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Abstract
Due to their constituent powders, the materials of advanced compressed oral solid dosage (OSD) forms are micro-composites 
and strongly visco-elastic at macro- and micro-length scales. The disintegration, drug release, and mechanical strength 
of OSD forms depend on its micro-texture (such as porosity) and micro-scale physical/mechanical properties. In the cur-
rent work, an algorithmic ultrasonic characterization framework for extracting the micro-visco-elastic properties of OSD 
materials is presented, and its applicability is demonstrated with a model material. The proposed approach is based on the 
effect of visco-elasticity and granularity on the frequency-dependent attenuation of an ultrasonic wave pulse in a composite 
(granular) and viscous medium. In modeling the material, a two-parameter Zener model for visco-elasticity and a scattering 
attenuation mechanism based on Rayleigh scattering for long-wave approximation are employed. A novel linear technique 
for de-coupling the effects of micro-visco-elasticity and scattering on attenuation and dispersion is developed and demon-
strated. The apparent Young’s modulus, stress, and strain relaxation time constants of the medium at micro-scale are extracted 
and reported. Based on this modeling and analysis framework, a set of computational algorithms has been developed and 
demonstrated with experimental data, and its practical utility in pharmaceutical manufacturing and real-time release testing 
of tablets is discussed.

Keywords  compressed oral solid dosage forms · micro-structure · micro-visco-elasticity · non-destructive characterization · 
particulate composites · physical properties · porosity · ultrasonic wave dispersion

Introduction

A modern compressed oral solid dosage (OSD) form (phar-
maceutical tablet) is a consumable drug delivery device with 
fine-tuned properties. The dissolution profile, release mecha-
nisms, and active materials release rate of an OSD form 
depend on its various physical/mechanical and microstruc-
ture/morphological properties, such as its tensile strength, 
porosity, internal pore- and microstructure, inter-granular 
coupling, and visco-elastic properties [1–3].

Pharmaceutical development and production benefit 
from the use of non-destructive methods for precise and 
rapid micro-scale material characterization and efficient 
monitoring for related meso-scale parameters (e.g., ten-
sile strength, visco-elasticity, and porosity), related to 
critical quality attributes (CQA). Because of its non-
destructiveness, the potential for real-time in situ quality 
monitoring, and comparatively inexpensive equipment 
and operational costs, the direct approach of obtaining 
material characteristics from the transmission and dis-
persion of propagating elastic waves in its medium is 
appealing. Consequently, elastic wave techniques (both 
acoustic and ultrasonic) have been employed to character-
ize pharmaceutical compressed OSD forms such as tensile 
strength of compacts [4], material particle size and poros-
ity [5], acoustic emission while compaction of the OSD 
[6], the integrity of tablets and elasticity [7–12], elastic 
property measurements of multi-layer tablets [13], the 
effect of shape on the physical–mechanical properties of 
the pharmaceutical tablet [14], and complete anisotropic 
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characterization of OSD forms [15]. It is also shown that 
ultrasonic waves are sensitive to micro/macro-cracks and 
other defects [16, 17], capping risk [18, 19], mechanical 
strength (“hardness”) [20], and production process param-
eters such as the compaction speed, compaction pressure, 
and head flat types [21].

Typically, the powder materials used in advanced OSD 
forms are highly visco-elastic and granular (composite), so 
a practical characterization technique must be capable of 
dealing with both effects simultaneously. In this study, the 
characterization of the visco-elastic properties of pharma-
ceutical granular materials is conducted while taking scat-
tering effects into account for the first time. Visco-elasticity 
is linked to temporal responses of a compact such as creep, 
damping, and stress relaxations in its material. Common 
excipients used in modern pharmaceutical manufacturing 
are organic/polymeric with strong visco-elastic/visco-plas-
tic properties [22]. Such properties play critical roles in a 
solid dosage design since tablets are plastically shaped by 
a high-strain rate compaction force involving the intrinsic 
properties of active pharmaceutical ingredient(s) (API) and 
excipients from powder form to solid state, followed by rela-
tively long relaxation times as some other production unit 
operations (such as coating, packaging, handling, storage, 
and transport) take place. Mechanical relaxation is related 
to visco-elasticity, leading to stored strain energy during 
compaction, pore and crack formation and propagation, and 
grain separation at micro-scale in a tablet matrix.

Elastic wave pulses traveling in a solid medium are 
affected by the visco-elasticity of its constituents and geo-
metric discontinuities and defects such as micro-structure/
textures, inter-granular boundaries with air gaps (i.e., 
porosity), and micro/macro-cracks (e.g., scattering and 
wave localization effects). Thus, the spectral content and 
amplitude of a traveling elastic wave packet are modulated 
as it travels in a spatially textured (composite) medium 
when wavelengths are sufficiently short compared to the 
characteristic length scale of the media texture. Thus, the 
attenuation of the wave pulse includes information on the 
dissipation mechanisms (i.e., visco-elasticity and internal 
friction) of the medium and the nature of its wave scatters 
(such as particle/grain/pore size distribution, grain-matrix 
boundaries, micro-cracks, voids, inclusions, macro-cracks 
(e.g., pre-capping shear planes), and other structural defects 
and irregularities (such as non-uniforms mass density dis-
tributions of APIs).

Scattering attenuation for metals with no or weak 
visco-elasticity has been studied since the 1950s by 
considering the grain-matrix elasticity and coupling, 
dimensions and forms of the geometry characteristics, 
and the leading wavelength of the propagating wave 
pulse [23]. The standard linear solid (Zener) model is 
often used as an acceptable approximation for modeling 

visco-elasticity of polymeric materials according to var-
ious studies [24, 25]. However, in a granular medium, 
the observed complete attenuation is more dominant 
than in the single crystal medium of the same mate-
rial (assuming that the visco-elastic constants remain 
unchanged)  due to wave scattering. Accordingly, to 
precisely characterize the visco-elastic properties and 
extract the microstructure of the OSD medium, scatter-
ing must be understood and considered in a mathemati-
cal modeling effort. When an ultrasonic pulse propa-
gates through a polycrystalline material, its elastic and 
mass density characteristics as well as inhomogeneities 
and discontinuities (e.g., cracks) lead to the difference 
in propagation speeds of each crystallite, consequently 
causing wavefront coherency loss and scattering of the 
traveling pulse. For correlating measured attenuation to 
grain size, the following two modeling studies are con-
sidered foundational. The first material model by Stanke 
and Kino [26] depends on a second-order perturbation 
model [27] to illustrate a unified framework. This model 
is applicable and valid across all the frequency regions 
for a cubic equiaxial un-textured polycrystalline medium 
when the nonlinear equation of the propagating wave 
constant was acquired. The Stanke-Kino model repro-
duces the attenuation in the Rayleigh and stochastic 
regimes [28, 29]. The second material model, known 
as Weaver’s model, [30] provides a general solution uti-
lizing the Dyson and Bethe–Salpeter equation for the 
untextured cubic-symmetry polycrystals. By applying 
the Born approximation [31], these two basic models 
produce the same attenuation coefficient solution and 
are further extended to some special cases [32, 33]. For 
instance, Weaver’s model was utilized to derive explicit 
formulas for the ultrasonic wave attenuation coefficients 
in polycrystals with hexagonal symmetry [34].

The matrix materials of advanced compressed OSD 
forms are micro-composites, visco-elastic, and granular 
at macro- and micro-length scales, and thus their mor-
phologies deviate from crystalline solid materials. These 
visco-elastic properties of the OSDs can be utilized in 
the development of a reliable predictive tool to assess 
tablets’ robustness and risk of internal or external defects. 
The key objective of the current study is to provide a 
deterministic ultrasonic characterization framework for 
simultaneously extracting the visco-elastic and scatter-
ing material parameters of OSD forms from their disper-
sion relations in a non-destructive manner for the first 
time. Based on the previously reported observations and 
experiences [35, 36], in such complex materials, both 
visco-elastic and scattering mechanisms are expected to 
be comparably effective in attenuation. To account for 
the visco-elastic and scattering effects respectively in the 
OSD material medium at micro-scale, in the current work, 
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Zener’s visco-elastic model is modified and used along 
with the Rayleigh scattering model. Elastic modulus and 
stress/strain relaxation time coefficients, as well as Ray-
leigh scattering parameters, are extracted and reported 
utilizing the proposed mathematical framework and a 
novel robotic experimental rig for repeatable waveform 
acquisition. The use cases of the algorithmic approach 
in pharmaceutical development, manufacturing, and real-
time release testing of tablets are also discussed.

Mathematical Formulation for the Analysis 
of Attenuation Mechanisms in Effect

As an elastic wave pulse travels in a dissipative field with 
high granularity, many dispersion mechanisms could affect 
and modulate its frequency and amplitude over time and 
space. The total attenuation in a medium is due to energy 
dissipative (e.g., micro-visco-elasticity, damping, and 
internal friction) and geometric properties (e.g., reflec-
tion and diffraction by grain boundaries, inclusions, voids, 
micro-cracks, macro-cracks, and other structural irregular-
ities and defects) of the medium material. A mathematical 
model connecting these properties of elastic wave attenua-
tion and dispersion is required to describe and characterize 
modern OSD materials for such mechanisms.

In a linear elastic medium, a one-dimensional transient 
displacement u(x,t) in the x-direction can be depicted in 
the Fourier integral form:

where t is time, ω the angular frequency, G(�) , the displace-
ment waveform u(x, t) in the spectral domain (ω) at a refer-
ence plane (x = 0), and �(�) = �(�) + i�(�) the dispersion 
relation (complex wavenumber, i

√
−1 ) with �(�) and �(�) 

the attenuation and real (angular) wavenumber, respectively. 
From Eq. 1, the displacement waveforms at two arbitrary 
locations x = 0 and x = h are expressed as:

where, in the current context, h represents the thickness 
of the sample tablet in the propagation direction (x) of the 
elastic wave pulse represented by its spectral contents G(�) . 
In this study, the displacement waveforms u(x = 0, t) and 
u(x = h, t) are experimentally acquired using ultrasonic 
equipment. The Fourier transforms (F) of these two wave-
forms (Eq. 2) yield the following expressions:

(1)u(x, t) =

+∞

∫
−∞

G(�)exp(i(�(�)x − �t))d�

(2)
u(x = 0, t) =

+∞∫
−∞

G(�)exp(i�t)d�

u(x = h, t) =
+∞∫
−∞

G(�)exp(i(�(�)h − �t))d�

The complex wavenumber �(�) is then extracted from 
(Eq. 3) as:

with the complex wavenumber �(�) = �(�) + i�(�) , the 
propagating wave field is represented as:

In practice, a Wiener filter [37] is used to eliminate zero 
division outside the transducer bandwidth in Eq. 4 and asso-
ciated numerical instability, and the frequency-dependent 
phase cp and group cg speeds of the dispersive medium are 
determined by: cp(�) = �∕�(�) and cg(�) = d�∕d�(�).

Scattering Models for Composite Materials 
with Micro‑structures

For the tablet samples utilized in the current study, a 
medium material model for dissipation and scattering is 
developed and presented based on the following assump-
tions: (i) the only attenuation mechanisms present in the 
material are visco-elastic dissipation and elastic scatter-
ing, (ii) the interactions of these two attenuation mecha-
nisms are de-coupled, (iii) for the visco-elastic behavior 
the standard linear solid model is valid, (iv) the Rayleigh 
scattering model (as a long-wave approximation) governs 
the scattering attenuation, (v) the particle number present 
in a sample is adequately high, and the granular size distri-
bution is statistical with a probability density function, and 
(iv) scattering energy is low compared to the total strain 
energy of the incident wave pulse.

Since the 1950s, based on the works for metals with weak 
visco-elasticity, it has been known that every grain present in 
an attenuating material provides scattering-related attenua-
tion based on the proportion of the wavelength of the trave-
ling displacement pulse (λ) to the fixed scatterer size (grain 
size) (d) of the medium, specifically, λ/d [23, 38]. Under the 
assumptions listed above for the medium material, three main 
scattering regimes for non-visco-elastic materials have been 
identified [39] by the ratio of acoustic wavelength (λ) with the 
mean grain diameter (d). When d is constant, for λ >  > 2π d (i.e. 
λ/d >  > 2π), attenuation (Rayleigh scattering of the medium) is 
denoted in the frequency (f) terms: �s(f , d) = crd

3f 4 where cr is 
an unknown material constant. As wavelength becomes shorter 
(due to increasing frequency), about λ ~ 2π d, wave propaga-
tion enters a new zone, called the stochastic regime, and the 

(3)
F{u(x = 0, t)} =

√
2�G(�) F{u(x = h, t)} =

√
2�G(�)exp(i�(�)h)

(4)�(�) = �(�) + i�(�) = −i
1

h
1n

(
F{u(x = h, t)}

F{u(x = 0, t)}

)

(5)u(x, t) =

+∞

∫
−∞

G(�)e−�(�)xei(�(�)x−�t)d�
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attenuation coefficient is presented as �s(f , d) = csdf
2 where cs 

is also an unknown material constant. To our best knowledge, 
currently, there is no widely used theory for the real part of 
the dispersion curve, but in principle, it is known an approxi-
mate relation can be established using the Kramers–Kronig 
(K-K) relationship. As discussed in [26], the assumption for 
the low scattered energy (assumption vi above) is inapplicable 
in the stochastic regime, where several scattering effects are 
present. The third regime is characterized by a wavelength that 
is significantly smaller than the characteristic size of the scatter 
(i.e., λ <  < d, or λ/d <  < 1), referred to as the diffusion regime, 
frequency independent: �s(d) = cd∕d where cd is an unknown 
material constant. As multiple scattering is dominant in the dif-
fusion regime, Assumption vi is invalid for the diffusion regime. 
In summary, these asymptotes proposed by [40] for the first 
time are as follows:

Based on the approximate velocity of the pressure (lon-
gitudinal) wave in the medium and the characteristic size of 
grains, an ultrasonic transducer with wavelengths in millim-
eter-scale is specified for the current experimental system, 
to satisfy the Rayleigh scattering approximation (λ/d >  > 1). 
For the BI_2022_12kN sample material (Tables I and II), 
cL = 1822.86 m/s, when it is excited at the upper bound of its 
frequency band, fupper = 2.6 MHz, the wavelength of the pres-
sure wave is approximated as cL/f = λ = 700.76 µm. Thus λ ~ 2π 
d*, leading to d* = 700.76/2π = 111.53 µm. For grains smaller 
than d* = 111.53 µm, in propagation, Rayleigh scattering 
becomes the dominant attenuation mechanism. As depicted 
in Fig. 1, the grains of the sample set are substantially smaller 
than this cut-off diameter d* = 111.53 µm, thus Rayleigh scat-
tering is a reasonable model for the presented investigation.

In the case of Rayleigh scattering, the mathematical 
form �s(f , d) = crd

3f 4 represents the attenuation due to 
scattering for a uniform (constant) granular size distribu-
tion of a particulate composite medium. Bearing in mind 
a grain size distribution of a scatterer (for example, a 
composite consisting of grains of various sizes) for the 
feature size d, defined by a probability density function 
of q(d) with 

∞∫
d=0

q(d)dd = 1 , the contributions from all the 

grains of a solid body in scattering attenuation can be 
taken into consideration. For example, if we assume that 
Gaussian probability distribution represents q(d) for the 
granular sample medium, thus:

(6)

𝜆 ≃ 2𝜋d ≫ d ⇒ 𝛼s(f , d) = c
r
d3f 4 = c

r
d3𝜆−4 Rayleigh Regime (Long Wavelength Range)

𝜆 ≈ d ⇒ 𝛼s(f , d) = c
s
df 2 = c

s
d𝜆−2 Stochastic Regime (Transition Range)

𝜆 ≪⇒ d ⇒ 𝛼s(d) = c
d
d−1 Diffusion Regime (Short Wavelength Range)

(7)q(d) =
1

d
√
2��

exp
�
−(log(d∕�))2∕2�2

�

where µ is the median of the Gaussian probability distribu-
tion in the medium and σ its standard deviation, the total 
scattering attenuation is expressed in frequency (f) for a 
sample consisting of No number of granular scatterers in 
the propagation direction per unit length as [41]:

where cr is a material constant, for this Gaussian distribu-
tion, the total scattering attenuation coefficient becomes:

where µ is the median of the distribution in the medium and σ 
its standard deviation. The frequency-dependent visco-elastic 
and scattering attenuation mechanisms are assumed to have 
decoupled interactions, and the overall attenuation in the 
transmitting waves is approximated as: �(�) = �s(�) + �v(�) . 
The total attenuation α(ω), and the wavenumber β(ω) consid-
ering the K-K relation, are related by:

As discussed in [42], the closer local approximation to 
the K-K relation introduced an assumption of the identical 
behavior for the attenuation coefficient �(�) remains outside 
of the measurement bandwidth. Therefore, an extrapolation 
outside of this bandwidth is required to determine β(ω) from 
an experimentally obtained total attenuation relation α(ω). 
In the experiment, the measurement bandwidth and the 
bandwidth of the ultrasonic transducer are the same; there-
fore, to apply the local approximation of the K-K relation, 
the attenuation behavior is considered as same in the entire 
frequency domain. This approximation results in deviance 
from the computationally determined dispersion term β(ω) 
from the experimentally obtained curve. To achieve a close 
agreement with the experimentally extracted wavenumber 
β(ω) with the extracted term β(ω) requires to modify by add-
ing an arbitrary function considering the K-K relation. The 
modified total wavenumber, containing both the scattering 
and visco-elastic dispersion terms, is expressed as:

where A
(
�;�min,�max

)
 is a spectral-dependent function, and 

�s
mod

(�) the revised scattering wavenumber. A
(
�;�min,�max

)
 

can be determined by equating the wavenumber calculation 
to the experimentally acquired dispersion data using Eq. 10. 
Preferably, A

(
�;�min,�max

)
 is a linear function in ω, so that 

(8)�s(f ) =

⎛
⎜⎜⎝
crN0

∞

∫
0

q(d)d3dd

⎞
⎟⎟⎠
f 4

(9)�s(f ) =

⎛
⎜⎜⎝
crN0√
2��

∞

∫
0

d3exp
�
−(d − �)2∕2�2

�
dd

⎞
⎟⎟⎠
f 4

(10)�(�) =
�

2
�2(�)

d

d�

(
�

�(�)

)

(11)
�(�) = �s(�) + �s

mod
(�) = �v(�) + �s(�) + A

(
�;�min,�max

)
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a linear modifying function cancels out in Eq. 10. As a result, 
the original K-K form is satisfied in the entire frequency range.

Micro‑scale Dissipation Models for Viscoelastic 
Materials

As a linear energy dissipation mechanism, granular-level 
material visco-elasticity, internal friction, and inter-gran-
ular visco-elastic coupling in a granular matter are often 
modeled with visco-elastic continuum material models, in 
which both stress and strain relaxations are taken into con-
sideration simultaneously. In the current work, the following 

one-dimensional linear equation of motion in stress ( �xx ) 
and strain ( �xx ) with the generalized first-order visco-elastic 
material model with m = n = 1 is employed:

where E is the elastic modulus, and p1, q1 the stress and strain 
relaxation times, respectively, which are rate-dependent 
material constants, as discussed in [43]. With Eq. 12 and the 
equation of longitudinal motion, ��2u∕�t2 = ��xx∕�x , with 

(12)
�xx +

n∑
i=1

pi
�i�xx

�ti
= E

(
�xx +

m∑
i=1

qi
�i�xx

�ti

)

⇒ �xx + p1
��xx

�t
= E

(
�xx + q1

��xx

�t

)

Table I   The Measured Average 
Compact Thicknesses (h), 
Compact Diameters (d), 
Apparent Masses (mA), and 
Apparent Mass Densities (ρA) 
with their Standard Deviations 
(SD)

Sample sub-sets Compaction 
force Fc (kN)

Tablet shape Measured parameters

h d mA ρA

(mm) (mm) (g) (kg/m3)

BI_2022_02kN 2 Cylindrical (flat) Avg 3.68 9.04 0.30 1291.25
SD 0.02 0.00 0.00 5.90

BI_2022_04kN 4 Cylindrical (flat) Avg 4.06 9.02 0.30 1169.08
SD 0.02 0.00 0.00 0.76

BI_2022_06kN 6 Cylindrical (flat) Avg 3.85 9.02 0.30 1235.23
SD 0.03 0.00 0.00 2.53

BI_2022_09kN 9 Cylindrical (flat) Avg 3.68 9.02 0.30 1291.25
SD 0.02 0.00 0.00 5.90

BI_2022_12kN 12 Cylindrical (flat) Avg 3.61 9.03 0.30 1315.78
SD 0.02 0.00 0.00 5.85

BI_2022_15kN 15 Cylindrical (flat) Avg 3.56 9.02 0.31 1340.70
SD 0.02 0.00 0.00 8.72

Table II   Time-of-Flight (ToFL and ToFT) for Pressure and Shear 
Waves, Pressure, and Shear Wave Speeds (cL and cT), the Ratio of 
the Pressure and Shear Speed (κ), the Corresponding Young’s Moduli 
(EA), Shear Moduli (GA), Poisson’s Ratio (ν), Corrected Stress Relax-
ation Time (p1

cor), Corrected Strain Relaxation Time (q1
cor), and Scat-

tering Constant (A) Are Listed with their Averages and SDs for the 
Six Levels of Compaction Force Fc of the Complete BI_2022 Sample 
Set. Each Sample Sub-set in the Complete BI_2022 Sample Set Con-
sists of Four Tablets. The Total Number of Tablets in the Complete 
BI_2022 Sample Set Is Twenty-Four

Sample set Measured and extracted parameters

ToFL ToFT cL cT κ EA GA ν ϕm (%) p1
cor q1

cor A

(µsec) (µsec) (m/sec) (m/sec) (cL/cT) (GPa) (GPa) (µsec) (µsec) (× 10−27 (s/m)4)

BI_2022_02kN Avg 4.25 6.68 1086.32 691.65 1.57 1.21 0.49 0.16 29.33 0.05 0.13 N/A
SD 0.09 0.38 28.64 43.97 0.07 0.06 0.06 0.06 0.33 0.07 0.02 N/A

BI_2022_04kN Avg 2.82 4.56 1443.46 891.40 1.62 2.44 0.93 0.19 19.15 0.14 0.40 −15.50
SD 0.08 0.02 37.85 3.43 0.05 0.12 0.01 0.03 0.05 0.02 0.03 4.29

BI_2022_06kN Avg 2.32 3.75 1663.05 1027.59 1.62 3.42 1.31 0.19 14.58 0.16 0.41  − 6.53
SD 0.01 0.10 19.69 27.83 0.04 0.07 0.07 0.03 0.18 0.02 0.04 2.44

BI_2022_09kN Avg 2.08 3.15 1773.25 1169.00 1.52 4.06 1.76 0.10 10.70 0.17 0.50  − 7.07
SD 0.03 0.04 28.26 15.94 0.02 0.12 0.04 0.01 0.41 0.03 0.04 2.79

BI_2022_12kN Avg 1.98 2.90 1822.86 1246.73 1.46 4.37 2.05 0.08 9.02 0.22 0.66  − 9.07
SD 0.06 0.05 47.09 16.44 0.03 0.22 0.05 0.03 0.39 0.03 0.10 0.28

BI_2022_15kN Avg 1.82 2.82 1957.45 1265.19 1.55 5.14 2.15 0.14 7.28 0.23 0.72  − 9.74
SD 0.04 0.01 41.59 7.20 0.03 0.22 0.01 0.03 0.60 0.03 0.12 1.76
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�xx = �u∕�x , where u(x, t) and ρ are the traveling displacement 
field and the mass density, respectively, the wave equation for 
this first-order material model (n = m = 1) is obtained as:

The visco-elastic attenuation and the corresponding disper-
sion relation are obtained using the dispersive displacement 
field u(x, t) = U(�)ei(�v(�)x−�t) with �(�) = �(�) + i�(�) is 
the wavenumber, and α(ω) and β(ω) are the attenuation and dis-
persion terms for the visco-elastic material, respectively. Here, 
setting m = n = 1 in Eq. 12, a first-order visco-elastic standard 
linear solid (SLS) model is used for compressed OSD materials.

The standard linear solid (SLS), also referred to as the Zener 
visco-elastic material model, is a method of modeling the behav-
ior of a visco-elastic material using a linear combination of 

(13)
�2u

�t2
+ p1

�3u

�t3
=

E

�

(
�2u

�x2
+ q1

�3u

�x2�t

)

springs and dashpots (dampers) to represent elastic and viscous 
components, respectively. The SLS model combines aspects 
of the Maxwell and Kelvin–Voigt models to more accurately 
describe the overall behavior of a material under a given set 
of dynamic loading conditions. The Maxwell model is unable 
to describe creep (or recovery) while the Kelvin–Voigt model 
includes no stress relaxation. The SLS model is the simplest 
model that includes both effects.

Procedure for Extracting Visco‑elastic 
Parameters at Micro‑scale

Mathematical Formulation

Assuming the propagation medium material is linearly visco-
elastic (in the range of excitation displacement amplitudes) and 
stochastically granular, the experimentally obtained complex 

Fig. 1   Image of a sample from the BI_2022_15kN sub-set (a) (background grid: 5 mm × 5 mm), the micro-structural images of two samples 
from the BI_2022_6kN and BI_2022_12kN sub-sets (b, c), and their article size distribution histograms (d)



AAPS PharmSciTech           (2023) 24:22 	

1 3

Page 7 of 16     22 

wavenumber �(�) = �(�) + i�(�) is modeled as linearly cou-
pled (additively visco-elastic (v) and scattering (s)) effects. By 
plugging Eq. 5 into Eq. 13, and solving the resulting equation for 
�(�) with the symbolic computing system Mathematica™, the 
attenuation coefficient α(ω; p1, q1) and real wavenumber β(ω; p1, 
q1) are expressed in closed-forms as four solution pairs as follows:

where

Below, by eliminating the common terms in Eq. 14, the 
attenuation coefficient α(ω;p1, q1) and real wavenumber 
β(ω;p1, q1) are obtained in terms of each other (namely, the 
K-K relationships) for the pure visco-elastic (p1, q1) case 
(with the aid of Mathematica™):

The experimentally extracted attenuation coefficient 
αexp(ω) and real wavenumber βexp(ω) are represented for the 
complex wavenumber as two linearly-combined effects:

where the superscripts v and s are for visco-elasticity and 
scattering, respectively, d = μ and Δd = σ are the median scat-
tered size and the standard deviation of its Gaussian distribu-
tion (or similar statistical parameters for an applicable prob-
ability distribution function). From Eq. 4, the experimentally 
obtained complex wavenumber �exp(�) = �exp(�) + i�exp(�) 
from the two waveforms (Eq. 2) is determined as:

By substituting a harmonic solution in the form of 
u(x, t) = Aei(�(�)x−�t) into the visco-elastic wave equation 
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(Eq. 13), the complex wavenumber �(�) is expressed in terms 
of the visco-elastic parameters p1 and q1 as well as E and � . 
Expressing the visco-elastic parameters p1 and q1 in terms of the 
components of the complex wavenumber �exp(�) from Eq. (16) 
and substituting the experimentally obtained αexp(ω) and βexp(ω) 
into those for the generalized visco-elastic model (Eq. 13), and 
by solving Eq. 15 for p1 and q1, the frequency-dependent values 
for  pexp

1
 and qexp

1
 are obtained in closed form as follows:

The  t e r ms  p
exp

1
(�) ≜ F1(�

exp(�), �exp(�),�) and 
q
exp

1
(�) ≜ F2(�

exp(�), �exp(�),�) functional forms in Eq. 18 
are frequency dependent if the medium material is granular 
(with wave scatterers) as well as visco-elastic; thus, wave 
motion deviates from the purely visco-elastic dispersion 
behavior. If a linear medium is homogenous (e.g., not gran-
ular/textured) and purely visco-elastic, the corresponding 
terms pexp

1
(�) and qexp

1
(�) are expected to be constants (i.e., 

frequency-independent). Compressed OSD forms are often 
highly granular composites due to APIs and multiple excipi-
ents employed in their manufacturing. Propagating elastic 
waves in such granular media scatter in the Rayleigh regime 
if dominant wavelengths λ are considerably longer than d: 
λ > 2π d with d is a characteristic grain diameter or pattern 
repetition length scale (periodicity) in Eq. 6.

For elastic wave propagation in the Rayleigh regime, with 
some real A and B parameter values, the following corrected 
approximation from Eq. 18 can be made for the scatter-free 
visco-elastic constants p1 and q1:

The experimentally obtained complex wavenumber is 
then represented in its pure visco-elastic and pure scatter-
ing components as:

In other words, the extracted visco-elasticity coefficients 
p
exp

1
(�) and qexp

1
(�) in Eq. 18 can be made frequency inde-

pendent under ideal Rayleigh scattering conditions. This 
framework can be generalized for other scattering types 
(e.g., stochastic and transition and combined regimes) if the 
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presence of such scattering mechanisms is observed and/or 
anticipated from the texture of a medium.

Finally, once we verify that the propagation is in the 
Rayleigh scattering regime (with visco-elasticity), A* and 
B* can be further used to extract the grain/micro-structure 
properties of the medium (for example, the average grain 
size and its SD, and grain-to-grain elastic coupling) using 
the convolution integral method.

Extracting the Stress and Strain Relaxation Times 
p1and q1 from the Experimental Dispersion Curves

The computational characterization task now requires the 
determination of the numerical values for the Rayleigh 
regime slopes A and B such that pcor

1
 and qcor

1
 are made 

constants (frequency-independent) or near constants. The 
first step is to determine a frequency interval (f1, f2) with 
ω = 2π f for which the delay-line response and sample 
responses will be non-zero. This selection should mini-
mize numerical errors associated with zero division and/or 
loss of precision due to near-zero division. The frequency 
interval (f1, f2) is often within the transducer’s bandwidth, 
as strong attenuation in the sample creates a cut-off fre-
quency for transmitting high-frequency waves. A practi-
cal approach for choosing this interval would be to set an 
amplitude limit (for example, 5% of the maximum sample 
response in the frequency domain) for zero amplitude and 
determine the crossing points for this limit for which the 
f-coordinate would provide the frequency interval (f1, f2).

A numerical iteration solution by altering A and B until 
visually determining the values A and B is to make the 
curves pcor

1
(�;A,B) and qcor

1
(�;A,B) flat (or near-flat), indi-

cating frequency independence. For the numerical iteration 
solution, ranges for the pairs (p1 and q1) and (A and B) are 
obtained from the direct simulations by exploring a range of 
values for A and B. Note that it is often observed that pcor

1
(�) 

and qcor
1
(�) are less sensitive to the parameter B (than they 

are to A), thus B = 0 is taken to simplify Eq. 19 into:

Finally, the pcor
1
(�;A, 0)andqcor

1
(�;A, 0) functions are plot-

ted to verify if they are flat or near flat in (f1, f2).

Extracting the Mechanical Properties

Short-term Fourier Transform (STFT) time–frequency 
approaches are used to determine ToFL and ToFT from the 
acquired longitudinal and transverse waveforms, which 
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require the ToF of strain energy at a particular frequency [44]. 
The average longitudinal and pressure wave speeds (cL and cT) 
for a sample with thickness h are computed as follows:

The apparent Young’s modulus of the material is approxi-
mated by EA = cL

2 × ρA, and for shear modulus is determined 
by GA = cT

2 × ρA, where ρA is the apparent mass density of 
the sample material, assuming one-dimensional wave propa-
gation. Assuming an isotropic material, the Poisson’s ratio 
(ν) as a function of the wave speed ratio κ = cL / cT is deter-
mined by:

The true densities (ρt) of the material were quanti-
fied on a helium displacement pycnometer (AccuPyc® 
1340, Micromeretics, Norcross, Georgia, USA) using 
the method addressed in the United States Pharmacopeia 
(USP) < 699 > on the density of solids. After the mate-
rial had been adjusted in a desiccator for more than 24 h, 
these measurements were carried out three times. Using 
the bulk (ρb) and true (ρt) densities of the compacts, the 
mass porosity (ϕm) of the sample compact in percentage 
(%) was calculated by:

Experimental Setup and Ultrasonic 
Waveform Acquisition

OSD Materials

In this work, the material matrix was a fluid bed granulation 
batch with a preclinical API (with weakly basic Biopharma-
ceutical Classification System (BCS)—II with the molecular 
weight (MW) ≈ 450 g/mol), mannitol, and microcrystal-
line cellulose (MCC) with the weight percentage ratios of 
50.0:20.5:20.0, respectively. Croscarmellose sodium (4.0%) 
and magnesium stearate (1.5%) were also used as disinte-
grant and lubricant, respectively. Hypromellose (4.0%) was 
used as the tablet coating. The formulation was selected 
based on the high drug load to assess micro-structural 
properties influenced by different from standard excipi-
ents. Compacting the samples utilized in the current study 
(Fig. 1a) was conducted using this granulated blend with 
the following sizing data: the 10%, 50%, and 90% quantiles 
of the blend particle size distribution were 80 µm, 295 µm, 
and 543 µm, respectively. As it is observed in the optical 
sectioning images of the sample cross-sections (Fig. 1b, c), 
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the resulting actual grain size after compaction is however 
considerably smaller than these values for the starting blend.

Tablet Sample Set

The BI_2022 sample set utilized in the reported experi-
ments consists of twenty-four samples prepared at six 
compaction force levels Fc from 2 to 15kN (referred to 
as the BI_2022_02kN, BI_2022_04kN, BI_2022_06kN, 
BI_2022_09kN, BI_2022_12kN, BI_2022_15kN sub-
sets) with a 9-mm flat-face punch-die set. The shape of 
the samples is cylindrical (see Fig. 1a for an image of a 
BI_2022_15kN sample). In Fig. 1b and c, the micro-struc-
ture images (obtained by optical sectioning) of two samples 
from the BI_2022_6kN and BI_2022_12kN sub-sets are 
illustrated. Based on these images, the grain size distribu-
tions (d*) of the BI_2022_6kN and BI_2022_12kN samples 
are obtained from 14 to 98 µm and from 12 to 92 µm, respec-
tively (Fig. 1d). The average dimensions and mass densi-
ties of the BI_2022 samples are reported in Table I. The 
apparent mass density ( �A = mA∕V  ) of the tablet samples 
was determined using a CD-6 Absolute Digimatic Caliper 
(Mitutoyo Inc., Aurora, Illinois, USA) and a digital scale 
(Model: A120S-L, Mettler-Toledo Inc., Columbus, Ohio, 
USA) and are also reported in Table I.

Ultrasonic Experimental Setup and Equipment

To improve the accuracy and repeatability of non-destructive 
ultrasonic measurement, a robotic tablet handling system (TOTO, 
Pharmacoustics Technologies, LLC, Potsdam, New York, USA) 
was developed and utilized. In the development of the TOTO 
setup, a collaborative robot (UR3e, Universal Robots, Odense 
S, Denmark), ROBOTIQ HAND-E Adaptive Gripper (ROBO-
TIQ, Chemin Olivier, Lévis, Quebec, Canada), BOA spot vision 
system (BVS-SP-0640 M-XL-M08_w, Teledyne Imaging Sen-
sors, Camarillo, California, USA), Standard Output Backlight 
(SOBL) platform (A-SV-SOBL-150 × 150-WHI, Smart vision 
light, Norton Shores, Michigan, USA), two pressure transducers 
(V540-SM, Olympus Corporation, Center Valley, Pennsylvania, 
USA) with a central frequency of 2.25 MHz, two shear wave 
transducers (V154-RM, Olympus Corporation, Center Valley, 
Pennsylvania, USA) with a central frequency of 1 MHz, and a 
pair of Rexolite™ delay-lines have been integrated. A LabVIEW 
(Version 2015, National Instruments Corp., Austin, Texas, USA)-
based graphical user interface (GUI) controlling both the Ultra-
sonic Measurement Instrument (UMI 2022) (Pharmacoustics 
Technologies, LLC, Potsdam, New York, USA) and the TOTO 
robotic system was developed and utilized for data acquisition 
and processing for this study (Fig. 2).

The cur rent automated exper imental setup is 
designed for acquiring pressure and shear waves in both 

pitch-catch (PCM) and pulse-echo modes (PEM) to char-
acterize the physical, mechanical, and visco-elastic prop-
erties of pharmaceutical OSDs in a repeatable manner. 
In the reported experiments, the setup in PCM was set 
to a pulse width of 200 ns, a pulser voltage of 300 V, 
a sampling rate of 100 MHz, an amplification gain of 
0 dB, and an averaged (oversampling) rate of 512. The 
data acquisition procedure is similar to the TOTO robotic 
handling system utilized in [14].

Ultrasonic Waveform Acquisition and Signal 
Processing

In the reported experiments, both pressure and shear 
responses of the OSD samples are acquired in PCM. For the 
calibration waveform acquisition, the pulser-out transducer 
mounted with the delay-line is put in contact with the receiv-
ing transducer by the TOTO system, and an ultrasonic wave 
pulse is transmitted through the delay-line and received by 
the receiving transducer. The acquired calibration waveform 
forms a baseline for determining the time-of-flight informa-
tion for samples. For the ultrasonic response acquisition for 
the samples, the positional and geometric information (e.g., 
position, orientation, major, and minor axis length) of the 
OSD is determined using the spot BOA vision system of the 
TOTO system by acquiring the sample image placed on the 
SOBL backlight source. Using this position and geometric 
information of the OSD, the collaborative robot grips the 
OSD from the backlight source and places it on the test-
ing platform (on top of the receiving transducer surface) 
(Fig. 2a). Afterward, the pulser pressure transducer mounted 
with the delay-line is positioned in the axial direction of the 
OSD by the collaborative robot and exerts a constant axial 
load of 25 N on the sample to ensure reliable wave transmis-
sion while acquiring sample response waveforms. Using the 
GUI of the UMI 2022 equipment, the time-of-flight (ToFL, 
ToFT), the pressure and share wave speeds of the propagat-
ing wave pulses (cL, cT), the visco-elastic parameters (p1, q1), 
and scattering constant (A) are obtained from the calibration 
waveform and the sample response of the OSD. Finally, the 
collaborative robot returns the tested OSD to a storage con-
tainer. This process of unsupervised data acquisition contin-
ues until the last sample is processed. The same procedure is 
repeated to acquire transverse (shear) waveform data of the 
same sample set with the shear transducer pair.

Results and Discussions

The mathematical and experiment frameworks presented in 
the current study are based on the effect of visco-elasticity 
and wave scattering due to internal microstructures due to 
frequency-dependent attenuation of ultrasonic pressure and 
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shear pulses propagating in a granular tablet medium. Pres-
sure (P) and shear (S) waveforms acquired in pitch-catch 
mode (PCM) with the experimental setup, corresponding 
pressure, and shear waveforms, with amplitude normaliza-
tion, are depicted in Fig. 3a and b. To determine the visco-
elasticity and scattering coefficients, the longitudinal wave-
forms acquired from pitch-catch mode were transformed 
into the spectral domain using a fast Fourier transform 
(FFT) routine (Fig. 4a, b). From experimentally acquired 
pressure waveforms, the attenuation coefficient α(ω) and 
real wavenumber β(ω) were calculated based on Eq. (4), 
by comparing the two waveforms in the corresponding fre-
quency interval (f1, f2) in the transducer bandwidth.

In Fig. 4c and d, the comparisons of the experimental and 
corrected attenuation coefficients (a(f) and acor(f)), and (real) 
wavenumber (β(f) and βcor(f)) as a function of frequency (f) 
were shown in the transducer bandwidth (0.8–2.6 MHz) for 
the BI_2022_09kN sub-set, where the corrected attenua-
tion coefficient acor(f) and the corrected (real) wavenumber 
βcor(f) present the prescribed values of the attenuation and 
real wavenumber of the dispersion curve for the extracted 
material property (namely cL = 1790.12 m/s, p1 = 0.1459 µs, 
q1 = 0.4470 µs). For the dispersion curve calculation, only the 
visco-elastic effect is considered with no scattering effect, 
which is called the un-modeled scattering component. It is 
observed that the (real) wavenumber β(f) and the corrected 
(real) wavenumber βcor(f) curves are in relatively close agree-
ment (Fig. 4d), which is supporting the proposed approach. 
Theoretically, β(f) = βcor(f) + B ω4 (Eq. 19), where scattering 
constant B = 0 is taken (Eq. 21). The attenuation coefficient 
a(f) and the corrected attenuation coefficient acor(f) curves 
slightly deviate in the transducer bandwidth. The deviations 

observed in the attenuation coefficients (Fig. 4c) could be 
attributed to the un-modeled scattering contribution to the 
dispersion curve, which also supports the proposed math-
ematical formulation, because, by the theory, the attenuation 
term is in the form of a(f) = acor(f) + A ω4, where A is the scat-
tering constant (Eq. 19). The similar trend of the experimen-
tal and corrected attenuation coefficients (a(f) and acor(f)), 
and (real) wavenumber (β(f) and βcor(f)) is observed for the 
BI_2022 samples pressed at other compaction forces. This 
observation supports the existence of strong scattering in the 
experimentally acquired waveforms.

In Fig. 5, the extracted and corrected visco-elastic material 
properties (stress (p1 and p1

cor) and strain (q1 and q1
cor) relaxa-

tion times (log scale)) from the experimental waveform for the 
BI_2022 sub-sets are shown as a function of frequency in the 
transducer bandwidth. It is demonstrated that in Fig. 5 (left) the 
experimentally extracted p1(ω) and q1(ω) curves are in a decreas-
ing trend in the frequency range of 0.8–2.6 MHz, whereas the 
corrected p1

cor and q1
cor curves are nearly flat (Fig. 5, right). 

To eliminate the deviations between the extracted and cor-
rected p1

cor and q1
cor curves, scattering constants (A and B) are 

introduced to evaluate the scattering effect on the experimen-
tally extracted frequency dependency p1(ω) and q1(ω) curves. 
The contributions of the scattering constants (A and B) on the 
extracted p1(ω) and q1(ω) curves compared to the corrected p1

cor 
and q1

cor curves in the transducer bandwidth are shown in Fig. 5 
(right). It is observed that the extracted p1(ω) and q1(ω) curves 
become nearly flat in the frequency range of 0.8–2.6 MHz by 
varying the scattering constants (A and B) (Fig. 5 (right)).

The parameters ρA, cL, cT, EA, GA, and ν as functions of 
the compaction force Fc for the BI_2022 sub-sets are pre-
sented in Fig. 6a-c. It is observed that the ρA, cL, cT, EA, 

Fig. 2   a Connectivity diagram of the experimental rig (TOTO 
experimental setup) consisting of a BOA Spot vision system for 
locating the sample position, a collaborative robot as the sam-
ple handling system, a cobot gripper integrated with the pulsing 

pressure and shear transducers for sample picking and ultrasonic 
testing, and the receiving pressure and shear transducer holders 
for operating the system in the pitch-catch mode. b Image of the 
TOTO experimental setup
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and GA curves for all sample sets increase with increasing 
compaction force Fc, indicating the pressure and shear wave 
speeds (cL and cT) were strongly modulated by Fc. With 
increasing Fc, it is reported that the values of Poisson’s ratio 
v for compacts often decrease [14]. In the reported study, 
for the BI_2022 sample set with Fc = 4, 6, 9, and 12 kN, it is 
indeed observed that v decreases with increasing Fc (Fig. 6c). 
However, for Fc = 2 kN and Fc = 15 kN, a reverse trend is 
observed. It is known that low speed ratio values κ = cL/cT 
result in high errors in v predictions for compacts [15]. As 
reported in Table II, the range of κ is approximately from 1.4 
to 1.6, which is considered low, so considerable errors in v 
predictions are expected. For Fc = 2 kN, the SD (standard 
deviation) of κ = 0.07 (with SD (%) = 4.46%) and for Fc = 15 
kN, the SD of κ = 0.03 (with SD (%) = 1.94%) (Table II) are 
obtained, leading to high error levels in v predictions (for 
Fc = 2 kN and 15 kN the SD (%) of v is 37.5% and 21.43%, 
respectively) and an unexpected reverse trend in the v-Fc 
relation (Fig. 6c). By using advanced time–frequency signal 
processing techniques, the accuracy of v determination could 
be improved, as such techniques should result in less errors 
in the speeds-of-sound measurements (cL, cT), which is the 
known source of the error in the v determination [15].

In Fig. 6d, the effect of the tablet compaction force Fc 
on the corrected stress (p1

cor) and strain (q1
cor) relaxation 

time in the samples is demonstrated and quantified. For 
the complete BI_2022 sample set, the corrected stress 
relaxation time (p1

cor) and strain relaxation time (q1
cor) 

increase with the compaction force Fc using different scat-
tering constants (A and B). According to Eq. 21, pcor

1
(�) 

and qcor
1
(�) are significantly less sensitive to the scatter-

ing constant B; thus, B = 0 is taken without loss of preci-
sion. The frequency bandwidth of BI_2022_2kN is in the 
range of 0.5 to 1.8 MHz (Fig. 4b). For the BI_2022_02kN 
sample material (Table II), cL = 1086.32 m/s, when it is 
excited at the upper bound of its frequency band, namely 
at fupper = 1.8 MHz, the shortest wavelength of the pressure 
wave pulse is approximated as cL/f = λ = 603.34 µm (Eq. 6). 
Thus λ ~ 2π d*, leading to a crossover grain diameter of 
d* = 96.02 µm from Rayleigh regime to stochastic regime. 
From the microstructural image of the BI_2022_06kN and 
BI_2022_12kN (Fig. 1b, c), it is observed that the vast 
majority of grains in the composites are smaller than the 
crossover grain diameter d* = 96.02 µm, therefore scat-
tering experienced in the reported experiments occurs 
predominantly in the Rayleigh regime. In contrast, p1

cor 
and q1

cor values decreased with increasing porosity ϕm 
(%) (Fig. 7). Both corrected stress (p1

cor
) and strain (q1

cor
) 

relaxation times are strongly modulated by the compac-
tion force Fc and porosity ϕm (%). The complete set of the 
measured and calculated physical, mechanical, and viscoe-
lastic properties is reported in Table II.

Conclusions and Remarks

Typically, advanced compressed (OSD) tablet forms are 
strongly visco-elastic and highly granular, thus a characteri-
zation approach must be capable of dealing with both effects 
simultaneously in the relevant temporal, spatial, and spectral 

Fig. 3   Normalized pressure (a) and shear (b) waveforms for the complete BI_2022 sample sets with the delay-line waveform (dotted) at the cor-
responding compaction forces. Light-dotted lines represent the Hilbert transform of the waveform
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scales. In the current work, a deterministic non-destructive 
ultrasonic technique and an associated mathematical for-
mulation for extracting the visco-elastic material proper-
ties and scattering parameters of granular OSD materials 

simultaneously from their experimentally obtained attenuation 
characteristics are presented and demonstrated for the first 
time. Using the two-parameter Zener model, a set of visco-
elastic and scattering material parameters, including stress 

Fig. 4   a Spectral responses of 
the complete BI_2022 sample 
sets with the delay-line (dot-
ted) for longitudinal (pressure) 
waveform (b) spectral responses 
of the BI_2022_09kN sample 
set with the delay-line (dotted) 
for longitudinal (pressure) 
waveform with the transducer 
bandwidth (0.8–2.6 MHz). 
Comparisons of the experimen-
tal and corrected extracted (c) 
attenuation coefficient (α(f) and 
α cor(f)), d (real) wavenumber 
(β(f) and β.cor(f)) as a function 
of frequency within the trans-
ducer bandwidth (0.8–2.6 MHz)
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relaxation time (p1), strain relaxation time (q1), and scattering 
constants (A and B) were extracted along with the macro-
mechanical properties including the mean Young’s (EA), shear 
moduli (GA), and Poisson’s ratio (ν). The contributions of 
visco-elastic and scattering attenuation are determined and 

compared by applying the extracted material parameters to the 
linear visco-elastic attenuation and Rayleigh scattering attenu-
ation models, respectively. It is observed that the stress relaxa-
tion (p1

cor) and strain relaxation (q1
cor) times of the compact 

increase with increasing compaction force (Fc). The observed 

Fig. 5   Comparisons of the 
experimental extracted and 
corrected stress (p1(�) (left 
column) and p1

cor (right 
column)) and strain (q1(�) 
(left column) and q1

cor (right 
column)) relaxation time in log 
scale as a function of frequency 
within the transducer bandwidth 
(0.8–2.6 MHz) for the complete 
BI_2022 sample sets. The gray 
lines are for p1 and p1

cor and the 
dark solid lines are for q1 and 
q1

cor
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Fig. 6   Relationship between the 
compaction force Fc and a pres-
sure wave speeds (cL) and shear 
wave speeds (cT), b apparent 
Young’s (EA) and shear (GA) 
moduli, c apparent densities 
(ρA) and Poisson’s ratio (ν), d 
p1

cor and q1
cor, and e A × 10–27 

(s/m)4 value for the complete 
BI_2022 sample sets
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trend of increasing p1
cor, and q1

cor as a function of compaction 
force (Fc) is as expected.

At present, in the pharmaceutical manufacturing industry, 
a strong need for conducting on-site rapid real-time release 
(RTR) tests during manufacturing in a non-destructive manner 
is emerging. The presented automated experimental approach 
incorporating the proposed algorithmic characterization frame-
work for extracting the micro-visco-elastic parameters along 
with the mechanical and physical properties of compacts could 
play a key role in developing non-destructive ultrasonic tech-
niques to address this practical need. Consequently, the ultrason-
ically extracted micro-visco-elastic properties of a tablet product 
could be linked to its critical quality attributes (CQAs) in a rapid, 
non-destructive manner. For real-time in situ monitoring of the 
micro-visco-elastic properties, machine learning (ML) models 
can also be trained with synthetic and experimentally extracted 
waveforms using the proposed novel mathematical framework. 
With a trained ML model, RTR testing time and cost could sig-
nificantly be reduced with an increased quality assurance level.
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