
Learning the Behavior of a Dynamical System Via a “20 Questions” Approach

Abhijin Adiga,1 Chris J. Kuhlman,1 Madhav V. Marathe,1

S. S. Ravi,1,2 Daniel J. Rosenkrantz,2 Richard E. Stearns2
1Biocomplexity Institute of Virginia Tech, Blacksburg, VA 24061 2University at Albany – SUNY, Albany, NY 12222

{abhijin, ckuhlman, mmarathe, ssravi}@vt.edu, drosenkrantz@gmail.com, thestearns2@gmail.com

Abstract

Using a graphical discrete dynamical system to model a net-
worked social system, the problem of inferring the behavior
of the system can be formulated as the problem of learning the
local functions of the dynamical system. We investigate the
problem assuming an active form of interaction with the sys-
tem through queries. We consider two classes of local func-
tions (namely, symmetric and threshold functions) and two
interaction modes, namely batch mode (where all the queries
must be submitted together) and adaptive mode (where the
set of queries submitted at a stage may rely on the answers
received to previous queries). We develop complexity results
and efficient heuristics that produce query sets under both
query modes. We demonstrate the performance of our heuris-
tics through experiments on over 20 well-known networks.

1 Introduction

Background and Motivation. Graphical discrete dynami-
cal systems are used in a variety of settings to understand
population-level contagion dynamics in terms of individ-
ual (human) agent behavior. Examples include the spread
of health behaviors (Valente 2010) such as drug over-
dose (Sherman et al. 2009); obesity (Christakis and Fowler
2007); segregation (Schelling 1971); becoming a user of an
online communications tool (Karsai et al. 2014); coordina-
tion (Rosenthal et al. 2015); and financial contagions (Gai
and Kapadia 2010). The frameworks in these works and in
ours here are network representations of populations, where
nodes and edges represent entities such as humans and pair-
wise interactions, respectively. Each of the cited works can
be viewed as capturing influence through threshold mod-
els (Granovetter 1978; Schelling 1978), where a node vi
contracts a contagion if at least a specified number of its
neighbors has already contracted it. This number for vi is
called its threshold ti. We are interested in complex con-
tagions (Centola and Macy 2007) that are characteristic of
social contagions, where ti ≥ 1; i.e., agents need multiple
reinforcing interactions to adopt a contagion. (Watts 2002)
argues that threshold models are useful in a host of settings
where incomplete information exists or when there is insuf-
ficient time to make more deliberate decisions.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In particular, small changes in the thresholds of nodes
can make a large difference in population dynamics. An ex-
ample is provided in (Granovetter 1978), where a change
in one node’s threshold by a value of 1 in a large graph,
changes population-level collective action from non-existent
to full collective action. Several works have used mined data
to infer thresholds for applications ranging from protests,
to Twitter messaging, to joining social media (González-
Bailón et al. 2011; Romero, Meeder, and Kleinberg 2011;
Ugander et al. 2012); see also (Easley and Kleinberg 2010).
Importantly, in all of these cases, heterogeneous (i.e., non-
uniform) thresholds among agents have been inferred. Thus,
node thresholds must be determined based on a node’s indi-
vidual behavior, its (local) neighborhood structure, and be-
haviors (and states) of its neighbors. Symmetric functions,
which generalize threshold functions, arise in game theoretic
settings (Papadimitriou and Roughgarden 2003).

Some works have studied threshold inference in a pas-
sive setting (e.g., (Adiga et al. 2017a)) where observations
are given and the problem is to infer thresholds from those
observations. In this work, we study the case where an al-
gorithm has control over what information it extracts from
the system via querying the system for desired information.
In particular, the algorithm gives a set of configurations (or
queries) to the system and infers properties based on the sys-
tem’s outputs. We study two query modes, namely batch
and adaptive modes, that differ in their degrees of control.
Under the batch mode, all the queries must be submitted to-
gether. In the adaptive mode, queries can be submitted in
several stages, and queries at a stage can depend on the an-
swers to previous queries, a strategy similar to that used in
games such as “Twenty questions”1.

We relate inference problems to well-studied graph the-
oretic problems such as coloring, using combinatorial and
algorithmic perspectives. The formulation also enables us
to quantify rigorously the complexity of inferring such sys-
tems. Motivation for these problems comes in part from the
DARPA Next Generation Social Science (NGS2) Program,
where experimental data on social networks are used to in-
fer properties of predictive models. Our work is similar in
spirit—but quite different in problem domain and results—
to some of the recent works on inference (e.g. (Kleinberg,

1See the Wikipedia entry on this game.

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

4630

Mullainathan, and Ugander 2017)).

Summary of Results. Our focus is on the following prob-
lem: Given the underlying graph of a graphical discrete dy-
namical system, construct queries to identify all the local
functions. The optimization goal is to minimize the num-
ber of queries. Our results are summarized below. Due to
space limitations, detailed proofs can be found in (Adiga et
al. 2017b; 2017c).
1. We develop algorithms for generating query sets under
both batch and adaptive modes to identify local functions
of dynamical systems. As can be expected, adaptive query
mode can produce significantly smaller query sets compared
to the batch mode. We also show that if the goal is to find a
query set which can identify symmetric functions with high
probability, the size of the query set can be further reduced.
2. We prove lower bounds on the number of queries needed
under both batch and query modes. We also present com-
plexity results that point out the difficulty of efficiently gen-
erating small query sets.
3. We present an approximation algorithm with a provable
performance guarantee to make a query set compact by elim-
inating redundant queries.
4. We evaluate our algorithms on a large number of real-
world and synthetic networks. For the batch mode, one of
our approaches based on greedy graph coloring generated
query sets of minimum size for most of the real-world net-
works. We also demonstrate the effectiveness of a simple
approach based on sampling queries from a particular distri-
bution followed by a compaction algorithm.
5. We develop a greedy adaptive heuristic based on binary
search and evaluate it by generating query sets for various
settings of networks and threshold assignments. Our results
show that for most cases, it significantly outperforms the
batch mode algorithms.

Related Work. There are several works on the passive mode
of inference. Many researchers have studied the problem
of learning automata (e.g., (Murphy 1996)). In (Kearns and
Vazirani 1994), the problems of learning normal forms and
Boolean functions are discussed. Works such as (González-
Bailón et al. 2011; Romero, Meeder, and Kleinberg 2011)
present methods to infer thresholds from social media data.
Learning the source nodes of infection for contagions is ad-
dressed in (Zhu, Chen, and Ying 2017). Many of these prob-
lems are formally hard even for simple local functions. The
work of (Adiga et al. 2017a) studies several problems aimed
at inferring thresholds in discrete dynamical systems.

Active querying is studied in (Kleinberg, Mullainathan,
and Ugander 2017) in the context of determining user
choices from a finite set of ranked options—the choice set
problem. The goal is to minimize the number of queries of
arbitrary subsets S of size k, of a universal set U , to learn a
user’s choice from among the elements of each set S. With
these results, the algorithm can then predict the user’s choice
for any subset S ⊆ U of size k. They show that this can be
accomplished with O(n log n) queries where n = |U |.

Although error-tolerant approaches for querying systems
are beyond the scope of this work, several authors study

inference problems wherein errors are allowed. These in-
clude (Valiant 1984; Juba 2016; He et al. 2016; Zhang,
Mathew, and Juba 2017; Kleinberg, Mullainathan, and
Ugander 2017).

While many of the above studies address social systems,
other network-based dynamical systems, such as Boolean
networks, gene regulatory networks, and polynomial dy-
namical systems are used to study inference problems.
Boolean networks are inferred from data in (Berestovsky
and Nakhleh 2013). Polynomial dynamical systems are in-
ferred using biochemical network data in (Laubenbacher and
Stigler 2009).

2 Synchronous Dynamical Systems (SyDSs)

2.1 Formal Definitions

Let B denote the Boolean domain {0,1}. A Synchronous
Dynamical System (SyDS) S over B is specified as a pair
S = (G,F), where (a) G(V,E), an undirected graph with
|V | = n, represents the underlying graph of the SyDS, with
node set V and edge set E, and (b) F = {f1, f2, . . . , fn} is
a collection of functions in the system, with fi denoting the
local function associated with node vi, 1 ≤ i ≤ n.

Each node of G has a state value from B. Each function fi
specifies the local interaction between node vi and its neigh-
bors in G. The inputs to function fi are the state of vi and
those of the neighbors of vi in G; function fi maps each
combination of inputs to a value in B. This value becomes
the next state of node vi.

At any time t, the configuration C of a SyDS is the n-
vector (st1, s

t
2, . . . , s

t
n), where sti ∈ B is the state of node vi

at time t (1 ≤ i ≤ n). In a SyDS, all nodes compute and
update their next state synchronously.

2.2 Classes of Local Functions

We consider two classes of local functions, namely thresh-
old and symmetric functions. They are defined below.
(i) Threshold functions: The local function fi associated
with node vi of a SyDS S is a ti-threshold function for some
integer ti ≥ 0 if the following condition holds: the value of
fi is 1 if the number of 1’s in the input to fi is at least ti;
otherwise, the value of the function is 0. Let di denote the
degree of node vi, and let ti denote the threshold of node vi.
The number of inputs to the function fi is di + 1. Thus, we
assume that 0 ≤ ti ≤ di + 2. (The threshold values 0 and
di + 2 allow us to realize local functions that always output
1 and 0 respectively.)
(ii) Symmetric functions: A local function fi at node vi is
symmetric if the value of the function depends only on the
number of 1’s in the input. Thus, a symmetric function fi
with k inputs can be specified using a table with k+1 rows,
with row j specifying the value of the function when the
number of 1’s in the input to the function is exactly j, 0 ≤
j ≤ k. Note that each threshold function is also a symmetric
function.

We will use the term “symmetric SyDS” (“threshold
SyDS”) to refer to a SyDS whose local functions are all sym-
metric (threshold).

4631

Example: Consider the threshold SyDS shown in Figure 1.
Suppose the local transition functions at each of the nodes
v1, v5 and v6 is the 1-threshold function and the functions
at v2, v3 and v4 are 2-threshold functions. Assume that ini-
tially, v3 is in state 1 and all other nodes are in state 0. During
the first time step, the states of nodes v1, v5 and v6 change
to 1 since each of them has a neighbor (namely, v3) in state
1. Also, the state of v3 changes to 0 since its threshold is 2
and none of its neighbors is in state 1. The states of v2 and
v4 don’t change; they continue to be 0. During time step 2,
v2 and v3 change to 1 but v4 remains at 0. Once the system
reaches the configuration C = (1, 1, 1, 0, 1, 1) at time step 2,
it remains in that configuration forever.

Figure 1: An Example of a SyDS.

Additional Terminology: If a given SyDS can transition in
one step from a configuration C′ to a configuration C, then
C is a successor of C′ and C′ is a predecessor of C. Since
our local functions are deterministic, each configuration has
a unique successor; however, a configuration may have zero
or more predecessors.

Given a graph G(V,E) and a node vi ∈ V , the closed
neighborhood of vi, denoted by N [vi], is defined by N [vi]
= {vi} ∪ {vj : {vi, vj} ∈ E}. Thus, the inputs to the local
function fi at vi are the states of the nodes in N [vi].

2.3 Query Model

The general problem addressed in this paper is that of cor-
rectly identifying the local functions of a SyDS by query-
ing the system. We assume that the underlying network is
known. Each query specifies a configuration C and the re-
sponse from the system is the successor C′ of C. Since the
state of each node is either 0 or 1, each query q and the
response to q are bit vectors of length n. We consider two
query modes. In the batch query mode, a user must sub-
mit all the queries together as a single batch. In the adap-
tive query mode, a user may submit the queries in sev-
eral batches; the queries chosen in a batch may rely on
the responses received from the system for the previous
batches of queries. As will be seen, for threshold SyDSs,
the adaptive query mode can significantly decrease the num-
ber of queries. The following additional definitions regard-
ing queries will be used throughout this paper.

Given a query q and a node vi, the score of q with respect
to vi, denoted by score(q,vi), is the number of nodes in the

closed neighborhood N [vi] of vi that are set to 1 in q. Thus,
score(q,vi) gives the number of 1’s in the input provided by
q to the local function fi at vi.

Definition 1 Let S be a symmetric SyDS. For any node vi,
let di denote the degree of vi. (a) A query set Q covers a
node vi if for each j, 0 ≤ j ≤ di+1, there is a query q ∈ Q
such that score(q,vi) = j. (b) A query set Q covers a set B
of nodes if Q covers every node vi ∈ B. (c) A query set Q is
complete if it covers the node set V .

When a query set Q covers a node v, the local symmetric
function fv can be correctly inferred from the responses to
the queries in Q. Thus, complete query sets have the follow-
ing property.

Observation 1 Let S be a symmetric SyDS. If Q is a com-
plete query set for S, then each local function of S can be
determined given the successor of each query in Q.

3 Theoretical Results

In this section, we first present an algorithm for generating
query sets under the batch mode for symmetric SyDSs. We
then show that for threshold SyDSs, the number of queries
can be substantially reduced under the adaptive query mode.
We also establish lower bounds on the number of queries
needed under both modes. We present complexity results
that suggest that in general, generating complete query sets
of minimum size is computationally intractable. We also de-
velop an efficient heuristic to reduce the size of query sets
by eliminating redundant queries.

3.1 Generating Query Sets: Batch Mode

We begin by defining the notion of a monotone query se-
quence. The sequence of queries constructed can be submit-
ted as a batch to learn all the local functions of a symmetric
SyDS. Using the notion of “sequence” allows us to point
out an interesting connection between the problem of iden-
tifying local symmetric functions and a variant of the node
coloring problem for the underlying graph.

Definition 2 (a) Given two queries q1 and q2, we use the no-
tation q1 ≤ q2 to mean that every bit which is 1 in q1 is also
1 in q2. (b) A query sequence 〈q1, q2, . . . , qr〉 is monotone if
for each i, 1 ≤ i ≤ r − 1, qi ≤ qi+1. (c) Let S be a SyDS
in which each local function is symmetric and let M be a
monotone query sequence. If M is also a complete query set
for S (i.e., each node v of S is covered by M), then M is a
complete monotone query sequence.

We now present an algorithm to show that if the underly-
ing graph G has n nodes, then there is a monotone complete
query sequence M for S with at most min{Δ2 + 2, n + 1}
queries, where Δ is the maximum node degree of G. This
sequence of queries can be submitted as a batch to learn all
the symmetric local functions. To establish this result, we
recall the following definitions.

Definition 3 (a) Given an undirected graph H(VH , EH)
and an integer k ≥ 1, a k-coloring of H assigns a color
from the set {1, 2, . . . , k} to each node of H such that for
each edge {u, v} ∈ EH , the colors assigned to u and v

4632

Input: Graph G(V,E) of a symmetric SyDS S.
Output: A monotone complete query sequence M for S.
Steps:

1. Construct the graph G2(V,E′).

2. Obtain a k-coloring of G2 where k ≤ min{Δ2 + 1, n}.

3. Let C1, C2, . . ., Ck denote the color classes created in Step 2.
(Color class Cj consists of all nodes assigned color j, 1 ≤ j ≤
k.) Create the query sequence M = 〈q0, q1, . . . , qk〉 with k + 1
queries as follows.

(a) Query q0 is a bit vector where every element is 0.
(b) for j = 1 to k do

Create query qj by choosing the value 1 for all the
nodes in C1 ∪ . . . ∪ Cj and 0 for the other nodes.

4. Output the query sequence M .

Figure 2: Steps of the Algorithm ALG-MONOTONE-SEQ

are different. (b) Given an undirected graph G(V,E), the
square of G, denoted by G2(V,E′), is an undirected graph
on the same vertex set V . The edge set E′ is defined as:
{u, v} ∈ E′ iff there is a path with at most 2 edges between
u and v in G.

We will also use the following result (West 2001): a graph
H(VH , EH) with maximum node degree ΔH can be colored
efficiently using at most ΔH + 1 colors.

Our algorithm ALG-MONOTONE-SEQ for generating a
monotone complete query sequence M for the given SyDS
S is shown in Figure 2. It is easy to see that the algorithm
runs in polynomial time. The following theorem shows its
correctness and estimates the number of queries generated.

Theorem 1 Let S be a symmetric SyDS with graph G(V,E)
where |V | = n and maximum node degree = Δ. Algo-
rithm ALG-MONOTONE-SEQ produces a monotone com-
plete query sequence M with |M | ≤ min{Δ2 + 2, n+ 1}.

Proof sketch: The sequence is produced by coloring G2.
Since the maximum node degree of G2 is ≤ Δ2, G2 can
be efficiently colored with min{Δ2 + 1, n} colors. The se-
quence produced has one query with all 0’s and one query
from each color class, for a total of at most min{Δ2+2, n+
1} queries. A proof that this is a monotone and complete
query sequence appears in (Adiga et al. 2017b).

For some graphs with maximum node degree Δ, Al-
gorithm ALG-MONOTONE-SEQ may generate a query se-
quence with Ω(Δ2) queries but it guarantees that the re-
sulting query sequence is complete for a symmetric SyDS.
We show in (Adiga et al. 2017c) that for graphs where
Δ ≥ (log n)2, the number of queries can be reduced to
O(Δ1.5 log n), if we only need the query set to be complete
with high probability.

3.2 Generating Query Sets: Adaptive Mode

For threshold SyDSs, the adaptive query mode can reduce
the number of queries significantly. To illustrate this, con-
sider a SyDS whose underlying graph is a star graph with

n nodes; that is, there is one node v1 with degree n−1 which
is the root of the tree and each of the other nodes v2 through
vn is a child of the root. As will be shown in the section on
lower bounds, in the batch mode, n+1 queries are necessary
even for the star graph to identify all the thresholds. How-
ever, under the adaptive mode, using the following method,
O(log n) queries are sufficient.

The idea is simple: use binary search to identify the
threshold of node v1 whose degree is n − 1 using O(log n)
queries. After this, the following 3 additional queries are
sufficient to identify the thresholds of the remaining n − 1
nodes: a query with all 0’s, a second query with all 1’s and
a third one in which v1 has the value 1 and all the remaining
nodes have the value 0. Thus, all the thresholds can be iden-
tified in O(log n) queries under the adaptive mode. Thus:
Proposition 1 For a threshold-SyDS whose graph is a star
with n nodes, all the threshold values can be found using
O(log n) queries under the adaptive mode.

The above idea can be applied to more general classes
of graphs. Let a class of graphs with n nodes be called
(α, β)-simple, if at most α nodes have degree > β (the de-
gree may be Ω(n)) and all the remaining n − α nodes have
a degree of at most β, with α and β being constants inde-
pendent of n. Thus, each star graph belongs to the class of
(1, 1)-simple graphs. It is shown in (Adiga et al. 2017b) that
O(log n) queries are sufficient under the adaptive mode for
any for (α, β)-simple graph with n nodes. As an extension
of this result, it is also shown in (Adiga et al. 2017b) that
if a graph with n nodes is scale-free (Easley and Kleinberg
2010) with exponent γ ≥ 1, then O(n

2
γ+1) queries are suffi-

cient under the adaptive mode.

3.3 Lower Bounds on Sizes of Query Sets

Here, we present lower bounds under batch and adaptive
query modes. We begin with a result that provides a lower
bound for any symmetric SyDS under the batch mode.
Proposition 2 Let S be a symmetric SyDS where the under-
lying graph G(V,E) has a maximum node degree Δ. Under
the batch query model, every complete query set must con-
tain at least Δ+ 2 queries.
Proof sketch: Consider a node vi with degree Δ. The sym-
metric function fi at vi has Δ+ 2 entries, since the number
of 1’s in the input to fi varies from 0 to Δ + 1. Thus, any
query set Q with |Q| < Δ+ 2, cannot fully determine fi.

As a simple consequence of the above proposition, the
following result points out that there are SyDSs with n nodes
for which every complete query set must have n+1 queries.
This lower bound matches the upper bound of n + 1 given
by Theorem 1 for all such graphs.
Corollary 1 For a symmetric SyDS whose graph is a clique
on n nodes, every complete query set under the batch mode
must have at least n+ 1 queries.

The following result shown in (Adiga et al. 2017b) points
out that there are threshold SyDSs for which a large num-
ber of queries are needed even under the adaptive query
mode. However, this result does not rule out the possibility
of smaller query sets for special graph classes.

4633

Theorem 2 For every n ≥ 1, there is a threshold SyDS
whose underlying graph is a clique on n nodes such that at
least n + 1 queries are necessary under the adaptive query
mode to correctly identify all the threshold values.

3.4 Complexity of Generating Small Monotone
Complete Query Sequences

Here, we present a result that provides an indication
of the difficulty of efficiently generating small query
sets. Our complexity result is for the following problem
which we call the Short Monotone Complete Query Se-
quence (SMCQS) problem: given the underlying graph
G(V,E) of a symmetric SyDS S and a positive integer k, is
there a monotone complete query sequence Q with at most k
queries for S? We use a reduction from the Distance-2 col-
oring problem for graphs (McCormick 1983) to prove the
following result; for details, see (Adiga et al. 2017b).

Theorem 3 Problem SMCQS is NP-complete.

3.5 Results for Query Set Compaction

Under the batch mode, after generating a complete set of
queries, it is useful to reduce the size of the set by eliminat-
ing redundant queries. This Query Set Compaction (QSC)
problem can be formulated as follows: given the underlying
graph G(V,E) of a symmetric SyDS S, a complete query
set Q and an integer k ≤ |Q|, is there a subset Q′ ⊆ Q such
that |Q′| ≤ k and Q′ is also a complete query set for S?

The following result shows the complexity of QSC. The
proof in (Adiga et al. 2017c) uses a reduction from the Mini-
mum Set Cover (MSC) problem (Garey and Johnson 1979).

Theorem 4 Unless P = NP, QSC cannot be approximated
in polynomial time to within the factor o(log n), where n is
the number of nodes in the graph of the symmetric SyDS,
even when the underlying graph has no edges.

To complement the above hardness result, we present an
efficient approximation algorithm with a performance guar-
antee of O(log n) for the QSC problem. The idea is to use
a reduction from the QSC problem to the MSC problem
and use a well known (greedy) approximation algorithm for
MSC (Vazirani 2001) which provides a performance guar-
antee of O(log n).

The steps of our approximation algorithm Approx-QSC
for QSC are shown in Figure 3. The performance of
Approx-QSC is shown in the following theorem, whose
proof appears in (Adiga et al. 2017c).

Theorem 5 Algorithm Approx-QSC provides a perfor-
mance guarantee of O(log n) where n is the number of
nodes in the underlying graph of the SyDS.

4 Experimental Results

We performed extensive experiments on more than 20 di-
verse real-world and synthetic networks. They are listed in
Table 1 along with some of their properties. We present
representative results for selected networks, with other net-
works exhibiting the same behavior unless stated otherwise.

Input: The underlying graph G(V,E) of a symmetric SyDS S
and a complete query set Q.
Output: A subset Q′ ⊆ Q such that Q′ is also a complete query
set and |Q′| is as small as possible.
Steps:

1. To construct the base set X of the MSC instance, consider each
node vi; let di denote the degree of vi. Create a set Ai of di +1
elements, given by Ai = {aik : 0 ≤ k ≤ di}, for vi. The set
X is given by X = ∪n

i=1Ai.

2. From each query qj ∈ Q, construct a subset Yj of X as follows.
Initially, Yj = ∅. For each vi ∈ V , 1 ≤ i ≤ n, if qj sets k of
the inputs to vi to 1, then add the element aik to Yj .

3. Use the greedy algorithm (Vazirani 2001) to get an approximate
solution Y ′ to the resulting MSC instance.

4. Construct the query set Q′ by choosing the query corresponding
to each subset in Y ′ and output Q′.

Figure 3: Details regarding Algorithm Approx-QSC

We studied three approaches for inferring thresholds, two
of which correspond to the batch mode and hence are appli-
cable to symmetric SyDSs as well, and one being an adap-
tive approach. The first batch mode approach is based on
coloring G2 and the other is a probabilistic query approach
mentioned in Section 3.1. In both cases, we applied the com-
paction algorithm (Figure 3) on the resulting complete query
sets. Next, we developed a greedy algorithm for inferring
thresholds under the adaptive mode and evaluated its perfor-
mance.

Our theoretical results indicate that both network struc-
ture and the threshold assignments influence the number of
queries required to infer the system. The experiments con-
ducted were designed to further explore these aspects.

4.1 Method 1: G2 Coloring Based Approach

We studied the performance of ALG-MONOTONE-SEQ
(Figure 2). The results are in Table 2. For most real world
networks considered in this paper, it gives the best possible
performance, i.e., the number of colors used to color G2,
denoted by nc(G

2), is equal to Δ + 1; this along with the
query of all 0’s is a lower bound on the size of a complete set
(Proposition 2). For synthetic networks (random regular and
Erdős-Rényi graphs) though, nc(G

2) is significantly higher
than Δ+1, yet much lower than Δ2 +1. The reader should
note that the observed performance is due to a combination
of the structure of G2 and the nature of the greedy coloring
scheme. We observe that unlike the synthetic networks con-
sidered, most of the real-world networks are scale-free with
maximum degree much larger than the average degree davg.
This is a possible reason for the superior performance of this
approach. We also compared the results to the spectral ra-
dius bound, that is, the number of colors needed to color
G2 is at most 1 + λ2

max (Miao and Fan 2014). It is well-
known that

√
Δ ≤ λmax ≤ Δ, and for the real-world net-

works considered, λmax is indeed much less than Δ. How-
ever, despite this fact, we observe that λ2

max + 1 is much

4634

Table 1: Networks used in our experiments, their properties, and results of the different algorithms for inferring symmetric or
threshold functions. The networks are grouped by type: social online, friendship, collaboration (Leskovec and Krevl 2014) and
synthetic networks. To conserve space, we have provided range of values for some network families.

Network
(num. of

instances)

Properties
Results

Query set size

Type n
avg. deg.

davg

max.
deg. Δ

Spec.
rad.
λmax

Meth. 1
nc(G

2) + 1

Meth. 3
t(v) =

d(v)+2
2

FB social media 43,953 8.30 223 39.7 225 53
p2p-gnutella04 hw connectivity 10,876 7.35 103 17.08 105 31
Enron email 33,696 10.73 1383 118.4 1385 624
Epinions online opinions 75,879 10.69 3044 246 3046 294
Slashdot0811 online 77,360 12.13 2539 250.3 2541 214
Slashdot0902 online 82,168 12.27 2552 252.6 2554 267
Wikipedia online voting 7,115 28.32 1065 138.2 1067 114

ca-astroph co-author 17,903 22.00 504 94.43 506 76
ca-condmat co-author 21,363 8.55 279 37.89 281 67
ca-grqc co-author 4,158 6.46 81 45.62 83 25
ca-hepph co-author 11,204 21.00 491 244.9 619 72
ca-hepth co-author 8,638 5.74 65 31.03 67 28
cit-hepph co-author 34,401 24.46 846 76.58 848 78
Clique synthetic 1000 999 999 999 1001 8
Rand. reg. A (10)∗ synthetic 1000 10,800 10,800 10,800 34-36,1001 Fig. 4(a)(0.0)
Rand. reg. B (10) synthetic 80,000 10,12 10,12 10,12 38 20 (avg)
Erdős-Rényi (10) synthetic 80,000 10, 12 25-28,27-32 11.1,13.04-13.09 36-38, 46-47 –

∗ Degrees are 10, 50, 100, 200, 250, 400, 500, 700, 800. For davg = 50, 100, nc(G
2) + 1 = 348-358, 988-996, and for greater davg,

nc(G
2) = 1000.

larger than nc(G
2) + 1 in these cases.

Compaction. For the reasons mentioned above, query sets
generated by this approach are already compact. Thus, the
compaction algorithm of Section 3.5 did not eliminate any
queries. A formal explanation for this appears in (Adiga et
al. 2017c).

4.2 Method 2: Randomized Algorithm

In this approach, we use the probabilistic method mentioned
in Section 3.1 to construct a complete set. The query set
contains the configurations of all zeros, of all ones and �Δ
random queries where � queries are sampled from distribu-
tions D(i/Δ) for 1 ≤ i ≤ Δ. Compared to Method 1, this is
a very simple approach not requiring construction of G2 or
graph coloring. However, it is not guaranteed that the con-
structed query set is complete and therefore the process may
have to be repeated a number of times. Further, the resulting
set, even though large, can be compressed using the com-
paction algorithm.

We constructed 50 such query sets for three values of �
(2, 5 and 10) and checked if each of them is a complete set.
For � = 2, out of the 50 sets none of them were complete.
However, for � = 10, from 5 to 50 query sets turned out
to be complete sets depending on the network. We applied
the compaction algorithm on the complete sets generated by
the randomized algorithm. The results for � = 10 are in Ta-
ble 2. The compaction ratio depends on the size of complete
set which was given as input. On an average, the combina-
tion of randomized algorithm and compaction gives query
sets of size around 1.5 to 2 times that of Method 1 (Table 1

Table 2: Results of Method 2.

Network
Query

set
size

%
comp. Network

Query
set
size

%
comp.

FB 407 81 ca-grqc 153 81
p2p 159 84 ca-hepph 1201 75
Enron 2306 83 ca-hepth 140 78
Wikipedia 1420 86 cit-hepph 1240 85
ca-
astroph

899 82 Rand. reg.
A

≈ 5Δ 40

ca-
condmat

393 85 – – –

(Meth. 1)). However, comparatively these are much easier to
generate.
Performance of compaction. We note that compaction of
query sets generated by Method 2 consistently yields 80%
reduction in the size of the query set (Table 2).

4.3 Method 3: Adaptive Algorithm

While the two previous methods are for the batch mode,
here we discuss an adaptive algorithm to infer the thresholds.
We give an outline of the approach; a complete description
appears in (Adiga et al. 2017b). For every node, let tL(v)
and tH(v) be the minimum and maximum possible values
of threshold that v can be assigned. These values quantify
the uncertainty about the threshold. The threshold is said
to have been inferred when tH(v) = tL(v). In a query q,
if score(q, v) falls in the range [tL(v), tH(v) − 1], then, the

4635

0

200

400

600

800

1000

1200

1400

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

av
er

ag
e

#
qu

er
ie

s

k/n

0.0
0.2
0.4
0.6
0.8
1.0

0
20
40
60
80
100
120
140
160
180

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

av
er

ag
e

#
qu

er
ie

s

k/n

0
0.2Δ
0.4Δ
0.6Δ
0.8Δ
Δ

Figure 4: Experiments with 1000 node random k-regular
graphs. (a) The threshold of a node is randomly assigned an
integer in the interval

[
(k+2)(1− θ)/2, (k+2)(1+ θ)/2

]
.

The legend shows values of θ. (b) All nodes are assigned a
fixed threshold relative to k. The legend shows values of ti.

uncertainty reduces to either [score(q, v) + 1, tH(v) − 1]
or [tL(v), score(q, v)] depending on the state in the succes-
sor configuration. In this heuristic, we use a greedy adaptive
approach where the current query is constructed iteratively
in the following way. To begin with, all nodes are in state 0.
We first choose that node, say vmax, for which the threshold
range is a maximum. We set exactly
(tL(v) + tH(v))/2�
of nodes in its closed neighborhood to state 1. This guar-
antees a reduction of the range by half. In the next itera-
tion, we ignore all nodes in G within distance-2 of vmax

and repeat this process. The query is fully constructed when
there are no more vertices to consider. After each query, the
range [tL(v), tH(v)− 1] for every v is updated based on its
state in the successor. We terminate this process when for
all v, tL(v) = tH(v). The analysis of our experimental re-
sults follows.
Influence of threshold values and ranges. In general, the
number of queries required is highly dependent on the pos-
sible threshold values of nodes. We conducted experiments
in the following manner. Let 0 ≤ θ ≤ 1 be a real number.
For a fixed value of θ, each node v was assigned a threshold
value uniformly at random from the interval

[
(d(v)+2)(1−

θ)/2, (d(v) + 2)(1 + θ)/2
]
. For θ = 0, the interval corre-

sponds to the fixed threshold of (d(v) + 2)/2; for θ = 1,
any value from 0 to d(v) + 2 is possible. The results are
in Figure 4(a) and 5(a) for random k-regular and real-world
networks respectively. For the random-regular graphs, the
number of queries (averaged over 10 instances of graphs for
each k) increases from O(log k) to as high as n, the size
of the graph. We note that for k = n − 1, this is in ac-
cordance with Theorem 2. For the real-world graphs, we see
that increasing the range of threshold has the effect of gradu-
ally increasing the number of queries, but the number is less
than 1.5Δ. In Figure 4(b), we investigate the influence of
the threshold value on query set size. Again, we considered
random k-regular graphs with varying k. Every node was as-
signed the same threshold. We see that the number of queries
required is maximum when the threshold is around Δ/2, and
it decreases as the threshold approaches either 0 or Δ.
Influence of network structure. Theoretical bounds on
query set sizes developed in Section 3 were in terms of Δ
and n. Here, our objectives are two-fold. Firstly, we compare
our adaptive approaches to the non-adaptive bounds, partic-

ularly the number of queries required relative to logΔ, Δ
and Δ2. Secondly, we investigate the effect of graph density
and degree distribution on the performance of the heuristic.

We note that graph density plays an important role in the
performance of the algorithm. First, we consider synthetic
k-regular networks. In Figure 4(b), we see that for low val-
ues of k, the number of queries required is very small, but
it increases rapidly (for higher values of thresholds). When
the graph is sparse, for any node, the number of nodes
within distance two (namely, k2 + 1) is small. Therefore,
for every query constructed by the heuristic, the uncertainty
range of around n/k2 nodes (the “vmax” vertices) is halved.
However, as k increases, this number decreases drastically.
Hence we see that the number of queries required increases.
However, as the graph density increases, the intersection of
the neighborhoods of any two nodes is large, and this has
the effect of reducing the variation in the scores of nodes.
Therefore, particularly when the range of threshold values is
limited, far fewer queries are required to infer thresholds in
dense networks.
Progress towards inferring thresholds. In Figure 5(b), we
plot the accumulated threshold ranges for all vertices as the
algorithm moves from one query to the next. We note that
within one-fifth of the total query set size, the total accumu-
lated threshold range decreases well below 5% of its original
value for the majority of studied networks.

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

0 0.2 0.4 0.6 0.8 1

av
er

ag
e

#
qu

er
ie

s/
Δ

threshold interval (fraction of dv)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1R
el

at
iv

e
∑
v
t H
(v
)
−

t L
(v
)

query#/(query set size)

ca-astroph
ca-condmat
ca-grqc
ca-hepph
ca-hepth
wiki-vote
facebook-02
cit-hepph
enron
p2p-gnutella04

Figure 5: Inferring thresholds for real-world networks.
(a) Adaptive heuristic for varying threshold ranges.
(b) Progress made by the adaptive algorithm (Method 3) in
each query.

5 Limitations and Future Work

One limitation of our work is that queries and the responses
from the system are assumed to specify the states of all the
nodes in the system. An important research direction is to
extend the results to allow specifications of partial configu-
rations in queries and responses. Further, our focus was on
dynamical systems with threshold and symmetric functions.
Thus, another research direction is to consider other classes
of functions. Finally, it is also of interest to explore the use
of queries to infer other components of a dynamical system
(e.g., the network topology).
Acknowledgments: This work has been partially sup-
ported by DARPA Cooperative Agreement D17AC00003
(NGS2), DTRA CNIMS (Contract HDTRA1-11-D-0016-
0001), DTRA Comprehensive National Incident Manage-
ment System Contract HDTRA1-17-D-0023, NSF DIBBS

4636

Grant ACI-1443054 and NSF BIG DATA Grant IIS-
1633028. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwith-
standing any copyright annotation thereon.

References

Adiga, A.; Kuhlman, C. J.; Marathe, M. V.; Ravi, S. S.;
Rosenkrantz, D. J.; and Stearns, R. E. 2017a. Inferring lo-
cal transition functions of discrete dynamical systems from
observations of system behavior. Theor. CS. 679:126–144.
Adiga, A.; Kuhlman, C. J.; Marathe, M. V.; Ravi, S. S.;
Rosenkrantz, D. J.; and Stearns, R. E. 2017b. Learning the
behavior of dynamical systems – Part I: Deterministic query
generation methods. NDSSL TR#2017-1035, Biocomplex-
ity Institute of Virginia Tech, Blacksburg, VA.
Adiga, A.; Kuhlman, C. J.; Marathe, M. V.; Ravi, S. S.;
Rosenkrantz, D. J.; and Stearns, R. E. 2017c. Learning the
behavior of dynamical systems – Part II: Randomized query
generation and query compaction. NDSSL TR#2017-1036,
Biocomplexity Institute of Virginia Tech, Blacksburg, VA.
Berestovsky, N., and Nakhleh, L. 2013. An evaluation
of methods for inferring boolean networks from time-series
data. PLoS One 8:e66031–1–e66031–9.
Centola, D., and Macy, M. 2007. Complex contagions and
the weakness of long ties. American Journal of Sociology
113(3):702–734.
Christakis, N. A., and Fowler, J. H. 2007. The spread of
obesity in a large social network over 32 years. New England
Journal of Medicine 357(4):370–379.
Easley, D., and Kleinberg, J. 2010. Networks, Crowds, and
Markets: Reasoning About a Highly Connected World.
Gai, P., and Kapadia, S. 2010. Contagion in financial net-
works. Proceedings of the Royal Society A 466:2401–2423.
Garey, M. R., and Johnson, D. S. 1979. Computers and
Intractability: A Guide to the Theory of NP-completeness.
San Francisco: W. H. Freeman & Co.
González-Bailón, S.; Borge-Holthoefer, J.; Rivero, A.; and
Moreno, Y. 2011. The dynamics of protest recruitment
through an online network. Scientific Reports 1:7 pages.
Granovetter, M. 1978. Threshold models of collective be-
havior. American Journal of Sociology 1420–1443.
He, X.; Xu, K.; Kempe, D.; and Liu, Y. 2016. Learn-
ing influence functions from incomplete observations.
arXiv:1611.02305 [cs.SI].
Juba, B. 2016. Learning abductive reasoning using random
examples. In Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence, 999–1007.
Karsai, M.; Iniguez, G.; Kaski, K.; and Kertesz, J. 2014.
Complex contagion process in spreading of online innova-
tion. Journal of the Royal Society Interface 11:20140694–
1–20140694–8.
Kearns, M. J., and Vazirani, U. V. 1994. An Introduction to
Computational Learning Theory. MIT Press.
Kleinberg, J.; Mullainathan, S.; and Ugander, J. 2017.
Comparison-based choices. arXiv:1705.05735v1 [cs.DS].

Laubenbacher, R., and Stigler, B. 2009. Design of experi-
ments and biochemical network inference. In Algebraic and
Geometric Methods in Statistics, 1–13.
Leskovec, J., and Krevl, A. 2014. SNAP Datasets: Stanford
large network dataset collection. http://snap.stanford.edu/
data.
McCormick, S. T. 1983. Optimal approximation of sparse
Hessians and its equivalence to a graph coloring problem.
Math. Programming 26(2):153–171.
Miao, L., and Fan, Y. 2014. The distance coloring of graphs.
Acta Mathematica Sinica 30(9):1579–1587.
Murphy, K. P. 1996. Passively learning finite automata.
Technical Report 96-04-017, Santa Fe Institute. NM.
Papadimitriou, C. H., and Roughgarden, T. 2003. Equilibria
in symmetric games. Report, Stanford University.
Romero, D. M.; Meeder, B.; and Kleinberg, J. 2011. Differ-
ences in the mechanics of information diffusion across top-
ics: Idioms, political hashtags, and complex contagion on
twitter. In Proceedings of the 20th international conference
on World wide web, 695–704. ACM.
Rosenthal, S. B.; Twomey, C. R.; Hartnett, A. T.; Wu, H. S.;
and Couzin, I. D. 2015. Revealing the hidden networks
of interaction in mobile animal groups allows prediction of
complex behavioral contagion. Proceedings of the National
Academy of Sciences 112(15):4690–4695.
Schelling, T. C. 1971. Dynamic models of segregation.
Journal of Mathematical Sociology 1:143–186.
Schelling, T. C. 1978. Micromotives and Macrobehavior.
Sherman, S. G.; Ganna, D. S.; Tobin, K. E.; Latkin, C. A.;
Welsh, C.; and Bielenson, P. 2009. The life they save may
be mine: Diffusion of overdose prevention information from
a city sponsored programme. International Journal of Drug
Policy 20:137–142.
Ugander, J.; Backstrom, L.; Marlow, C.; and Kleinberg, J.
2012. Structural diversity in social contagion. Proceedings
of the National Academy of Sciences 109(16):5962–5966.
Valente, T. W. 2010. Social Networks and Health: Models,
Methods, and Applications.
Valiant, L. G. 1984. A theory of the learnable. Communica-
tions of the ACM 18(11):1134–1142.
Vazirani, V. V. 2001. Approximation Algorithms.
Watts, D. J. 2002. A simple model of global cascades on
random networks. Proceedings of the National Academy of
Sciences 99:5766–5771.
West, D. B. 2001. Introduction to Graph Theory.
Zhang, M.; Mathew, T.; and Juba, B. A. 2017. An improved
algorithm for learning to perform exception-tolerant abduc-
tion. In Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence, 1257–1265.
Zhu, K.; Chen, Z.; and Ying, L. 2017. Catch’em all: Locat-
ing multiple diffusion sources in networks with partial ob-
servations. In Proceedings of the Thirty-First AAAI Confer-
ence on Artificial Intelligence, 1676–1683.

4637

