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We report a transfer learning approach for using general testing to predict the
specialized performance of 3D-printed lattices. Specifically, we curated a large
dataset of quasi-static tests using automated testing and learned a general
featurization. Next, we connected this featurization to experimentally measured
impact performance and found that the model predicted the impact performance
of novel lattice families with 18% error. These results show how design for specialty
applications can be accelerated in a data-driven manner.
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SUMMARY

Like many specialty applications, the pace of designing structures for
impact protection is limited by its reliance on specialized testing.
Here, we develop a transfer learning approach to determine how
more widely available quasi-static testing can be used to predict
impact protection. We first extensively test a parametric family of
lattices in both impact and quasi-static domains and train a model
that predicts impact performance to within 8% using only quasi-
static measurements. Next, we test the transferability of this model
using a distinct family of lattices and find that performance rank was
well predicted even for structures whose behavior extrapolated
beyond the training set. Finally, we combine 812 quasi-static and
141 impact tests to train a model that predicts absolute impact per-
formance of novel lattices with 18% error. These results highlight a
path for accelerating design for specialty applications and that trans-
ferrable mechanical insight can be obtained in a data-driven manner.

INTRODUCTION

Structures for impact protection play a vital role in a plethora of applications ranging
from padding used in defense to safety components used in the automotive and
aerospace industries.'® A common task is to minimize the acceleration experienced
by a sensitive component during animpact event. However, designing high-perform-
ing structures forimpactis challenging due to the required co-optimization of distinct
properties including compliance, strength, and toughness."**~" With the advent of
additive manufacturing (AM), unprecedented opportunities have emerged for fabri-
cating novel designs with superior mechanical performance relative to their conven-
tionally manufactured counterparts.”'* Lattices, such as the widely studied octet lat-
tice, are one type of mechanical structure enabled by AM that have potential for
impact protection as their cellular nature affords high specific energy absorption,
and they exhibit a high degree of design flexibility. Nevertheless, rapidly traversing
the vast AM design space to select optimal components is not currently possible.
Traditional tools for rapid design such as finite element analysis (FEA) and topology
optimization are not effective for predicting impact performance, as these ap-
proaches have limited fidelity for such measurements. These limitations stem from
the material and geometric non-linearities, the dependence of material properties
on strain rate, and dynamic self-collisions that are challenging to model for structures
with complex architectures.®'*'® Thus, design of structures for impact performance
necessitates physical experimentation that leads to low-throughput iterative design.

Recently, autonomous experimentation has emerged as a tool for accelerating design for
properties that require physical experiments by combining automated experimentation
and active leaming.'®?” However, not all fabrication and test procedures are readily

PROGRESS AND POTENTIAL

Many facets of mechanical
performance evaluation require
using specialized experiments
that are slow and expensive. For
example, when designing
components forimpact conditions
such as the crumple zone of a car,
testing is expensive and
destructive and requires large
samples. In this study, we explore
whether comparatively simple
experiments can provide insight
into highly specialized
performance such as in impact.
We fabricated lattices using 3D
printing and tested them under
quasi-static compression, which is
more general and accommodates
smaller samples than does impact
testing. Using a database
accumulated using automated
quasi-static testing, we trained a
machine-learning model that
predicts impact performance from
quasi-static data alone. In
addition to accelerating the
design of impact-resistant
structures for safety applications,
this work more generally
illustrates how easy-to-acquire
experimental data can allow one
to better select samples for
specialized experiments.
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suitable for automation. In these cases, it is crucial to maximize the degree to which all
experimental data can be brought to bear while designing for a property of interest.
Design of structures for impact performance is one such case, as impact tests are more
resource intensive and less compatible with automation than quasi-static tests. Further-
more, in contrast to impact testing, in which testing properties (i.e., impactor mass, en-
ergy, and speed) are coupled in amannerthat necessitates testing full-scale components,
the strain rate in quasi-static uniaxial testing can be freely chosen, thus allowing re-
searchers to test representative portions of the full-sized sample.

While the prospect of using knowledge from quasi-static testing to design for impact
is attractive, the fundamental mechanics that allow one to connect performance
across these two different testing regimes is not fully or sufficiently understood. A
previous study found that quasi-static stress-strain curves of octet lattices
(0.01 mm/s compression speed) exhibited similar trends to those observed during
impact testing (20 m/s impactor speed) including the presence of a linear elastic
regime followed by a stress plateau prior to densification.”? However, oscillations
were also noted during impact testing that were not present during quasi-static
loading, and this was attributed to either inaccuracies in the force measurement or
compression wave reflections inside the lattice structures. Nevertheless, the qualita-
tive connection observed between quasi-static and impact testing supports the idea
that a relationship between the two regimes may exist. Despite examples of studies
that attempt to connect these regimes, a predictive connection between them re-
mains elusive. To take advantage of latent relationships between testing regimes,
a powerful approach is to seek data-driven models. Indeed, an area in machine
learning that focuses on connecting different but related domains is transfer
learning.?*2¢

Here, we hypothesize that quasi-static testing can become an effective predictor of
impact performance by combining transfer learning to capture relevant features of the
quasi-static measurements and automated experimentation to accumulate sufficient
data to train the relevantmodels (Figure 1). Additionally, while the toughness of octet lat-
tices, which have been classified as stretching dominated, have been previously stud-
ied,""?”?® bending-dominated lattices have garnered increasing interest for absorbing
mechanical energy owing to the fact that they collapse at a nearly constant plateau
stress.>?" ! To explore this hypothesis, we generate a parametric family of lattices
and perform quasi-static measurements to collect force-displacement (F-D) curves for lat-
tices with design X, where x contains the geometric parameters that fully define the lat-
tice. Then, we use unsupervised learning to identify the distinguishing features of the F-D
curves. Next, we performed impact tests on lattices to measure the maximum accelera-
tion, am, from each acceleration a versus time t curve. Using both a,, and F-D, we employ
feature representation transfer leaming to build a predictive model, Em(?). In this way,
we can predict impact performance using only quasi-static measurements in a manner
thatis potentially generalizable to other structures because it does not rely on any specific
geometric parametrization of the design. To test this approach, we develop additional
parametric families of lattices and explore the transferability of models to connect
quasi-static measurements to impact performance across these families. Ultimately, we
build a model using 812 quasi-static and 141 impact tests that is able to predict the per-
formance of previously uncharacterized lattices to within 18%.

RESULTS AND DISCUSSION

The parametric octet design space
To explore the impact performance of lattice-based designs, we developed a para-
metric octet lattice (Figure 2A) that is defined by the maximum radii of the struts and
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Figure 1. Using transfer learning to predict impact performance from quasi-static measurements
For a design X, the force-displacement (F-D) curve can be obtained from quasi-static testing, and

the acceleration-time (a-t) curve can be obtained from impact testing. Acceleration is reported in
—
units of the gravitational acceleration g. Using both quasi-static measurements F(X) and impact

~ =2 .
performance, namely the maximum acceleration a, in the a-t curve, a model @,,( F) can be built to
predict ap.

joints. The lattice designs were generated using custom code that adjusted the
maximum radii of the lattice struts and joints to meet a target volume fraction
(Figure S1).*? It should be noted that this process is based on a weighting procedure
that generates struts whose cross-sectional areas vary smoothly along their length
and minimizes the sharpness of the corners at the joints where they intersect (details
in experimental procedures). The generated designs were then exported as stan-
dard triangle language (STL) files for fabrication. Here, the lattice structures were de-
signed to have a total height H = 19 mm, a length L = 38 mm, and a width W =
38 mm. The octet lattice was selected as a basis due to its use in previous studies
on lightweight structures for applications in absorbing mechanical energy.’'?%3%
% The octet unit cells had a lattice constant of 9.5 mm and were parametrized by
X = (Xp,Xs, xj), where x;, corresponds to the radius of struts that bend during uni-
axial compression, x; corresponds to the radius of struts that stretch during uniaxial
compression, and x; corresponds to the radius of the joints. All lattices were de-
signed to a have a 10% volumetric fill fraction.

We initially studied three structures that varied in the degree to which stretching or
bending would be expected to dominate their behavior. Specifically, under uniaxial
compression, the oblique struts of an octet lattice bend and the horizontal struts stretch.
Here, we modulate the relative contributions of bending and stretching by adjusting x,
and xs which allows us to access bending-dominated octet lattices even though octet lat-
tices are conventionally categorized as stretching dominated.***¢*” Three designs are
shown that range from most resistant to stretching to least resistant to stretching (Fig-
ure 2B). For instance, design (l) is chosen to be highly stretching resistant by making xs
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Figure 2. Parametric octet-based lattice designs for impact protection

(A) Samples for impact testing have length L, width W, and height Hand are composed of repeating octet unit
cells that are parametrized by X = (xp,Xs, Xj), where x, corresponds to the maximum radius of struts that
bend during uniaxial compression, xs corresponds to the maximum radius of struts that stretch during
uniaxial compression, and x; corresponds to the maximum radius of the joints.

(B) Three parametric octet designs (1), (1), and (Ill) that range from maximum resistance to stretching
to maximum resistance to bending.

(C) Impact testing of samples of designs (1), (1), and (lll) showing peak acceleration a, from the a-t
curves. Each panel shows testing results from three identically prepared samples.

(D) The parametric octet design space with markers that indicate the 18 designs that were
measured using impact testing.

(E) The parity plot of @, versus an, where &, comes from a Gaussian process regression (GPR) with
root-mean-square error (RMSE) ocy=46.8 X g calculated using leave-one-out cross-validation (CV).
Gray dots show mean measured peak acceleration a,,, and black dots show individual
measurements of an,.

to near its maximum allowed value. In contrast, design (Il) features nearly equal x,, and xs,
correspondingly decreasing the importance of stretching. Finally, design (Il) increases x,,
to near its maximum achievable value to realize a structure with maximized bending
resistance.

Samples based on designs (), (Il), and (Ill) were fabricated and tested. Three samples
of each design were printed using stereolithography (SLA; Form 3 early 2019 model,
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Formlabs) out of Durable Resin (product number RS-F2-DUCL-02, Formlabs) and
impact tested using a drop tower impact testing system (CEAST 9350, Instron)
with a 3.104 kg mass at 4.3 m/s impact velocity (Figure 2C). To aid in printing and
removal, custom support structures were used (Figure S2). Additional information
on the fabrication and testing methods can be found in the experimental proced-
ures. Impact testing showed a rich array of subtle features, including two peaks in
the a-t curve from samples based on design (Il), which we attribute to the buckling
of their slender struts during impact. Perhaps most importantly, a,, was observed
to be lowest for the sample designed to have the largest bending resistance, i.e.,
those based on design (lll), which is aligned with previous work suggesting that
bending-dominated mechanics could be favorable for absorbing mechanical energy
at lower peak accelerations.”” " Ultimately this means that design (Ill) is relatively
high performing as it results in the lowest peak acceleration. While these observa-
tions are encouraging, they do not represent a sufficient exploration of this design
space. Thus, we selected and tested 15 additional designs using a grid-based
approach (Figure 2D). All additional selected designs were also fabricated in tripli-
cate and tested for a total of 54 experimental measurements of an,. Using x and
am, we trained a predictive model am(X) using Gaussian process regression (GPR)
(Figure 2E). Details of this model are shown in the experimental procedures, but
briefly, we selected a squared exponential covariance kernel with automatic rele-
vance determination and a zero-mean function. The GPR was implemented in Py-
thon leveraging open-source software (http://sheffieldml.github.io/GPy/). The pre-
diction accuracy of the model was determined by computing the root-mean-square
error (RMSE) o¢y = 46.8 X g using leave-one-out cross-validation (CV). We observed
good agreement between ap, and @, considering that ocy = 46.8 X g is comparable
to the 55 x g standard deviation observed in quality control impact tests conducted
throughout the experimental study (Figure S3).

Using quasi-static measurements to train a predictive model for impact
performance

The use of quasi-static testing to study the mechanical behavior of materials and
structures is ubiquitous in mechanics. Here, we hypothesize that transfer learning
can identify characteristics of the F-D curve obtained from quasi-static testing that
serve as predictors for impact performance. To test this hypothesis, we fabricated
and conducted uniaxial quasi-static compression tests of samples based on designs
(1), (1), and (Ill) using a universal testing machine (5965, Instron) at a loading rate of
2mm/min (Figure 3A). Samples for quasi-static testing had a unit cell lattice constant
of 9.5 mm, a Hof 19 mm, an L of 19 mm, and a W of 19 mm. Interestingly, the F-D
curves showed that samples based on design (Ill) exhibited the highest and smooth-
est plateau region after yielding. These quasi-static behaviors agree with predictions
of post-yield plateau and softening in bending- and stretch-dominated structures,
respectively.?”*® The variations in force during the plateau region observed for sam-
ples based on designs (I) and (Il) could indicate the buckling of struts during
compression.

We hypothesize that, provided a sufficiently large database of measurements, trans-
fer learning could allow one to connect quasi-static measurements and impact per-
formance. Specifically, we propose a pipeline in which unsupervised learning is used
to learn relevant features z from the quasi-static measurements and then combine
these features with measured values of a,, to train a model to predict an, (Figure 3B).
However, before embarking on this data-driven path, it is critical to obtain a suffi-
ciently large quantity of data. Thus, we conducted quasi-static experiments of sam-
ples based on 653 unique design locations selected using a grid-based approach in
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Figure 3. Predicting impact performance using quasi-static measurements via feature-
representation transfer learning

(A) Quasi-static testing of three parametric octet samples based on designs (1), (Il), and (ll1).

(B) Schematic of transfer learning pipeline to learn relevant features z of F-D curves that, together
with an,, can be used to train a predictive model an(2).

(C) The parametric octet design space where the square markers indicate the 18 designs tested in
impact and circular markers indicate the 653 designs measured using quasi-static testing.

(D) Parity plot of &y, versus an, where a, is obtained from the transfer learning approach with
forward stepwise linear regression model with acy = 40 X g.

the octet design space (Figure 3C). To increase experimental throughput, the sam-
ples for impact testing and quasi-static testing were printed in batches. Samples for
impact testing were ordered in a three-by-three grid on the print baseplate (Fig-
ure S4A), and samples for quasi-static testing were ordered in a six-by-six grid
arrangement on the print baseplate (Figure S4B). Quality control lattices and cylin-
drical samples were printed and tested for each quasi-static batch (Figures S5-57).
To collect this vast dataset, the quasi-static testing throughput was enhanced using
custom automated experimentation hardware that leveraged robotic sample
retrieval, handling, quasi-static testing, and data logging. This automated pipeline
allowed for the collection of orders of magnitude more data than previously realized

in related mechanical studies.''?3:?7:28

Quasi-static data in hand, we sought to realize a transfer learning pipeline using a
four-step process. (1) We first down sampled each F-D curve to 100 equally spaced
D values from 0 to 13 mm to accommodate the non-uniform spacing from the instru-
ment. The resolution of this down sampling was selected as a trade-off between
computation time and adequately low loss of information (root-mean-square per-
centage error <2%) (Figure S8). Noting the wide range of F values in a given F-D
measurement, we elected to learn on the logarithm of F. Additionally, since the
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samples tested in quasi-static had a cross-sectional area that was a quarter the size of
the lattices tested in impact, the forces measured during these tests were multiplied
by four to determine the equivalent force measurements expected for quasi-static
testing of a full-size sample. To explore whether this scaling led to systematic errors,
we conducted six quasi-static compression experiments on quarter-size lattices and
on full-size samples (Figure S9A). Not only were there minimal qualitative differences
between the scaled curves, but the energy absorbed per unit volume exhibited no
statistical difference (p = 0.41 for two-tailed t test) between the quarter-size samples
and the full-size samples (Figure S9B). (2) We subsequently used principal-compo-
nent analysis (PCA) on the log(F) dataset to build a featurizer to transform log(F) to
z. It is important to note that z is determined with no knowledge of impact perfor-
mance and is reflective of the variations and important features in quasi-static mea-
surements. Additionally, not all z are important and should be considered to predict
impact performance. (3) To select a subset of z for consideration in building models
for impact performance, we selected the fewest components that have a cumulative
explained variance >99% (Figure S10A), which results in N components for consid-
eration. For these experiments, N was found to be 11. (4) Finally, forward stepwise
linear regression was utilized to obtain the final predictive model. In brief, we
computed linear models with k terms for k = 1 up to k = N and computed the
RMSE using CV for each k (Figure S10B). We then selected the optimal model as
the k with the minimum acy, here found to be k = é with gcy = 40 X g. Limiting
the number of terms using CV is designed to mitigate the potential for overfitting.
The result of this four-step process was a final model defined as @, = > 8,z where
B; is the linear slope coefficient and i = O corresponds to a constant offset. This
model results in good agreement between prediction and experiment (Figure 3D).
We note that ¢y = 40 X gis comparable to the 55 x g standard deviation observed
in quality control samples (Figure S3) and is lower than ocy computed using the GPR-
based model (Figure 2E).

Testing the trained model for a different lattice family

From the octet lattice design space explored in the previous section, it was
observed that octet designs that were more resistant to bending possessed supe-
rior performance. We therefore sought to explore a second family of lattices whose
design would allow larger resistance to bending and allow us to test the model
trained on octet data. Specifically, we chose octahedral lattices, which have

3837 and consist of octet unit cells

been used in studies of energy absorption
without the tetrahedral struts.>® The omission of these struts allows for larger strut
diameters relative to those found in the octet designs. The octahedral lattice family
considered in this study was also parametrized by x = (xp, Xs,X;) Where these are
defined identically to how they were defined for the parametric octet lattices (Fig-
ure 4A). The unit cell lattice constant, volume frame, L, W, and H were the same for
both octahedral and octet samples. To initially probe this design space, two
distinct octahedral designs were tested under both quasi-static and impact condi-
tions (Figure 4B). As with the octet samples, the design that was most resistant to
bending, namely (V), possessed superior impact performance relative to design
(IV), which was chosen to have maximized stretching resistance. These results moti-
vate further exploration of the octahedral design space, since a, measured for
samples based on design (V) were, on average, 48% lower than the best-perform-
ing octet design.

While it was clear that octahedral lattices could outperform octet lattices during

these impact tests, we sought to determine whether we could have predicted the
performance of octahedral samples using the model trained on only octet data.
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Figure 4. Evaluating the predictive ability of the octet-trained model using a parametric
octahedral design space

(A) Definition of the geometry of the parametric octahedral unit cell.

(B) Quasi-static and impact testing of two distinct octahedral lattices based on a highly stretching
resistant design (IV, dashed lines) and a highly bending-resistant design (V, solid lines).

(C) Violin plots of B8;z; versus i for octet and octahedral designs where 8; and z correspond to the
model linear coefficient and selected principal component, respectively. Violin plots highlight the
density of data and limited overlap between corresponding terms of the octet and octahedral
lattices suggests predicting performance might be possible in some cases.

(D) Quasi-static F-D curves corresponding to the 18 octet and 26 octahedral designs that were
tested in impact.

(E) Parity plot of @, versus an for octet and octahedral designs using an octet-trained model.

The first question, however, is to determine whether the performance of the octahe-
dral samples could be interpolated (rather than extrapolated) from the data from oc-
tets. To test this, we needed a representative set of quasi-static measurements from
the octahedral design space. Thus, we measured samples based on 136 parametric
octahedral designs using automated quasi-static testing. Next, these F-D measure-
ments were transformed to z values using the octet-trained PCA featurizer. As the
octet-trained model only relies upon k = 6 of these components, we compute the
products g;z;, which each have units g, for each octahedral and octet sample to
compare their distributions (Figure 4C). The 8;z; values computed for the octet sam-
ples were centered on zero, which is to be expected since the PCA was based on
octet data. However, even though there is some overlap between the octahedral
and octet data, many octahedral designs fall far outside the range defined by the
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octet samples. The presence of some overlap suggests that the octet-trained model
should have some predictive capability for octahedral designs.

To determine the degree to which octahedral impact performance can be predicted
using the octet-based model, we selected 26 designs that span the parametric octa-
hedral design space. There is reason to believe that the performance of these sam-
ples would extrapolate beyond octet samples as the corresponding F-D curves from
quasi-static conditions of the octahedral designs tested under impact conditions ex-
hibited both a substantially wider range of yield force compared with the octet lat-
tices tested (Figure 4D). These 26 octahedral samples were also evaluated using
impact testing to determine am, which can be compared with a,, as predicted by
the octet-trained model (Figure 4E). Interestingly, several octahedral points are
found near the parity line, suggesting reasonable prediction. However, we observe
a degradation in prediction fidelity for especially low- or high-performing octahedral
samples. Critically, while the absolute prediction accuracy is not high fidelity, the
predicted rank of octahedral samples does appear to have reasonable correspon-
dence with the measured rank. This is an important observation as not only are these
octahedral data points not in the training set, but many fall outside the range
(in terms of z or F) of data on which the model had been trained, and yet the model
is providing valuable insight. Also, this process is only possible because this model
takes F data as the input rather than the geometry of the sample.

To reconcile the mechanical results from the present study with classical understand-
ing of impact mechanics, we compute the Janssen factor, or the ratio of the
measured acceleration to the minimum possible acceleration. Classical understand-
ing of foams suggests that a foam can either be too weak or too strong for a given
impact condition and will exhibit a minimum Janssen factor J at a specified impact
energy.’? Plotting the impact results from the octet and octahedral study shows
that, indeed, the best-performing components span a range of quasi-static energy
absorbed from 4 to 9 J (Figure S11). The vast difference between this number and
the 28 J energy dissipated during impact likely originates from strain-rate effects
and that the quasi-static energy absorbed only considers pre-densification, while
impact almost certainly reaches densification. Interestingly, the octahedral lattice
designs span a wider range of both J and U relative to the octet lattice designs.
Perhaps most importantly, however, is the variation of points along this curve, which
illustrates that variations in component structure, even slight changes to the radii or
curvature of struts, can have outsized effects on impact performance. This highlights
the need for data-driven approaches to connect performance across these domains.

Building a general model for predicting impact performance

To build the most general possible model given the available data, we trained a
model encompassing all quasi-static and impact data corresponding to both octet
and octahedral designs (Figure 5A). First, we updated the PCA featurizer using all
quasi-static data. The space was discretized into 100 D values as before. Here, we
found that N = 9 components explained >99% of the variance (Figure S12A). After
selecting components, we trained a forward stepwise linear regression model using
all measurements of a,,. As before, the number of terms in this model was selected to
minimize RMSE computed using CV (Figure S12B). Here, k = 3 terms were found to
produce the best model. It is interesting to note that as the data became more
diverse, fewer terms were needed to capture variance in the F-D curves themselves
and the variation in impact performance. We attribute this to the model capturing
more important trends in the larger dataset.
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Figure 5. Validating the octet-octahedral based model using different lattices

(A) lllustrations of the octet and octahedral unit cells.

(B) Convex hull of the octet and octahedral designs based on z values from the three-term model
obtained using forward stepwise linear regression. The color bar corresponds to @, from this three-
term model.

(C) Generated F-D curves using inverse PCA using z values along a linear trajectory from the points
corresponding to the minimum @, to the maximum a,.

(D) Parity plot of &y, versus a,, for octet, octahedral, and five different lattices using an octet-
octahedral-trained model.

Given that three features were found to be ideal for predicting impact performance,
we could readily visualize the impact performance within the feature space (Fig-
ure 5B). Importantly, this convex hull represents the domain for which the model
has been trained and therefore can interpolate. A linear trajectory through this
convex hull from the predicted worst-performing design (max @m) to the predicted
best-performing design (min a,,) can be generated to explore the relationship be-
tween quasi-static and impact performance. Specifically, taking points along this tra-
jectory and generating their corresponding F-D curves using inverse PCA, we may
visualize a series of F-D curves that trend from lowest performing to highest perform-
ing (Figure 5C). Interestingly, we observe that the F-D curves that correspond to
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lower values of @, also exhibited relatively high yield forces and minimal post-yield
softening relative to those that correspond to higher values of an,. Strikingly, we
observe a partial densification and subsequent softening at high strain for curves
predicted to have lower values of @n,. This partial densification and softening may
be due to self-collisions and hyperelastic stiffening of bending-dominated struts
at high strain. Regardless of its origin, the identification of this feature by a purely
data-driven method indicates that transfer learning has the ability to draw connec-
tions between disparate domains in a manner that is able to help direct future in-
depth mechanistic research.

To investigate the extent to which the model trained on octet and octahedral data
can predict impact performance, we evaluated its prediction capabilities for five
different lattices that were outside the training data: a reinforced octet, a reinforced
octahedral, two different octets with struts that have elliptical cross-sections, and a
body-centered cubic lattice. The structures designed from the five alternative de-
signs had the same lattice constant, total size, and volume fraction as all previous
octahedral and octet samples and were fabricated out of the same material. A parity
plot showing the octet, octahedral, and all five alternative lattice designs reveals that
the predictions for the five alternative lattices relative to the measured values are
within reasonable agreement (root mean square percentage error = 18%) using
the octet-octahedral-based model (Figure 5D). To emphasize, neither the PCA fea-
turizer nor the predictive model @n(z) have access to any information about the
alternative designs, making these true validation samples.

From these results, two critical characteristics of the model were observed. First, the
pipeline (Figure 3B) allows sequential updates as new data are acquired by updating
both the lower dimensional feature space used to describe a design space and the
model used to predict performance. This flexibility enables the utilization of previ-
ously collected data to connect properties such as relative rank of performance or
absolute performance across design spaces. Secondly, the results show that the pre-
dictive power of the model built from data on the octet and octahedral lattices can
extend to alternative lattice families. More generally, this observation suggests the
ability of transfer learning to predict performance of novel designs for specialty
applications.

Conclusion

This work combines several data-driven approaches to ultimately connect two
distinct but related experimental responses using feature-representation transfer
learning. First, a library of 812 uniaxial quasi-static measurements was collected
through the use of AM and automated testing. This dataset was used to perform un-
supervised learning to determine a set of features that capture the quasi-static per-
formance. Then, a subset of these features was paired with 141 impact tests in order
to build a model that predicts impact performance from quasi-static data. Not only
can this model predict impact performance to within 13% (CV error), but it also pre-
dicts performance to within 18% for lattice families that are not included in any
training (true validation error). This model, and the approach it exemplifies, has
several implications for mechanical design and experimental research. First, this pro-
vides a facile method for using easy-to-obtain measurements to estimate difficult-to-
measure properties. For example, the prediction of impact performance from quasi-
static tests can vastly accelerate the design of impact structures. Second, and
perhaps more importantly, the ability to examine the learned model to extract exem-
plars of high- and low-performance F-D curves has broader implications for
enhancing researchers’ abilities to learn the connections between mechanical
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behaviors in different testing regimes. Third, while the application described here is
primarily regarding lattice design, the approach provides a flexibility for applications
in different fields, specifically those that have access to various characterization and
measurement techniques that offer trade-offs in terms of time, cost, and fidelity.
Furthermore, with the advancement of autonomous experimentation systems,
approaches such as transfer learning could be introduced into the learning frame-
work to further accelerate the pace of research by leveraging information from
several sources to inform both decision-making and predictive modeling.

While the connection of two distinct but related experimental responses using
feature representation and transfer learning highlight the role that machine learning
can play in accelerating mechanical design, it also shines a spotlight on the role and
consequences of model prediction errors in the data-driven design process. Firstly,
the reported 13% cross-validation error of the final experimentally trained model
should be compared with the inherent variation in the fabrication process. For
instance, the best design is predicted to have a mean acceleration of 160 X g
with a prediction error of 20 x g. This number should be compared with the
55 x g variation that was experimentally measured for the quality control samples.
Indeed, in well-trained models, cross-validation error is expected to be commensu-
rate with the measurement uncertainty, which in this case is dominated by variations
in the performance in identically prepared samples. In this way, the cross-validation
error is influenced by the measured variation in performance due to fabrication.
Thus, this 13% cross-validation error highlights the need for more consistency in
AM and advancements in in situ monitoring and control, metrology, and part inspec-
tion. Moreover, such cross-validation error can provide a useful input into any engi-
neering analysis to aide in the selection of a factor of safety. Secondly, the reported
18% true validation error of this model refers to the error in predicting the perfor-
mance of new lattice families not used in the training process. As was apparent
when evaluating the octahedral lattices with the octet-trained model, even when
such extrapolatory predictions do not provide quantitatively accurate results, the
relative ranking provides highly actionable guidance for future design. Specifically,
not only did the octet-trained model predict that octahedral samples would perform
better, but it also pinpointed the region in parameter space that would correspond
to the best performance. Thus, this type of prediction will aid in the selection of re-
gions in design space to explore, keeping in mind that experimental evaluation in
these regions will remain a critical part of the design loop. Indeed, we view this as
an example of a data-driven design cycle in which designers use comparatively rapid
and inexpensive measurements, namely quasi-static testing of representative sam-
ples, to screen vast libraries of potential structures and then use transfer learning
to select candidates for more specialized impact testing.

EXPERIMENTAL PROCEDURES

Experimental procedures describing the design and fabrication of lattice samples,
the quasi-static and impact testing protocol, and the predictive model building
approach are found below.

Resource availability

Lead contact

Further information and requests for resources and reagents should be directed to
and will be fulfilled by the lead contact, Keith A. Brown (brownka@bu.edu).

Materials availability
This study did not generate new unique reagents.
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Data and code availability

All data needed to evaluate the conclusions in the paper are present in the paper
and/or the supplemental information. The raw data can be accessed through
www.kablab.org/data. Additional data related to this paper may be requested
from the lead contact.

Design and fabrication of lattice samples

Lattice geometries were generated using custom design software written in
MATLAB that s publicly accessible on kablab.org. The userinputs to the design soft-
ware were the selected lattice family (e.g., octet lattice, reinforced octet lattice, octa-
hedral lattice, or reinforced octahedral lattice), the bending strut radius x;,, the
stretching strut radius xs, and the volume fraction. In this study, the designs were
constrained to have a target volume fraction of 10%. The lattices were generated us-
ing three base analog three-dimensional (3D) matrices corresponding to the lattice’s
features (bending struts My, stretching struts Mg, and joints M;), as can be seen in the
2D example in Figure S1. My, Mg, and M were created by calculating the inverse of
the signed distance field (i.e., the inverse of the distance of each voxel in the matrix
from the skeleton of the feature of interest). Therefore, voxels that were closer to the
feature of interest had a larger value, while points further from the feature of interest
had a smaller value. My, Mg, and M; were individually normalized so that their values
ranged from zero to one (Figure S1B). A vector of scalar modifiers w was calculated
by sampling representative points in My, M, and M; that were Xy, x;, and x; distance
away from their respective features of interest and using linear algebra to solve for
the appropriate scalar values so that these sampling points each summed to a
threshold a (Figure S1C). The locations of the sampling points were selected to
decrease the influence of the other features, but ultimately the value at each sam-
pling point was a combination of My, Mg, and M;. The final lattice matrix My was
created by summing My, Mg, and M; with their weights adjusted by w and assigning
material if the voxel value was above the threshold «, here taken to be 0.5
(Figures S1D and S1E). Each unique set of x;,, xs, and x; corresponds to a specific vol-
ume fraction. Here, a target volume fraction was designated, and x; was a free var-
iable that was then used to reach the target volume fraction. Because of this, the
values of x, and xs were limited to a subset where the target volume fraction could
be reached with a valid x;, as seen by the boundaries in Figure 2D. The key benefits to
this method over other methods are the vast variety of designs that can be created
with a constant volume fraction with struts and joints that blend seamlessly, mini-
mizing stress concentrations at the joint (Figure S1F).

After M was created, custom supports were added in the voxel space to aid in print-
ing and removal of the parts (Figure S2A). Short, slender struts were extended down-
ward from the bottom layer joints of the lattice, terminating in a solid square base to
maximize contact area with the build plate (Figure S2B). The designs were then
exported as STL files. The STL files were imported into commercial propriety print
software (Pre-Form, Formlabs) to prepare the files for printing on an SLA 3D printer
(Form 3 early 2019 model, Formlabs). The samples were manually arranged in a stan-
dard grid (Figure S4) with the custom support square placed flat on the build plate.
All samples used in this study were fabricated from commercially available resin (Du-
rable Resin, product number RS-F2-DUCL-02, Formlabs) with a layer thickness of
50 um on a 14.5 X 14.5 cm? print baseplate.

To increase experimental throughput for impact testing, nine samples were printed
in each production run. These samples for impact testing had an L of 38 mm, a W of
38 mm, and a H of 19 mm with four repeating unit cell designs along Land W and two
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along H. The samples were ordered in a three-by-three grid on the print baseplate
(Figure S4A). To further increase experimental throughput for quasi-static uniaxial
compression testing, 36 samples were printed in each production run. These sam-
ples were a quarter of the full-size samples, resulting in samples with dimensions
L/2, W/2, and H with two repeating unit cell designs along L, W, and H. To empha-
size, the physical size of the unit cell was the same for both quasi-static testing and
impact testing. Samples for quasi-static testing were ordered in a six-by-six grid
arrangement on the print baseplate (Figure S4B).

After the printing process was completed, the samples, while still attached to the
print baseplate, were moved to the washer (Form Wash, 8.6 L, Formlabs) filled
with tripropylene glycol monomethyl ether (TPM) (Sigma-Aldrich) solvent to dissolve
the remaining liquid resin on the samples. The samples were washed for 15 min, and,
after washing, compressed air was used to blow out any remaining solvent. Next, the
samples were manually submerged and rinsed for 30 s in a water tub. After rinsing,
compressed air was used to blow out any remaining water. Samples were manually
removed from the baseplate using a scraper, and lattice support structures were
subsequently removed from the lattices using snippers. The lattice samples were ar-
ranged in the curing station (Form Cure, Formlabs) and cured for 75 min at 60°C.
Finally, the samples were weighed prior to mechanical testing.

Quasi-static and impact testing of lattice structures

Quasi-static uniaxial compression proceeded at 2 mm/min on a universal testing ma-
chine (5965, Instron) with a force threshold of 4.5 kN. After necessary manual post-
fabrication processing of the printed lattice structures, the quasi-static testing
throughput was enhanced using custom automated experimentation that included
automatic sample retrieval, testing, and data logging that all operated without hu-
man intervention. Since the samples tested in quasi-static were a quarter of the
full-size lattices tested in impact, the forces measured during these tests were multi-
plied by four to determine the equivalent force measurements expected for quasi-
static testing of a full-size sample.

To keep track of potential material property variations between print batches for
samples tested under quasi-static conditions, a solid cylindrical sample that was
16 mm in height and 8 mm in diameter was printed with each production run.
Throughout this process, a total of 20 cylindrical samples were printed, weighed,
measured, and tested. Height and diameter measurements were taken by hand us-
ing digital calipers after the samples were cured. The mean recorded mass was
0.906 g with a coefficient of variation of 0.3% (Figure S5A). The mean height and
diameter were calculated to be 15.93 (Figure S5B) and 7.98 mm (Figure S5C),
respectively, with coefficients of variation of 0.4% and 0.4%, respectively. The abso-
lute relative errors of the fabricated cylindrical samples with respect to the designed
height of 16 mm and diameter of 8 mm were 0.4% and 0.3%, respectively.

The variation in the material property of the resin was also tracked from the quality
control cylindrical experiments. From the measured force F-displacement D curves
obtained during quasi-static compression testing, the stress g-strain e curves were
calculated and used to derive the Young's modulus E and yield strength o, of
each sample (Figure S6A). Here, E was computed to be the slope of the linear region
of the g-¢ curve, and g, was measured as the stress at the 0.2% offset strain. For g-¢
curves with an observed initial toe region, E was measured from the slope of the
linear region after the toe region, and g, was measured as the stress at the 0.2%
offset strain with the toe being subtracted off to correct for the offset. From the
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measurements, the mean E was calculated to be 570 MPa with a coefficient of vari-
ation of 12% (Figure S6B), and the mean g, was calculated to be 22 MPa with a CV of
12% (Figure S6C). The calculated coefficients of variation for SLA 3D printing with
durable resin are comparable to our previous measured values of 9% coefficent of
variation for £ and 11% coefficient of variation for g, for cylindrical samples of equal
dimensions printed from PLA from fused deposition modeling (FDM) 3D printing.'®

In addition to the cylindrical quality control samples, a quality control lattice sample was
also fabricated in each production run. A total of 23 quality control lattice samples were
printed, weighed, and tested under quasi-static testing conditions. The number of
successfully attained quality control cylindrical samples and quality control lattice
samples differ by three samples due to human error. The design of the quality control
lattices tested under quasi-static conditions was an octet lattice structure with design
parameters (xp, Xs, X;) = (0.87, 0.87, 0.84) mm. The resulting F-D responses for all
samples show a consistent shape (Figure S7A). From the mass measurements, the
mean mass was calculated to be 0.83 g with a coefficient of variation of 2% (Figure S7B).
Additionally, the toughness U of the samples was calculated as the area under the
measured F-D curve. The mean U was calculated to be 16 J with a coefficient of varia-
tion of 6% (Figure S7C).

Impact testing was performed using a drop tower impact testing system (CEAST
9350, Instron Inc.) with a flat-ended steel impactor of mass equal to 3.104 kg. The
drop-tower tests were conducted with a 4.3 m/s impact velocity. Full-sized samples
with dimensions L, W, and H were tested under impact conditions. To assess the
variation in performance among print batches, a quality control sample was included
in each print job. The design of the quality control lattice was the same as the one
selected for quasi-static testing. A total of 21 quality control samples were success-
fully printed, weighed, and tested. The mean mass of the samples was calculated to
be 4.2 g with a coefficient of variation of 7% (Figure S3A). From the impact tests, the
mean maximum acceleration a,, was found to be 460 x g, where g is the gravita-
tional acceleration 9.81 33, with a CV of 12% (Figure S3B).

Building a predictive model for acceleration

From experimental measurements of an, a predictive model an,(x) was built using
GPR to model the property of interest in the design space X = (xp,xs). The covari-
ance kernel K(x,x) used in the GPR was a squared exponential kernel,

2
oy
d (X} Xj)

/ 1 ,
K(x,x) = a® exp| — 52 T , (Equation 1)

where K was parametrized by d + 1 parameters, namely « and §;, and the dimen-
sionality of the design space was d = 2. Here, §; was comprised of d values. The pa-
rameters of the kernel and noise were optimized using maximum likelihood estima-
tion. The GPR was implemented using Gpy, a Gaussian process framework written in
Python (http://sheffieldml.github.io/Gpy/).

From the experimentally measured F-D response from quasi-static testing, the F
measurements were down sampled to 100 equally spaced displacement locations
over the range of the minimum displacement and a maximum displacement of
13 mm. The F measurements were down sampled because the F measurements
for each design were collected with a differing total number of data points at non-
uniform spacings, a consequence of the testing algorithm used by the universal
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testing system. The number of equally spaced displacement locations was deter-
mined to be adequately suitable to represent the F with negligible loss of informa-
tion (root mean square percentage error < 2%) (Figure S8). The maximum displace-
ment of 13 mm was selected as the largest displacement measured for all samples in
the study. Additionally, the logarithm of F was used as an input for further processing
due to the wide range of F values in the F-D response (Figure S8). As a result, for a
dataset with p samples, the matrix representing all the sampled force curves as log of
F would be of size p X 100. Using this matrix, we performed PCA to obtain a new set
of features, namely the principal components z.*'

Using both the experimentally collected an, and z, we performed forward stepwise
linear regression to build the model an,(z).”>?**?** A stepwise linear modeling
was used for two reasons: (1) to select features from the available features from
PCA and (2) to utilize Pearson’s correlation coefficient as a metric for feature
selection. Prior to employing the forward stepwise linear regression algorithm, a
subset of z was selected where the number of selected components in the subset
was based on the number of components with an explained variance greater than
99% (Figures ST0A and S12A). Next, the regression procedure began by computing
Pearson'’s correlation coefficient R between z and a,,. Then, the feature z; with the
largest R? was selected as the first term in the regression model, specifically
am(z) = B1z1 +PBo, where 8; and B, corresponded to the coefficient of the selected
feature and the intercept, respectively. The residuals were computed between an,
and an(z), and the feature most correlated with the residuals (i.e., the feature with
the largest computed R?) was selected as the next feature to add to the model,
specifically @am(z) = B1z1+82z2+0o. This process was repeated until all
components in the subset were selected. For example, if the number of
components in the subset was 9, the process would terminate with a model as
follows: @m(z) = 121+ 8222+ +B929 +B. The final model was selected based
on the minimum RMSE calculated using CV based on 100 simulations and 20 folds
(Figures S10B and S12B). To note, the observed RMSE was commensurate with
the standard deviation observed in the impact performance of the quality control lat-
tice as a measurement of the test error. The forward stepwise linear regression
approach was implemented in Python using scikit-learn and SciPy open-source
software.

Generating F-D curves in the convex hull

The minimum and maximum points, Zmin and Zmax, on the convex hull were selected
based on the minimum 3a,, and maximum a,, from the model trained on both the
octet and octahedral data. To generate a linear trajectory from the minimum a,
to maximum @, the z values along the trajectory were computed using parametric
linear equations, specifically zyasj = Zmin+q(Zmax — Zmin), Where ge [0,1]. The
selected z values were the nine that corresponded to an explained variance >99%.
Using inverse PCA, the F-D curves were constructed for 20 points along the trajec-
tory including the minimum and maximum points.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.matt.
2022.06.051.

ACKNOWLEDGMENTS

This work was supported by Google LLC, the Boston University Dean’s Catalyst
Award, the Boston University Rafik B. Hariri Institute for Computing and

16 Matter 5, 1-18, September 7, 2022


https://doi.org/10.1016/j.matt.2022.06.051
https://doi.org/10.1016/j.matt.2022.06.051

Please cite this article in press as: Gongora et al., Designing lattices for impact protection using transfer learning, Matter (2022), https://doi.org/
10.1016/j.matt.2022.06.051

Matter

Computational Science and Engineering (2017-10-005), the NSF (CMMI-1661412),
and the US Army DEVCOM Soldier Center (contract W911QY2020002). Approved
for public release: PR2022_30333. We also acknowledge support through the Bos-

ton University Photonics Center.

AUTHOR CONTRIBUTIONS

Conceptualization, all authors; methodology, all authors; software development,
A.E.G. and K.LS; investigation, A.E.G. and K.L.S.; impact experiments, R.P.,
T.M.T., and T.J.L.; writing - review & editing, all authors.

DECLARATION OF INTERESTS

The authors declare no competing interests.

INCLUSION AND DIVERSITY

One or more of the authors of this paper self-identifies as an underrepresented
ethnic minority in science. One or more of the authors of this paper self-identifies

as a member of the LGBTQ+ community. One or more of the authors of this paper

received support from a program designed to increase minority representation in

science.

Received: February 9, 2022
Revised: May 12, 2022
Accepted: June 17, 2022
Published: July 19, 2022

REFERENCES

1.

Clough, E.C., Plaisted, T.A., Eckel, Z.C., Cante,
K., Hundley, J.M., and Schaedler, T.A. (2019).
Elastomeric microlattice impact attenuators.
SSRN Electron. J. 1, 1519-1531. https://doi.
org/10.2139/ssrn.3427465.

. Lazarus, B.S., Velasco-Hogan, A., Gomez-del

Rio, T., Meyers, M.A., and Jasiuk, . (2020). A
review of impact resistant biological and
bioinspired materials and structures. J. Mater.
Res. Technol. 9, 15705-15738. https://doi.org/
10.1016/}.jmrt.2020.10.062.

. Mueller, J., Matlack, K.H., Shea, K., and Daraio,

C. (2019). Energy absorption properties of
periodic and stochastic 3D lattice materials.
Adv. Theory Simul. 2, 1900081. https://doi.org/
10.1002/adts.201900081.

. Gu, G.X,, Takaffoli, M., and Buehler, M.J.

(2017). Hierarchically enhanced impact
resistance of bioinspired composites. Adv.
Mater. 29, 1700060. https://doi.org/10.1002/
adma.201700060.

. Jia, Z,, Yu, Y., Hou, S., and Wang, L. (2019).

Biomimetic architected materials with
improved dynamic performance. J. Mech.
Phys. Solids 125, 178-197. https://doi.org/10.
1016/}.jmps.2018.12.015.

. Qiao, P, Yang, M., and Bobaru, F. (2008).

Impact mechanics and high-energy absorbing
materials: review. J. Aerosp. Eng. 21, 235-248.
https://doi.org/10.1061/(asce)0893-1321(2008)
21:4(235).

. Zhu, F,, Lu, G., Ruan, D., and Wang, Z. (2010).

Plastic deformation, failure and energy

absorption of sandwich structures with metallic
cellular cores. Int. J. Prot. Struct. 1, 507-541.
https://doi.org/10.1260/2041-4196.1.4.507.

. Andreassen, E., Lazarov, B.S., and Sigmund, O.

(2014). Design of manufacturable 3D extremal
elastic microstructure. Mech. Mater. 69, 1-10.
https://doi.org/10.1016/j.mechmat.2013.09.
018.

. Chen, D., Skouras, M., Zhu, B., and Matusik, W.

(2018). Computational discovery of extremal
microstructure families. Sci. Adv. 4, eaao7005.
https://doi.org/10.1126/sciadv.aao7005.

. Gibson, I., Rosen, D., and Stucker, B. (2015).

Additive manufacturing technologies. In
International Journal of Sustainable
Development and Planning, Second edition
(Springer-Verlag New York). https://doi.org/10.
1007/978-1-4939-2113-3.

. Ling, C., Cernicchi, A., Gilchrist, M.D., and

Cardiff, P. (2019). Mechanical behaviour of
additively-manufactured polymeric octet-truss
lattice structures under quasi-static and
dynamic compressive loading. Mater. Des. 162,
106-118. https://doi.org/10.1016/j.matdes.
2018.11.035.

. Yeo, J., Jung, G.S., Martin-Martinez, F.J., Ling,

S., Gu, G.X,, Qin, Z., and Buehler, M.J. (2018).
Materials-by-design: computation, synthesis,
and characterization from atoms to structures.
Phys. Scr. 93, 053003. https://doi.org/10.1088/
1402-4896/aabde?.

. Zhang, J., Lu, G., and You, Z. (2020). Large

deformation and energy absorption of

¢? CellPress

additively manufactured auxetic materials and
structures: a review. Compos. B Eng. 207,
108340. https://doi.org/10.1016/j.
compositesb.2020.108340.

. Zhang, L., Feih, S., Daynes, S., Chang, S., Wang,

M.Y., Wei, J., and Lu, W.F. (2018). Energy
absorption characteristics of metallic triply
periodic minimal surface sheet structures
under compressive loading. Addit. Manuf. 23,
505-515. https://doi.org/10.1016/j.addma.
2018.08.007.

. Shepherd, T., Winwood, K., Venkatraman, P.,

Alderson, A., and Allen, T. (2020). Validation of
a finite element modeling process for auxetic
structures under impact. Phys. Status Solidi
Basic Res. 257, 1900197. https://doi.org/10.
1002/pssb.201900197.

. Burger, B., Maffettone, P.M., Gusev, V.V.,

Aitchison, C.M., Bai, Y., Wang, X., Li, X., Alston,
B.M., Li, B., Clowes, R., et al. (2020). A mobile
robotic chemist. Nature 583, 237-241. https://
doi.org/10.1038/s41586-020-2442-2.

. Epps, RW., Bowen, M.S., Volk, A.A., Abdel-

Latif, K., Han, S., Reyes, K.G., Amassian, A., and
Abolhasani, M. (2020). Artificial chemist: an
autonomous quantum dot synthesis bot. Adv.
Mater. 32, 2001626. https://doi.org/10.1002/
adma.202001626.

. Gongora, A.E., Snapp, K.L., Whiting, E., Riley,

P., Reyes, K.G., Morgan, E.F., and Brown, K.A.
(2021). Using simulation to accelerate
autonomous experimentation: a case study
using mechanics. iScience 24, 102262. https://
doi.org/10.1016/}.isci.2021.102262.

Matter 5, 1-18, September 7, 2022 17



https://doi.org/10.2139/ssrn.3427465
https://doi.org/10.2139/ssrn.3427465
https://doi.org/10.1016/j.jmrt.2020.10.062
https://doi.org/10.1016/j.jmrt.2020.10.062
https://doi.org/10.1002/adts.201900081
https://doi.org/10.1002/adts.201900081
https://doi.org/10.1002/adma.201700060
https://doi.org/10.1002/adma.201700060
https://doi.org/10.1016/j.jmps.2018.12.015
https://doi.org/10.1016/j.jmps.2018.12.015
https://doi.org/10.1061/(asce)0893-1321(2008)21:4(235)
https://doi.org/10.1061/(asce)0893-1321(2008)21:4(235)
https://doi.org/10.1260/2041-4196.1.4.507
https://doi.org/10.1016/j.mechmat.2013.09.018
https://doi.org/10.1016/j.mechmat.2013.09.018
https://doi.org/10.1126/sciadv.aao7005
https://doi.org/10.1007/978-1-4939-2113-3
https://doi.org/10.1007/978-1-4939-2113-3
https://doi.org/10.1016/j.matdes.2018.11.035
https://doi.org/10.1016/j.matdes.2018.11.035
https://doi.org/10.1088/1402-4896/aab4e2
https://doi.org/10.1088/1402-4896/aab4e2
https://doi.org/10.1016/j.compositesb.2020.108340
https://doi.org/10.1016/j.compositesb.2020.108340
https://doi.org/10.1016/j.addma.2018.08.007
https://doi.org/10.1016/j.addma.2018.08.007
https://doi.org/10.1002/pssb.201900197
https://doi.org/10.1002/pssb.201900197
https://doi.org/10.1038/s41586-020-2442-2
https://doi.org/10.1038/s41586-020-2442-2
https://doi.org/10.1002/adma.202001626
https://doi.org/10.1002/adma.202001626
https://doi.org/10.1016/j.isci.2021.102262
https://doi.org/10.1016/j.isci.2021.102262

Please cite this article in press as: Gongora et al., Designing lattices for impact protection using transfer learning, Matter (2022), https://doi.org/
10.1016/j.matt.2022.06.051

¢? CellPress

20.

21.

22.

23.

24.

25.

26.

18

. Gongora, A.E., Xy, B., Perry, W., Okoye, C.,

Riley, P., Reyes, K.G., Morgan, E.F., and Brown,
K.A. (2020). A Bayesian experimental
autonomous researcher for mechanical design.
Sci. Adv. 6, eaaz1708. https://doi.org/10.1126/
sciadv.aaz1708.

Kusne, A.G., Yu, H., Wu, C., Zhang, H., Hattrick-
Simpers, J., DeCost, B., Sarker, S., Oses, C.,
Toher, C., Curtarolo, S., et al. (2020). On-the-fly
closed-loop materials discovery via Bayesian
active learning. Nat. Commun. 11, 5966.
https://doi.org/10.1038/s41467-020-19597-w.

Macleod, B.P., Parlane, F.G.L., Morrissey, T.D.,
Hase, F., Roch, L.M., Dettelbach, K.E., Moreira,
R., Yunker, L.P.E., Rooney, M.B., Deeth, J.R,,
et al. (2020). Self-driving laboratory for
accelerated discovery of thin-film materials.
Sci. Adv. 6, eaaz8867. https://doi.org/10.1126/
sciadv.aaz8867.

Nikolaev, P., Hooper, D., Webber, F., Rao, R.,
Decker, K., Krein, M., Poleski, J., Barto, R., and
Maruyama, B. (2016). Autonomy in materials
research: a case study in carbon nanotube
growth. npj Comput. Mater. 2, 16031. https://
doi.org/10.1038/npjcompumats.2016.31.

Tancogne-Dejean, T., Spierings, A.B., and
Mohr, D. (2016). Additively-manufactured
metallic micro-lattice materials for high specific
energy absorption under static and dynamic
loading. Acta Mater. 116, 14-28. https://doi.
org/10.1016/j.actamat.2016.05.054.

Li, X., and Fourches, D. (2020). Inductive
transfer learning for molecular activity
prediction: next-Gen QSAR Models with
MolPMoFiT. J. Cheminf. 12, 27. https://doi.
org/10.1186/513321-020-00430-x.

Pan, S.J., and Yang, Q. (2010). A survey on
transfer learning. |[EEE Trans. Knowl. Data Eng.
22, 1345-1359. https://doi.org/10.1109/TKDE.
2009.191.

Weiss, K., Khoshgoftaar, T.M., and Wang, D.D.
(2016). A survey of transfer learning. J. Big Data.
https://doi.org/10.1186/s40537-016-0043-6.

Matter 5, 1-18, September 7, 2022

27.

28.

29.

30.

31

32.

33.

34.

35.

Lv, W., Li, D., and Dong, L. (2020). Study on
mechanical properties of a hierarchical octet-
truss structure. Compos. Struct. 249, 112640.
https://doi.org/10.1016/j.compstruct.2020.
112640.

Xiao, L., Xu, X., Song, W., and Hu, M. (2020). A
multi-cell hybrid approach to elevate the
energy absorption of micro-lattice materials.
Materials 13, 4083. https://doi.org/10.3390/
ma13184083.

Ashby, M.F. (2006). The properties of foams
and lattices. Philos. Trans. R. Soc. A Math. Phys.
Eng. Sci. 364, 15-30. https://doi.org/10.1098/
rsta.2005.1678.

Calladine, C.R., and English, R.W. (1984).
Strain-rate and inertia effects in the collapse of
two types of energy absorbing structure.

J. Mech. Sci. 26, 689-701. https://doi.org/10.
1016/0020-7403(84)20021-3.

Wagner, M.A., Lumpe, T.S., Chen, T., and Shea,
K. (2019). Programmable, active lattice
structures: unifying stretch-dominated and
bending-dominated topologies. Extreme
Mech. Lett. 29, 100461. https://doi.org/10.
1016/j.eml.2019.100461.

Rumpf, R.C., and Pazos, J. (2012). Synthesis of
spatially variant lattices. Opt Express 20, 15263.
https://doi.org/10.1364/OE.20.015263.

Deshpande, V.S., Fleck, N.A., and Ashby, M.F.
(2001). Effective Properties of the octet-truss
lattice material. J. Mech. Phys. Solids 49, 1747-
1769. https://doi.org/10.1115/1.4040409.

Messner, M.C. (2016). Optimal lattice-
structured materials. J. Mech. Phys. Solids 96,
162-183. https://doi.org/10.1016/].jmps.2016.
07.010.

O'Masta, M.R., Dong, L., St-Pierre, L., Wadley,
H.N.G., and Deshpande, V.S. (2017). The
fracture toughness of octet-truss lattices.

J. Mech. Phys. Solids 98, 271-289. https://doi.
org/10.1016/].jmps.2016.09.009.

36.

37.

38.

39.

40.

41.

42.

43.

Matter

Deshpande, V.S., Ashby, M.F., and Fleck, N.A.
(2001). Foam topology bending versus
stretching dominated architectures. Acta
Mater. 49, 1035-1040. https://doi.org/10.1016/
$1359-6454(00)00379-7.

Dong, L., Deshpande, V., and Wadley, H.
(2015). Mechanical response of Ti-6Al-4V octet-
truss lattice structures. Int. J. Solid Struct. 60-61,
107-124. https://doi.org/10.1016/}.ijsolstr.
2015.02.020.

Meza, L.R., Zelhofer, AJ., Clarke, N., Mateos,
A.J., Kochmann, D.M., and Greer, J.R. (2015).
Resilient 3D hierarchical architected
metamaterials. Proc. Natl. Acad. Sci. USA 112,
11502-11507. https://doi.org/10.1073/pnas.
1509120112.

Schaedler, T.A., Ro, C.J., Sorensen, A.E.,
Eckel, Z., Yang, S.S., Carter, W.B., and
Jacobsen, A.J. (2014). Designing metallic
microlattices for energy absorber
applications. Adv. Eng. Mater. 16,
276-283. https://doi.org/10.1002/adem.
201300206.

Gibson, LJ. (1999). Cellular solids: structure
and properties. In Cambridge Solid State
Science Series, Second edition (Cambridge
University Press), p. 1.

Abdi, H., and Williams, L.J. (2010). Principal
component analysis. Wiley Interdiscip. Rev.
Comput. Stat. 2, 433-459. https://doi.org/10.
1002/wics.101.

Mao, K.Z. (2004). Orthogonal forward
selection and backward elimination
algorithms for feature subset selection. IEEE
Trans. Syst. Man Cybern. B Cybern. 34,
629-634. https://doi.org/10.1109/tsmcb.2002.
804363.

Wiegand, R.E. (2010). Performance of using
multiple stepwise algorithms for variable
selection. Stat. Med. 29, 1647-1659. https://
doi.org/10.1002/sim.3943.


https://doi.org/10.1126/sciadv.aaz1708
https://doi.org/10.1126/sciadv.aaz1708
https://doi.org/10.1038/s41467-020-19597-w
https://doi.org/10.1126/sciadv.aaz8867
https://doi.org/10.1126/sciadv.aaz8867
https://doi.org/10.1038/npjcompumats.2016.31
https://doi.org/10.1038/npjcompumats.2016.31
https://doi.org/10.1016/j.actamat.2016.05.054
https://doi.org/10.1016/j.actamat.2016.05.054
https://doi.org/10.1186/s13321-020-00430-x
https://doi.org/10.1186/s13321-020-00430-x
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1186/s40537-016-0043-6
https://doi.org/10.1016/j.compstruct.2020.112640
https://doi.org/10.1016/j.compstruct.2020.112640
https://doi.org/10.3390/ma13184083
https://doi.org/10.3390/ma13184083
https://doi.org/10.1098/rsta.2005.1678
https://doi.org/10.1098/rsta.2005.1678
https://doi.org/10.1016/0020-7403(84)90021-3
https://doi.org/10.1016/0020-7403(84)90021-3
https://doi.org/10.1016/j.eml.2019.100461
https://doi.org/10.1016/j.eml.2019.100461
https://doi.org/10.1364/OE.20.015263
https://doi.org/10.1115/1.4040409
https://doi.org/10.1016/j.jmps.2016.07.010
https://doi.org/10.1016/j.jmps.2016.07.010
https://doi.org/10.1016/j.jmps.2016.09.009
https://doi.org/10.1016/j.jmps.2016.09.009
https://doi.org/10.1016/s1359-6454(00)00379-7
https://doi.org/10.1016/s1359-6454(00)00379-7
https://doi.org/10.1016/j.ijsolstr.2015.02.020
https://doi.org/10.1016/j.ijsolstr.2015.02.020
https://doi.org/10.1073/pnas.1509120112
https://doi.org/10.1073/pnas.1509120112
https://doi.org/10.1002/adem.201300206
https://doi.org/10.1002/adem.201300206
http://refhub.elsevier.com/S2590-2385(22)00346-0/sref40
http://refhub.elsevier.com/S2590-2385(22)00346-0/sref40
http://refhub.elsevier.com/S2590-2385(22)00346-0/sref40
http://refhub.elsevier.com/S2590-2385(22)00346-0/sref40
https://doi.org/10.1002/wics.101
https://doi.org/10.1002/wics.101
https://doi.org/10.1109/tsmcb.2002.804363
https://doi.org/10.1109/tsmcb.2002.804363
https://doi.org/10.1002/sim.3943
https://doi.org/10.1002/sim.3943

	MATT1060_proof.pdf
	Designing lattices for impact protection using transfer learning
	Introduction
	Results and discussion
	The parametric octet design space
	Using quasi-static measurements to train a predictive model for impact performance
	Testing the trained model for a different lattice family
	Building a general model for predicting impact performance
	Conclusion

	Experimental procedures
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Design and fabrication of lattice samples
	Quasi-static and impact testing of lattice structures
	Building a predictive model for acceleration
	Generating F-D curves in the convex hull

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	Inclusion and diversity
	References



