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Real-Time Distribution System State Estimation
With Asynchronous Measurements
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Abstract—State estimation is a fundamental task in power
systems. Although distribution systems are increasingly equipped
with sensing devices and smart meters, measurements are typ-
ically reported at different rates and asynchronously; these
aspects pose severe strains on workhorse state estimation algo-
rithms, which are designed to process batches of data collected
in a synchronous manner from all the measurement units. In
this paper, we develop a novel state estimation algorithm to
continuously update the estimate of the state based on measure-
ments received in an asynchronous manner from measurement
units. The synthesis of the algorithm hinges on a proximal-point
type method, implemented in an online fashion, and capable of
processing measurements received sequentially from sensors. A
performance analysis is presented by providing bounds on the
estimation error in terms of the mean and variance that hold
at each iteration and asymptotically. The scheme is also com-
pared with a more traditional Weighted Least Squares estimator
that compensates for the lack of measurement data by using,
as pseudo measurements, the measurement retrieved during a
certain time window. Numerical simulations on the IEEE 37-bus
feeder corroborate the analytical findings.

Index Terms—State estimation, data fusion, asynchronous
sensors, networked systems, sensor networks, stability.

I. INTRODUCTION

THE INTEGRATION of renewable energy sources, elec-
tric vehicles, and other power electronics-interfaced dis-

tributed energy resources (DERs) is leading to net-loading
conditions in distribution networks that are less predictable
and highly variable [1]. Hence, it is fundamental for distri-
bution system operators (DSOs) to estimate the system state
at a timescale that matches the variability of the net-loading
conditions in order to provide meaningful information for the
control of the grid.
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Traditional state estimators for transmission systems are
generally designed for the case in which the system operator
has an overabundance of measurements [2]. Although distri-
bution networks were historically undermetered [3], in recent
years utilities have been installing a number of digital devices,
such as smart meters, phasor measurement units (PMUs) and
intelligent electronic devices throughout the distribution grid
for sensing and control purposes. However, such devices are
intrinsically heterogeneous and have different sampling rates.
For instance, residential smart meters take measurements typ-
ically every 15–60 minutes [4], whereas PMUs can possibly
take 30–60 measurements every second [5]. Moreover, sen-
sors do not take and report measurements all at the same
time [6], [7] to keep communication networks free from con-
gestion [8], [9]. As a result, data available to utilities are
asynchronized and not enough measurements are typically
available to obtain a well-conditioned state estimation problem
at any given time. Hence, a state estimator for distribution
networks should be able to tackle the case in which the num-
ber of available measurements at any given moment is much
smaller than the number of states, or, in other words, the case
in which the state estimation problem is ill posed.

Pseudo measurements are typically used to compensate for
the lack of measurements. The main source for pseudo mea-
surements is the historical load data that utilities collect for
billing purposes [10]; more advanced methods, e.g., involv-
ing neural networks, for modeling pseudo measurements have
been developed, too [11]. Historical data or simulated sam-
ples can be used to train neural networks, which provide an
effective tool for state estimation [12]. The Bayesian linear
state estimator in [13] is suitable when probability distribu-
tions of load demands are available. If a dynamical model of
the network is at hand, approaches based on Kalman filtering
can be used [14], [15]. Other methods do not rely on pseudo
measurements or a priori probabilistic models but only on
measurement data. A matrix completion approach under low-
observability conditions was proposed in [16]. Leveraging the
communication, actuation, and sensing capabilities of smart
inverters, the authors in [17] probe the grid by varying the
power injections at selected buses, record the incurred voltage
responses, and infer the complex loads at non-actuated buses.

In this paper, we start from the state estimator proposed
in [18], designed to estimate the state variation in gen-
eral time-varying linear systems, and provide the following
contributions.

• We tailor the state estimator for applications in three-
phase distribution systems in which noisy measurements
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are both taken and sent to the system operator asyn-
chronously, and formally analyze the estimation error.

• To benchmark the proposed algorithm, we formulate a
Weighted Least Square (WLS) estimator that uses, as
pseudo measurements, the measurement retrieved during
a certain time window, and analyze its estimation error.

The rest of the paper is organized as follows. The
three-phase distribution model is reported in Section II. In
Section III, the online state estimation problem is formulated
and the asynchronous state estimation algorithm is presented.
In Section IV, we introduce a WLS estimator that uses, as
pseudo measurements, the data gathered by the system oper-
ator during a time window big enough to have a full rank
regression matrix. In Section V, we evaluate the performance
of the two algorithms on a three-phase 37-bus distribution
system under realistic measurement equipment data-reporting
scenarios.

Notation: Lower- (upper-) case boldface letters denote col-
umn vectors (matrices). Calligraphic symbols are reserved for
sets. Symbol ! stands for transposition. Vectors 0 and 1 are
the all-zero and all-one vectors, while em is the m-th canonical
vector. The identity matrix of appropriate dimension is denoted
by I. Symbol ‖x‖ denotes the Euclidean norm of the vector x;
‖X‖F denotes the Frobenius norm of the matrix X. Moreover,
‖x‖Q := x!Qx for a positive definite matrix Q. The diagonal
matrix having the entries of the vector x on its diagonal is
denoted as diag(x). Given a matrix A, its kernel, namely the
set of all vectors x such that Ax = 0, is denoted as ker A. The
expectation operator is defined as E[·]. The real part, the imag-
inary part, the complex conjugate of a complex vector (matrix)
x (X) are denoted by #(x),$(x), x̄ (#(X),$(X), X̄); by |x| we
denote instead the vector whose entries are the absolute value
of the entries of x.

II. THREE-PHASE DISTRIBUTION NETWORK MODEL

We model a three-phase power distribution grid having B+1
buses with the graph G = (B, E), where the nodes in the set
B := {0, . . . , B} represent the grid buses, and the edges in
the set E correspond to the distribution lines. The substation
bus is indexed by i = 0 and it is assumed to be an ideal
voltage generator (slack bus) imposing the nominal voltage
v0 = [1, 1 −  2π

3 , 1 +  2π
3 ]!. Similar to prior works in the

context of distribution system state estimation (see, e.g., [13],
[19], [20]), in the rest of the paper we assume that the system
operator knows the voltage v0.

At each multiphase bus, the model of the distribution
system can have: (i) grounded wye-connected loads/sources;
(ii) ungrounded delta connections; (iii) a combination of wye-
connected and delta-connected loads/sources; or, (iv) a com-
bination of line-to-line and line-to-grounded-neutral devices at
the secondary of distribution transformers. For simplicity, we
consider only three-phase wye-connected or delta-connected
buses. The more general case can be found in [21]. Assume
that in the network there are NY wye-connected buses and
N# delta-connected buses. Let bus n be a wye-connected
bus; its power injections on each phase φ are denoted by
sφn ∈ C; collect them in the vector sY

n := [sa
n, sb

n, sc
n]!. On

the contrary, if bus n is a delta-connected bus, its power
and current injections from phase φ′ to φ are denoted by
sφφ

′
n ∈ C and iφφ

′
n ∈ C, respectively. Collect them in the vec-

tors s#n := [sab
n , sbc

n , sca
n ]! and i#n := [iab

n , ibc
n , ica

n ]!. The phase
φ to ground voltages of bus n are vφn ∈ C and are collected in
the vector vn := [va

n, vb
n, vc

n]!. The phase net current injections
on each phase φ of node n are denoted by iφn ∈ C and stacked
in the vector in := [ian, ibn, icn]!.

To conveniently state the power flow equations, collect the
aforesaid nodal quantities, except the ones associated with the
substation, in the vectors sY , s#, v, i, i# ∈ C3B:

sY :=
[(

sY
1
)!

, . . . ,
(
sY

B
)!]!

, s# :=
[(

s#1
)!

, . . . ,
(
s#B

)!]!

v :=
[
(v1)

!, . . . , (vB)!
]!

, i :=
[
(i1)!, . . . , (iB)!

]!

i# :=
[(

i#1
)!

, . . . ,
(
i#B

)!]!

Let Y be the three-phase bus admittance matrix and partition
it as

Y =
[

Y00 Y0L
YL0 YLL

]
∈ C3(B+1)×3(B+1).

where the 0-th block-row and block-column are associated
with the substation and Y00 ∈ C3×3, Y0L ∈ C3×3B, YL0 ∈
C3B×3, YLL ∈ C3B×3B. The power flow equations read [21]

diag
(

H!i#
)

v + sY = diag(v)i (1a)

diag(Hv)i# = s# (1b)

YL0v0 + YLLv = i (1c)

where H is a block diagonal matrix

H :=




!

. . .

!



, ! :=




1 − 1 0
0 1 − 1

−1 0 1



.

By eliminating the currents (i, i#) in Equation (1) and assum-
ing that YLL is invertible [21], we have the following fixed-
point equation around the zero-load voltage w := −Y−1

LL YL0v0:

v = w + Y−1
LL

(
diag(v)−1sY + H!diag(Hv)−1s#

)
. (2)

The nonlinear equation (2) can be linearized around the
zero-load voltage w to make the voltage deviation phasors

ṽ := v − w (3)∣∣ṽ
∣∣ := |v| − |w| (4)

a linear function of the power injections (see [21] for details)

[
ṽ
|ṽ|

]
≈

[
MY M#

KY K#

]




pY

qY

p#

q#



 (5)

where the power injections (sY , s#) are split into their active
parts pY := #(sY), p# := #(s#) and reactive parts qY :=
$(sY), q# := $(s#). The matrices {MY , M#} ∈ C3B×6B are
defined as

MY :=
[
Y−1

LL diag(w)−1,−Y−1
LL diag(w)−1

]
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M# :=
[
Y−1

LL H!diag(Hw)−1,−Y−1
LL H!diag(Hw)−1

]

KY := diag(|w|)#
(

diag(w)−1MY
)

K# := diag(|w|)#
(

diag(w)−1M#
)
.

Two kinds of metering devices are considered in this work:
smart meters, able to measure power injections and voltage
magnitudes; and phasor measurement units (PMUs), able to
measure power injections and complex voltages [22], [23].
Buses hosting measurement devices are collected in the set M
of cardinality |M| = M. Buses endowed with smart meters are
collected in the set MSM, whereas buses endowed with PMUs
are collected in the set MPMU so that M = MSM ⊕MPMU.
Using (5), the measurable quantities can be approximated by
a function of power injections as:





#
(
ṽ
)

$
(
ṽ
)

∣∣ṽ
∣∣

pY

qY

p#

q#





=





#
(
MY)

#
(
M#

)

$
(
MY

)
$
(
M#

)

KY K#

I 0
0 I









pY

qY

p#

q#



 = "





pY

qY

p#

q#



 (6)

where " ∈ R21B×12B. The system state is the real vector
x := [(pY)!, (qY)!, (p#)!, (q#)!]! of dimension N := 12B,
which denotes the nodal power injections vector.

Data from PMUs, DERs, and smart meters are generally
not synchronized and have significant gaps in time between
measurements [6], [24]. Hence, we consider the case in which
only a subset of sensors send data to the system operator at
times t = t1, t2, . . ., potentially not equally spaced. However,
to keep the notation simple and without loss of generality, in
the following we assume that the measurements are collected
at times t = 1, 2, . . ., from a time-varying subset of buses,
denoted S(t), and are collected in the vector y(t). The vector
y(t) can be written as a function of the system state as:

y(t) = S(t)
[
#

(
ṽ
)!

(t),$
(
ṽ
)!

(t), |ṽ|!(t),
(
pY)!

(t),

(
qY)!

(t),
(
p#

)!
(t),

(
q#

)!
(t)

]!
+ n(t) (7)

where S(t) is a selection matrix that picks the quantities
measured at time t and n(t) represents the measurement noise.

Before formally defining S(t), assume, for simplicity but
without loss of generality, that the system operator gathers the
same number of measurements at each time step, i.e., |S(t)| =
S for all t. Matrix S(t) can be constructed by simple blocks
that depend on the list of buses measured S(t) := {s1, . . . , sS}
and the type of measurement device at each bus

S(t) =
[
S!

s1
· · · S!

sS

]!

with every Ssi is defined by one of two ways:
• if si ∈ MSM , then Ssi ∈ {0, 1}15×21B

Ssi =





0 0 Esi 0 0 0 0
0 0 0 Esi 0 0 0
0 0 0 0 Esi 0 0
0 0 0 0 0 Esi 0
0 0 0 0 0 0 Esi




(8)

• if si ∈ MPMU , then Ssi ∈ {0, 1}18×21B

Ssi =





Esi 0 0 0 0 0 0
0 Esi 0 0 0 0 0
0 0 0 Esi 0 0 0
0 0 0 0 Esi 0 0
0 0 0 0 0 Esi 0
0 0 0 0 0 0 Esi




(9)

and where Esi = (eᵀsi ⊗ I) ∈ {0, 1}3×3B. Moreover, we collect
all the matrices Ssi ’s in the matrix

S =
[
S!

s1
. . . S!

sM

]!
.

Remark 1: The more general case in which line currents are
also measured can be straightforwardly included in our setup.
Define as imn the vector collecting the line currents between
bus m and bus n. There exists a matrix Amn such that [21]

[#(imn)

$(imn)

]
= Amn

[#(v)

$(v)

]
.

The linear model (6) can be then straightforwardly augmented
by adding, for each line current sensors, terms of the form

[#(imn)

$(imn)

]
= Amn

[#
(
MY

)
#

(
M#

)

$
(
MY)

$
(
M#

)
]




pY

qY

p#

q#



.

However, to have a lighter notation and facilitate readability,
in the following we will outline our framework for sensors
taking only measurements on nodes.

III. AN ONLINE STATE ESTIMATION ALGORITHM

Here, the online state estimator designed in [18] is presented
and formally characterized. Let the state of the network at time
t be denoted as x(t). Denote the state variation at time t as
δ(t) := x(t) − x(t − 1). We make the following assumption.

Assumption 1: There exists a scalar #x, #x < ∞, such
that, for every t:

‖δ(t)‖ ≤ #x. (10)

Roughly speaking, this assumption states that the state vari-
ation is finite and hence two consecutive states cannot be
arbitrarily different. By combining (6) with (7), we obtain the
following linear measurement model

y(t) = S(t)"x(t) + n(t). (11)

Notice that the size of y(t) and n(t), denoted by Mt, varies
as a function of the type of reporting metering devices. For
instance, if at time t the system operator gathers measure-
ments from C buses in MSM and S−C buses in MPMU, then
Mt = 15C + 18(S − C). We also make the following standard
assumption on the measurement error

Assumption 2: For every time t, n(t) is zero mean, and with
positive definite covariance Nt := E[n(t)n(t)!].

At each time step t, given the measurement vector y(t), the
estimate x̂(t) of the true state x(t) is obtained by solving the
following time-varying regularized WLS problem [7]

x̂(t) = arg min
x

‖y(t) − S(t)"x‖2
N−1

t
+ γ

∥∥x − x̂(t − 1)
∥∥2 (12)
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Fig. 1. Block scheme of the dynamical system described by equation (13).

where x̂(0) is a given (arbitrary) initial state. The first term
in (12) is a classical WLS cost. However, because the num-
ber of measurements available at any time t is assumed
to be smaller than the number of system states (namely
Mt < x = 12B), the first term is convex but not strictly convex.
The second term in (12) acts as a regularizer that penalizes
the Euclidean distance of the new estimate from the older one
and makes (12) a strongly convex problem having a unique
solution. The real scalar γ > 0 will be referred to as the
inertia parameter and has a straightforward interpretation: the
smaller γ is, the farther the new estimate x̂(t) is allowed to
be from x̂(t − 1); the bigger γ is, the closer the new estimate
x̂(t) will be from the previous one. Since (12) is a quadratic
unconstrained problem, its solution x̂(t) is

x̂(t) = $(t)x̂(t − 1) + 1
γ

$(t)"!S(t)!N−1
t y(t) (13)

where

$(t) := γ
(
"!S(t)!N−1

t S(t)" + γ I
)−1

; (14)

Equation (13) represents the sought online asynchronous state
estimator (OASE) and constitutes a linear dynamical closed-
loop system, whose block scheme is reported in Figure 1.
The new estimate x̂(t) can be recursively computed given the
previous estimate x̂(t −1), the new measurement y(t), and the
set of reporting sensors S(t). The inverse on the right hand
side of (14) always exists and $(t) ∈ RN×N is a symmetric
positive definite matrix for every t [18].

Recall that the measurements are processed as they come
in, and that y(t) carries information of a limited number of
buses. We make the following assumption.

Assumption 3: There exists a constant τ > 0 such that the
system operator gathers measurements from every sensor at
least once in the τ -long interval [t, t + 1, . . . , t + τ − 1].
Moreover, the matrix S" is a full column rank matrix, namely,

S"x = 0 ⇔ x = 0. (15)

Notice that Assumption 3 is in line with the current prac-
tice. In fact, sensors report measurement data periodically to
system operators, e.g., smart meters send data on an hourly
basis [25]. Roughly speaking, equation (15) means that the
system would be observable if all the sensors were taking mea-
surements at the same time. Unfortunately, this is not the case
for most distribution networks where measurements devices

are heterogeneous and non-synchronized. Equation (15) holds
when every bus is endowed with a measurement device,
but also in the case in which some buses are not moni-
tored, provided that enough measurements come from other
locations.

Define the estimation error ξ(t) := x̂(t)−x(t). The following
result holds true.

Lemma 1: The estimation error obeys the following
dynamic system [18]

ξ(t) = $(t)ξ(t − 1) − $(t)δ(t) + 1
γ

$(t)"!S(t)!N−1
t n(t).

(16)

Proof: Simple manipulations yield, for every x

($(t) − I)x = − 1
γ

$(t)"!S(t)!N−1S(t)"x. (17)

Using the definitions of δ(t) and ξ(t), and using equa-
tions (11), (13), and (17) we obtain

ξ(t) = $(t)(ξ(t − 1) − δ(t)) + 1
γ

$(t)"!S(t)!N−1
t n(t)

+ ($(t) − I)x + 1
γ

$(t)"!S(t)!N−1
t x(t)

= $(t)ξ(t − 1) − $(t)δ(t) + 1
γ

$(t)"!S(t)!N−1
t n(t).

Equation (16) represents a closed loop system in which the
previous estimation error is fed back and the input depends
on δ(t) and n(t) whose stability properties, summarized in the
next result, are formally proved in [18].

Proposition 1 [18, Th. 2]: Let Assumption 1, 2, and 3
hold. Denote as λ̄ the smallest among the nonzero eigen-
value of the matrices in the sequence {(S(t)")!N−1

t (S(t)")},
t = 1, 2, . . . , the error mean as µ(t) := E[ξ(t)], and the error
variance as &(t) := E[(ξ(t) − µ(t))(ξ(t) − µ(t))!]. Define
the variables m(t) := ‖N−1

t ‖F , m = supt{m(t)}, ψ := γ

γ+λ̄ ,

C(t) := ‖(S(t)")! ⊗ (S(t)")!‖F , C := supt{C(t)}. At every
time t = 1, 2, . . ., we have

‖µ(t)‖ ≤ ψ/ t
τ 0‖ξ(0)‖ +

t∑

k=1

ψ

⌊
t+1−k
τ

⌋

#x(k) (18)

‖&(t)‖F ≤ ψ/ t
τ 0‖&(0)‖F +

t∑

k=1

ψ

⌊
t+1−k
τ

⌋

C(k)m(k). (19)

Moreover, the error mean, the error covariance, and the aver-
age distance between the estimate x̂ and the true state x are
asymptotically upper-bounded, i.e.,

lim sup
t→∞

‖µ(t)‖ ≤ τ#x

(
1 + γ

λ̄

)
(20)

lim sup
t→∞

‖&(t)‖F ≤ τCm
γ 2

(
1 + γ

λ̄

)
(21)

lim sup
t→∞

√
E

[
ξ(t)!ξ(t)

]
≤ τ

√
C2m2

γ 4 +#2
x

(
1 + γ

λ̄

)
. (22)

In summary, ξ has a mean and a covariance that are finite at
every time t and asymptotically upper bounded. Furthermore,
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this property holds for every choice of γ . Although we are
not able to provide a closed form expression for the inertia
parameter γ ∗ that minimizes the upper bound in (22), namely,

γ ∗ = arg min
γ
τ

√
C2m2

γ 4 +#2
x

(
1 + γ

λ̄

)

like we did in the case of bounded noise [7], γ ∗ can be eas-
ily found numerically. Nevertheless, a good rule of thumb to
choose the inertia parameter is the following. If the state varia-
tion dominates the measurement noise, i.e., #x 3 m, γ should
be chosen small so that the state estimate is able to promptly
chase the true state. On the other hand, if the error intro-
duced by the sensors is bigger than the state variability, i.e.,
#x 4 m, γ should be chosen large in order to somehow filter
the measurement noise.

Remark 2: A similar dynamic state estimator was adopted
in [19], where a prediction-correction method is applied to the
DSSE. The scheme proposed in this paper does not require a
prediction step and can handle asynchronous measurements.
Another similar approach can be found in [26]. However,
authors of [26] are considering systems fully observable at any
time and use a proximal point method to solve an optimization
problem providing the state estimate at a certain time instant.

IV. A WLS STATE ESTIMATOR

Traditionally, state estimation is performed by solving a
WLS problem. Because the number of measurements must be
at least equal to the number of states, pseudo measurements
are introduced so that the WLS problem has the form

x̂LS(t) = arg min
x

‖y(t) − S(t)"x‖2 + ‖yPM − APMx‖2. (23)

where the vector yPM collects all the pseudo measurements and
the matrix APM links them to the system state. Similar to (12),
the first term in the cost of (23) aims at finding the state that
best matches the last retrieved measurements. The second term
makes the WLS problem strictly convex and the estimate x̂(t)
well defined. Pseudo measurements are usually obtained from
historical data and have much larger measurement errors than
the telemetered real-time measurements [27]. For instance,
pseudo measurements of load demands are expected to intro-
duce a maximum error of more than 50% [28]. Given the high
uncertainty introduced by pseudo measurements, and given
that sensors frequently report to system operators their mea-
surement data, e.g., on a hourly basis, we propose directly
using the last retrieved measurement for the buses not report-
ing at time t. Assumption 3 ensures that such measurements
were taken within the last τ time instants. Hence, the vector
yPM can be written as

yPM = P(t)




y(t − 1)

...

y(t − τ + 1)



 (24)

with P(t) being a selection matrix opportunely selecting the
measurements needed. Equation (11) and the definition of state
variation δ(t) yield

y(t − k) = S(t − k)"x(t − k) + n(t − k)

= S(t − k)"x(t) + n(t − k)

− S(t − k)"
k∑

)=1

δ(t − k + )).

Hence, it holds




y(t)
y(t − 1)

...

y(t − τ + 1)




=





S(t)
S(t − 1)

...

S(t − τ + 1)




"x(t) +





n(t)
n(t − 1)

...

n(t − τ + 1)





−





0 . . . 0
S(t − 1)" . . . 0

...
. . .

S(t − τ + 1)" . . . S(t − τ + 1)"





×





δ(t)
δ(t − 1)

...

δ(t − τ + 2)




. (25)

Introducing the notation

yτ (t) =





y(t)
y(t − 1)

...

y(t − τ + 1)




, "τ (t) =





S(t)
S(t − 1)

...

S(t − τ + 1)




"

δτ (t) =





δ(t)
δ(t − 1)

...

δ(t − τ + 2)




, nτ (t) =





n(t)
n(t − 1)

...

n(t − τ + 1)





Nτ (t) =




Nt . . . 0

0
. . . 0

0 . . . Nt−τ+1





'τ (t) = −





0 . . . 0
S(t − 1)" . . . 0

...
. . .

S(t − τ + 1)" . . . S(t − τ + 1)"





we can compactly rewrite (25) as

yτ (t) = "τ (t)x(t) + 'τ (t)δτ (t) + nτ (t). (26)

From (24) and (25), y(t) and yPM can be written as

y(t) =
[
I 0

]
yτ (t) (27)

yPM =
[
0 P(t)

]
yτ (t). (28)

Using (23), (24), (27), and (28), and defining ((t) :=[
I P(t)

]
, problem (23) can be expressed as

x̂LS(t) = arg min
x

‖((t)(yτ (t) − "τ (t)x)‖2
Nτ (t);

and the state estimate has the closed form

x̂LS(t) =
(
"τ (t)!((t)!N−1

τ (t)((t)"τ (t)
)−1

× "!
τ (t)((t)!N−1

τ (t)((t)yτ (t). (29)

Since y(t) and yPM collect measurements coming from all
the sensors deployed in the grid, even if possibly taken at
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different times in the interval [t − τ + 1, t], the matrix S"
can be obtained by permutation of rows of ((t)"τ (t). Thus
rank(S") = rank(((t)"τ (t)). Assumption 3 ensures then
that rank(((t)"τ (t)) is full column rank and that the inverse
in (29) exists.

Define now the estimation error of the WLS estimator
ξLS(t) := x̂LS(t) − x(t). Plugging (26) into (29) yields

x̂LS(t) =
(
"τ (t)!((t)!N−1

τ (t)((t)"τ (t)
)−1

× "!
τ (t)((t)!N−1

τ (t)((t)('τ (t)δτ (t) + nτ (t)) + x(t)

and thus it is straightforward to see that

ξLS(t) =
(
"τ (t)!((t)!N−1

τ (t)((t)"τ (t)
)−1

× "!
τ (t)((t)!N−1

τ (t)((t)('τ (t)δτ (t) + nτ (t)).
(30)

Different from (16), equation (30) does not represent a
dynamical system but rather a static map. Hence, the esti-
mation error can be characterized much more easily.

Proposition 2: Let Assumption 1, 2, and 3 hold. At every
time t, the error mean µLS(t) := E[ξLS(t)] and the error
variance &LS(t) := E[(ξLS(t)−µLS(t))(ξLS(t)−µLS(t))

!] are:

µLS(t) =
(
"τ (t)!((t)!N−1

τ (t)((t)"τ (t)
)−1

× "!
τ (t)((t)!N−1

τ (t)((t)'τ (t)δτ (t) (31)

&LS(t) =
(
"τ (t)!((t)!N−1

τ (t)((t)"τ (t)
)−1

"!
τ (t)((t)!

× N−1
τ (t)((t)Nτ (t)((t)!N−1

τ (t)!(t)((t)"τ

×
((

"τ (t)!((t)!N−1
τ (t)((t)"τ (t)

)−1
. (32)

Proof: Being n(t) a random vector with zero mean

E
[
ξLS(t)

]
= E

[(
"τ (t)!((t)!N−1

τ (t)((t)"τ (t)
)−1

× "!
τ (t)((t)!N−1

τ (t)((t)('τ (t)δτ (t) + nτ (t))
]

=
(
"τ (t)!((t)!N−1

τ (t)((t)"τ (t)
)−1

× "!
τ (t)((t)!N−1

τ (t)((t)('τ (t)δτ (t) + E[nτ (t)])

=
(
"τ (t)!((t)!N−1

τ (t)((t)"τ (t)
)−1

× "!
τ (t)((t)!N−1

τ (t)((t)'τ (t)δτ (t).

Moreover, observe that

ξLS(t) − µLS(t) =
(
"τ (t)!((t)!N−1

τ (t)((t)"τ (t)
)−1

× "!
τ (t)((t)!N−1

τ (t)((t)nτ (t).

Hence, (32) follows from

&LS(t) = E
[
(ξLS(t) − µLS(t))(ξLS(t) − µLS(t))

!
]

=
(
"τ (t)!((t)!N−1

τ (t)((t)"τ (t)
)−1

"!
τ (t)((t)!

× N−1
τ (t)((t)E

[
nτ (t)nτ (t)!

]
((t)!

× N−1
τ (t)!(t)((t)"τ

×
((

"τ (t)!((t)!N−1
τ (t)((t)"τ (t)

)−1

Fig. 2. The IEEE 37-bus feeder.

=
(
"τ (t)!((t)!N−1

τ (t)((t)"τ (t)
)−1

"!
τ (t)((t)!

× N−1
τ (t)((t)Nτ (t)((t)!N−1

τ (t)!(t)((t)"τ

×
((

"τ (t)!((t)!N−1
τ (t)((t)"τ (t)

)−1
.

Roughly speaking, Proposition 2 states that the mean of the
estimation error depends on both the state variability and the
measurement noise, whereas its covariance depends mostly on
the measurement noise. Moreover, since

E
[
ξ!(t)ξ(t)

]
= µ(t)!µ(t) + E

[
(ξ(t) − µ(t))!(ξ(t) − µ(t))

]

= µ(t)!µ(t)

+ E
[
Tr

(
(ξ(t) − µ(t))(ξ(t) − µ(t))!

)]

= ‖µ(t)‖2 + ‖&(t)‖2
F. (33)

the average distance between the estimate x̂LS(t) and x(t) is
finite for every time t.

V. NUMERICAL EVALUATION

In this section, the OASE is used to solve the problem of
state estimation on the three phase distribution power system
shown in Figure 2, namely, the IEEE 37 bus test feeder [29].
There are three different type of buses: nonmetered buses,
nodes endowed with smart meters (providing measurements
of active power, reactive power, and voltage magnitude), and
nodes endowed with PMUs (providing measurement of active
power, reactive power, voltage magnitude and voltage angle).

The nodal power injections are obtained from real-world
active load data measurements collected in the UMass Trace
Repository Smart Dataset [30] 2017 Release. It contains the
time-series load data of 114 apartments during the year-long
time period from December 16, 2015, through December 14,
2016, at one minute granularity. Since the data set does not
provide reactive loads, power factors were chosen for each
bus to match the ratio between the nominal active and reac-
tive powers provided in the testbed data sheet [29]. At each
bus, we randomly aggregate the active power consumption of
ten apartments and normalize the obtained value so that the
average absolute power injection matches the default settings
of the test feeder. Sensors are affected by Gaussian zero-mean
measurement noise and have different reporting rates.
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Fig. 3. Average power injection estimation error for the OASE under various
inertia parameter settings.

• Smart meters report measurements once every hour asyn-
chronously and introduce noise that is modeled as a zero
mean Gaussian random variable with a relative standard
deviation σSM and truncated outside [−3σSM, 3σSM] to
model a maximum error of 0.5% [31];

• PMUs report measurements every minute and introduce
noise that is modeled as a zero mean Gaussian random
variable with a relative standard deviation σPMU and trun-
cated outside [−3σPMU, 3σPMU] to model a maximum
error of 0.05% [23].

Sensors provide v and |v| and the system operator computes
the voltage deviations ṽ and |ṽ| that are used for estimating
the state using (3) and (4). Since every sensor reports its mea-
surement at least once every hour and the state estimation
is performed every minute, we have τ ≤ 60. The OASE is
compared with the WLS estimation algorithm (29). At any
time t, the WLS algorithm uses both measurements from the
reporting meters and the last retrieved measurements from
the non-reporting sensors. The state estimation algorithms are
tested on 365 Monte Carlo simulations, one for each day from
the yearlong apartment load data set. Each Monte Carlo run
randomly chooses which minute of the hour any particular
smart meter reports its measurements. Although our approach
relies on the approximate grid model of (5), voltages were
calculated using the full ac grid model throughout our tests.

A. Algorithms’ Performance Evaluation

First, the OASE’s performance for different values of γ
is studied. Figure 3 shows the average state estimation error
among the Monte Carlo simulations over time under various
settings of the inertia parameter γ . Given a state estimate, a
voltage estimate can be found by computing the power flow
equations. Figure 4 reports the average error on the com-
puted voltages. Here, γ ∗ minimizes the right-hand side of
equation (22), whereas γ+, experimentally found, is the value
that gives on average the minimum estimation error. Figure 3
shows that setting the inertia parameter to values that are much
lower, e.g., 104, or much higher, e.g., 1010, than γ ∗ provides
worse performance: the estimation error settles around higher
values or converges slowly. Nevertheless, for inertia param-
eters belonging to a wide interval centered around γ ∗, the

Fig. 4. Average voltage estimation error of the OASE under various inertia
parameter settings.

Fig. 5. Average power injection estimation error for the WLS estimator and
the OASE.

estimation error remains relatively close to the one associated
with γ+. Hence, the inertia parameter can be safely set to
γ ∗, even if this does not represent the optimal choice, without
significantly deteriorating the estimator performance.

Second, we compared the OASE with the WLS algo-
rithm. Figure 5 reports the average relative estimation error
in the power injections among the Monte Carlo runs;
Figure 6 reports the average relative error in voltage esti-
mation over time. For the first 60 minutes, we used the
pseudoinverse ("τ (t)!N−1

τ (t)"τ (t))# rather than the inverse
("τ (t)!N−1

τ (t)"τ (t))−1 because not enough measurement are
available to make problem (23) strongly convex, making the
WLS very inaccurate. Notably, the online state estimation
algorithm, when the inertia parameter is set to γ ∗ or γ+, out-
performs the WLS estimator. We inspected the norm of the
estimation error’s mean and covariance, which are reported in
Figure 7 and Figure 8, because the expectation of the esti-
mator error squared norm can be related to these quantities,
see (33). The results show that although WLS has almost the
same average estimation error as the OASE under γ+ or γ ∗,
it has a greater magnitude of the error covariance. This for-
mally explains the results shown in Figures 5 and 6. Figure 9
shows estimates of the real power injection for phase a at bus
36. In general, the state estimate’s volatility depends on either
being too sensitive to the measurement error or being not very
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Fig. 6. Average voltage estimation error of WLS estimator and the OASE.

Fig. 7. Mean of the state estimation error for the WLS estimator and for
the OASE.

Fig. 8. Frobenius norm of the Covariance of the state estimation of the WLS
estimator and of the OASE.

responsive in tracking the true state when γ is either smaller
or γ is bigger than the optimal parameter, respectively. It can
be seen that γ+ and γ ∗ track the true value reasonably well.
When γ is too low (γ = 104), the state estimate fluctuates
because of its sensitivity to measurements.

B. Effect of Sensor Placement

We tested how the placement of frequently reporting sen-
sors (in our case, the PMUs) affects the performance of the
OASE. In particular, we moved one PMU from Node 2 to

Fig. 9. Real power injection estimation over time for one phase at a particular
bus.

Fig. 10. Average power injection estimation error for the OASE under various
inertia parameter settings and a different PMU placement.

Fig. 11. Average voltage estimation error of the OASE under various inertia
parameter settings and a different PMU placement.

Node 5. Figures 10 and 11 show the average state estima-
tion error and the average error on the computed voltages,
respectively. It is possible to notice that the new placement
produced the following changes: first, γ ∗ and γ+ are different
from the one obtained before; values of the inertia parameter
that were previously working well (e.g., γ = 1010) are not
providing good performance in the new setup. Second, the
PMU placement affects the quality of the state estimates and
of the voltages computed from them. Indeed, by comparing
the curves in Figures 3 and 10 to those in Figures 4 and 11,
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Fig. 12. Average power injection estimation error for the WLS estimator
and the OASE under bad and noisy data.

we can notice that the former PMUs placement gives bet-
ter performance. Third, we notice that larger errors in the
estimation of the power injections turn into smaller errors
when looking at the associated voltage estimates; moreover,
the ordering of the curves changes between the two scenarios,
e.g., if the brown curve is the worst in both Figures 3 and 4,
this is not the case anymore for Figures 10 and 11. This is
because the computation of voltages entails solving highly
nonlinear power flow equations; as experimentally shown, this
is sensitive to the PMU placement. The study and the design
of efficient algorithms for placing PMUs to minimize the esti-
mation error and improve the quality of voltage estimates is an
interesting direction that we will pursue in our future research
efforts.

C. Algorithms’ Robustness Analysis

We numerically analyzed the robustness of our algorithm
by considering a scenario with increased measurement errors;
this scenario is denoted hereafter as the high err case. In the
high err case, the measurement noise affecting the sensors
is larger than the one considered in the previous simulations;
precisely, smart meters (PMUs) introduce a maximum error
of 5% (0.5%). Moreover, sensors report corrupted data with
a probability of 1% (i.e., the value zero for powers and volt-
ages). Figure 12 compares the estimation errors in the high
err case with the ones obtained before. The best results for
the OASE were obtained by setting γ to 1010 rather than to
γ ∗ or γ+. Intuitively, having a large γ forces the new esti-
mate to be close to the previous one, alleviating the effect of
bad data on the estimation process. Increasing the measure-
ment noise deteriorates the overall performance. Interestingly,
the OASE outperforms even the WLS estimator using more
precise measurements.

Further, we numerically studied the influence that the
parameter τ has on the performance of the OASE. It is not
a surprise that smaller values of τ lead to smaller errors.
Intuitively, the estimation error depends both on the measure-
ment noise and on the number of available measurements.
Notably, the plots in Figure 13 show that smaller τ are asso-
ciated with wider gaps between the errors in the high err
scenario and the one considered before, i.e., when we consider

Fig. 13. Average power injection estimation error for the OASE under
different smart meter measuring periods under bad and noisy data.

the high err case, smaller values of τ are associated with big-
ger performance degradation. This shows that the estimation
error mostly depend on (i) the scarcity of measurements when
τ is big; (ii) the sensors’ inaccuracy when τ is small.

VI. CONCLUSION

We have considered the problem of state estimation in a
three-phase distribution network with asynchronized sensors.
Two possible solutions have been studied. The first comes from
our recent work [18] and it is a dynamic state estimator that
has a recursive expression in which the new estimate is found
as a function of the previous estimate, the gathered measure-
ments, and of the inertia parameter. The second consists of a
classic WLS estimator in which, as pseudo measurements, we
used the measurement data retrieved in a certain finite time
window. Both methods are able to estimate the true system
state up to an error that depends on the state variability and
the measurement error. Simulations on the standard IEEE-37
bus testbed with real-world load data traces have shown the
effectiveness of the proposed strategies and that the dynamic
estimator, for wise choices of the inertia parameter, outper-
forms the WLS estimator. Future research directions include
considering a nonlinear measurement model instead of (5), and
optimizing the placement of frequently reporting sensors (e.g.,
PMUs) to increase the estimation accuracy.
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