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Novel families of 3D-printed

lattices evaluated using

automated mechanical testing

Machine-learning model predicts

impact performance using quasi-

static behavior

Lattices with optimized impact

performance achieved using a

data-driven approach

Illustrated how specialized

performance can be transfer

learned from general testing
We report a transfer learning approach for using general testing to predict the

specialized performance of 3D-printed lattices. Specifically, we curated a large

dataset of quasi-static tests using automated testing and learned a general

featurization. Next, we connected this featurization to experimentally measured

impact performance and found that the model predicted the impact performance

of novel lattice families with 18% error. These results show how design for specialty

applications can be accelerated in a data-driven manner.
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Designing lattices for impact protection
using transfer learning

Aldair E. Gongora,1 Kelsey L. Snapp,1 Richard Pang,2 Thomas M. Tiano,2 Kristofer G. Reyes,3

Emily Whiting,4 Timothy J. Lawton,2 Elise F. Morgan,1,5,6,* and Keith A. Brown1,6,7,8,*
PROGRESS AND POTENTIAL

Many facets of mechanical

performance evaluation require

using specialized experiments

that are slow and expensive. For

example, when designing

components for impact conditions

such as the crumple zone of a car,

testing is expensive and

destructive and requires large

samples. In this study, we explore

whether comparatively simple

experiments can provide insight

into highly specialized

performance such as in impact.

We fabricated lattices using 3D

printing and tested them under

quasi-static compression, which is

more general and accommodates

smaller samples than does impact

testing. Using a database

accumulated using automated

quasi-static testing, we trained a

machine-learning model that

predicts impact performance from

quasi-static data alone. In

addition to accelerating the

design of impact-resistant

structures for safety applications,

this work more generally

illustrates how easy-to-acquire

experimental data can allow one

to better select samples for

specialized experiments.
SUMMARY

Likemany specialty applications, the paceof designing structures for
impact protection is limited by its reliance on specialized testing.
Here, we develop a transfer learning approach to determine how
more widely available quasi-static testing can be used to predict
impact protection. We first extensively test a parametric family of
lattices in both impact and quasi-static domains and train a model
that predicts impact performance to within 8% using only quasi-
static measurements. Next, we test the transferability of this model
using a distinct family of lattices and find that performance rank was
well predicted even for structures whose behavior extrapolated
beyond the training set. Finally, we combine 812 quasi-static and
141 impact tests to train a model that predicts absolute impact per-
formance of novel lattices with 18% error. These results highlight a
path for accelerating design for specialty applications and that trans-
ferrablemechanical insight can be obtained in a data-drivenmanner.

INTRODUCTION

Structures for impact protection play a vital role in a plethora of applications ranging

from padding used in defense to safety components used in the automotive and

aerospace industries.1–3 A common task is to minimize the acceleration experienced

by a sensitive component during an impact event. However, designing high-perform-

ing structures for impact is challenging due to the required co-optimization of distinct

properties including compliance, strength, and toughness.1,2,4–7 With the advent of

additive manufacturing (AM), unprecedented opportunities have emerged for fabri-

cating novel designs with superior mechanical performance relative to their conven-

tionally manufactured counterparts.8–14 Lattices, such as the widely studied octet lat-

tice, are one type of mechanical structure enabled by AM that have potential for

impact protection as their cellular nature affords high specific energy absorption,

and they exhibit a high degree of design flexibility. Nevertheless, rapidly traversing

the vast AM design space to select optimal components is not currently possible.

Traditional tools for rapid design such as finite element analysis (FEA) and topology

optimization are not effective for predicting impact performance, as these ap-

proaches have limited fidelity for such measurements. These limitations stem from

the material and geometric non-linearities, the dependence of material properties

on strain rate, and dynamic self-collisions that are challenging tomodel for structures

with complex architectures.3,14,15 Thus, design of structures for impact performance

necessitates physical experimentation that leads to low-throughput iterative design.

Recently, autonomousexperimentationhas emergedasa tool for acceleratingdesign for

properties that require physical experiments by combining automated experimentation

and active learning.16–22 However, not all fabrication and test procedures are readily
Matter 5, 1–18, September 7, 2022 ª 2022 Elsevier Inc. 1
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suitable for automation. In these cases, it is crucial to maximize the degree to which all

experimental data can be brought to bear while designing for a property of interest.

Design of structures for impact performance is one such case, as impact tests are more

resource intensive and less compatible with automation than quasi-static tests. Further-

more, in contrast to impact testing, in which testing properties (i.e., impactor mass, en-

ergy, and speed)are coupled inamanner thatnecessitates testing full-scalecomponents,

the strain rate in quasi-static uniaxial testing can be freely chosen, thus allowing re-

searchers to test representative portions of the full-sized sample.

While the prospect of using knowledge from quasi-static testing to design for impact

is attractive, the fundamental mechanics that allow one to connect performance

across these two different testing regimes is not fully or sufficiently understood. A

previous study found that quasi-static stress-strain curves of octet lattices

(0.01 mm/s compression speed) exhibited similar trends to those observed during

impact testing (20 m/s impactor speed) including the presence of a linear elastic

regime followed by a stress plateau prior to densification.23 However, oscillations

were also noted during impact testing that were not present during quasi-static

loading, and this was attributed to either inaccuracies in the force measurement or

compression wave reflections inside the lattice structures. Nevertheless, the qualita-

tive connection observed between quasi-static and impact testing supports the idea

that a relationship between the two regimes may exist. Despite examples of studies

that attempt to connect these regimes, a predictive connection between them re-

mains elusive. To take advantage of latent relationships between testing regimes,

a powerful approach is to seek data-driven models. Indeed, an area in machine

learning that focuses on connecting different but related domains is transfer

learning.24–26

Here, we hypothesize that quasi-static testing can become an effective predictor of

impact performance by combining transfer learning to capture relevant features of the

quasi-static measurements and automated experimentation to accumulate sufficient

data to train the relevantmodels (Figure 1). Additionally, while the toughness of octet lat-

tices, which have been classified as stretching dominated, have been previously stud-

ied,11,27,28 bending-dominated lattices have garnered increasing interest for absorbing

mechanical energy owing to the fact that they collapse at a nearly constant plateau

stress.3,29–31 To explore this hypothesis, we generate a parametric family of lattices

andperformquasi-staticmeasurements tocollect force-displacement (F-D) curves for lat-

tices with design x!, where x contains the geometric parameters that fully define the lat-

tice. Then,weuse unsupervised learning to identify the distinguishing features of the F-D

curves. Next, we performed impact tests on lattices to measure the maximum accelera-

tion, am, fromeach acceleration a versus time t curve. Using both am and F-D, we employ

feature representation transfer learning to build a predictive model, bamðF!Þ. In this way,

we can predict impact performance using only quasi-static measurements in a manner

that ispotentially generalizable toother structuresbecause itdoesnot relyonany specific

geometric parametrization of the design. To test this approach, we develop additional

parametric families of lattices and explore the transferability of models to connect

quasi-static measurements to impact performance across these families. Ultimately, we

build a model using 812 quasi-static and 141 impact tests that is able to predict the per-

formance of previously uncharacterized lattices to within 18%.

RESULTS AND DISCUSSION

The parametric octet design space

To explore the impact performance of lattice-based designs, we developed a para-

metric octet lattice (Figure 2A) that is defined by the maximum radii of the struts and
2 Matter 5, 1–18, September 7, 2022
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Figure 1. Using transfer learning to predict impact performance from quasi-static measurements

For a design x!, the force-displacement (F-D) curve can be obtained from quasi-static testing, and

the acceleration-time (a-t) curve can be obtained from impact testing. Acceleration is reported in

units of the gravitational acceleration g. Using both quasi-static measurements F
!ð x!Þ and impact

performance, namely the maximum acceleration am in the a-t curve, a model bamð F!Þ can be built to

predict am.
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joints. The lattice designs were generated using custom code that adjusted the

maximum radii of the lattice struts and joints to meet a target volume fraction

(Figure S1).32 It should be noted that this process is based on a weighting procedure

that generates struts whose cross-sectional areas vary smoothly along their length

and minimizes the sharpness of the corners at the joints where they intersect (details

in experimental procedures). The generated designs were then exported as stan-

dard triangle language (STL) files for fabrication. Here, the lattice structures were de-

signed to have a total height H = 19 mm, a length L = 38 mm, and a width W =

38 mm. The octet lattice was selected as a basis due to its use in previous studies

on lightweight structures for applications in absorbing mechanical energy.11,23,33–

35 The octet unit cells had a lattice constant of 9.5 mm and were parametrized by

x! = ðxb;xs; xjÞ, where xb corresponds to the radius of struts that bend during uni-

axial compression, xs corresponds to the radius of struts that stretch during uniaxial

compression, and xj corresponds to the radius of the joints. All lattices were de-

signed to a have a 10% volumetric fill fraction.

We initially studied three structures that varied in the degree to which stretching or

bending would be expected to dominate their behavior. Specifically, under uniaxial

compression, the oblique struts of an octet lattice bend and the horizontal struts stretch.

Here, we modulate the relative contributions of bending and stretching by adjusting xb
and xs which allows us to access bending-dominated octet lattices even thoughoctet lat-

tices are conventionally categorized as stretching dominated.33,36,37 Three designs are

shown that range from most resistant to stretching to least resistant to stretching (Fig-

ure 2B). For instance, design (I) is chosen to be highly stretching resistant by making xs
Matter 5, 1–18, September 7, 2022 3



Figure 2. Parametric octet-based lattice designs for impact protection

(A) Samples for impact testinghave lengthL,widthW, andheightHandarecomposedof repeatingoctetunit

cells that are parametrized by x! = ðxb;xs; xjÞ, where xb corresponds to the maximum radius of struts that

bend during uniaxial compression, xs corresponds to the maximum radius of struts that stretch during

uniaxial compression, and xj corresponds to the maximum radius of the joints.

(B) Three parametric octet designs (I), (II), and (III) that range frommaximum resistance to stretching

to maximum resistance to bending.

(C) Impact testing of samples of designs (I), (II), and (III) showing peak acceleration am from the a-t

curves. Each panel shows testing results from three identically prepared samples.

(D) The parametric octet design space with markers that indicate the 18 designs that were

measured using impact testing.

(E) The parity plot of bam versus am where bam comes from a Gaussian process regression (GPR) with

root-mean-square error (RMSE) sCV= 46.8 3 g calculated using leave-one-out cross-validation (CV).

Gray dots show mean measured peak acceleration am, and black dots show individual

measurements of am.
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to near itsmaximumallowed value. In contrast, design (II) features nearly equal xb and xs,

correspondingly decreasing the importanceof stretching. Finally, design (III) increases xb
to near its maximum achievable value to realize a structure with maximized bending

resistance.

Samples based on designs (I), (II), and (III) were fabricated and tested. Three samples

of each design were printed using stereolithography (SLA; Form 3 early 2019 model,
4 Matter 5, 1–18, September 7, 2022
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Formlabs) out of Durable Resin (product number RS-F2-DUCL-02, Formlabs) and

impact tested using a drop tower impact testing system (CEAST 9350, Instron)

with a 3.104 kg mass at 4.3 m/s impact velocity (Figure 2C). To aid in printing and

removal, custom support structures were used (Figure S2). Additional information

on the fabrication and testing methods can be found in the experimental proced-

ures. Impact testing showed a rich array of subtle features, including two peaks in

the a-t curve from samples based on design (II), which we attribute to the buckling

of their slender struts during impact. Perhaps most importantly, am was observed

to be lowest for the sample designed to have the largest bending resistance, i.e.,

those based on design (III), which is aligned with previous work suggesting that

bending-dominatedmechanics could be favorable for absorbingmechanical energy

at lower peak accelerations.29–31 Ultimately this means that design (III) is relatively

high performing as it results in the lowest peak acceleration. While these observa-

tions are encouraging, they do not represent a sufficient exploration of this design

space. Thus, we selected and tested 15 additional designs using a grid-based

approach (Figure 2D). All additional selected designs were also fabricated in tripli-

cate and tested for a total of 54 experimental measurements of am. Using x and

am, we trained a predictive model bamð x!Þ using Gaussian process regression (GPR)

(Figure 2E). Details of this model are shown in the experimental procedures, but

briefly, we selected a squared exponential covariance kernel with automatic rele-

vance determination and a zero-mean function. The GPR was implemented in Py-

thon leveraging open-source software (http://sheffieldml.github.io/GPy/). The pre-

diction accuracy of the model was determined by computing the root-mean-square

error (RMSE) sCV = 46.83 g using leave-one-out cross-validation (CV). We observed

good agreement between am and bam considering that sCV = 46.83 g is comparable

to the 553 g standard deviation observed in quality control impact tests conducted

throughout the experimental study (Figure S3).

Using quasi-static measurements to train a predictive model for impact

performance

The use of quasi-static testing to study the mechanical behavior of materials and

structures is ubiquitous in mechanics. Here, we hypothesize that transfer learning

can identify characteristics of the F-D curve obtained from quasi-static testing that

serve as predictors for impact performance. To test this hypothesis, we fabricated

and conducted uniaxial quasi-static compression tests of samples based on designs

(I), (II), and (III) using a universal testing machine (5965, Instron) at a loading rate of

2 mm/min (Figure 3A). Samples for quasi-static testing had a unit cell lattice constant

of 9.5 mm, a H of 19 mm, an L of 19 mm, and a W of 19 mm. Interestingly, the F-D

curves showed that samples based on design (III) exhibited the highest and smooth-

est plateau region after yielding. These quasi-static behaviors agree with predictions

of post-yield plateau and softening in bending- and stretch-dominated structures,

respectively.29,36 The variations in force during the plateau region observed for sam-

ples based on designs (I) and (II) could indicate the buckling of struts during

compression.

We hypothesize that, provided a sufficiently large database of measurements, trans-

fer learning could allow one to connect quasi-static measurements and impact per-

formance. Specifically, we propose a pipeline in which unsupervised learning is used

to learn relevant features z from the quasi-static measurements and then combine

these features with measured values of am to train a model to predict bam (Figure 3B).

However, before embarking on this data-driven path, it is critical to obtain a suffi-

ciently large quantity of data. Thus, we conducted quasi-static experiments of sam-

ples based on 653 unique design locations selected using a grid-based approach in
Matter 5, 1–18, September 7, 2022 5
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Figure 3. Predicting impact performance using quasi-static measurements via feature-

representation transfer learning

(A) Quasi-static testing of three parametric octet samples based on designs (I), (II), and (III).

(B) Schematic of transfer learning pipeline to learn relevant features z of F-D curves that, together

with am, can be used to train a predictive model bamðzÞ.
(C) The parametric octet design space where the square markers indicate the 18 designs tested in

impact and circular markers indicate the 653 designs measured using quasi-static testing.

(D) Parity plot of bam versus am where bam is obtained from the transfer learning approach with

forward stepwise linear regression model with sCV = 40 3 g.
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the octet design space (Figure 3C). To increase experimental throughput, the sam-

ples for impact testing and quasi-static testing were printed in batches. Samples for

impact testing were ordered in a three-by-three grid on the print baseplate (Fig-

ure S4A), and samples for quasi-static testing were ordered in a six-by-six grid

arrangement on the print baseplate (Figure S4B). Quality control lattices and cylin-

drical samples were printed and tested for each quasi-static batch (Figures S5–S7).

To collect this vast dataset, the quasi-static testing throughput was enhanced using

custom automated experimentation hardware that leveraged robotic sample

retrieval, handling, quasi-static testing, and data logging. This automated pipeline

allowed for the collection of orders of magnitude more data than previously realized

in related mechanical studies.11,23,27,28

Quasi-static data in hand, we sought to realize a transfer learning pipeline using a

four-step process. (1) We first down sampled each F-D curve to 100 equally spaced

D values from 0 to 13 mm to accommodate the non-uniform spacing from the instru-

ment. The resolution of this down sampling was selected as a trade-off between

computation time and adequately low loss of information (root-mean-square per-

centage error <2%) (Figure S8). Noting the wide range of F values in a given F-D

measurement, we elected to learn on the logarithm of F. Additionally, since the
6 Matter 5, 1–18, September 7, 2022
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samples tested in quasi-static had a cross-sectional area that was a quarter the size of

the lattices tested in impact, the forces measured during these tests were multiplied

by four to determine the equivalent force measurements expected for quasi-static

testing of a full-size sample. To explore whether this scaling led to systematic errors,

we conducted six quasi-static compression experiments on quarter-size lattices and

on full-size samples (Figure S9A). Not only were there minimal qualitative differences

between the scaled curves, but the energy absorbed per unit volume exhibited no

statistical difference (p = 0.41 for two-tailed t test) between the quarter-size samples

and the full-size samples (Figure S9B). (2) We subsequently used principal-compo-

nent analysis (PCA) on the log(F) dataset to build a featurizer to transform log(F) to

z. It is important to note that z is determined with no knowledge of impact perfor-

mance and is reflective of the variations and important features in quasi-static mea-

surements. Additionally, not all z are important and should be considered to predict

impact performance. (3) To select a subset of z for consideration in building models

for impact performance, we selected the fewest components that have a cumulative

explained variance >99% (Figure S10A), which results in N components for consid-

eration. For these experiments, N was found to be 11. (4) Finally, forward stepwise

linear regression was utilized to obtain the final predictive model. In brief, we

computed linear models with k terms for k = 1 up to k = N and computed the

RMSE using CV for each k (Figure S10B). We then selected the optimal model as

the k with the minimum sCV , here found to be k = 6 with sCV = 40 3 g. Limiting

the number of terms using CV is designed to mitigate the potential for overfitting.

The result of this four-step process was a final model defined as bam =
Pk

0bizi where

bi is the linear slope coefficient and i = 0 corresponds to a constant offset. This

model results in good agreement between prediction and experiment (Figure 3D).

We note that sCV = 403 g is comparable to the 553 g standard deviation observed

in quality control samples (Figure S3) and is lower than sCV computed using the GPR-

based model (Figure 2E).

Testing the trained model for a different lattice family

From the octet lattice design space explored in the previous section, it was

observed that octet designs that were more resistant to bending possessed supe-

rior performance. We therefore sought to explore a second family of lattices whose

design would allow larger resistance to bending and allow us to test the model

trained on octet data. Specifically, we chose octahedral lattices, which have

been used in studies of energy absorption38,39 and consist of octet unit cells

without the tetrahedral struts.33 The omission of these struts allows for larger strut

diameters relative to those found in the octet designs. The octahedral lattice family

considered in this study was also parametrized by x = ðxb; xs; xjÞ where these are

defined identically to how they were defined for the parametric octet lattices (Fig-

ure 4A). The unit cell lattice constant, volume frame, L, W , and H were the same for

both octahedral and octet samples. To initially probe this design space, two

distinct octahedral designs were tested under both quasi-static and impact condi-

tions (Figure 4B). As with the octet samples, the design that was most resistant to

bending, namely (V), possessed superior impact performance relative to design

(IV), which was chosen to have maximized stretching resistance. These results moti-

vate further exploration of the octahedral design space, since am measured for

samples based on design (V) were, on average, 48% lower than the best-perform-

ing octet design.

While it was clear that octahedral lattices could outperform octet lattices during

these impact tests, we sought to determine whether we could have predicted the

performance of octahedral samples using the model trained on only octet data.
Matter 5, 1–18, September 7, 2022 7



Figure 4. Evaluating the predictive ability of the octet-trained model using a parametric

octahedral design space

(A) Definition of the geometry of the parametric octahedral unit cell.

(B) Quasi-static and impact testing of two distinct octahedral lattices based on a highly stretching

resistant design (IV, dashed lines) and a highly bending-resistant design (V, solid lines).

(C) Violin plots of bizi versus i for octet and octahedral designs where bi and zi correspond to the

model linear coefficient and selected principal component, respectively. Violin plots highlight the

density of data and limited overlap between corresponding terms of the octet and octahedral

lattices suggests predicting performance might be possible in some cases.

(D) Quasi-static F-D curves corresponding to the 18 octet and 26 octahedral designs that were

tested in impact.

(E) Parity plot of bam versus am for octet and octahedral designs using an octet-trained model.
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The first question, however, is to determine whether the performance of the octahe-

dral samples could be interpolated (rather than extrapolated) from the data from oc-

tets. To test this, we needed a representative set of quasi-static measurements from

the octahedral design space. Thus, we measured samples based on 136 parametric

octahedral designs using automated quasi-static testing. Next, these F-D measure-

ments were transformed to z values using the octet-trained PCA featurizer. As the

octet-trained model only relies upon k = 6 of these components, we compute the

products bizi, which each have units g, for each octahedral and octet sample to

compare their distributions (Figure 4C). The bizi values computed for the octet sam-

ples were centered on zero, which is to be expected since the PCA was based on

octet data. However, even though there is some overlap between the octahedral

and octet data, many octahedral designs fall far outside the range defined by the
8 Matter 5, 1–18, September 7, 2022
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octet samples. The presence of some overlap suggests that the octet-trained model

should have some predictive capability for octahedral designs.

To determine the degree to which octahedral impact performance can be predicted

using the octet-based model, we selected 26 designs that span the parametric octa-

hedral design space. There is reason to believe that the performance of these sam-

ples would extrapolate beyond octet samples as the corresponding F-D curves from

quasi-static conditions of the octahedral designs tested under impact conditions ex-

hibited both a substantially wider range of yield force compared with the octet lat-

tices tested (Figure 4D). These 26 octahedral samples were also evaluated using

impact testing to determine am, which can be compared with bam as predicted by

the octet-trained model (Figure 4E). Interestingly, several octahedral points are

found near the parity line, suggesting reasonable prediction. However, we observe

a degradation in prediction fidelity for especially low- or high-performing octahedral

samples. Critically, while the absolute prediction accuracy is not high fidelity, the

predicted rank of octahedral samples does appear to have reasonable correspon-

dence with the measured rank. This is an important observation as not only are these

octahedral data points not in the training set, but many fall outside the range

(in terms of z or F) of data on which the model had been trained, and yet the model

is providing valuable insight. Also, this process is only possible because this model

takes F data as the input rather than the geometry of the sample.

To reconcile themechanical results from the present study with classical understand-

ing of impact mechanics, we compute the Janssen factor, or the ratio of the

measured acceleration to the minimum possible acceleration. Classical understand-

ing of foams suggests that a foam can either be too weak or too strong for a given

impact condition and will exhibit a minimum Janssen factor J at a specified impact

energy.40 Plotting the impact results from the octet and octahedral study shows

that, indeed, the best-performing components span a range of quasi-static energy

absorbed from 4 to 9 J (Figure S11). The vast difference between this number and

the 28 J energy dissipated during impact likely originates from strain-rate effects

and that the quasi-static energy absorbed only considers pre-densification, while

impact almost certainly reaches densification. Interestingly, the octahedral lattice

designs span a wider range of both J and U relative to the octet lattice designs.

Perhaps most importantly, however, is the variation of points along this curve, which

illustrates that variations in component structure, even slight changes to the radii or

curvature of struts, can have outsized effects on impact performance. This highlights

the need for data-driven approaches to connect performance across these domains.
Building a general model for predicting impact performance

To build the most general possible model given the available data, we trained a

model encompassing all quasi-static and impact data corresponding to both octet

and octahedral designs (Figure 5A). First, we updated the PCA featurizer using all

quasi-static data. The space was discretized into 100 D values as before. Here, we

found that N = 9 components explained >99% of the variance (Figure S12A). After

selecting components, we trained a forward stepwise linear regression model using

all measurements of am. As before, the number of terms in this model was selected to

minimize RMSE computed using CV (Figure S12B). Here, k = 3 terms were found to

produce the best model. It is interesting to note that as the data became more

diverse, fewer terms were needed to capture variance in the F-D curves themselves

and the variation in impact performance. We attribute this to the model capturing

more important trends in the larger dataset.
Matter 5, 1–18, September 7, 2022 9



Figure 5. Validating the octet-octahedral based model using different lattices

(A) Illustrations of the octet and octahedral unit cells.

(B) Convex hull of the octet and octahedral designs based on z values from the three-term model

obtained using forward stepwise linear regression. The color bar corresponds to bam from this three-

term model.

(C) Generated F-D curves using inverse PCA using z values along a linear trajectory from the points

corresponding to the minimum bam to the maximum bam.

(D) Parity plot of bam versus am for octet, octahedral, and five different lattices using an octet-

octahedral-trained model.
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Given that three features were found to be ideal for predicting impact performance,

we could readily visualize the impact performance within the feature space (Fig-

ure 5B). Importantly, this convex hull represents the domain for which the model

has been trained and therefore can interpolate. A linear trajectory through this

convex hull from the predicted worst-performing design (max bam) to the predicted

best-performing design (min bam) can be generated to explore the relationship be-

tween quasi-static and impact performance. Specifically, taking points along this tra-

jectory and generating their corresponding F-D curves using inverse PCA, we may

visualize a series of F-D curves that trend from lowest performing to highest perform-

ing (Figure 5C). Interestingly, we observe that the F-D curves that correspond to
10 Matter 5, 1–18, September 7, 2022
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lower values of bam also exhibited relatively high yield forces and minimal post-yield

softening relative to those that correspond to higher values of bam. Strikingly, we

observe a partial densification and subsequent softening at high strain for curves

predicted to have lower values of bam. This partial densification and softening may

be due to self-collisions and hyperelastic stiffening of bending-dominated struts

at high strain. Regardless of its origin, the identification of this feature by a purely

data-driven method indicates that transfer learning has the ability to draw connec-

tions between disparate domains in a manner that is able to help direct future in-

depth mechanistic research.

To investigate the extent to which the model trained on octet and octahedral data

can predict impact performance, we evaluated its prediction capabilities for five

different lattices that were outside the training data: a reinforced octet, a reinforced

octahedral, two different octets with struts that have elliptical cross-sections, and a

body-centered cubic lattice. The structures designed from the five alternative de-

signs had the same lattice constant, total size, and volume fraction as all previous

octahedral and octet samples and were fabricated out of the same material. A parity

plot showing the octet, octahedral, and all five alternative lattice designs reveals that

the predictions for the five alternative lattices relative to the measured values are

within reasonable agreement (root mean square percentage error = 18%) using

the octet-octahedral-based model (Figure 5D). To emphasize, neither the PCA fea-

turizer nor the predictive model bamðzÞ have access to any information about the

alternative designs, making these true validation samples.

From these results, two critical characteristics of the model were observed. First, the

pipeline (Figure 3B) allows sequential updates as new data are acquired by updating

both the lower dimensional feature space used to describe a design space and the

model used to predict performance. This flexibility enables the utilization of previ-

ously collected data to connect properties such as relative rank of performance or

absolute performance across design spaces. Secondly, the results show that the pre-

dictive power of the model built from data on the octet and octahedral lattices can

extend to alternative lattice families. More generally, this observation suggests the

ability of transfer learning to predict performance of novel designs for specialty

applications.

Conclusion

This work combines several data-driven approaches to ultimately connect two

distinct but related experimental responses using feature-representation transfer

learning. First, a library of 812 uniaxial quasi-static measurements was collected

through the use of AM and automated testing. This dataset was used to perform un-

supervised learning to determine a set of features that capture the quasi-static per-

formance. Then, a subset of these features was paired with 141 impact tests in order

to build a model that predicts impact performance from quasi-static data. Not only

can this model predict impact performance to within 13% (CV error), but it also pre-

dicts performance to within 18% for lattice families that are not included in any

training (true validation error). This model, and the approach it exemplifies, has

several implications for mechanical design and experimental research. First, this pro-

vides a facile method for using easy-to-obtain measurements to estimate difficult-to-

measure properties. For example, the prediction of impact performance from quasi-

static tests can vastly accelerate the design of impact structures. Second, and

perhapsmore importantly, the ability to examine the learnedmodel to extract exem-

plars of high- and low-performance F-D curves has broader implications for

enhancing researchers’ abilities to learn the connections between mechanical
Matter 5, 1–18, September 7, 2022 11
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behaviors in different testing regimes. Third, while the application described here is

primarily regarding lattice design, the approach provides a flexibility for applications

in different fields, specifically those that have access to various characterization and

measurement techniques that offer trade-offs in terms of time, cost, and fidelity.

Furthermore, with the advancement of autonomous experimentation systems,

approaches such as transfer learning could be introduced into the learning frame-

work to further accelerate the pace of research by leveraging information from

several sources to inform both decision-making and predictive modeling.

While the connection of two distinct but related experimental responses using

feature representation and transfer learning highlight the role that machine learning

can play in accelerating mechanical design, it also shines a spotlight on the role and

consequences of model prediction errors in the data-driven design process. Firstly,

the reported 13% cross-validation error of the final experimentally trained model

should be compared with the inherent variation in the fabrication process. For

instance, the best design is predicted to have a mean acceleration of 160 3 g

with a prediction error of 20 3 g. This number should be compared with the

55 3 g variation that was experimentally measured for the quality control samples.

Indeed, in well-trained models, cross-validation error is expected to be commensu-

rate with the measurement uncertainty, which in this case is dominated by variations

in the performance in identically prepared samples. In this way, the cross-validation

error is influenced by the measured variation in performance due to fabrication.

Thus, this 13% cross-validation error highlights the need for more consistency in

AM and advancements in in situmonitoring and control, metrology, and part inspec-

tion. Moreover, such cross-validation error can provide a useful input into any engi-

neering analysis to aide in the selection of a factor of safety. Secondly, the reported

18% true validation error of this model refers to the error in predicting the perfor-

mance of new lattice families not used in the training process. As was apparent

when evaluating the octahedral lattices with the octet-trained model, even when

such extrapolatory predictions do not provide quantitatively accurate results, the

relative ranking provides highly actionable guidance for future design. Specifically,

not only did the octet-trained model predict that octahedral samples would perform

better, but it also pinpointed the region in parameter space that would correspond

to the best performance. Thus, this type of prediction will aid in the selection of re-

gions in design space to explore, keeping in mind that experimental evaluation in

these regions will remain a critical part of the design loop. Indeed, we view this as

an example of a data-driven design cycle in which designers use comparatively rapid

and inexpensive measurements, namely quasi-static testing of representative sam-

ples, to screen vast libraries of potential structures and then use transfer learning

to select candidates for more specialized impact testing.

EXPERIMENTAL PROCEDURES

Experimental procedures describing the design and fabrication of lattice samples,

the quasi-static and impact testing protocol, and the predictive model building

approach are found below.

Resource availability

Lead contact

Further information and requests for resources and reagents should be directed to

and will be fulfilled by the lead contact, Keith A. Brown (brownka@bu.edu).

Materials availability

This study did not generate new unique reagents.
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Data and code availability

All data needed to evaluate the conclusions in the paper are present in the paper

and/or the supplemental information. The raw data can be accessed through

www.kablab.org/data. Additional data related to this paper may be requested

from the lead contact.

Design and fabrication of lattice samples

Lattice geometries were generated using custom design software written in

MATLAB that is publicly accessible on kablab.org. The user inputs to the design soft-

ware were the selected lattice family (e.g., octet lattice, reinforced octet lattice, octa-

hedral lattice, or reinforced octahedral lattice), the bending strut radius xb, the

stretching strut radius xs, and the volume fraction. In this study, the designs were

constrained to have a target volume fraction of 10%. The lattices were generated us-

ing three base analog three-dimensional (3D) matrices corresponding to the lattice’s

features (bending struts Mb, stretching struts Ms, and joints Mj), as can be seen in the

2D example in Figure S1. Mb, Ms, and Mj were created by calculating the inverse of

the signed distance field (i.e., the inverse of the distance of each voxel in the matrix

from the skeleton of the feature of interest). Therefore, voxels that were closer to the

feature of interest had a larger value, while points further from the feature of interest

had a smaller value. Mb, Ms, and Mj were individually normalized so that their values

ranged from zero to one (Figure S1B). A vector of scalar modifiers w was calculated

by sampling representative points in Mb, Ms, and Mj that were xb, xs, and xj distance

away from their respective features of interest and using linear algebra to solve for

the appropriate scalar values so that these sampling points each summed to a

threshold a (Figure S1C). The locations of the sampling points were selected to

decrease the influence of the other features, but ultimately the value at each sam-

pling point was a combination of Mb, Ms, and Mj. The final lattice matrix Mf was

created by summing Mb, Ms, and Mj with their weights adjusted by w and assigning

material if the voxel value was above the threshold a, here taken to be 0.5

(Figures S1D and S1E). Each unique set of xb, xs, and xj corresponds to a specific vol-

ume fraction. Here, a target volume fraction was designated, and xj was a free var-

iable that was then used to reach the target volume fraction. Because of this, the

values of xb and xs were limited to a subset where the target volume fraction could

be reached with a valid xj, as seen by the boundaries in Figure 2D. The key benefits to

this method over other methods are the vast variety of designs that can be created

with a constant volume fraction with struts and joints that blend seamlessly, mini-

mizing stress concentrations at the joint (Figure S1F).

After Mf was created, custom supports were added in the voxel space to aid in print-

ing and removal of the parts (Figure S2A). Short, slender struts were extended down-

ward from the bottom layer joints of the lattice, terminating in a solid square base to

maximize contact area with the build plate (Figure S2B). The designs were then

exported as STL files. The STL files were imported into commercial propriety print

software (Pre-Form, Formlabs) to prepare the files for printing on an SLA 3D printer

(Form 3 early 2019model, Formlabs). The samples were manually arranged in a stan-

dard grid (Figure S4) with the custom support square placed flat on the build plate.

All samples used in this study were fabricated from commercially available resin (Du-

rable Resin, product number RS-F2-DUCL-02, Formlabs) with a layer thickness of

50 mm on a 14.5 3 14.5 cm2 print baseplate.

To increase experimental throughput for impact testing, nine samples were printed

in each production run. These samples for impact testing had an L of 38 mm, aW of

38mm, and aH of 19mmwith four repeating unit cell designs along L andW and two
Matter 5, 1–18, September 7, 2022 13
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along H. The samples were ordered in a three-by-three grid on the print baseplate

(Figure S4A). To further increase experimental throughput for quasi-static uniaxial

compression testing, 36 samples were printed in each production run. These sam-

ples were a quarter of the full-size samples, resulting in samples with dimensions

L=2, W=2, and H with two repeating unit cell designs along L, W , and H. To empha-

size, the physical size of the unit cell was the same for both quasi-static testing and

impact testing. Samples for quasi-static testing were ordered in a six-by-six grid

arrangement on the print baseplate (Figure S4B).

After the printing process was completed, the samples, while still attached to the

print baseplate, were moved to the washer (Form Wash, 8.6 L, Formlabs) filled

with tripropylene glycol monomethyl ether (TPM) (Sigma-Aldrich) solvent to dissolve

the remaining liquid resin on the samples. The samples were washed for 15min, and,

after washing, compressed air was used to blow out any remaining solvent. Next, the

samples were manually submerged and rinsed for 30 s in a water tub. After rinsing,

compressed air was used to blow out any remaining water. Samples were manually

removed from the baseplate using a scraper, and lattice support structures were

subsequently removed from the lattices using snippers. The lattice samples were ar-

ranged in the curing station (Form Cure, Formlabs) and cured for 75 min at 60�C.
Finally, the samples were weighed prior to mechanical testing.

Quasi-static and impact testing of lattice structures

Quasi-static uniaxial compression proceeded at 2 mm/min on a universal testing ma-

chine (5965, Instron) with a force threshold of 4.5 kN. After necessary manual post-

fabrication processing of the printed lattice structures, the quasi-static testing

throughput was enhanced using custom automated experimentation that included

automatic sample retrieval, testing, and data logging that all operated without hu-

man intervention. Since the samples tested in quasi-static were a quarter of the

full-size lattices tested in impact, the forces measured during these tests were multi-

plied by four to determine the equivalent force measurements expected for quasi-

static testing of a full-size sample.

To keep track of potential material property variations between print batches for

samples tested under quasi-static conditions, a solid cylindrical sample that was

16 mm in height and 8 mm in diameter was printed with each production run.

Throughout this process, a total of 20 cylindrical samples were printed, weighed,

measured, and tested. Height and diameter measurements were taken by hand us-

ing digital calipers after the samples were cured. The mean recorded mass was

0.906 g with a coefficient of variation of 0.3% (Figure S5A). The mean height and

diameter were calculated to be 15.93 (Figure S5B) and 7.98 mm (Figure S5C),

respectively, with coefficients of variation of 0.4% and 0.4%, respectively. The abso-

lute relative errors of the fabricated cylindrical samples with respect to the designed

height of 16 mm and diameter of 8 mm were 0.4% and 0.3%, respectively.

The variation in the material property of the resin was also tracked from the quality

control cylindrical experiments. From the measured force F-displacement D curves

obtained during quasi-static compression testing, the stress s-strain ε curves were

calculated and used to derive the Young’s modulus E and yield strength sy of

each sample (Figure S6A). Here, E was computed to be the slope of the linear region

of the s-ε curve, and sy was measured as the stress at the 0.2% offset strain. For s-ε

curves with an observed initial toe region, E was measured from the slope of the

linear region after the toe region, and sy was measured as the stress at the 0.2%

offset strain with the toe being subtracted off to correct for the offset. From the
14 Matter 5, 1–18, September 7, 2022
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measurements, the mean E was calculated to be 570 MPa with a coefficient of vari-

ation of 12% (Figure S6B), and the mean sy was calculated to be 22 MPa with a CV of

12% (Figure S6C). The calculated coefficients of variation for SLA 3D printing with

durable resin are comparable to our previous measured values of 9% coefficent of

variation for E and 11% coefficient of variation for sy for cylindrical samples of equal

dimensions printed from PLA from fused deposition modeling (FDM) 3D printing.18

In addition to the cylindrical quality control samples, a quality control lattice samplewas

also fabricated in each production run. A total of 23 quality control lattice samples were

printed, weighed, and tested under quasi-static testing conditions. The number of

successfully attained quality control cylindrical samples and quality control lattice

samples differ by three samples due to human error. The design of the quality control

lattices tested under quasi-static conditions was an octet lattice structure with design

parameters ðxb; xs; xjÞ = (0.87, 0.87, 0.84) mm. The resulting F-D responses for all

samples show a consistent shape (Figure S7A). From the mass measurements, the

meanmass was calculated to be 0.83 gwith a coefficient of variation of 2% (Figure S7B).

Additionally, the toughness U of the samples was calculated as the area under the

measured F-D curve. The mean U was calculated to be 16 J with a coefficient of varia-

tion of 6% (Figure S7C).

Impact testing was performed using a drop tower impact testing system (CEAST

9350, Instron Inc.) with a flat-ended steel impactor of mass equal to 3.104 kg. The

drop-tower tests were conducted with a 4.3 m/s impact velocity. Full-sized samples

with dimensions L, W , and H were tested under impact conditions. To assess the

variation in performance among print batches, a quality control sample was included

in each print job. The design of the quality control lattice was the same as the one

selected for quasi-static testing. A total of 21 quality control samples were success-

fully printed, weighed, and tested. The mean mass of the samples was calculated to

be 4.2 g with a coefficient of variation of 7% (Figure S3A). From the impact tests, the

mean maximum acceleration a
�
m was found to be 460 3 g, where g is the gravita-

tional acceleration 9.81 m
s2, with a CV of 12% (Figure S3B).
Building a predictive model for acceleration

From experimental measurements of am, a predictive model bamðxÞ was built using
GPR to model the property of interest in the design space x! = ðxb;xsÞ. The covari-

ance kernel Kðx; x0Þ used in the GPR was a squared exponential kernel,

Kðx; x0Þ = a2 exp

0
B@� 1

2

Xd

j = 1

0
B@
�
xj � x0j

�2

b2
j

1
CA

1
CA; (Equation 1)

where K was parametrized by d + 1 parameters, namely a and bj, and the dimen-

sionality of the design space was d = 2. Here, bj was comprised of d values. The pa-

rameters of the kernel and noise were optimized using maximum likelihood estima-

tion. The GPR was implemented using Gpy, a Gaussian process framework written in

Python (http://sheffieldml.github.io/Gpy/).

From the experimentally measured F-D response from quasi-static testing, the F

measurements were down sampled to 100 equally spaced displacement locations

over the range of the minimum displacement and a maximum displacement of

13 mm. The F measurements were down sampled because the F measurements

for each design were collected with a differing total number of data points at non-

uniform spacings, a consequence of the testing algorithm used by the universal
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testing system. The number of equally spaced displacement locations was deter-

mined to be adequately suitable to represent the F with negligible loss of informa-

tion (root mean square percentage error < 2%) (Figure S8). The maximum displace-

ment of 13 mmwas selected as the largest displacement measured for all samples in

the study. Additionally, the logarithm of F was used as an input for further processing

due to the wide range of F values in the F-D response (Figure S8). As a result, for a

dataset with p samples, thematrix representing all the sampled force curves as log of

F would be of size p3 100. Using this matrix, we performed PCA to obtain a new set

of features, namely the principal components z.41

Using both the experimentally collected am and z, we performed forward stepwise

linear regression to build the model bamðzÞ.25,26,42,43 A stepwise linear modeling

was used for two reasons: (1) to select features from the available features from

PCA and (2) to utilize Pearson’s correlation coefficient as a metric for feature

selection. Prior to employing the forward stepwise linear regression algorithm, a

subset of z was selected where the number of selected components in the subset

was based on the number of components with an explained variance greater than

99% (Figures S10A and S12A). Next, the regression procedure began by computing

Pearson’s correlation coefficient R between z and am. Then, the feature z1 with the

largest R2 was selected as the first term in the regression model, specifically

bamðzÞ = b1z1 + b0, where bi and bo corresponded to the coefficient of the selected

feature and the intercept, respectively. The residuals were computed between am
and bamðzÞ, and the feature most correlated with the residuals (i.e., the feature with

the largest computed R2) was selected as the next feature to add to the model,

specifically bamðzÞ = b1z1 + b2z2 + b0. This process was repeated until all

components in the subset were selected. For example, if the number of

components in the subset was 9, the process would terminate with a model as

follows: bamðzÞ = b1z1 + b2z2 +/+ b9z9 + b0. The final model was selected based

on the minimum RMSE calculated using CV based on 100 simulations and 20 folds

(Figures S10B and S12B). To note, the observed RMSE was commensurate with

the standard deviation observed in the impact performance of the quality control lat-

tice as a measurement of the test error. The forward stepwise linear regression

approach was implemented in Python using scikit-learn and SciPy open-source

software.
Generating F-D curves in the convex hull

The minimum and maximum points, zmin and zmax , on the convex hull were selected

based on the minimum bam and maximum bam from the model trained on both the

octet and octahedral data. To generate a linear trajectory from the minimum bam

to maximum bam, the z values along the trajectory were computed using parametric

linear equations, specifically ztraj = zmin +q ðzmax � zminÞ, where q˛ ½0;1�. The
selected z values were the nine that corresponded to an explained variance >99%.

Using inverse PCA, the F-D curves were constructed for 20 points along the trajec-

tory including the minimum and maximum points.
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