assumed in [29]. We demonstrate this via simulations
in a later section.

In this work, we develop a scalable framework for the general
class of s-FLPO problem to overcome the limitations of [28]
and [29]. We achieve this by developing a novel stage-wise
viewpoint of the transportation paths (see Fig. 2) and exploiting
the constraint resulting from the nature of optimal transportation
paths. More specifically, the stage-wise viewpoint of the paths
allows us to impose the structure on the design of decision
variables that results from the law of optimality, that is, when
any two optimal transportation paths in the network intersect
at a particular stage then the subsequent route from the facility
at that stage to the destination will be the same for both paths.
The stage-wise viewpoint is the main mechanism that allows for
substantial reduction in the size of decision variable space from
O L, (A)k!) in [28] to the order O(M?) in the current work
without enforcing any path structure as in [29].

One of the salient features resulting from our stage-wise illus-
tration of the transportation paths is that it provides quantitative
insights into several parameters of the s-FLPO problem in terms
of the underlying decision variables. For instance, quantities
such as the number of transportation paths using a particular fa-
cility f; inaparticular stage, fraction of nodes connected directly
to a given facility, and number of paths that include a particular
transportation link ( f;, f;) at a particular stage can be efficiently
expressed in terms of the stage-wise decision variables. Note that
once quantifiable in terms of the decision variables, it is easier to
specify application-specific constraints on all such parameters.
In addition, we demonstrate the flexibility of our proposed
framework to incorporate various such capacity constraints on
facilities, transportation paths, and the network topology. We
illustrate this using networks where: 1) the maximum length of
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the transportation paths are restricted; 2) the network is partially
connected; and/or 3) the facilities and the transportation links
have maximum associated capacities. It must be noted that
incorporating these constraints causes no considerable changes
in the algorithm, making their implementation straightforward.

In the context of the d-FLPO problem, we show that the
relaxed cost function that appears in the solution framework
of the s-FLPO problem serves as a good candidate for a control-
Lyapunov function. We design a control law for the dynamics
{u;(t)} of the facilities which ensures that the time-derivative
of this Lyapunov function remains nonpositive at all times. The
time-varying transportation paths are then determined using the
facility locations {y;(t)} at each time instant. The important
aspects of our control design that we show are: 1) the asymptotic
tracking of the local minimum to d-FLPO problem (Theorem
3) and 2) nonconservative property (Theorem 4), i.e., if there
exists a Lipschitz control law that asymptotically tracks the local
optimal of the d-FLPO problem then the proposed control law
is also Lipschitz and bounded.

We present extensive simulations for the s-FLPO problem in
unconstrained and constrained scenarios to demonstrate the ef-
ficacy of our algorithm in terms of scalability, time-complexity,
and the quality of solutions. Also, a wide range of constraints
on the facilities, transportation path, and network topology are
demonstrated in our simulations. We demonstrate the efficacy
of our framework on a large-scale system with approximately
N = 17 000 nodes and allocate M = 50 facilities with the
cost function values that are approximately 25% better than the
solution obtained using [29]; note that the framework in [28]
results in (a2)10%* decision variables for this scenario and hence
the corresponding algorithm is severely intractable.

We compare our simulations of the d-FLPO problem with the
frame-by-frame approach where we solve the s-FLPO problem
at each time instant to estimate the dynamics of the facilities
and transportation paths. We show the considerable benefits of
our proposed methodology obtained with respect to algorithmic
run times and practicality of the dynamics of the facilities
in comparison to the frame-by-frame approach. The computa-
tional times are significantly reduced; as much as by 700 times
have been demonstrated. Also, the simulations show that the
frame-by-frame approach requires some facilities to undergo
a considerable spatial change in a very small interval of time
thereby resulting into a nonviable dynamics which do not occur
when using our methodology.

Il. s-FLPO PROBLEM

The s-FLPO problem is characterized by overlaying a network
of M facilities on a network of large number N > M of nodes
and designing a path (single or multihop) from each node to the
destination via the network of facilities. Let the node n; be lo-
catedat z; € R% 1 < i < N, and the destination § be located at
z € R4 LetTy = {ny,...,nx} denote the set of all nodes. The
twofold objective of the optimization problem is to determine
the location y; € R9 of the facilities f»1 < j < M and design
transportation paths from each node n; to the destination § via
the network of facilities such that the total cost of transportation

(as quantified later in this section) is minimized. A transportation
path

ni_>fr1_>fr2_>"'_>frq_>6 (1

where ; € {1,..., M}, from the node n; € Iy to the destina-
tion ¢ is an ordered sequence of ¢ (< M) distinct facilities. For
such a path, we say that the path length (or number of hops) is
q. In our framework, we model a transportation path v from a
node n; € I’y to the destination ¢ as a sequence

vY=15-7M) 2

where v, € I'y, V 1 < k < M. Here the stage I'j;, is the col-
lection of all the facilities and the destination center, that is,

T ={f1,--, fm,0} V1 <k < M (see Fig. 2). For the trans-
portation path in (1) v = fr, Vk € {1,...,qt and v, =3 V
ke{q+1,...,M},ie., in our representation of a transporta-

tion path we pad (1) with M — ¢ many §’s at the end. We define
Tpry1 := {0} as a singleton set comprising of the destination
center and G := {(y1,...,vm) : 7k € TxV1 < k < M} as the
set of all possible transportation paths. Please refer to Fig. 2 for
a pictorial illustration of a transportation path from n; € I'g to
destination § € I' /41 via the stages {I'; } 2L . The objective of
the s-FLPO problem is to

min D= Y |py »_v(7h0)dtoy)| 3
{v;}
1<j<M Yo€l'o v€G

where p., is a given relative weight of the node o € I'g

1, ify=argminyegd(70,7')
v = 4
(o) {O, otherwise @

and d(vyo,7) = Z,iwzo di(Vk, Vk+1) is the cost incurred along
the pathy = (71, . .., yar) from the node 7y to the destination 4.
Here dj (-, -) represents the cost of transportation from the stage
['j to T'g1. For notational simplicity we denote dg(vk, Y-+1)
as dj wherever clear from the context. The framework pre-
sented in this article is applicable to any general cost function
di (Vk, Yr+1); however, for the purpose of illustration we assume
it to be the squared Euclidean distance, i.e., d(Vk, Ye+1) =

”yw — Yrpia ||2’ where Ve = f’"w Ve+1 = f’"k+1'

[lI. SOLUTION TO S-FLPO PROBLEM

A straightforward approach to solving the twofold objective
optimization problem (3) is to solve for the two objectives
sequentially, i.e., first allocate facilities to the nodes using any
of the facility location algorithms mentioned in Section I and
then find the shortest transportation path from each node to
the destination by solving the shortest path problem on the
resulting network graph [30]. However, this approach disregards
the fact that the two objectives are coupled and therefore result
in a suboptimal solution. Also, the algorithms mentioned in
Section I, which solve the facility location problem, are sub-
stantially dependent on the initialization step. For instance, in
Lloyd’s algorithm (or k-means algorithm) [23], [31], the initial
step consists of randomly choosing facility locations to form the
initial facility locations. Since the iterative scheme is such that
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only the “proximal” input points determine the facility location
and not the “distant” input points, the k-means algorithm has a
tendency to get trapped in the local minima.

The algorithm that we propose in this work is motivated
from the deterministic annealing (DA) algorithm for the facility
location problem [22]. In particular, the proposed algorithm
overcomes the local influence of the nodes on the solution to
s-FLPO problem by associating each node 7 with all transporta-
tion paths through a weighting parameter p(y|7yo). Without loss
of generality, we assume that > ; p(7|70) =1V € I'g and
the proposed algorithm seeks to minimize the relaxed version of
the cost function in (3) given by

D=3 py ) p(rh0)d(0,7). )

YoES v€G

It must be noted that the choice of association weights p(~|7o)
determines the tradeoff between the local influence (or the
initialization of the algorithm) and deviation from the original
cost function (3), i.e., if the association weights are uniformly
distributed p(v|v0) = 1/|G|, then the two cost functions differ
largely from each other; however, the minimization of the ob-
jective function (5) is independent of the initialization of the
algorithm as all possible paths from the nodes 7 are given
equal weights. For the choice of association weights p(~|yo) =
v(7y|v0), the relaxed cost function (5) reduces back to the original
cost function (3).

It follows from the law of optimality that along an optimal
transportation path, the upcoming facility on the path is decided
solely by the current facility and is independent of the prior
facilities on that path. We impose this structure on our choice of
the association weights p(+|7o), which translates to a Markov
property. Thus, the association weight p(y|yo), which relates an
entire transportation path v = (1, ...,vas) to the node 7, can
be broken down into association weights {px(ve+1|7%) 2L,
where pg (vx+1|7k) relates the stage 'y, to Iy 1. More specifi-
cally

M
p(v1o) = [T or(verale)- (6)
k=0

For notational simplicity, we denote py (Vx+1|7x) as pr when-
ever it is clear from the context. The association weights
Pr(Vet1l7k) ¥V 0 < k < M — 1 along with the spatial coordi-
nates {y;}, 1 < j < M of the facilities comprise the decision
variable space of our optimization problem. The relaxed cost
function in (5) is now rewritten as

M
D=3 puy [Ired(o,7). (7)

Yyo€l'o ~v€G k=0

Observe that the decision variable p(+y|vo) in (5) is replaced
by the decision variable pg(yx+1|yx) in (7), thereby making
our optimization problem across all possible paths v to an
optimization problem across consecutive stages 'y, and 'y 1,
1 < k < M. This results in the reduction of decision variable
space from O(Y_ oL, (A1) k!) to O(M?).

We use the maximum entropy principle (MEP) [32], [33] to
design the association weights py(vx+1|7%) such that the cost
function (7) attains a specified value. More specifically, MEP
determines the association weights by solving the following
associated optimization problem:

M-1 M-1

Yo€ES veG \ k=0 k=0
s.t. D =c¢g ©))

where ¢ is a given value of the cost function. This problem is
solved repeatedly at decreasing values of ¢, which is described
later in Section III. As the entropy term (8) quantifies for the
level of randomness, maximizing it at a fixed value cg of the
cost function (7) results into association weights pg (Vi+1|vk)
that ensures maximum uncertainty or uncommitted nature of
the algorithm toward any particular solution. The Lagrangian
corresponding to the optimization problem in (8) and (9) is given
by

F = (D —cp) 1H

Y8

where 1/ is the Lagrange multiplier. The Lagrangian F' is
convex in py V k and we determine the association weights by
setting g—; = 0 which yields

(10)

M
Z(O’k+2 om): 676 izt (70,0041

Ol 1=Vk+1

e Pdr) (11)

e ( Z(UkJrl UAl)ie_BZtAik dt(ahatﬂ)

Ok=7k

In the expression of the unconstrained Lagrangian (10), we
refer to the lagrange parameter % as the temperature and F as the
Free energy because of their close analogies to statistical physics
[where free energy is enthalpy (D) minus the temperature times
entropy (TH)]. Substituting (11) into the expression of free
energy F in (10), we obtain

1 y
F = ,B Z p’Yo 10g Z 67’3 Zi\io dt(7t77t+l).

Yo€Tl0 v€G

12)

Note that for brevity we ignore the constant term ¢ in the above
expression of F'. As illustrated later the Lagrange parameter /3
implicitly decides the value of cy. Additionally, the above F' can
be viewed as a relaxation of the cost function D in (7). In fact, as
B — oo we observe that ' — D. We now minimize (locally) F'
in (12) with respect to y = [y7, ..., y1,]7 to obtain the spatial
coordinates of the facilities, i.e., we put %—5 = 0 to obtain

y=02A-B) " (X+CO) (13)
where A=I,® A, B=1,0B, X=1,8X,C=1;C,
and [; is an identity matrix of d x d dimension. The matri-
ces A, B € RM*M X C c RM*d depend on the association
weights pr (vx-+17k ), the spatial coordinates of the nodes {x;}
and the destination location z. Please refer to the Appendix A
for the definitions of the above matrices and the proof that the
matrix (24 — B) is positive definite (i.e., invertible).
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Algorithm 1: main(X, z, Bmin, Bmax)-

1: Initialize (3 to the small value Bip.

2: Calculate the association weights {py (Vx+1|7x)} in
(11).
Calculate the facility locations y in (13).
Iterate between step 2 and 3 until convergence.
Increase 3 by a factor k > 1;i.e., B < Kk[3.
Stop if 8 > SBuax- Else go to step 2.

AR A

The constraint value ¢ in (9) decides the temperature variable
T = 1/p. It follows from the sensitivity analysis [34] that the
lower value of ¢y corresponds to the higher value of /3. It is clear
from (10) that for small values of 3 (i.e., high values of c¢y), we
are mainly minimizing the convex function —H, which results
in uniformly distributed association weights. As [ increases (cg
decreases), more and more weightage in (10) is given to the cost
function D, i.e., F' closely approximates the nonconvex cost
function D. In the limit 8 — oo, we have that I/ = D and we
obtain hard association weights py, (vx+1|vx) € {0, 1}. The idea
is essentially to find the global minimum of the convex function
— H and then track the minimum of F at successively increasing
values of 3, until F' — D. This is done in our algorithm via
iterating between (11) and (13) at a successively increasing
value of (3, and using the solution from each g iteration as an
initialization for the next f3 iteration. The resulting annealing
algorithm is as follows.

Theorem 1: The iterations in step 4 of the Algorithm 1 are
equivalent to iterations of a descent method to solve the implicit
equation (13). Consequently Algorithm 1 converges.

Please refer to the Appendix B for the proof.

IV. PHASE TRANSITION PHENOMENON

The above algorithm upon implementation exhibits phase
transitions very similar to that seen when DA [22] is applied
to pure facility location problems. In the initial iterations of the
algorithm when [ is very small, the cost function is dominated
by — H; minimizing this gives uniform distributions for the asso-
ciation weights py (Vk+1|7k ) Also with this uniform distribution
of the association weights, all the facilities get allocated at the
same spatial coordinates given by (13) and all the corresponding
transportation paths are the same. Now as [ is increased, the
simulations show that there is no perceptible change on the
facility locations till a critical value of 5 = f(..1 is reached;
beyond which the number of distinct facility locations and the
number of distinct transportation paths increases. Again as (3
is increased further, there is no change in the facility location
and transportation paths till the next critical value of 5 = 5.0
is reached, where the number of distinct facility locations and
transportation paths increases again. These phase transitions
are of interest as they can help control the number of distinct
facilities that one may want to allocate to the network of nodes
and also help in speeding up the annealing process.

The critical values of 3 (81, Ber2, - - -) are obtained by track-
ing the conditions for attaining the minimum of free-energy F'.

At 8 = 0, the free-energy function is convex, and setting %—5 =0
gives the global minimum, also the hessian %2;; is positive

definite. As ( increases, at a particular 8 = B¢, %—5 =0 and
the Hessian loses rank. Here bifurcation occurs leading to an
increase in the number of distinct facility locations. Using vari-
ational calculus, the necessary condition for y to be a minimum
of F' requires that for all choices of finite perturbation v

OF,

5 5:020’ and (14)
0°F.
5 |y = 2 PAT (1= 287,)) A,
- YyEG
2
+28 ) py | D_p(0)KTA, | >0 (15)

Yo€Tl0 v€G

where F. = F(y+ep), p(y) =32, p(0)p(vl0), Ty =
>0 P07 K KT and A, K, are as defined in the Appendix
C. We characterize phase transition as below.

Theorem 2: The critical value of § at which the Hessian
(15) is no longer positive definite, i.e., it loses rank is given
by Ber = maxy(2hmax(Y+)) ! where Amax(Y-) is the largest
eigenvalue of the matrix Yoy := 3 p(oly) K KT

See appendix C for proof.

V. ADDING MULTIPLE CAPABILITIES AND CONSTRAINTS TO
THE PROBLEM

In various applications involving spatial networks the overall
design goal includes efficient utilization of facilities and the
transportation paths. This often corresponds to incorporating
several application based constraints on the network topology
or on the facilities. In this section, we elucidate the flexibility of
our proposed approach in incorporating such constraints.

A. Restricted Number of Hops

In certain applications it is be beneficial to restrict the path
length ¢ of the shortest transportation path as any extra-hop for
the commodity may involve associated penalties and overheads
such as processing energy cost and time delays. Let L. be
the given maximum allowable path length (or the number of
hops) for a commodity originating at a node 7y € I'g. There-
fore all the transportation paths v € G with path length greater
than L., become invalid for ~g. This constraint enforces that
on an optimal transportation path the facility 7,41 depends
on the facility ~, as well as the originating node vy which
results into the dissociation of the association weight p(~y|vyo)

M . . ..
as p(v[v0) = [1i—o Pk (Ve+1]|7ks Y0). For notational simplicity
we denote py(Vr+1|7k,Y0) bY Pk,, Whenever it is clear from
the context. Using the MEP we obtain the association weights
Dk~ as the Gibbs distribution

S orssni, € 709 de(oroes)
Ok+1=Vk+1

I
Eo'k+17---,0'L,YO e B2k di(ot,0141)
Ok=7k

Pho = (€77%) (16)
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Fig. 3. Fully connected and a partially connected network.

where oy € I, V1 € {k +1,..., Ly, }, which when substituted
into the expression of F in (10) results into

]_ L
Fi=-3 Splog D e PR i) (1)
Yo

Y1y VLng

OF, __

Minimizing (locally) F} in (17) by setting By = 0, we obtain

the facility locations y.

B. Structured (Partially Connected) Network

A transportation link (f;, f;) exists (or is active) if a com-
modity packet is permitted to hop between the facilities f;
and fj .

In a partially connected spatial network, some of the trans-
portation links are absent owing to which the corresponding
facility pairs are unable to send across commodities. Fig. 3
demonstrates a fully connected and a partially connected net-
work topology. To incorporate the partial connectivity of the
network as a constraint in the optimization problem (3) we
introduce a connectivity parameter wy, . defined as

1 if transportation link (f;, f;) exists
Wy, =
Fids 0 otherwise.

We incorporate the connectivity parameter wy, 7, into the ex-
pression of the association weights py (Vx+1|7x) (11) in such
a manner which assigns py(f;|f;) = 0 V k for the nonexistent
link (f;, f;) and rules out all transportation paths that consist of
the nonexistent link from the solution space, thus leading to the
following expression of the association weights:

M _Bd
ZJ’“JFQ""’UM Ht:kJrl Woi0411€ pde
_ —Bdy, Ok+1=Yk+1
Pr = Wy v € Z HM w o—Bdy
Ok+15--0M — g
Ok="k t=k TotTe+1
(18)

We substitute the above association weights into the expression
of free energy F' in (10) to obtain F5, which is then minimized
(locally) by setting 88—1;;2 = 0 to obtain the facility locations y.

C. Capacity Constraint on Facilities and Path Links

In certain applications, the capacity and cost constraints on the
facilities result in corresponding constraints on their usage by
transportation paths. For instance, the warehouses f; in Fig. 1(a)
may have limited storage capacity for agricultural goods col-
lected from the farms. The decision variables in our framework

appropriately quantify the usage C(f;) of each facility f; as
C(f;) =Y prpo(filno) + Y propo(yalvo)pr (fi1m)

Yo Yo,71

ot > prepo(nlo) - paoa(Filvar)
Y05y YM -1

19)

where the first term in the above expression indicates the ef-
fective number of transportation paths passing over f; in the
stage I';, the second term indicates the effective number of paths
passing over f; in the stage I's, and so on until the last term
which indicates the effective number of paths passing over f; in
the last stage I'),. We address the facility capacity constraint by
requiring the usage of the facility f; to be given by C(f;) = wj,
where w; denotes the predefined capacity of the jth facility. The
corresponding unconstrained Lagrangian is given by

M

Fy=F+Y ap (C(f;) —w;) (20)
j=1

where F' is given in (10). Minimizing F with respect to the

association weights {py (Vk+1|7x)}, we obtain

Z ez?ik-#l 718(d71+a"{t+1)
7ﬁ(dk+o¢wk+1) (V2507 M)

Pr =€
eZ?ik —Bldetay, )

2

Z(‘Ym—lw-ﬁM)

where «,, is a Lagrange multiplier in (20). We refer to ¢, :=
e Py, € Tp\{6} as the weight parameter. Substituting (21)
in (20) to obtain F3 and minimizing (locally) F3 with respect
to y gives the expression for facility locations y. To obtain the
parameters (y,, we substitute the association weights (21) in the
expression (19) of C'(f;) and equate the subsequent expression
to w; (i.e., set C'(f;) = w;). This results in the update equation
p+1 _ p Wi

“h =)
In our algorithm, we minimize the free-energy I at successively
increasing values of 3 by alternating between the expressions of
association weights in (21), facility locations y, and the update
equation for (y, in (22).

Similarly, in certain application areas, the amount of traffic
1., thata transportation link (f;, f;) is able to handle is known
a priori. Using the decision variables in our framework we
appropriately quantify the usage Cy, s, of each transportation
link from f; to f; as

Cfifj = pl(fj |f1) Z p’Yopo(fin)

o

+p2(Fi1£) D propo(rlvo)pr (fily) + -+

0,71

+oma(filf) Y prepo(rih0) - para(filvm—2)

Y05 YM -2

Vjef{1,2,...,M}. (22)

(23)

where the first term in the above expression is the fraction of
total paths with node f; € I'y and f; € I's, i.e., the fraction of
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paths with (f;, f;) transportation link occurring in the hop from
stage I'y to stage I'5. Similarly, the other subsequent terms count
the fraction of the transportation paths with (f;, f;) link in the
hop from stage T’ to T'yyq for all k € {2,..., M — 1}. The
unconstrained Lagrangian in this case is given by

Fy=F+ Z Qf;ifj (Cf'ifj
i jiit]

= Nf.1,) (24)

where F is given by (10). The association weights
{pr(Yk+1|7vk)} that minimize F) are given by

eziikﬁ»l _ﬂ(dt+a"{t,,‘yt+1)
(Vet25--7M)

efﬁ(dk“ra'yk'yk+1)

Pk = M
Simk —Bdetany v,y )
Z('Yk+17...7')’1\l)e = L
(25)
where Ay, ., 1= e Py, 40 is referred to as the

weight parameter. Substituting (25) in the expression of free-
energy F; (24) to obtain F; and setting %—I;} = 0 gives the facility
locations y. To obtain the parameters A f, ;o We substitute the as-
sociation weights (25) in the expression (23) of C, ;, and equate
the subsequent expression to 7y, ¢, (i.e., set Cy, y. = 1y, s,). This

results in the update equation

)\’p+1 _.p Nfify )
fifi fifi Cfifj

(26)

As before, our algorithm minimizes free-energy Fy at suc-
cessively increasing values of 3 by alternating between the
expressions of the association weights (25), facility locations
y and the update equation for Ay, 7, in (26).

VI. EXTENSION TO DYNAMIC SPATIAL NETWORKS

In the case of dynamic spatial networks, the nodes and the
destination center have an associated dynamics given by con-
tinuously differentiable velocity fields ¢;(z;(t),t) € R, 1 <
i < N and ¥(z(t),t) € R?, respectively. The resulting facility
locations and the transportation paths are also time varying and
the entire dynamical system is represented as

| B(t) = B(a(t),)

C=f{C@),t) == Q 2(t) =U(z(t),t) 27
y(t) = u(z(t),2(t), y(1),t)

where z(t) = [zT(t),..., 2L )T e RV, & =[¢T(2),...,

on()]" € RN wu(t) = [UlT(t) L ug ()T € RMY, and

() = [2(t)7, 20T, y()T]T € ROVHEA

Similar to the static spatial networks, the problem of si-
multaneous facility location and path optimization in dynamic
spatial networks (d-FLPO) has twofold objectives: 1) allocate
facilities y;(t), 1 < j < M in the domain 2; 2) design optimal
transportation path from each node n; to the destination center
0 such that the cost function (3) gets minimized at every time
instant ¢.

A straightforward approach to solve the d-FLPO problem is
to solve the s-FLPO problem at every time instant to determine
the facility locations and the transportation paths. However, it
is quite evident that such a methodology is computationally
expensive. A specific shortcoming of this method is that it

does not employ the past knowledge of facility locations and
transportation routes to determine the solution at current time
instant, which may potentially lead to big changes (jumps) in
facility locations over a very small time intervals; and may not
be practically achievable as shown in Section VII.

We propose a control-based framework to solve the d-FLPO
problem that builds upon the solution of the s-FLPO problem
obtained at the initial time instant ¢g. In our framework, we
use the free-energy function F' (12) as a Lyapunov candidate
function for the dynamical system (27) and design the control
for facility dynamics () = u(t) such that £ < 0¥t > 0. Note
that F' is a smooth approximation of D in (7) which incorporates
cost functions for both facility location and path optimization
problems. Once the dynamics of the facilities are known, the
time-varying transportation paths can be deduced from (11).
The following theorem justifies the choice of free-energy F' as
a Lyapunov function.

Theorem 3: Let F' be the free-energy function (12) corre-
sponding to the dynamical system (27) then

&) F(Q)+3log|g] >0 YC=[a7,y7,d"|7 € RN -V
where G = {(71,...,7vam) = vk € TVl < k < M} is the set of
all possible paths when M facilities are allocated.

b) The derivative

oF Py ~P’(m.00) 0
¢ = | PP 24-B -C (28)
¢
0 —-C7 I
is a symmetric matrix, where PVO =1, ®P,,, P, =
diag({p+,}),  FPo(v1,7%) = La ® Po(71,7%),  FPolvi,v0) =

[P~oP0(71|70)] and I is an identity matrix of size d x d. Also
note that F'(t) = 2CT%—€ :

¢) There is no dynamic control authority at the facility
locations y.(t) = (24 — B)"1(X + C) obtained in (13), i.e.,
GE = 0aty(t) = ye(t).

Please refer the Appendix D for proof of the above theo-
rem. The facilities are at the positions y.(¢) (13) only when
y(t) == y(t) — yc(t) = 0. We transform the coordinates ¢ =
[T, yT, 27T to ¢ = [2T, g7, 27]T, where § = y — y.. In the
new coordinates, the dynamics of the facility locations are given

j(t) = a(t) - (24 - B)" [(24 - By
4 POy, m0) T + C;’z} 29)
where @ = u — (24 — B) "1 (P°(1]70)T® + C¥) and
F = (2" Py, =yl Po(mln)")@
+ [T —yTCly + g7 (24 - B)a(t). (30)

We take advantage of the affine dependence of F on @(t) in
(30) to determine the choice of @(t) such that F' < 0 [35]-[37].
More particularly, we choose control

oz—l—\/|a|2 5(2A — B)jj)?
y (G
7T (2A — B)y

a(¢) = -
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Fig. 4.

Nodes, facilities, and the destination center are represented by triangles, circles and diamond, respectively. (a) At 8 ~ 0 all facilities are

coincident. (b) Phase transition phenomenon. (c) Facility locations and paths at 5 — oo. The first facility to each node is colored identically to that
node. The commodity hops to the subsequent facilities from the first facility as denoted by the arrows. (d) Two-step methodology for s-RARO.
(e) llustrates s-FLPO where L., = 3 Vo € T'g. (f) Partially connected network - pairs (f1, f2), (fa, f1), (f2, f3), (fa, f5) and (fs, f3) do not exist.
(g) Facility capacity constraint wy : ws : w3 : wa : ws =4:2:2:1: 1. (h) Facilities constrained as entry facilities in proportion 4:2:2.5:0.1:1.0 (i)
Transportation link capacity constraints 7, ¢y 1, 74 * Mfs,fa : Mfs.f4 = 0.3 : 0.7 : 1 : 1; all other communication links have zero capacities. (j) For
comparing computation times with [28]. Our algorithm - 1.85s, algorithm in [28] - 24.86s. (k) Solution using framework from [29]. (I)-(m) Large scale
problem with N = 17028, M = 27 and M = 50 in (I) and (m), respectively. Solved using the algorithm in [29]. (n) and (o) Large scale problem with
N =17028, M =27 and M = 50 in (n) and (o), respectively. Solved using the algorithm in the current work. (p) Comparing the objective function
value (V1 /Va) at various number of facilities M as given by algorithm in [29] (V1) and our current work (V%) for the previous large scale setting of
nodes and destination. (q) Flowchart of the proposed algorithm in the d-FLPO problem.

where § # 0, Ko > 0 and o« = (27 Py, — yT Po(y1]70)T)® +
(2T — 4T (). The following two theorems establish that the
facility locations y(t) converge asymptotically to y.(¢) and the
control effort (31) is bounded near y = 0.

Theorem 4: Asymptotic convergence: For the dynamical
system (27) the choice of control () in (31) results in F<0
Vit >0andy(t) — 0ast — oo.

Theorem 5: Lipschitz continuity: If there exists a control
@ RVHMADd _y RMd [ jhschitz at { = 0 such that F < 0V
t > 0 for & = 1, then the choice of control % in (31) is Lipschitz
at { = 0. That is, 3 € > 0 and a constant ¢y such that ||@(¢)|| <
¢ol|€1l for ]| < e.

Please refer to the Appendix D for the proof of the above
two theorems. Remarks: 1) The above control design method-
ology can be extended to the d-FLPO problems with additional
constraints over the network topology and facilities. In fact, our
simulations in Section VII demonstrate the d-FLPO problem
where the spatial network is partially connected. 2) Theorem 5
emphasizes the nonconversativeness of our solution; i.e., if there
exists a Lipschitz (bounded) solution such that F < 0 then
Theorem 5 implies that our proposed solution is also Lipschitz
(bounded). 3) For the purpose of simulation, we discretize time
into At intervals. At instants § # 0 we determine the dynamics

of y(t) using @ in (31). This results into £ < 0 at all such time
instants. For the time instants when y = 0 we already have the
facilities at the locations .. At such instants F' may be positive,
negative or zero depending on the dynamics of the node and the
destination center.

VII. SIMULATION AND RESULTS

In this section, we simulate our proposed algorithms for the
s-FLPO and d-FLPO problems. We first illustrate the s-FLPO
problem. For the purpose of simulations we randomly distribute
200 nodes around 6 randomly chosen pointsinan 11 x 8 square
unit area. The location of the destination (marked as J) is
randomly chosen to be at (4, 7). For the purpose of illustration
we assume the cost function dj(-,-) to be squared-euclidean
distance. Consider the scenario where we allocate M = 5 facil-
ities. As stated in Section IV, at low value of 3, all the facilities
{f; }?:1 getallocated at the same spatial coordinates as shown in
Fig. 4(a), where the triangles denotes the nodes, circle denotes
the facilities and the diamond denotes the destination. As the
value of 3 increases the number of distinct facility locations
increases [see Fig. 4(b)], and the final facility locations and
transportation paths are obtained as 3 becomes sufficiently large
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as shownin Fig. 4(c). In Fig. 4(c), anode of a particular color first
sends its commodity packet to the facility of the similar color
which then reaches the destination center via the path indicated
in the figure. Observe that in Fig. 4(c) all the nodes v either opt
for the 4-hop path fy — f5 — f1 — f3 — 0 or the 3-hop path
fa = f1 — f3 — 0. The total cost of transportation incurred is
12.58 units. Fig. 4(d) illustrates the solution to the same problem
using the sequential approach illustrated in Section III which
incurs a total transportation cost of 34.16 units, 2.7 times the
cost incurred in Fig. 4(c). This demonstrates that the sequential
approach results into a solution with a much higher cost as
compared to the simultaneous approach.

Restricted Number of Hops: Fig. 4(e) illustrates the solution to
the s-FLPO problem when the maximum path length is restricted
to 3 for all the nodes, i.e. L, = 3V vy € I'g. Observe that now
all the nodes opt for either fy — fo — f1 > dor f5 — f3 —
f1 — ¢ paths, both of which have path length of 3. The total cost
in this case is 12.71 units, which is approximately 1% higher
than the scenario in Fig. 4(c) where there is no restriction on
the maximum path length. We can deduce the effectiveness of
restricting hops to 3 which only leads to about 1% cost increase;
that is marginal utility of adding more hops is only about 1%.

Partially Connected Network: Fig. 4(f) simulates a partially
connected spatial network. For the purpose of simulation, we
assume that the transportation links (f1, f2), (f2, f3), (fa, f1)s
(f1, f3), (f4, f5),and (f5, f3) are absent. As shown in the figure,
the algorithm respects the constraint posed by the partially
connected network and assigns the facility locations and paths
correspondingly. The total cost of transportation is 12.92 units.
Note the difference with the facility location and transportation
path assignments in a fully connected network Fig. 4(c).

Capacity Constraints: Fig. 4(g) demonstrates the capac-
ity constraints on various facilities. Here, facility capacities
are distributed as wy : wo w3 wy w5 =4:2:2:1:1.1In
the figure, the final facility allocation and path design is
in such a way that C(f1) : C(f2) : C(f3) : C(f4) : C(f5) =
3.85:1.75:2.10:1: 1.1 which is approximately as given in
the constraint. The slight mismatch in the values of the usage
C(f;) and capacities w; could be because of numerical issues in
MATLAB and we are currently looking into it. Similarly, Fig. 4(h)
demonstrates the scenario when the facilities are constrained
in their capacity to act as an entry facility of a node in the
proportion4 : 2 : 2.5 : 0.5 : 1.0. The final solution is such that a
proportion 3.9 : 1.9 : 2.5 : 0.5 : 1.0 is achieved for the facilities
as the entry point for the nodes in the network. Note the color
changes for the nodes in comparison to Fig. 4(c), (f), and (g).
Fig. 4(i) illustrates the scenario when the capacities of the
transportation links are known a priori. We assume that all
the transportation links except (f1, f3), (f2, f3), (fs, f4) and
(f5, f1) have zero capacities and we constrain thatnz, ¢, : 15, ¢, :
Nfsfa - Nfsfa = 3 :7:10:10. Upon simulation, the facilities
are allocated and transportation paths are fixed in such a way that
the Cf1f4 : Cf2f4 : Cf3f4 : Cf5f4 =3.3:6.3:9:9,1.e.,theso-
lution given by the algorithm complies with the constraint on the
communication link capacities. The total cost of communication
is 15.8 units.

Comparison With Previous Works: Next we compare our
proposed method with [28] and [29]. We begin with comparing

the computation time of the algorithm presented in this article
with the one proposed in [28]. The computation time for the
problem setting shown in Fig. 4(j) is 24.86 s, while the algorithm
presented in this article takes 1.85 s which is just 8% of the
former. Note that the [28] uses MATLAB to run the algorithm on
an Intel Core 2 Duo T5470 1.6-GHz processor with 2-GB RAM,
while we used MATLAB to code and run our algorithm on i3
2.3-GHz processor with 2-GB RAM. We note that the improve-
ment in the computation time comes from the scalability of the
algorithm proposed in this article, since the configuration of the
two machines used are almost similar. Fig. 4(k) demonstrates the
solution to the s-FLPO problem as given by the algorithm in [29].
Here, the total cost of transportation comes out to be 14.93,
which is 18% (or 2.35 units) more than the solution Fig. 4(c)
given by the algorithm presented in this article.

Large Scale Problems: Fig. 4(1)—(0) demonstrate a large scale
s-FLPO problem setting with N = 17028 nodes as indicated
by the blue triangles. In Fig. 4(1) and (n), we allocate M = 27
facilities using the algorithm in [29] and our current work,
respectively. Note the qualitative difference between the two
solutions where the allocated facilities and the transportation
paths resulting from the latter are more distributed in the domain
as compared to [29]. The objective function value for the solution
in Fig. 4(1) is 1323.07 units and for Fig. 4(n) is 985.87 units;
which is a improvement of 25% over the former. Similarly,
in Fig. 4(m) and (o) we allocated M = 50 facilities using the
approach in [29] and our current algorithm, respectively. The
objective value for the solution in Fig. 4(m) is 864.35 and for
the solution in Fig. 4(n) is 582.70; approximately 33% lesser
objective function value is obtained using our current frame-
work. The above quantifies the fact that the framework devel-
oped in [29] results into suboptimal solutions as compared to our
current framework when applied to a general s-FLPO problem.
Also note that the framework presented in [28] is computation-
ally intractable for both the above cases of M = 27 and M = 50
facilities as it requires 2.9 x 10%® and 8.2 x 10%% many decision
variables, respectively; the corresponding memory requirements
are unthinkable. Fig. 4(p) compares the cost function value of
the solutions obtained using [29] (V;) and our current work
(V3) for various number of facilities M allocated in the large
scale setting of nodes and destination illustrated in Fig. 4(1)—(0).
Note that the ratio n = V3 /Va(> 1) increases with number of
allocated facilities and reaches close to 1.5 (i.e., 50% increase in
the cost function values in [29]) for values of M % 40—-clearly
indicating suboptimality of the framework [29] when applied to
general s-FLPO problem setting.

d-FLPO in Partially Connected Network: We consider the
scenario of partially connected spatial network where the trans-
portation links (fl, f2)’ (f2a f3)’ (f47 fl)’ (flv f3)’ (f47 f5)’
and (f5, f3) are absent. The main steps of the algorithm are
summarized in Fig. 4(q). The sequence of images in Fig. 5
(al)—(a4) demonstrate the dynamics of the facilities and the
transportation paths for randomly chosen dynamics of the nodes
and the destination center. The node and destination center
dynamics are simulated for a total duration of 20 s and the dy-
namics of the facilities and transportation paths are determined
using (31) after every time interval of At = 0.03 s. Observe the
change in the entry facility of the nodes (marked by the change
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Fig. 5.

(a1)—(a4) Solution to the d-FLPO problem. Observe the change in spatial coordinates of the nodes, destination center and the facilities.

Also, observe the change in the color of the triangles from (a2) to (a3) and (a3) to (a4), indicating the change in their transportation paths.
(b) Nonviable dynamics of the facility locations. Observe the considerable change in spatial location of f» and f4 over a small interval of 0.03 s. (c)

Comparing distortion from the two approaches.

in their color) and their corresponding transportation path in
Fig. 5(al)—(a4).

The frame-by-frame approach takes approximately 700 times
more computational time than our approach for the example
considered above. Fig. 5(c) compares the distortion Dy obtained
from our control-based approach and the frame-by-frame so-
lution. Apart from that, the simulations using frame-by-frame
approach show sudden jumps in positions which may be im-
practical for scenarios with bounded velocities, for instance in
Fig. 5(b), note the sudden jump in positions of facilities fo and
f4 in the span of two time instants that are only 0.03 s apart.

VIIl. ANALYSIS AND DISCUSSION
A. Flexibility of the Framework

The proposed framework is flexible to incorporate various
additional constraints on the s-FLPO and d-FLPO problems in
terms of the network topology, facilities, or the transportation
paths as illustrated in Section V. Our framework also generalizes
to different choices of distance functions dj, (yx, Yi+1) as against
the squared euclidean function considered in this article.

B. Robustness Analysis

The solutions obtained to s-FLPO and d-FLPO problems are
sensitive to various attributes of the nodes and the destination
center (such as spatial locations, dynamics, and distance cost
functions). This necessitates a study to classify such attributes,
that affect the final solution, into various categories of impor-
tance. Our framework easily facilitates such a study through the
free energy function F' which is a smooth approximation of the
cost function D. For instance, the derivatives gTi’ %, and %—5
measure the sensitivity of the final solution to the spatiejll location
of the node n;, facility f;, and destination ¢, respectively.

C. Uncertainty in Parameters

In certain applications, instead of the exact information about
various attributes of the nodes and the destination centre, a partial
knowledge in terms of distributions of these attributes may be
known. For instance, instead of the exact spatial location x; of the
node n;, distribution p(x;|n;) for the spatial location is known.
Our proposed framework easily incorporates such uncertainties
in parameter values. For example, the above uncertainty in the
spatial locations of the nodes will result into replacing d(n;, f;)

with d'(ny, fj) = >, p(zi|ni)d(ni, f;) and the remainder of
the problem solution follows as in Section III.

D. Application to Parameterized Finite Horizon Markov De-
cision Processes (MDPs): The stage-wise framework proposed
in Fig. 2 facilitates a viewpoint where in our MEP-based solution
approach for the FLPO problem is easily extendable to the class
of sequential decision making problems that are modeled as
finite horizon MDPs with parameterized state space. In partic-
ular, consider the MDP given by M = (S, A, ¢, P, H) where
S is the state space, ((s) for s € S represents the unknown
parameter (e.g., facility locations in FLPO), 4,¢: S x A — R,
P:SxSxA—{0,1}, and H, respectively, denote the set
of actions, the cost function, the state transition probability,
and maximum number of stages. The underlying FLPO-type
objective is to Ming¢(s)} {u,(s)} J = D_ses P(5)J(s) where

H

J(s) =Y pu(X|zo = 5) [Z C(xt7ﬂt(mt))] (32)

t=0

p(s) denotes the weight of each state s € S, ,(+) is the policy
under which the state z; = s € Sisfollowedby z;11 = 1 (s) €
S, X :=(xp,21,...,2y) denotes a sequences of states and
Pu(+|s) is the distribution over the space of all possible sequences
X. Note the resemblance of the objective function here with
the cost function D in (5) of the FLPO problem where the
unknown parameters ¢(s) are the facility locations {y, } and the
policy 1:(+) is analogous to the association weights {px(+|-)}.
Hence, the solution methodology detailed out in Section III also
solves the optimization problem posed by the parameterized
finite horizon MDPs.

APPENDIX A

Definitions of matrices in the expression of y in (13)

1) A= Zfil Aj;, where A; € RM*M g a diagonal matrix
such that (A;);; =32, . . pPywpo(1]70) .. pic1
(filvie1)-

2) B=Y"M"(B; + BT) where B; € RM*M is such that
(Bi)mn = Z%m,,,,mflmopo(’)’l|70) oo pic1 (fmlyio1)
p_l(fnlfm) _

3) X € RM*", where X,n, :Z’yo PryoP” (i [70) (€(70) ) s
and (£(70))r is the nth component of the spatial coordi-
nate of yo. -

4 C=B+ Y0, Bi+ Y5, B;+ D e RMxm,
where (B)mn = Z’Yo pvoPO(fm"YO)p1<5‘fm)zn7
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M = D o pr e Pr0P0 - - - Pim2Pio1 (fm|Yi-1)

(B:)
pv(é‘fm)%u
(Bl) = Z”/O,’Ylw-.,’nqp'mpo o

(fm

(D -1 (fmlvar-1)2n,

‘6)2717
) = Z'YOa-nv'YJW—lp’YOpO o
and z,, denotes the nth coordinate of the destination .

The matrix C' :=2A — B is such that for every ith row
in C the sum of absolute value of the off-diagonal entries
(32, [Cij|) is less than the absolute value of the diagonal
element (|[C];;]) in that row, i.e. >, |[Cli;| < [[Cliil. Thus,
by Gerhgorin’s circle theorem [38], all the eigenvalues of C are
positive and hence C'is a positive definite matrix.

-Pi—2Di—1 (5\%‘71)291‘

APPENDIX B

Proof of Theorem 1: As indicated in the algorithm, at each
value of the annealing parameter [3;, where ¢ denotes the tth
iteration, it is required to solve the following implicit equation
iteratively y = (2A(y) — B(y)) (X (y) + C(y)). The corre-
sponding iteration scheme (where n denotes the iterate number)
solves for y; at each value of (;

(24,(n) — By(n)) " (Xo(n) + Cy(n))

=:G(y:(n))

ye(n+1) =

where A, (n), B;(n), )%t(n)
on y;(n). The free-energy at the nth
the annealing parameter f; is given by

_BL Z’YOES Pro log Z'yeg e iz diOn(m) 4 (m)

and Cy(n) are dependent

iteration for
Fy(n) =
whose

gradient with respect to y s VF,(n) = 2(24,(n) —
Bi(n))(y:(n) — yi(n + 1))
= 0 +1) = y(n)  3Au(n) — By(n)) ' VF (),

which is of the form y;(n+ 1) = yi(n) + arxt(n), where
xt(n) = —(2(A4(n) — By(n)) "'V F;(n). The matrix C;(n) =
(2A:(n) — Bi(n)) € RM*M for every iteration n is such that,
for every ith row in C} the sum of absolute value of off-diagonal
entries (> i |(C})4;]) is less than the absolute value of the diag-
onal element (|(Cy);;|) in thatrow, i.e. 37, [(Ct)ij| < [(Ct)iil-
Thus, by Gerhgorin’s circle theorem [38], all the eigenvalues of
Cy(n) are positive. Hence, (C;(n)) ! is positive definite and the
descent direction y;(n) is such that x;(n)? VF;(n) < 0, where
the equality holds true only for the case when VF;(n) = 0.
Therefore, y¢(n) is the descent direction and the current iteration
scheme is a descent method which guarantees convergence to a
local minimum.

APPENDIX C

Definitions of A, K,: A,, K, €RMT1 [A], =1, —
Un-1, [Ky]n =€) = E(Yn-1), T € RAMFDXAHD g an
identity matrix, £(7%) is the spatial coordinate of v, 0 < k <
M+ 1.

Proof of Theorem 2: The solution y to (13) no longer implies
a (local) minimum to the cost function as soon as the second
order condition in (15) fails. There exists a direction v along
which the cost can decrease, thereby implying that y is not
the minimum. In fact, perturbation of y at such critical 5 and

resolving (13) results in a new solution y. (as done in step 4
of the annealing algorithm), which has more number of distinct
locations {y;}. To obtain this critical value of /3, we compute
%25’ as in (15). We claim that the expression of hessian 8;2
in (15) is non-negative for all finite perturbation ¢ if and only
if the matrix [I — 237,] is positive definite. The “If” part is
straightforward since the second term in the expression is non-
negative. For the “only If” part we show that when [I — 257 ]
is not positive definite, there exists a finite perturbation v such
that the second term becomes zero thereby making the entire
expression in (15) negative. Let us assume that there exists a
transportation path v € G with positive probability such that the
matrix [I — 287 ,] is not positive definite. In fact, we assume
there are several coincident facilities which result into several
coincident transportation paths v € G such that [I — 267, ] is
not positive definite. Under such circumstances we see that for
the finite perturbation A, = 0 V v # 4 and Zvegzv:& Ay, =0,
the second term in (15) is zero. Thus, whenever the first term
in (15) is not positive definite we can construct the above
perturbation such that the second term vanishes. Hence the
positivity of the expression in (15) for all finite perturbations
1 depends solely on the positive definiteness of [I — 287Y.,].
The phase transition occurs when the matrix [I — 257, ] loses
its positive definiteness; i.e., det[l — 28Y,] =0 = . .(y) =
m where A,q. is the largest eigenvalue of T.,. We con-
sider the 5., = max, f.-(7) as we anneal 3 from a large value
to zero. The above derivation is analogous to the DA algorithm
in [22].

APPENDIX D

A. Theorem 3

Part (a), we note that e TiZode(ve7041) < 1 since di(+,1) >
0.Therefore, log g e " Lo di(veve41) < log |G|. The result
follows since Y vo Pro = 1. Part (b) of the theorem follow
directly from the expression of F'in (12). Part (c): At the instant
when y(t) = y.(t) we have that §(¢) = 0. Hence, the derivative
of free-energy F(t) is given by F = 27 P, & + [T — yZCly),

which is independent of %. Hence ‘gF =0.

B. Theorem 4

Substltutmg a(t) (31) in F' we obtain F = —Kj7 (2A —
B)y — (a® + (§(2A — B)y)?)*/? where Ko >0 and (24 —
B) positive definite (as shown in Appendix A). Hence F' < 0.
We know from Theorem 3 that the free-energy function F’
is lower bounded and from above we have that for the con-
trol @(t) in (31) F < 0. We conclude from here that F(t)
converges (say to Fl,, where |F | < 00) and |F( )] — 0 as
t — co. Now since F' = —Koy (2A B)j — (o2 + (§(24 —
B)§)?)"/2, we have that K" (2A — B)jj < |F|. Thus we con-
clude that g(t) — 0 as t — oo.

C. Theorem 5

Note: The proof here is similar to the proof for [35, Prop.
3.43]. Since (2A — B) and ® are Lipschitz, 1t is enough
to show that @ is Lipschitz at ( = 0. Since @& £ 7 — (2A —
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B)"Y(P(~1,70)T® + Cp) is Lipschitz at ¢ = 0, there ex-
ists a neighborhood B; £ {( : ||| < 6} and k > 0 such that
1O < RIS VC € Bs. Also = a + 57 (24 — Bya(r) <
0 where a = [z7 Py, — yT Po(11]70) 7@ + [T — yL Clw. If
o > 0,then |o| < |57 (24 — B)a| < k1||7]|||C|| V¢ € Bs where
k= kAmaX(QA - B) Thus, the control design @ (31) can be
bounded above as ||@|| < (2k + Ko + 1)]|C]|. For the case when
a < 0, we have that ||z] < (14 Ko)||g|l < (1+ Ko)|[C]].
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