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Abstract— Demand for fast and economical parcel deliveries
in urban environments has risen considerably in recent years.
A framework envisions efficient last-mile delivery in urban
environments by leveraging a network of ride-sharing vehicles,
where Unmanned Aerial Systems (UASs) drop packages on
said vehicles, which then cover the majority of the distance
before final aerial delivery. Notably, we consider the problem
of planning a rendezvous path for the UAS to reach a human
driver, who may choose between N possible paths and has
uncertain behavior, while meeting strict safety constraints. The
long planning horizon and safety constraints require robust
heuristics that combine learning and optimal control using
Gaussian Process Regression, sampling-based optimization, and
Model Predictive Control. The resulting algorithm is compu-
tationally efficient and shown to be effective in a variety of
qualitative scenarios.

I. INTRODUCTION

Modern transportation solutions can accumulate more than
half of the total shipping cost on the transportation portion
between the final distribution center and the customer [1].
This fact is known as the last-mile problem. Our proposed
framework consists of using the existing large networks
of ride-sharing services (Uber, Lyft) to cover most of the
distance from the final distribution center to the customer.
This process uses knowledge of these vehicles’ destination
to plan deliveries, where a UAS carries the parcel from the
distribution center and places it on a moving vehicle or picks
up a package from a moving vehicle and delivers it to a
customer. An example scenario is illustrated in Fig. 1. The
critical concern is driver behavior. An erratic driver adds an
undesirable risk to the two stages of the mission: (1) landing
safely on the moving vehicle to drop the parcel and (2) flying
back to the distribution center. Environmental factors such as
wind, package mass, sloshing of package contents, battery
age, and others contribute to these safety concerns. However,
because of the long planning horizons associated with these
missions, the primary source of risk and uncertainty arises
from the inaccurate driver behavior, where a driver might
be slower, faster, or generally unpredictable. In this paper,
we build on our previous solution for simple missions [2].
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Fig. 1: Air-ground rendezvous procedure. Left: the UAS needs
to meet an uncontrollable ground vehicle with uncertain trajectory.
Right: UASs intercept the vehicle at various points to complete
the delivery. In this example a package is carried by a ride-
sharing vehicle departing from Chicago Midway Airport bound to
Downtown Chicago.

The main extension is that the method now admits non-
differentiable paths and allows the uncertainty of path choice,
where a driver might choose a different route than the one
shared with the UAS a priori.

Model Predictive Control (MPC) is a popular method for
solving local Optimal Control Problems (OCP) in real-time
[3], where the OCP is solved at each iteration of the control
loop. Although versatile, traditional MPC is not equipped
to deal with large uncertainties over long planning horizons
due to exponentially increasing uncertainty propagation in
the planning stage. To address these issues two common
solutions are (a) stochastic MPC (SMPC) [4], [5] and (b)
Robust MPC [6], [7]. Stochastic MPC is often referred to as
risk-neutral, as it aims to minimize expectations singularly,
while Robust MPC accounts for worst-case scenarios. In
some cases, an absolute approach is desirable, but often
the problem requires a trade-off between high risk and
robustness, as not to diverge too far away from optimality. In
the context of urban aerial logistics, we aim to minimize the
risk of running out of battery and inevitably crashing. In this
paper, we handle tractability problems of optimizing over risk
measures [8] with a gradient-free sampling-based approach.
The method shown in Section III also allows planning over
multiple non-differentiable paths.

In our previous work [2] we consider the task planning
problem of guiding a UAS to the neighborhood of a human-
operated vehicle traveling along a known path. Uncertain
driver behavior and the large distances the UAS needs to
cover required the parallel planning of one risk-enabled path
that rendezvous with the driver and one deterministic return
path. The motivation is that under the conditions where a
rendezvous is only safe if there is a low probability of
running out of battery, we can increase the potential range
of the mission if we have high assurance that the UAS can
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meet the driver, and hence have less payload on the way
back. Should we commit to such a plan with a high risk of
not meeting the driver, there is a high probability that the
package will not be delivered, and the extra mass will cause
the UAS to deplete its battery prematurely and crash on the
way back.

In this work, we allow the driver not to be constrained
to a single path; instead, the driver can choose among
N different parametrized paths. We propose a sampling-
based method similar to that in [9]. After selecting the best
sample as a rendezvous location candidate, an MPC-like
controller generates inputs for two trajectories. One trajectory
rendezvous with the car in future time and another returns
to a safe landing location. The decision between which
trajectory to follow is made by probabilistic heuristics that
monitor risk measures based on the sampling statistics. In
Section II we formalize the problem setup.

A. Related work

Several papers have considered risk measures in planning
and handling uncertainties in an MPC framework, as sum-
marized in [3], [10], and shown in [7], [11], [12], [13], [14],
[15], [16]. In [11], the authors study uncertainty propagation
to ensure chance constraints on a race car; results show
that the algorithm can learn uncertainty in the dynamics,
associating risk with the unknown dynamics, and plan so that
the trajectories are safe. In [12], the authors provide stability
proofs for a linear MPC controller, which minimizes time-
consistent risk metrics in a convex optimization form. These
papers focus on operating in a constrained environment or
under controlled assumptions to provide uniform guarantees.
Our work’s key difference is that we relinquish online risk
constraint satisfaction to external heuristics, widening the
solver’s capabilities and flexibility at the cost of a more
conservative solution. Apart from fundamental results in this
field, such as [15], modern developments in [16] show that
the increased computational capacity enables executing risk-
minimization in real-time for a variety of systems. Few
papers have been published concerning highly stochastic ren-
dezvous problems. Most notably, in [17] the authors compute
optimal trajectories in refueling missions, but in their work,
most of the uncertainty is environmental and local, whereas
we consider epistemic and large-scale uncertainties.

Lastly, sampling-based motion planning has grown in
popularity with the increased computational power afforded
by modern CPUs and Graphics Processing Units (GPUs).
The core idea behind these methods is to cleverly sample
inputs from some distributions and use these samples’ quality
to update the distribution and improve the next batch of
samples. Ultimately, the goal is to converge to a narrow
distribution centered around the optimal input (or set of
inputs) to the system. In this paper, we sample rendezvous
times and their associated rendezvous location. Two ap-
proaches are directly related to this paper. In [9] the authors
present a novel method to find trajectories for mobile robots
in cluttered environments. In [18], the authors present a
sampling-based MPC that integrates risk management using

Conditional Value-at-Risk (CVaR) [13, Sec. 3.3]. Both
motion planning and usage of CVaR are relevant to this
paper, both of which are described in Section III.

B. Problem Novelty

The rendezvous (or interception) problem is not new.
Traditionally these problems fall into two categories: inter-
ception of a target on a known path or interception of a
target with an unknown trajectory [19]. Full knowledge of
target behavior makes the problem trivial as shown in [20].
In these scenarios, the goal is to find the optimal trajectory
for interception. Conversely, no knowledge of target behavior
requires problem relaxation [21], [22] with little guarantees.
In this paper, we require certain constraints usually not
afforded by latter, and have only partial target behavior
knowledge. Thus, we require a custom solution that exploits
the particulars of the rendezvous problem to provide safety
guarantees.

C. Statement of contributions

We present a hybrid algorithm that is capable of attempting
to rendezvous with a human-operated ground vehicle and
does not crash with guaranteed safety bounds. The algorithm
handles three significant challenges: driver behavior, multi-
ple possible routes, and non-differentiable paths. To safely
attempt a rendezvous, three main components are needed.

A Gaussian Process Regression learning module collects
sensor data from the ground vehicle and builds a driver
model. Unique to this paper is the way we pose this learning
problem. Instead of modeling future driver position, we
leverage historical traffic data from the area to learn how the
driver deviates from an average virtual driver. This way, we
significantly reduce the problems associated with uncertainty
propagation. This benefit is only possible by the fact that we
know all reachable roads a priori.

To address pathing complexities, we use a modified ver-
sion of [9] that accepts a specialized risk measure and inte-
grates with the learning and MPC layers instead of finding
optimal trajectories directly. This novel way of sampling
trajectories relies on fast Gauss-Kronrod Quadratures to
estimate sampling quality, an approach that can benefit from
parallel computing hardware such as GPUs.

The last component is an MPC-like controller. Unlike
traditional MPC, our formulation uses the time horizon as
an input, allowing a compact set of variables capable of
timing control. The temporal component is crucial because
an optimal rendezvous has the UAS reaching the ground
vehicle precisely both in space and time. To achieve this,
we use the fact that the mission’s spatial scale is large
enough that single-integrator dynamics are a satisfactory
approximation.

These three modules share critical information backward
and forwards between each other and provide a robust,
efficient, and concise set of hyperparameters. The rest of this
paper is structured as follows: in Section II, we introduce
and define the problem in algorithmic format. In Section III,
we present the three main components of this approach: the
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model learning, the importance sampling scheme, and the
MPC controller. In section IV, we demonstrate results for
individual modules and two full planning stack examples.
Finally, in Section V, we provide concluding remarks and
discuss the shortfalls of this approach and future directions
to address them, respectively.

II. PROBLEM FORMULATION

We begin by defining the notion of persistent safety.

Definition 1 (Persistent Safety). Let xk+1 = f(xk, uk) be
a dynamical system with state vector x ∈ Rn and control
vector u ∈ Rm. A safety set Sk ⊂ (X,U) is a set, in which
all states and inputs are considered safe by some measure
ρ(x) : Rn → R at step k. We define a planning algorithm as
persistently safe, if Sk = {xk ∈ X, uk ∈ U : f(xk, uk) ∈
Sk+1} exists for all k for a set of admissible states X and
control inputs U .

The goal is to compute a persistently safe trajectory
(sequence of states x and inputs u) as defined in Definition
1 that satisfies a rendezvous condition. This computation
is achieved by postponing a decision between aborting or
continuing the mission for as long as possible. The additional
time afforded by postponing this decision is used to improve
uncertainty prediction and, consequently, reducing the risk
of running out of battery or fuel.

Consider a set P of N indexed parametrized paths P =
{pj(θ), j = 1, . . . , N} ⊂ R, p : R+ → R2, θ ∈ R+ on
a planar Euclidean region R ∈ R2, and historical velocity
data along each path θ̇hj (t), θ̇hj : R+ → R obtained
from the traffic data that are provided apriori. A stream of
noisy position θd(t), θd : R+ → R+, and velocity θ̇dj (t)
measurements from a driver moving along any of the paths
are obtained in real-time via on-board sensors. Let κ be set
of all permutations of {1, . . . , N}. Let a path intersection
set be defined as I = {{θ, p} ∈ R2|pi(θ) = pj(θ), {i, j} ∈
κ}. The intersection set I contains all path segments that
intersect each other before terminally pruning. The purpose
of this set is to identify values of θ for which we are
uncertain of what path the driver will choose. We ignore
paths that the driver may no longer choose, i.e. a path which
the driver passed and chose not to turn into. Obviously this
also makes it so that, within I, the historical data is the same
across intersecting paths. We wish to find a rendezvous point
θdj (tR,j) that brings both vehicles together at a rendezvous
time tR,j ∈ R+, for some path j.

Due to sensor noise and uncertain driver behavior, we
aim to learn the distribution of θdj (tR,j) and plan on it. In
single path problems the distribution g(θd|tR) is distributed
along the path. For this problem, however, each path will
have its own distribution gj(θdj |tR,j). We approximate driver
behavior by learning a deviation mean function d(θhj (t)) :
R 7→ R and variance function Σd(θ

h
j (t)) : R 7→ R. The

deviation function is such that θdj (t) = θhj (t) + d(θhj (t)) if
learned exactly. Section III-A explains this learning process.

The next step is to use the driver model to find qual-
ity rendezvous candidates comprised of time and location

θ = 0

θd(t0)

𝔼[θd(tR)]

H

Delivery

Path

Return

Path Abort


Path

PNR

Var[θd(tR)]

·θd(t0)

RDV

1

2

3

4

Fig. 2: Overview of the problem setup at time instance t0 for
a single path. Uncertainty in driver behavior and path choice
requires multiple plans. Each path has associated risk and
cost. We plan a Point-of-No-Return to afford extra time for
data acquisition.

pairs. This search is done through stochastic optimization,
explained in Section III-C. Assume each path has an optimal
rendezvous location local to the path. The random nature
of the problem makes the rendezvous locations stochastic,
with an N -dimensional distribution A?(µ?A,Σ?A). Since we
do not have knowledge of A? we aim to approximate it
by manipulating the parameters of an ancillary distribution
A(µA,ΣA) with equal dimension. To estimate A we require
a driver model (d and Σd) and some way of optimizing
the parameters of A such that A → A? as t → ∞. If we
are successful, we can find the optimal path to rendezvous
with defined as ptgt, such that p? = ptgt(θ

d
tgt(tR,tgt)) is the

optimal rendezvous location.
With knowledge of p?, the next step is to find a trajectory

that guides the UAS to that point in space and time. We wish
to have guarantees that the UAS will not run out of battery.
To achieve this, the trajectory planner plans two options;
one that rendezvous with the ground vehicle and another
that returns to a safe landing location. Because the latter
(abort path) does not depend on any uncertainties, we are
guaranteed to land safely by choosing that option. The cost
is that we do not rendezvous and render the system sub-
optimal. To mitigate this problem, we find the two paths by
planning a Point-of-No-Return (PNR) between the UAS and
p?, from which a separate path navigates the UAS to a safe
landing location in case the risk of rendezvous failure ρd(p?)
is too great. The risk measure ρd maps the distribution of
p? and system states to R+. We model the UAS as a system
capable of tracking single integrator dynamics in this context.
We define safety (and, thus, its associated risks) as a function
of the probability of running out of remaining battery or fuel
Er. Figure 2 illustrates the setup for a single path. In Section
III-D we present the multi-path setup, which is illustrated in
Figure 3.

The discretized single integrator dynamics of the UAS are

xk = xk−1 + vkTs, (1)
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θ = 0

θd(t0)

𝔼[θd2 (tR,2)]

H

PNR

Var[θd2 (tR,2)]

·θd(t0)

1

4

n1

n2

n3

𝔼[θd1 (tR,1)] Var[θd1 (tR,1)]

𝔼[θd3 (tR,3)]
Var[θd3 (tR,3)]

2

2

2

3

3

3

x(t0)

Fig. 3: Overview of the problem setup at time instance t0
for multiple paths. Additional uncertainty in path choice:
each path has it’s own individual driver position uncertainty.
Planning for all outcomes is intractable.

where xk ∈ R2 is the Euclidean UAS position, vk ∈
R2 is the Euclidean velocity input, and Ts the sampling
time. Additionally, the remaining energy has the following
dynamics:

Er,k = Er,k−1 −
(
mv2

2
+ αm

)
Ts, (2)

where Er,k is the remaining energy, m ∈ [ma,mb], ma >
mb is the mass of the UAS (for a package drop-off mis-
sion, the mass decreases after the package is dropped on
the ground vehicle), and α is the scalar hovering energy
consumption constant. Note that m will decrease from m0 to
m1 after the package is dropped off on the ground vehicle,
decreasing the energy consumption rate and increasing the
range. This is the detail that makes it beneficial to commit
to plan so that we can reach further and increase efficiency.
Additionally, given this problem’s large scale, the single
integrator assumption is not strong. At this scale virtually
any controllable robot will be able to track these dynamics
without difficulties. Adaptive control techniques such as [23],
[24] can formalise this assumption. We can now present the
problem formulation.

Problem 1 (Risk-Averse Multi-Path Rendezvous). Given a
map of N paths, historical velocity data along each path
θ̇hi (t), and a stream of noisy position θd(t) and velocity
θ̇d(t) measurements from a driver traversing an intersection
of any subset of the paths, find a persistently safe sequence
of control inputs and a future time tR such that the UAS
reaches a neighbourhood of the driver at time tR and flies
to a safe pre-determined landing location. This trajectory is
the solution to the following optimization problem

min
U,tR,tL

L(xk, uk,D)− tD

s.t. xk = xk−1 + vkTs

||x(tR,tgt)− p?|| ≤ ε, x(tL) = SL

Er,k = Er,k−1 −
(
mv2

2
+ αm

)
Ts

Er(tR?) ≥ 0,

where L(·) is a cost function that minimizes risk, input
costs, and delivery time, tD is the decision time between the
current state x(t0) and Point-of-No-Return (PNR), tR,tgt is a
rendezvous time for path tgt, p? is a rendezvous location, ε
is a small positive number, tL is a landing time for a landing
location SL ∈ R2, x(t) and Er(t) are continuous time
realizations of xk and Er,k respectively, and D = {D,H} is
a data set containing measurements from the ground vehicle,
where D, H ∈ RM are defined as

D =
[
θ̇d,1 · · · θ̇d,M

]>
, H =

[
θ̇h,1 · · · θ̇h,M

]>
,

and M denotes the number of measurements collected, θ̇d,j

are the driver samples, and θ̇h,j is the expected velocity at
the GPS-collected point θd,j obtained from historical data.

In Section III we present the tools that solve Problem
1 by altering its different components. Although we never
solve the Optimal Control Problem shown above explicitly,
we reach an equivalent solution through multiple planning
stages.

III. METHODS

A. Driver Model Learning

This section discusses the learning component introduced
in Section II. One of the major challenges for the proposed
problem is that each driver behaves differently. While one
driver may drive at a conservative speed limit, another might
drive relatively faster, slower, or erratically. Therefore, learn-
ing a driver’s ‘behavior’ will be beneficial to the rendezvous
problem. Later on, we use this model in the approximation
algorithm that estimates future driver position. We now set
up this learning problem. We assume that we have access
to the driver’s position θd,i = θd(ti), where ti is the time
instance at which the measurement is obtained. Furthermore,
we have measurements of the driver’s velocity denoted by
θ̇d,i = θ̇d(ti). Note that there is no dependency on which
path the driver is on because we assume that θd,i ∈ I,
and I ignores non-reachable paths. All measurements are
considered to have additive normally distributed noise. We
also assume that we have access to historical velocity profile
given by θ̇h,i = θ̇h(ti). Such a historical velocity profile
can be generated by collecting measurements of vehicles
traversing the path and fitting a distribution over it using
methods similar to those in [25], [26]. In our case, we
assume the historical velocity profiles are in the form of
time-parametrized mean functions. To summarize, given the
driver’s position θd,i, we have access to a measurement of
the driver’s velocity θ̇d,i and the corresponding probabilistic
historical velocity θ̇h,i. A comparison of θ̇d,i and θ̇h,i thus
represents a measure of the driver’s behavior. In particular,
we wish to learn θ̇d(θ̇h) : R → R. An equivalent problem
is to learn a deviation function d(θ̇h) : R → R such that
θ̇d(t) = θ̇h(t) + d(θ̇h(t)). Throughout this paper, we learn
the deviation function.

The traditional approach would be to directly learn the
vehicle’s position function θd(t); however, this would cause
the uncertainty propagation to expand too quickly and force
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an abort decision too often [11]. Instead, we explore both
the fact that the vehicle is constrained to a known path
and that the velocity along the path has a strong prior (the
historical velocity θ̇h(·)). A disadvantage of this approach
is that an integration procedure must be carried out to
estimate θd(t). We leverage the sampling-based nature of
this algorithm presented in Subsection III-C and modern
numerical integration methods to provide a computationally
efficient integration procedure.

As described by Williams and Rasmussen [27], a Gaussian
Process (GP) is a generalization to functions of the Gaussian
distribution. Assume that we have a stream of M ∈ N
measurements of the form yi = d(xi) + ζ, ζ ∼ N (0, σ2

n),
i ∈ {1, . . . , N}, where yi = xi−θ̇d,i, θ̇d,i is the actual sensor
measurement, and xi = θ̇h,i is known a priori. Note that
this definition is equivalent as far as learning objectives to
the one in Problem 1. Now let Y =

[
y1 . . . yM

]ᵀ
, X =[

x1 . . . xM
]ᵀ

, and define the data set DM = {Y,X}.
GPR (Gaussian Process Regression) assumes that yi ∼
N (d(xi), σ

2
n) and d ∼ N (0,Kd(x, x

′)) for a kernel Kd. The
choice of kernel functions depends on the particulars of the
problem. In this paper, we use the Matérn Kernel [28]. We
can then define posterior distributions at any point x? ∈ R
given DM as d(x?)|Y ∼ N (µd(x

?),Σd(x
?)). The mean

and variance functions µd(x?), Σd(x
?) of the GP model are

defined as

µd(x
?) = K?(x?)ᵀ(K + σ2

n)−1Y,

Σd(x
?) = K??(x?)−K?(x?)ᵀ(K + σ2

n)−1K?)(x?).

The terms K??(x?), K?(x?) and K are defined based on the
kernel Kd of the GP model: K??(x?) = Kd(x

?, x?) ∈ R,
K?(x?) = Kd(X, x

?) ∈ RM , K = Kd(X,X) ∈ RM×M .
Extensive further reading on this topic can be found in [27],
[29]. One of the main benefits towards the risk-averse efforts
in this paper of using GPR is that estimates are computed
in predictive distributions. The resulting distributions will
provide tools for risk assessment in Sections III-C and III-
D. For analysis purposes we also define O = {$ ∈ R :
mini xi ≤ $ ≤ maxi xi}. The set O is the observed set that
tracks which points were measured in the domain of d.

One downside of using GPR is computational efficiency.
In this paper, we mitigate this issue with Sparse Gaussian
Processes [27, Sec. 8.4]. In particular, we use Deterministic
Training Conditionals (DTC) [30], [31]. Although DTC is
not state-of-the-art, in practice and for this problem, in partic-
ular, it is not outperformed by other methods while providing
non-negligible speedup. Deterministic Training Conditionals
work by selecting specific inducing points instead of regress-
ing over the entire data set. There are many approaches for
selecting the inducing points; we use equally-spaced data
quantiles. Compared to other methods, DTC had the property
of being conservative — an important characteristic for this
framework. Figure 4 compares DTC to full GPR. Figure 5
shows a fitting performance comparison between the two
methods.

Fig. 4: Median computation times for full GPR and DTC
GPR. Bars represent standard deviation, N indicates the
amount of data points. At N = 300 a full GP regresses in
a median time of 1.555ms, while DTC finishes in 88.827µs.
All computations done on a single core of a 2012 Intel Core
i7.

Fig. 5: Fitting performance: DTC performs effectively the
same as a full GP in this application. The goal is to
approximate the true deviation function from observed data.
Shaded area indicates 95% confidence bounds.

B. MPC formulation

In this section, we discuss the structure and particulars of
the MPC component. A primary challenge of the rendezvous
problem is presented by strict and numerous constraints, of
which many are non-convex. By exploring two unique fea-
tures of the problem formulation, we reduce dimensionality
and attain tractability. We now outline the Optimal Control
Problem (OCP) associated with the rendezvous problem.
As mentioned previously in Sec. II, the solver is tasked
with computing the Point-of-No-Return (PNR) and control
inputs that navigate the UAS between important waypoints
(rendezvous location, landing location). To fully define the
problem and gain temporal constraint management, we ex-
pand the control from velocities to include a time “input”.
The nature of this problem requires the UAS to coincide
with the vehicle both in space and time. By introducing time
as a manipulated variable in the OCP, we allow the solver
to decide on the optimal time allotment before reaching
PNR directly. This feature is critical because we rely on
maximizing this time allotment (decision time) to increase
the number of data points we can gather and subsequently
improve the GPR model’s quality. This time input works
by assuming a piecewise constant control law along each of
the four segments (PNR, rendezvous, landing location, and
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abort location), which is possible due to our assumption on
the UAS integrator dynamics described in (1) and (2).

We represent each of the segments using the state vector
(x,v, t) ≡ (xi, vi, ti), i ∈ {1, . . . , 4}. Here, ti represents
the time to be spent at a constant velocity vi to reach one
waypoint from another. Furthermore, xi ∈ R2 represents
each of the defined physical waypoints in Euclidean coor-
dinates and vi ∈ R2 represents velocity inputs in Euclidean
coordinates. The waypoints are, in this order, the Point-of-no-
Return (PNR), the rendezvous location (RDV), the landing
location (SL), and the abort location (SA), as shown in
Figure 2. The designed Optimal Control Problem (OCP) is
given by:

min
U

t2 + t3 + t4 − t1

s.t. xi = xi−1 + viti, x4 = x1 + v4t4,

Er,k = Er,k−1 −
(
mkv

2

2
+ αmk

)
tk,

Er,4 = Er,1 −
(
m4v

2

2
+ αm4

)
t4,

|vi| ≤ vmax, x3 = p?, x4 = SL, x5 = SA,
3∑
i=1

ti ≤ tmax, t1 + t4 ≤ tmax, tc ≤ ti

E1 + E2 + E3 ≤ Er,k, E1 + E4 ≤ Er,k,

where tR ≡ t1 + t2 is a provided rendezvous time, m1 =
m2 = m4 = ma is the UAS mass with the package,
m3 = mb is the UAS mass without the package, ptgt ∈
P is target path we aim to rendezvous with, p? is the
optimal rendezvous location provided by the GPR model
in Section III-A and elite samples from the importance
sampling algorithm in Section III-C, SL and SA are the
landing and abort destinations, Er,0 is the remaining energy,
Er,i, i = 1, . . . , 4 is the energy associated with the segment,
and tc is a dwell time for the low level controller to switch
tracked segments. The dwell time is necessary to stop the
solver from placing waypoints arbitrarily close to each other
and creating undesirable sharp turns, which are problematic
for our single integrator dynamics assumption. Moreover,
U ≡ {ti, vi}, i ∈ (1, ..., 4). Note that apart from risk-related
design choices, all constraints and constants are given a priori
from mission parameters.

C. Importance Sampling
In this section, we discuss the Sampling-based optimiza-

tion algorithm. The goal is to approximate A?, an N -
dimensional distribution of optimal rendezvous times accord-
ing to some criteria. In possession of a rendezvous time, we
use the model found in Subsection III-A to estimate where
the rendezvous location is. We perform this optimization
problem using the cross-entropy (CE) algorithm [32]. We
now set up this optimization problem. We present this
algorithm in three parts; first, we discuss the ranking system
that selects the best samples in a group; second, we add a
risk-averse component; and finally, we briefly show how to
update the sampling parameters.

1) Sample Ranking: Let A(µA,ΣA) be a N -dimensional
Gaussian distribution of rendezvous times with mean vector
µA and diagonal variance matrix ΣA. Let ns and ne be
positive integers such that ns >> ne. Let S ∈ RN×ns be a
matrix of ns samples from A. We say that S is the sample
set, and Se ∈ RN×ne is the elite sample set that contains
the ne best row-wise samples from S . In other words, Se is
a matrix where each row contains the ne best samples for
the path associated with that row. To find the elite set, we
partially rank the sample set according to a a cost function
l(ni,j) we wish to minimize, where ni,j is the element in the
i-th row and j-th column of the (non-ordered) set S. Each
element ni,j is a time sample that produces a rendezvous
location candidate. The first step is to compute the expected
driver position for each sample as a rendezvous location.
Consider a moment in time t0 and a time sample ti,j ∈ S .
At t0 we have a GPR model of d(θ̇hi (t)) for every path i ∈ P .
Thus

E[θdi (t)] = θd(t0) +

∫ ti,j

t0

θ̇hi (t) + d(θ̇hi (t)) dt, (4)

where the integration procedure is done numerically using
Gauss-Kronrod Quadrature. This integration completes in a
median time of 124.4µs on a single core of a 2012 Intel
Core i7. However, the nature of the algorithm permits this
implementation to be largely computed in parallel on a GPU,
although such implementation is not done in this paper. A
parallel implementation would provide significant speedup
for higher values of ns than the ones used in this paper (we
use ns = 5, for reference). Using (4) we can compute the
expected driver position p for each time sample j and path
i with pi(E[θdi (tj)]) in matrix form:

p =

 p1(E[θd1(t1)]) · · · p1(E[θd1(tns
)])

...
...

pN (E[θdN (t1)]) · · · pN (E[θdN (tns)])

 .
In possession of p we can compute the “quality” of each
sample. Naturally, because our goal is to not run out of
fuel or battery, we choose samples that minimize energy
consumption. This is not equivalent to minimizing distance
to the UAS for two reasons: (a) spatial points have a temporal
constraint, and (b) the landing location and remaining fuel
for landing depend on an external path planner (discussed
in Subsection III-B). Temporal constraints mean that two
equally close rendezvous candidates have two different times
for the UAS to reach that location. The energy dynamics (2)
are such that the best rendezvous time is non-obvious in this
case. Additionally, the landing location and remaining fuel
after rendezvous need to be included in the quality criteria.
Failure to do so would select a sample that minimizes the
energy necessary to rendezvous, but might not minimize
overall mission energy. To compute energy costs for each
sample we use the energy dynamics (2). Let E ∈ RN×ns be
a matrix containing the energy costs for each sample, and
x0 = [x10, x

2
0] be the euclidean position of the UAS at t0.
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Then we compute each element of E as

Ei,j =ma(tj − t0)

[
1

2

∥∥vi,jr ∥∥22 + α

]
+

mb(tl − tj)
[

1

2

∥∥∥vi,jl ∥∥∥2
2

+ α

]
, (5)

where tl =
∑3
k=1 tk is provided by the MPC solution in

Section III-B (in the absence of a solution in the first iteration
we do not compute the second term of (5)), ‖·‖2 denotes the
2-norm of a vector, and

vi,jr =
|pi,j − x0|
tj − t0

, vi,jl =
|SL − pi,j |
tl − tj

, (6)

where SL is the landing location as described in Section
III-B. For this paper, we set l(ni,j) = Ei,j . In Subsection
III-C.2 we add a risk-averse component to the calculation
of E. These equations reflect the (generic) energy dynamics
we consider in this paper, but the procedure is agnostic to
the energy dynamics chosen by the designer. To find Se we
select the ne best samples for each path:

Se =

arg minne
j l(n1,j)
...

arg minne
j l(nN,j)

 ,
where arg minkx f(x, . . . ) means we select the k-best argu-
ments that minimize f over x that we output in the order
from best to worst. This way the first column of Se contains
the best sample for each path and so on for the other columns.
Using similar logic, we select the target optimal rendezvous
location p? = ptgt(θ

d
tgt(tR,tgt)) to be forwarded to the

MPC planner. Let Si,1e be the first column of Se. Then for
tgt ∈ {1, . . . , N} let tgt = arg mini c

(
Si,1e

)
. This equation

applies a cost function to the best samples from each path
and selects the best path index based on that cost function.
The design of c is intricate, and an in-depth analysis of what
constitutes a suitable cost function is left as future work. We
present two naive designs in this paper.

The most natural function one could choose is based on
the Best First logic. This logic selects the best global sample,
and we consider the path associated with that sample to be
the optimal one to rendezvous with. This is equivalent to
simply setting c(Si,1e ) = Si,1e , i.e. select the time sample of
least energy. This strategy would be desirable if it is possible
to control which path the driver will choose. In a different
framework application where we would consider autonomous
vehicles as the ground agent, such a cost function is highly
desirable. In this paper, however, selecting the best global
sample is overly ambitious. If the driver chooses any path
other than ptgt, there is a non-negligible probability that there
will not be enough battery to alter the course since the MPC
will be spending resources to maximize t1. An alternative
version of Best First applies weights to the cost function
with c(Si,1e ) = wiSi,1e , where wi ∈ RN+ is a vector of user-
defined weights. This variant is beneficial if the designer has
prior knowledge of the driver’s probability of choosing each
path.

In this paper, we use the opposite strategy; Worst First.
This strategy selects the worst-of-the-best time samples, i.e.,
from the best samples for each path, selects the worst path.
The logic is simple: if Best First is an ambitious strategy,
Worst First is a conservative one. If we plan to have enough
energy to reach the worst path for optimal rendezvous, all
others require less energy and, thus, are reachable. This
strategy assumes c(Si,1e ) = −wiSi,1e , where we can again
weigh each entry according to some path choice distribution.
For the rest of this paper, we assume a uniform path choice
distribution such that wi = 1∀i.On an implementation note,
we use the partial quicksort algorithm in [33] to quickly
partially sort the array of samples.

2) Risk Assessment: Quantifying risk is the effort to
determine a measure ρ that maps a set of random variables to
a real number representing the probability or expected value
of an undesirable outcome [14], [13]. With this definition, the
random variables are the states of the UAS (due to process
and measurement noises) and, more importantly, the position
of the ground vehicle due to the driver’s uncertain behavior.
It is crucial to choose measures that reflect meaningful
quantities in the problem formulation. In this framework,
risk directly relates to uncertainty regarding the vehicle’s
location in the future and the limitations that the path
imposes on planning. If the driver is erratic, or the path only
allows the rendezvous to happen in unfavorable locations, we
consider that the mission has elevated risk. Several risk mea-
sures are popular; some examples are Expectation-Variance
[15], (Conditional, Tail) Value-at-Risk [13, Sec. 3.3], and
Downside Variance [13, Sec. 3.2.7]. These measures can
introduce nonlinearity and preclude gradient information,
endangering tractability. A popular approach uses gradient-
free methods, which sample these measures and choose
inputs corresponding to minimum risk [34]. In this paper,
we use two risk measures; ρr is the rendezvous risk measure
used by the rating system to select samples of least risk, and
ρd is the decision risk measure used in Subsection III-D to
decide on whether to abort the mission and safely return, or
proceed with the rendezvous. In this subsection, we discuss
the design and implementation of ρr. The main differentiator
between the two is that the rendezvous risk measure needs to
be computationally efficient since we repeat its calculations
for every sample, every time step. We embed risk into the
cost by adjusting the distance between each sample and the
UAS or landing area in the numerator of Eq. (6).

We start by computing the propagated uncertainty for each
sample ni,j as

hi,j = γ

∫ ni,j

t0

Σd,i(θ̇
h
i (t)) dt, (7)

where γ ∈ R+ is a scaling factor. Equation (7) makes it so
that pi(E[θdi (tj)]) ± hi,j represents a confidence interval in
θ. The goal now is to select which of these three numbers
is furthest from the UAS or landing location, and use that
distance when computing necessary velocities. Let Γ(a, b) :
R2×R2 7→ R be the Euclidean distance between two points
a, b ∈ R, then for every sample ni,j let ri,j = Γ(pi,j , x0)

419

Authorized licensed use limited to: University of Illinois. Downloaded on December 22,2022 at 15:38:04 UTC from IEEE Xplore.  Restrictions apply. 



𝔼[θd
i (tj)] +hi, j

ri, j
ri, j
+ri, j−

−hi, ji

Fig. 6: Downside Risk as potential required range gain. The
red outcome forces the UAS to spend more energy to meet
the car. The extra energy is the downside potential, used as
risk measure.

be the neutral range, ri,j+ = Γ(pi(E[θdi (tj)]) + hi,j , x0) be
the positive uncertainty range, and ri,j− = Γ(pi(E[θdi (tj)])−
hi,j , x0) be the negative uncertainty range. Then ρr naturally
follows: ρi,jr (Σd,S, x0) = max(ri,j , ri,j+ , ri,j− )− ri,j .

Figure 6 shows a visual representation of the different
ranges. This risk measure is an approximation of Conditional
Value-at-Risk (CVaR). In its common form, CVaRγ repre-
sents the expected value of the γ-percentile of a distribution
that quantifies potential loss (downside potential). Here,
instead of computing the energy distribution, we compare
the energy required to reach the sample at its mean and at
some σ-distance away from the mean. We then pick the worst
outcome and say this is the potential loss for this sample.
Finally, we can compute the risk-enabled velocities with

vi,jr =
ri,j + ρi,jr (Σd,S, x0)

tj − t0
,

vi,jl =
ri,j + ρi,jr (Σd,S, SL)

tl − tj
,

and compute and rank E the same way as before.
3) Parameter Update: This section discusses the param-

eter update algorithm for a single path. Since all paths are
independent, we repeat this process identically for every path.
We update µ and Σ by taking mean and variance row-wise
from Se with µA = Mean(Se) and ΣA = Var(Se) + λ,
where λ ∈ R is a small positive number. The scalar
parameter λ serves as an exploration tool due to the time-
varying nature of the algorithm, and avoids convergence to
a (traditionally desirable) static impulse-like distribution.

D. Heuristics
In this section, we discuss the architecture of the overar-

ching algorithm that integrates all modules and commands
a rendezvous/abort decision. In summa, this is shown in Al-
gorithm 1. The functions in Algorithm 1 and their correlated
method are shown in Table I.

The overarching logic is the same as discussed in Section
I. While the decision time t1 (time before reaching the
PNR waypoint) is greater than some constant, we keep
acquiring data, improving the model, and searching for a
better rendezvous point. When a decision is necessary we
perform a one-time risk analysis and comparison against the
scalar constant κ ∈ R to decide between turning back or
continuing. Note that following Definition 1, xk ∈ Sk∀k
because if this condition is violated, we switch to the plan
with deterministic guaranteed safety.

Algorithm 1: Mission Algorithm
D ← Initial Data
while t1 > ε do

d, Σd ← Regress(D)
S ← Sample(A, Ns)
p?, Se ← Rank(S,x, t, d,Σd)
µA, ΣA ← UpdateParameter(Se)
v,x, t← MPC(p?,x)
Send Control Input v to UAS
D ← Append(Sensor Data,D)

end
if ρd(d,Σd,x) ≤ κ then

Proceed with rendezvous and then to SL
else

Abort and return to SL
end

Function Name Procedure
Regress GPR in Sec. III-A
Sample Returns Ns samples from A
Rank Ranking Procedure in Sec. III-C
UpdateParemeter Updates parameters of A as in Sec. III-C.3
MPC Computes MPC control inputs as in Sec. III-B
Append Appends new sensor data to D

TABLE I: Correlation between Algorithm 1 and this paper’s
methods.

As discussed in Section III-C, for online optimization
purposes we approximate CVaRγ . When deciding whether
to abort or attempt a rendezvous, however, we can afford
an expensive one-time computation of CVaRγ . We briefly
define CVaRγ for completion. Let Z be a set of real-valued
continuous random variables, ρ : Z 7→ R be a risk measure
function, X ∈ Z be a random variable, x ∈ ΩX be the
domain of X, fX(x) be the probability density function of
X, FX(x) be the cumulative density function of X. Then we
define the two quantities of interest: VaRγ(X) = inf{x ∈
ΩX : FX(x) ≥ γ} and

CVaRγ(X) =
1

γ

∫ γ

0

VaRγ(X) dγ,

where γ ∈ [0, 1] is a real-valued quantile. For the purposes
of this paper, we consider the the distribution of extra fuel
required for rendezvous (X = Ee = Er−(E1+E2+E3)) as
the random variable, with distribution derived from µd and
Σd for each of the paths’ optimal rendezvous location.

IV. RESULTS

In this section, we present results on all modules. Im-
plementation code that generates all figures and anima-
tions of results are available at https://github.com/
gbarsih/Multi-Path-Safe-Rendezvous.

A. Learning Performance

We start by presenting results on the learning algorithm in
Section III-A. The learning problem seeks to find a deviation
function d that captures the driver behavior. Figures 7 and 8
show two points in time. Figure 7 is taken after 10s of data
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Fig. 7: GPR learning process snapshot after 10s. Shaded area
indicates 95% confidence bounds.

Fig. 8: GPR learning process snapshot after 50s.

gathering, and Figure 8 after 50s. The nature of θ̇h ensures
that in Figure 7, O is limited to only under half of possible
values θ̇h can take. Consequently, the GPR model has no
information on that region and produces a high value for
projected uncertainty. Conversely, in Figure 8 we explored
the entire domain, and the GPR model can produce estimates
with higher certainty. For the remaining results, we use the
same functions shown here for all paths, where θ̇h(t) = 8 +
sin(t/10) and θ̇d(t) = θ̇h(t) + sign(θ̇h(t)− 8).

B. Importance Sampling

Here, we present results on the importance sampling
algorithm in Section III-C. Since an analytical form of
the optimal rendezvous location does not exist, we leave
the performance quantification for the full planning stack
results in the next subsection. To show the efficacy of this
individual module, we analyze the convergence rate. Figure
9 shows 100 different runs of the same algorithm, with
mission parameters randomly selected. We notice that it
quickly converges (in about four iterations), and that when
O begins to expand at t = 10π, the algorithm increases ΣA
to optimize over the new data.

C. Full Planning Stack

Consider the map in Figure 10. With m = [3, 1]kg the
maximum range assuming no drop-off is 335m, while the
maximum range assuming a successful drop-off is 485m,
with α = 20 and Er,0 = 1.6E4. Under these conditions,
the roads are only reachable with the algorithm presented

Fig. 9: Average convergence rate (black) of ΣA for 100 trials
(green). At t = 10πs, O starts to cover new information.
The shift in the learned driver behavior causes the sampling
algorithm to react as indicated by the momentary increase in
ΣA.

in this paper. Figure 11 compares the risk associated with
the secondary path (that is, the path that is not ptgt) for
the two importance sampling strategies. As expected, using
Worst First yields reduced risk. The choice of κ is entirely
dependent on the mission parameters and how much risk the
designer is willing to take; however, using the Worst First
strategy will, in general, attempt a rendezvous more often.
Note that which path the driver chooses after a decision is
made, is irrelevant here since risk assessment is performed
for all cases. The algorithm aims to ensure that risk is low for
all possible outcomes. Finally, Figure 12 depicts the planned
energies throughout the mission and the distance from the
UAS to the driver. Both plans (abort and rendezvous) are
maximized and feasible.

Fig. 10: Mission map representing a section of an urban grid.

V. CONCLUSIONS

We presented an algorithm capable of planning and exe-
cuting a rendezvous mission between an autonomous UAS
and a human-operated ground vehicle. The planner can
assess the risk associated with the human factor and make
informed decisions on either proceeding with the rendezvous
or flying to a safe landing location. Such an arrangement is
persistently safe because the abort plan is deterministic. We
show numerically that the approach accomplishes its goals.
For future work, we intend to address two deficiencies of this
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Fig. 11: Same mission parameters, equally seeded, for the
two strategies proposed in Section III-C. Plot terminates
when t1 < ε = 1. Worst First finds trajectories with least
risk should the driver choose a path p ∈ P \ ptgt.

Fig. 12: Results using Worst First strategy. The algorithm
uses all available energy to try and minimize risk. Distance
increase towards the end is due to path geometry.

method. First, the algorithm needs to account for multiple
drivers. There are untapped benefits of having multiple
rendezvous options at any given time. Second, we wish
to model the dynamics of drivers entering the network to
preemptively start a mission and improve system efficiency.
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