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A B S T R A C T   

We introduce a scheme for immersing real human users in urban simulations, and for enabling them to transpose 
their embodied behavior into models. We achieve this by inverse augmentation, flipping traditional philosophies 
of augmented reality. Rather than beginning with real-world scenes and embellishing them with graphics, we 
proceed from a base of synthetic, modeled, streetscapes filled with agent characters, which we augment with real 
human users. Participants are then allowed to use their natural abilities to explore the simulation scenarios. We 
achieve this by employing mobile virtual reality to allow users to build dynamic presence in a fused geo
simulation and virtual geographic environment that they can physically view and walk around in. Our central 
argument is that inversion of this kind allows for the detail and nuances of human behavior to be brought directly 
into simulation, where they would traditionally be difficult to capture and represent. We show that close matches 
between real physical activity on the ground and actions in the model world can be achieved, as measured by 
spatial analysis and encephalography of user brain activity. We demonstrate the usefulness of the approach with 
an application to studying pedestrian road-crossing behavior.   

“I am here / Come to me before it’s too late” (Radiohead, 2016). 

1. Introduction 

In this paper, we address the problem of how to build realistic human 
behavior into pedestrian simulation. We propose that inverting the 
approach of augmented reality (AR) could be useful in bringing obser
vation, theory, and experimentation into alignment in simulation. We 
consider the case of pedestrian simulation of busy urban streetscapes, for 
which faithful models of human behavior can be difficult to produce, 
and where improved connections to reality can be useful. 

Our approach flips the classical notion of augmentation to allow real 
human users to participate directly in pedestrian simulations through 
immersion and embodiment. In contrast to AR, which usually begins 
with the real world and uses aspects of virtual reality (VR) to embellish 
tangible reality, our approach instead takes a detailed and simulation- 
driven virtual model of a streetscape scene and augments it with the 
behavior of a real human user, who is allowed to use their innate and 
intuitive abilities of vision and motion to explore experimental sce
narios. We will demonstrate how inverse augmentation for pedestrian 

simulation can be accomplished through combinations of Virtual 
Geographic Environments (VGEs), geographic automata systems (GAS), 
and Virtual Reality Environments (VREs). 

Placing human users in direct contact with a simulation greatly in
creases the expectations for the sense of realism that a model ought to 
convey. In this paper, we focus on three dimensions of that realism: 
presence, plausibility, and congruence. We demonstrate the usefulness 
of inverse augmentation with applied experiments to study pedestrian 
road-crossing behavior. 

2. Review 

Two philosophies perhaps dominate in the consideration of how to 
weave authentic representations of human behavior into pedestrian 
models. 

The first philosophy is to employ modeling methods that can 
reproduce behaviors in simulation. For example, pedestrians can be 
modeled using machine-learning (Torrens, Li, & Griffin, 2011), kinetic 
theory (Henderson, 1971), micro-simulation (Gipps & Marksjö, 1985), 
cellular automata (Blue & Adler, 2001), agent-based modeling (Batty, 
1997), individual-based modeling (Zou, Torrens, Ghanem, & Kevrekidis, 
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2012), particle modeling (Marschler, Starke, Liu, & Kevrekidis, 2014), 
character modeling (Pelechano, Allbeck, & Badler, 2008), and geo
simulation (Benenson & Torrens, 2004a). Each addresses different 
components of pedestrian behavior, but none can cover them all. More
over, parity between methodology and reality perhaps always remains 
elusive, as our theoretical understanding of human behavior continually 
advances at a pace that outstrips models’ abilities to catch up. (We 
sidestep the tenet that models should be as simple as possible and that 
eschew verisimilitude in favor of parsimony (Batty & Torrens, 2001; 
Moussaïd, Helbing, & Theraulaz, 2011; Torrens, Kevrekidis, Ghanem, & 
Zou, 2013). In our application, we are interested in facilitating experi
ments at the level of individual pedestrians: this requires high-fidelity 
detail.) 

A second philosophy puts human users in contact with pedestrian 
simulations as a way to elicit user behavior. This follows traditions from 
computer-human interaction (CHI), although it is probably fair to argue 
that urban simulation has been slow to adopt developments from that 
field (Crookall, Martin, Saunders, & Coote, 1986). The CHI philosophy is 
popular in VGE modeling (Lin et al., 2015; Lin & Batty, 2011). VGEs 
generally combine geographic information systems (GIS) and computer- 
animated design and drafting (CAD) so that CAD objects are indexed to 
real world coordinates. 

Two CHI schemes are evident in the prior art for VGEs. The first relies 
on sitting users in front of computer screens that display VGEs (“first- 
person” viewing). This is common in VGEs for architecture studies. For 
example, Shushan, Portugali, and Blumenfeld-Lieberthal (2016) used 
first-person VGEs to examine users’ interpretations of homogenous and 
non-homogenous building designs in urban context, and Shen and 
Kawakami (2010) used a Web-based first-person 3D environment to 
explore town planning. Architectural VGEs are usually static (little if 
anything in the underlying model moves), as the goal is to invite users to 
view different renderings of built settings. Users may have the ability to 
pan the camera in the display software to advance the scene in different 
directions of the VGE, e.g., by engaging a mouse or keyboard. Omer and 
Goldblatt (2007) and Dong et al. (2022) showed that panning in VGEs 
can actually reveal wayfinding behaviors. Schwebel, Gaines, and Sev
erson (2008) demonstrated an early implementation of using first- 
person animations of graphical environments as part of studying chil
dren’s perceptions of crossing safety. An extension of the first-person 
VGE approach places human users in front of large two-dimensional 
displays that surround them. Orenstein, Zimroni, and Eizenberg 
(2015) and Meir, Oron-Gilad, and Parmet (2015) showed this approach 
using wrap-around projection. Natapov and Fisher-Gewirtzman (2016) 
introduced an interesting variation, tracking onlookers’ head motion to 
adapt the camera view in the VGE as they watched on a screen. Roupé, 
Bosch-Sijtsema, and Johansson (2014) used the Microsoft Kinect depth- 
mapping sensor to translate user body movement into a controller of 
first-person navigation for a 3D urban environment. 

A second CHI scheme for VGEs employs VR via head-mounted dis
plays (HMDs) in lieu of computer screens, with the advantage that a 
three-dimensional VGE may be rendered in a user’s vision and proper
ties of distance and size become indexable to real-world counterparts, 
and the VGE may be experienced with depth and parallax. In these ap
proaches, we suggest that the VGE actually becomes what we would call 
a “Virtual Reality Environment” (VRE). Promising results from 

psychology suggest that VR experiences have relevance to real-world 
behavior (Blascovich et al., 2002; Loomis, Blascovich, & Beall, 1999; 
Thompson et al., 2004). Work on VREs is relatively nascent. A very early 
development of the approach was introduced by Simpson, Johnston, and 
Richardson (2003), well before HMD devices were commercialized. 
After that, work in this area was relatively dormant until recently. 
Birenboim et al. (2019) and Nazemi et al. (2021) demonstrated that VR 
can be used with VGE to assess bicyclers’ perception of urban environ
ments (with riders sitting on stationary bikes). Deb, Carruth, Sween, 
Strawderman, and Garrison (2017) were among the first to use VR to 
assess pedestrian crossing behavior. Luu et al. (2022) used an unspeci
fied VR system to examine pedestrian road-crossing. Kwon, Kim, Kim, 
and Cho (2022) deployed VR to examine VGE crossing environments in 
Korea, using Unity and HTC Vive. Jo and Jeon (2022) used spatial audio 
in VR to assess users’ perception of VGE-based urban soundscapes in 
Seoul. 

In this paper, we pick up this thread of research. We see four chal
lenges in CHI-based VGE development that we seek to address.  

• In the examples that we discussed above, the urban settings are 
stylized and fictional. Our approach uses fieldwork to build synergies 
between real-world urban settings and their VRE representation, so that 
there is measurable correspondence between the two. 

• HMD-based VGEs remain limited relative to how real people expe
rience urban environments. We will address this challenge by 
allowing users to move around in VGEs, using their real bodies, so that 
participants can infuse the models with behavior sourced from their 
real skills, abilities, reasoning, and intentions.  

• Most VGE/VRE studies present cities as ghost towns. In the prior art 
represented by Deb et al. (2017), Luu et al. (2022), and Kwon et al. 
(2022), no pedestrians are included and implementation of traffic is 
not described: it seems the VGE is simply animated. This is limiting 
because there are no underlying models of dynamic objects and the 
VGE has no ability to react to or interact with the user. We will 
address this limitation by endowing VGEs with simulation-driven models 
of people and vehicles. We anticipate that this could provide new 
forms of social presence and cognition that are largely missing in 
existing research.  

• Most existing VGE studies that engage CHI rely on rather simple 
questionnaires as a way to assess users’ interactions with model 
conditions, which present problematic issues of bias and recall. We 
will address this challenge by data-mining users’ natural interactions 
with the simulation as they unfold: we chiefly focus on how users move 
within the simulation using their natural abilities to walk, turn, and 
steer; what they choose to gaze upon; as well as their attention, as 
determined by encephalography. 

In addressing these challenges, we reason that we can develop more 
useful parity between pedestrian models and real-world counterpart 
scenarios, essentially by making users’ connections to models more 
realistic. 

3. Methods 

To support useful experimentation, we need the model to be realistic 

Fig. 1. The methodology used to build the study, with links to discussion in the paper text.  
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enough to support authentic user experiences. The prevailing idea is that 
realistic presence is important for building authentic VR experiences 
(Jung & Lindeman, 2021; Souza, Maciel, Nedel, & Kopper, 2021; Wil
kinson, Brantley, & Feng, 2021), although Latoschik and Wienrich 
(2022) recently argue that congruence and plausibility could be key 
components for realism in VR, whereby congruence evokes how well a 
user establishes an “objective match between processed and expected 
information on the sensory, perceptual, and cognitive layers” (p. 4). 

Our methodology (Fig. 1) focuses on all three of these dimensions of 
realism. We use VGEs to establish presence-based realism, relative to 
counterpart geographic conditions in the real world (Fig. 2). We rely on 
high-fidelity simulations of synthetic pedestrians and vehicles to estab
lish plausibility. In particular, we built synthetic pedestrians with social 
interactions that make them relatable to human users, and established 
timing for model events by matching to real world observations of 
crossings. Additionally, we calibrated modeled pedestrians’ locomotion 
to motion capture data of real people. We address congruence by 
delivering the modeled VGEs as VREs. Human users are immersed in the 
simulations directly, with several channels for establishing sensory re
alism: through tactile ground contact, vision, optic flow, depth, balance, 
hearing, and motion parallax. 

3.1. Fieldwork 

To build matches between our model and reality, we conducted a set 
of data collection exercises to capture:  

• Geography and geometry of streetscapes: road width and lanes, 
sidewalk width, spacing of street obstacles, spacing of building fa
çades, positioning and height of crossing infrastructure.  

• Events: timing of traffic lights, timing of pedestrian crossing signals, 
audio for events.  

• Crowd patterns: crowd density, crowd flow, size of crossing groups.  
• Pedestrian behavior: movement speed, crossing approach, crossing 

behavior, crossing speed.  
• Human motion: locomotion, ambulation. 

We observed 1400 sessions across 35 different sites in New York City, 
which we coded using categories and valences. We used Light Detection 
and Ranging (LiDAR) to supplement our manual observations (Fig. 3). 
We placed an eight-beam LiDAR at the roadside to (1) map factors at the 
streetscape as dynamic volumetric representations of crossing context, 
including built structures, street furniture, civic infrastructure such as 
crossing signals, and individual vehicle and pedestrian motion (Fig. 3); 
to (2) measure relative distances (crossing widths, distances between 
buildings and sidewalks, road lane size); and to (3) time the speed of 
crossing pedestrians and durations spent waiting before crossing. These 
mappings, measurements, and timings were used to recreate matching 
agent dynamics in the VGE/VRE environment (Fig. 2). We also recorded 
and localized (with GPS) 360◦ audio of crossing environments. 

Fig. 2. The information pipeline for the experimentation system.  

Fig. 3. Site observation in Brooklyn, NY. (Left) video scene; (Right) LiDAR data from the scene.  
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3.2. Studio recreation 

We collected dynamic motion capture data of real people in a studio. 
Our aim was to (1) provide high-resolution (sub-centimeter, sub- 
decisecond) animation cycles for agent locomotion by velocity and 
steering decisions in the model (see Section 3.5.3); to (2) create small 
time geographies of motion (sub-decimeter, sub-second); and to (3) 
create body language that would convey realistic-looking and realistic- 
acting counterparts for users when they engage the simulation. Human 
users would therefore be able to interact with agents that have been 
populated from data of real people at quite high resolutions. 

We recorded twenty motion capture sessions, split evenly between 
male and female subjects (aged between 20 and 48), using an array of 28 
camera and infrared (IR) pulses/CMOS sensors in an indoor studio 
(Fig. 4). Participants in the motion capture sessions were presented with 
video scenes of New York City streetscapes recorded from different an
gles, which were displayed on large projection screens around the stu
dio. While wearing motion capture markers (52 markers per 
participant), they were asked to move as if they were crossing the road in 
the displayed scenes. The motion capture system had a sensing resolu
tion of 16 Megapixels and a temporal resolution of 260 Hz, producing 
location accuracy per marker of <1 cm over the 28-camera array. (We 
will provide details of how we then made this cache of motion capture 
data available to agents in our model in Section 3.5.3.) 

3.3. Virtual geographic environment 

We created a VGE replica of a real area of downtown Brooklyn, NY as 
the simulation environment for our model. LiDAR readings for distances 
were used to recreate curb, sidewalk, road, and road lane geography and 
to situate streetscape objects, including traffic lights, crossing signals, 
and lamp posts. Sidewalks in our field observations were on average 
3.65 m wide and road lanes were 3 m. We used a VGE with three lanes 
and two sidewalks, totaling 16.3 m. Building façades were modeled as 
simple geometric objects, but textured with imagery matching similar 
land uses in Brooklyn, such as walls and store fronts. 

It is traditionally challenging to implement highly dynamic objects in 
VGEs, because most underlying GIS do not handle moving objects well. 
We relied on geosimulation (Benenson & Torrens, 2004b; Torrens & Gu, 
2021) to facilitate direct coupling between the simulation, GIS, and 
VGE/VRE. All objects and agents in the VGE are populated both as GIS 
entities and as automata entities by deploying geographic automata 
systems (GAS) (Torrens & Benenson, 2005). 

Users of the simulation are also represented in the VGE (where we 
refer to them as “ego-agents”). Each user is mapped to the VGE as an 

inert geographic automaton: as far as simulated pedestrians know, the 
ego-agent is an automaton, casting state data that is available for pro
cessing by simulated pedestrians’ transition rules. However, the ego- 
agent has no transition function and is instead directly controlled by 
the human user with their own movement in our lab space. Users were 
allowed to select their character, which we adjusted manually to 
represent their real height (Section 3.5.5). Users can drive the speed, 
velocity, linear acceleration, orientation, angular velocity, and angular 
acceleration of their ego-agent by simply moving their bodies. (We 
discuss how this is tracked and updated in the VGE in the next section.) 
Users may also change their view of the VGE by naturally looking 
around, up, and down while wearing the HMD. 

The geography and timing of those dynamics are then translated into 
the VGE. We refer to this as “geographic pass-through” (Fig. 5). We note 
that this is a very different approach than the typical implementations of 
VGE: instead of panning a camera with a mouse or keyboard, users 
naturally walk around our simulation using their innate locomotion 
abilities; they view the system by turning their heads and looking at 
things that interest them; they may slow-down and speed up; and they 
traverse real physical distances that are mapped into the VGE. Because 
the human participants for the study were all residing in New York City 
at the time of the experiments, it was hoped that geographic pass- 
through would establishing a realistic mental map and sense of pres
ence in the VGE/VRE. (We note that users cannot control the ambulation 
of their ego-agent character; we approximated locomotion and body 

Fig. 4. Locomotion tracking using motion capture. Left: dynamic pose and locomotion path for walking capture. Right: data collection using marker-camera 
localization. 

Fig. 5. Geographic passthrough is achieved by tracking a user in-studio as they 
use the VGE/VRE. 
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language by matching motion capture data to the speed of the ego-agent, 
as we will describe in Section 3.5.3.) 

3.4. Virtual reality environment 

Localization of the ego-agent in the VGE/VRE to the real-world 
movement of the human-participant was cross-registered in run-time 
using the HTC Vive system. Vive employs a pair of scanning infrared 
and pulsing LED diodes to broadcast light signals from fixed positions 
like a lighthouse (alternating between horizontal and vertical in 120◦

swaths). These are picked-up on a user’s VR headset [using built-in 
Imaging Photon Detectors (IPDs)] to infer positioning and orientation 
by time of flight in real-time (see Niehorster, Li, and Lappe (2017) for an 
overview) (Fig. 5). As a user moves in a real setting (a studio in our 
experiments), their position in the VGE/VRE is updated to correspond to 
their real-world movement. As they move their head from side to side 
and up and down, the system will redraw the VGE/VRE from that 
perspective, and as they speed-up/slow-down, the system adjusted the 
parallax to the HMD to match. This is assisted with built-in G-sensors (to 
detect changes in acceleration through G-force) and gyroscopes (to 
detect changes in orientation and angular velocity). 

These vector data can also be passed in real-time to the model, to 
update the positioning and steering data of the automata representation 
of the user as an ego-agent in the simulation. In this way, simulated 

characters can react to real-time geographic data of the user directly from 
sensors on the HMD. In other words, there is run-time interaction directly 
between the HMD hardware and the simulated entities. 

The HMD uses stereo vision, which allows for a three-dimensional 
immersive experience with depth effects. The spatial audio that we 
discussed also supports this feeling of presence and depth. The field of 
view is 120◦ in horizontal (90◦ for one eye) and the display is rendered at 
2448 × 2448 pixels per eye. The animation was refreshed at a rate of 
120 Hz, with the result that all motion in the immersive VGE appears 
smoothly to the user. To gauge the positional accuracy of the Vive HMD, 
we ran experiments alongside motion capture by placing markers on the 
HMD. 

We note that the Vive system is tethered to a desktop computer. The 
cable permitted up to ~26 m of movement, which is sufficient for 
approaching and traversing a crossing infrastructure (~16.3 m in 
Brooklyn). (In Section 6 we show an implementation of our system on a 
wireless Oculus HMD, which provides untethered movement.) Our 
observational experiments revealed that real-world pedestrians often 
find it hard to localize audio signals of traffic when crossing the road 
because of ambient city noise. We used spatial audio with the VGE/VRE 
HMD to play-back recorded streetscape noise, simulated cars honking, 
and simulated pedestrians talking to ego-agents with realistic spatial 
audio presence. 

Fig. 6. Top: Synoptic pedestrian movement by path-finding. Grid squares are 1 m2. Bottom left: path-finding by connected corridor mapping (lavender area). Bottom 
right: A* shortest path from the source to the sink (graph with navy edges and white vertices). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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3.5. Pedestrian simulation 

Users control their own ego-agents in the simulation. We used GAS to 
control the physical movement, actions, reactions, and interactions of 
simulated pedestrians (and vehicles). We used slipstreaming (Torrens, 
2015) to support exchange of geographical state information (HMD 
coordinates, VGE positions, navigation graphs and meshes, corridor 
maps, shortest paths) and non-geographical states (lists, obstacle 
meshes, scene graphs, textures). 

3.5.1. Path-planning and path-finding 
Simulated pedestrians use a path-finding model to discover paths 

through the streetscape and to set intermediate waypoints for interim 
navigation along those paths (Fig. 6). Paths are calculated and stored as 
graphs, with edges representing initial movement trails from a source to 
a sink, and vertices denoting waypoints. The graph search space accepts 
data on walkable areas from the VGE (by slipstreaming), e.g., so that 
buildings, lamps, and sign poles are excluded. We used dynamic lists to 
hold and update paths in run-time (Fig. 6). An adjacency list (Adjlist[]) 
denotes graph neighbors as vertices open for visitation by path-finding. 
A priority list (Qlist[]) keeps track of vertices that remain to be traversed/ 
searched. A shortest-path list (Slist[]) holds the developing path as it is 
learned. 

We deployed path-finding in two ways. The first, a synoptic 
approach, uses the A* heuristic (Hart, Nilsson, & Raphael, 1968) to score 
the shortest path around fixed obstacles and operates by greedy search of 
the VGE graph to shift vertices between lists. It is offline (simulated 
pedestrians run it before they move from prescribed origins to destina
tions) to address what Kuipers and Levitt (1988) referred to as “large- 
scale space” (i.e., the entire VGE graph at macro-scale, at a cell resolu
tion of 1 m2). The results from synoptic navigation are introduced to the 
VGE using connected corridor mapping (Nieuwenhuisen, Kamphuis, & 
Overmars, 2007). 

The second approach handled local path-finding as a simulated 
pedestrian is moving in particular sub-areas of the VGE (usually over a few 
square meters). This operates to modify path-finding in the presence of 
counter-pedestrians. We provide the local routine the locations of ob
stacles and pedestrians in a fixed first-order Moore neighborhood at a 
cell resolution of 400 cm2 (Fig. 7) to adjust paths to dynamic conditions 
over relatively short distances. (We note that the distance thresholds for 
synoptic and local path-finding are flexibly configurable in the simula
tion.) Simulated pedestrians then use steering to return to their synoptic 
path (Section 3.5.2). 

3.5.2. Dyad and crowd steering 
In reality, pedestrians usually steer (over distances that are smaller 

Fig. 7. Local pedestrian movement (filled 
gray circle) by path-finding to avoid static 
obstacles (white polygons), while also 
engaging dynamic re-finding to route move
ment around other (mobile) pedestrians 
(hollow gray circles). Note the zig-zag 
pattern to the shortest path (yellow line) to 
account for near-term collisions with other 
pedestrians. Grid squares are 400 cm2. (For 
interpretation of the references to colour in 
this figure legend, the reader is referred to 
the web version of this article.)   

Fig. 8. Vision for simulated pedestrians. Left: A pedestrian capsule (lower right) casts a field of view in its forward vector of movement (bottom right to top left). 
Pedestrian signals and other simulated pedestrians or ego-agents that fall within this field of view are (dynamically) accessible as state information: shape, 
instantaneous position for characters, and “cross” and “do not cross” state for signals. Right: three signals are identified in the field of vision; the signal in the forward 
direction is identified as the relevant crossing information. 
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than path adjustments) to avoid collisions with things that they see in 
their path. We implemented synthetic vision for simulated pedestrians 
as a field-of-view collider (Fig. 8). (We discuss vision in more detail in 
Section 3.5.5, where it is tied to social agency by gaze.) Simulated pe
destrians were designed to steer in response to users’ ego-agents by 
Reynolds (1999) steering. Relative to users’ ego-agents, simulated en
tities need to be reactive, because information about what human users 
might do next is unknown to them. 

Steering among simulated pedestrians, however, needs to be inter
active, as responses from both parties need to be reconciled. We 
accomplished this with Velocity Obstacles (VOs). VO implementations 
are prone to oscillation problems. To avoid this, we used Reciprocal 
Velocity Obstacles (RVO) (Snape, Van Den Berg, Guy, & Manocha, 2011; 
van den Berg, Patil, Sewall, Manocha, & Lin, 2008), in which the 
steering to avoid a VO is shared. We implemented RVO for both pairwise 
and multiplicative steering. RVOs proceed from collision cones that we 
poll from simulated pedestrians’ vision. 

CCA,B =

{

V→A,B | λA,B ∩ B̂ ∕= 0
}

Above, CCA, B is the collision cone from simulated pedestrian A to 
simulated pedestrian B (see Fig. 9). V→A is the velocity of simulated 
pedestrian A with instantaneous center-point Â and radius rA. V→B is the 
velocity of simulated pedestrian B with instantaneous center-point B̂ 
and radius rB. V→A,B is the relative velocity of A with respect to B. λA, B is 
the line of V→A,B. (λr and λf are tangent velocities.) 

RVOA,B

(

V→A, V→B

)

=

{

V→
′

A | 2V→
′

A − V→A ∈ VO
(

V→B

) }

if a reciprocal 

collision, where: 
VO = CCA,B ⊕ V→B if a dyadic collision. 
VO = ∪i=1

m VOBi if a multiplicative collision. 

VOh =

{

V→A | V→A ∈ VO,

⃦
⃦
⃦
⃦ V→A,B

⃦
⃦
⃦
⃦ ≤ dm

Th

}

if a time horizon collision 

VO is the Minkowski sum (⊕) of CCA, B and VB. V→A ∈ VO denotes that 

the vector of simulated pedestrian A is within VO. 
⃦
⃦
⃦
⃦ V→A,B

⃦
⃦
⃦
⃦ is the 

Euclidean norm of the relative velocity of A with respect to B). dm is the 
shortest relative distance between simulated pedestrian A and simulated 

Fig. 9. Velocity obstacle (VO) for two simulated pedestrians A given B given a time horizon H.  

Fig. 10. Time geography in steering. Hyper- 
local movement of a simulated pedestrian 
(filled gray circle) by steering outside a 
counterpart RVO to avoid collision with 
another simulated pedestrian (hollow gray 
circle) within a shortest-path traversal. The 
pedestrian decouples from its planned path 
to temporarily pursue a path by steering 
(olive green polyline). This produces a new 
space-time path (three-dimensional red 
polyline) for movement. (For interpretation 
of the references to colour in this figure 
legend, the reader is referred to the web 
version of this article.)   
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pedestrian B (Fiorini & Shiller, 1998). V→
′

A is a subsequent vector for 
simulated pedestrian A, which it uses to avoid a collision along V→A. 

For dyadic collisions, RVOA, B is considered as pairwise. We also 
adapted the RVO for two additional considerations. First, we added a 
time component: A avoids collision with B by steering such that A(t) ∩ B 
(t) = ∅ if V→A(t) ∕∈ VO(t), where t denotes a future time (Fiorini & Shiller, 
1998). To discount collisions beyond a particular time horizon, Th, we 
introduced VOh. Second, we addressed cases with multiple potential col
lisions: VO = ∪i=1

m VOBi, where m is the number of simulated pedestrians 
being considered for collision from i to m (Fiorini & Shiller, 1998). 

Once free from near contact, the simulated pedestrian will engage a 
Reynolds (1999) seek-based steering with a lookahead time to get back 
to its shortest path (as in Fig. 10). If the amount of steering required to 
negotiate contact with multiple simulated pedestrians takes them too far 
away from the shortest path, the simulated pedestrian can calculate a 
new path from its current location to the sink. 

Our use of the time horizon in RVO and lookahead times in Reynolds- 
type steering implements a form of time geography in the model: we 
endow the simulated pedestrians with a sense of the window of space 
and time available for them to reach goals within a prescribed temporal 
agenda (Fig. 10). This is tied to the simulated pedestrians’ velocity so 
that they can speed-up to account for lost time in excessive steering 
maneuvers. This is handled straightforwardly through the nesting of (t′

→ t′ + 1) ∈ t. 

3.5.3. Locomotion and action blending with motion capture data 
For vectors produced by synoptic navigation and hyper-local steering, 

a matching animation cycle is invoked to articulate simulated pedestrians 
with matching gait, posture, and stride, i.e., locomotion. Animations were 
applied to the root motion node for each simulated pedestrian. So, 
movement routines drive the pedestrian’s root velocity, while animation 
matching that velocity is applied by locomotion routines. We employed 
motion blending (Kovar & Gleicher, 2003) to combine data into sequences 
of motion (using Unity’s Mecanim system), using the motion capture data 
described in Section 5 (Fig. 11). We adopted 15 different animation cycles 
for locomotion. Three covered high-level locomotion states (idle/stand, 
walk, and run); 12 were used for turning within each of the three high- 
level states (Fig. 12). The turning animations produce locomotion for 
angular velocity output from Reynolds-type steering. Blends of each ani
mation (e.g., from idle, to walk, to run) were created by first aligning 
animations to common spatial and temporal nodes in a graph so that 
transition between them would be anchored to common reference points. 
Blending was then used to create a weighted average across the animations 
by linear interpolation. 

3.5.4. Movement relative to crossing signals 
Crossing a road usually requires that pedestrians combine move

ment, halting, and visual perception of conditions and signals. We used 
an event model to control pedestrian crossing signal switching relative 
to vehicle traffic lights, with timing gleaned from our fieldwork (7 s. 
head start time and a 30 s. cross time). For simulated pedestrians, 

Fig. 11. Examples of motion capture trajectories for base locomotion behaviors.  

Fig. 12. Motion blending state transition diagram.  
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crossing areas were coded along the sidewalks at crossing junctions, as 
sub-sinks for simulated pedestrians to move toward (initially, as part of 
path-planning). As simulated pedestrians approach crossing vertices, 
they switch to vision-based steering and use their synthetic vision to 
interpret crossing signals in their vision, following the signal that (1) 
falls within their field of vision, (2) in the forward direction of their 
path-planned movement. Signal perception is therefore based purely on 
simulated pedestrians’ views of the ambient geographic information 
around them, such that they glance from signal-to-signal as they 
approach a crossing (Fig. 8). Simulated pedestrians transition their 
locomotion to an idle animation and their movement to a halt state if 
signals indicate that it is not safe to cross. If the crossing signal changed 
from “cross” to “do not cross” while simulated pedestrians were in the 
roadway, they would increase their movement velocity and transition 
from a walk animation to a run animation. 

Crossing signals also appear as a visual signal for human participants 
to view and interpret. We used signal icons that match those that appear 
in New York City: a Portland orange-colored upraised hand for “do not 
cross” and a white-colored walking person for “cross”. 

Traffic signals were used to control the flow of vehicle traffic agents in 
the model. State data from the traffic lights are passed directly to cars to 
interpret. We also used visual red–yellow–green lights to indicate the 
signal activation visually in the model for human participants (Fig. 13). 

3.5.5. Personalization 
Simulated (and ego-agent) pedestrians were instantiated in the VGE/ 

VRE from among a set of 13 different avatars, with varying age, height, 
and sex (Fig. 14) (using Adobe Mixamo meshes). Each had varying 
volumetric collision potential as a capsule representation for RVO (see 
Fig. 8). We used motion retargeting (Gleicher, 1998) to scale motion 
capture data to different character rigs (using Unity’s built-in re-tar
geting). For simulated pedestrians, we set the base and limit conditions 
for RVO velocity (maximum linear acceleration and deceleration, 
maximum angular acceleration and deceleration, preferred speed) from 
ranges of pedestrian crossing that we observed via LiDAR in fieldwork. 

(For ego-agents, velocity comes directly from user action.) 

3.6. Gaze-based social interaction and personality 

Agents were specified with different personalities, governing (1) 
how they treat collisions with ego-agents (a scalar weight, ranging from 
always yield to hold your line); and (2) their relative rank-attraction to 
gazing at other simulated pedestrians (and ego-agents). At the lower-end 
of the scale, the RVO between simulated pedestrians was established 
with a relatively narrow time horizon; at the higher-end the time hori
zon was set to a relatively high value. 

Rank-attraction was used to support a social gaze system for simu
lated pedestrians, implemented by proactive vision. As any object passed 
within a simulated pedestrian’s field of view geometry (between 140◦

and 190◦, following evidence from eye-tracking studies (Kitazawa & 
Fujiyama, 2010); see Fig. 8), the capsule for that geographic automaton 
was registered as a gaze object with shape, distance from the simulated 
pedestrian, and direction from their facing view (we term this as “gaze- 
return”). Simulated pedestrians were allowed to check the information 
from gaze-return against priority lists that they maintained. For simu
lated pedestrians and ego-agents that registered as colliders, their ve
locity and agent type were also passed as information with gaze-return. 
Simulated pedestrians that were closest in distance were given priority, 
and the agent would adjust its gaze to stare at them (Fig. 15). The gaze 
between simulated pedestrians and the ego-agent of human users 
established a level personal contact between users and simulated en
tities, which we used to create social plausibility. 

If an ego-agent was detected and judged to be collision-imminent, the 
simulated pedestrian would also invoke a conversational interaction. 
They would say either, “Get away from me”, “Focus!”, or “I’m sorry”, in a 

Fig. 13. Left: traffic and pedestrian crossing signals. Right: user-participant view in simulation.  

Fig. 14. Avatar representation for simulated pedestrians. Left: the 13 charac
ters. Right: detail. 

Fig. 15. (Left) Dyadic gaze. The female pedestrian is looking at the ego-agent 
(i.e., right at you, the reader), which is in her direction of travel and field of 
view; the male pedestrian is looking at the female pedestrian as she is in his 
direction of travel and in his field of view. (Right) Group gaze. The female 
pedestrian on the left-hand side of the illustration has already crossed, so the 
pedestrian signal is low-priority in her gaze. The pedestrian on the right-hand 
side is closer and gets top priority. The child pedestrian is relatively far away 
in the field of view and receives a priority of 3. 
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male or female voice per their sex. These vocalizations were played using 
spatial audio, such that a human participant would hear the speech ahead, 
to the right or left, or behind them as they passed simulated pedestrians. 
These gaze-and-audio combinations were used to reinforce human users’ 
sense of the “cone of direct gaze”, i.e., the range of direct gaze from 
counterparts that an observer regards as being directed at them (Gamer & 
Hecht, 2007). The cone of direct gaze is regarded as a relatively strong 
signal of state exchange in social interactions (Lobmaier, Savic, Baum
gartner, & Knoch, 2021). It usually is interpreted as a signal of others’ 
willingness to communicate (Balsdon & Clifford, 2018); following it with 
an audio exchange reinforces this in the simulation. 

3.7. Vehicle model 

Cars were modeled as GAS, although with relatively straightforward 
rules. Cars followed a navigation mesh through the city, traveling on a 
circuit from a prescribed set of shifting origins and destinations. (We 
introduced a separate road mesh for cars to plan their movement in the 
model; this ensured that cars only drove on the road in simulation.) Cars’ 
dynamic motion was controlled by (1) velocity and velocity-matching; 
(2) adhering to traffic lights; (3) avoiding collisions with other cars; 
and (4) interacting with simulated pedestrians and the ego-agents of 
human participants. Cars did not change lanes in the simulation. 
Developing a more sophisticated vehicle model is a goal for future work, 
which we address in Section 6. 

Fig. 16. Vehicle model.  

The model to handle car motion, interactions with pedestrians, and 
adherence to traffic lights was based on a cellular automata following 
model (see Torrens (2004) for details). Under free movement conditions 
ahead of them, cars will proceed at a user-specified velocity. They will 
slow-down if approaching another car (by velocity-matching), and also 
slow if they encounter a nearby pedestrian in the roadway ahead of them 
(abruptly slowing to a stop, if possible), or a red-light traffic signal 
(slowing gradually to a stop). 

If a simulated pedestrian (or the ego-agent of a human participant) 
came within a user-specified distance of a car, the vehicle would play an 
audible honking sound as it encounters a looming collision. This sound is 

designed to alert human participants in the simulation of impending 
collisions. Again, the sound clips were played using spatial audio in the 
VR headsets used by human participants, which helps them to localize 
the source of the warning from the simulated car. 

At relatively high speed, cars may be unable to stop and may 
therefore collide with pedestrians. In our simulation, this only occurs 
with the ego-agents of human participants, i.e., simulated pedestrians 
and cars will always successfully navigate collision-free movement 
because both parties adhere to safe crossing. If a car is at a standstill 
(e.g., ahead of accelerating from a stop upon a green traffic light) and it 
encounters a pedestrian in the roadway, the car will remain at a stop, 
effectively yielding to the pedestrian’s movement. If a traffic light turns 
from green to yellow to red while a car is in a junction, the car will 
proceed through that junction (unless it encounters a pedestrian in the 
way). 

3.8. Data listeners and gaze detection by ray-casting 

We established a set of data-listeners to collect data from the simu
lation during run-time. Almost any and every single piece of information 
that runs through our outputs from the simulation may be stored. This 
renders the environment tremendously useful for testing, particularly 
when one considers that real human participants are involved in the 
experiments. We streamed these to a data dashboard for ease of analysis 
during and after experiments. Data were collected on positions and 
orientations of each object—dynamically—in the simulation, in world 
and local coordinates (between counterpart objects). Gaze objects were 
handled using a dedicated listener that first registered the presence of 
objects within user-participants’ field of vision collider and noted their 
position. Second, we used a ray tracer to draw rays between the eyes of 
avatars representing user-participants and those objects. Rays with the 
shortest distance along the path of travel of the ray-cast were then 
recorded as “gazed upon objects” (see Fig. 8). 

4. Experiments 

We ran two experiments using the system. Each involved a different 
set of human participants. In total, 43 user-participants assisted us in the 
study across the two experiments. We might remind the reader that we 
collect huge amounts of data per participant in the system. 

Both experiments were relatively free-form in conditions, as we were 
interested in how users would behave in the VGE/VRE. Participants were 
told that they would appear on a sidewalk in a replica of a Brooklyn-type 
streetscape and we asked them to “walk around and cross the road four 
times at the intersections you will see ahead of you”. Participants were 
not told how to cross the roads, whether to jaywalk or not, or given any 
instructions about what paths to follow. Users were not informed that 
simulated pedestrians would gaze at them, that they would avoid col
lisions with them, that they could “talk”, or that cars would stop to avoid 
a collision with them and honk to warn them of impending danger. Users 
were only permitted to perform the experiment once. 

Fig. 17. The VGE/VRE experiment. Left: human participant. Right: his immersive view of the simulation.   
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Fig. 18. EEG brain wave data for human participants. The waves have varying wavelengths and have been normalized to a 0–100 scale on the Y-axis. The X-axis 
represents relative time in the experiment. 
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The first experiment tested users’ neural activity in the system. Ten 
participants (five male and five female, aged 21–45 years, median of 24) 
were recruited by convenience sampling at a New York office building. 
None of the participants reported any physical disabilities. Six partici
pants had little or no experience using VR before. Our field work in 
Brooklyn indicated an average crowd density of 39 people per block, 
which we used to populate the VGE/VRE streetscape with simulated 
pedestrians. On average, users spent ~5 min in the simulation. Partici
pants in the first experiment wore the HMD and a Muse EEG headband 
(see Section 4.1). 

In the second experiment, we recruited 33 participants by conve
nience sampling from among a set of staff, students, faculty, and post
doctoral researchers in a New York University academic department. 14 
of the participants were male and 10 were female (nine participants 
chose not to report these data). The majority of participants held grad
uate degrees. Only one participant reported a physical disability. We did 
not record EEG data for the second experiment. 

4.1. Collecting electroencephalogram (EEG) data from human 
participants 

In experiment 1, we used electroencephalogram (EEG) measurement 
to assess the levels of concentration, alertness, and attention exhibited 
by human participants in the VGE/VRE. EEG measures the relative 
strength of a series of brain waves, as weak electrical signals emanating 
from the skull. We relied on a Muse headband, operating at a sampling 
rate of 500 Hz, to capture these weak signals. The headband hosts a 

series of electrodes and a Bluetooth chip for communicating those data 
wirelessly to our data listeners. The headband is worn unobtrusively by 
participants. The device is capable of distinguishing between gamma 
(32–1000 Hz), beta (13–32 Hz), alpha (8–13 Hz), theta (4–8 Hz), and 
delta (0.5-4 Hz) brainwaves. The Muse headband has been studied by 
other researchers and shown to be useful for research-level brainwave 
detection (Krigolson, Williams, Norton, Hassall, & Colino, 2017). We 
used four sensors: placed in AF7, AF8 (both front of head, between the 
pre-frontal and frontal lobes), TP9, and TP10 (both back of head, be
tween the temporal and parietal lobes) scalp positions according to the 
International 10–20 EEG Electrode Placement Standard (Kabdebon 
et al., 2014). 

4.2. Spatial analysis 

For both experiments, we subjected users’ data streams from the 
simulation run-time to spatial analyses. These included movement sta
tistics: (1) minimum and maximum scale, (2) path length, (3) mean step 
size, and (4) number of moves. We calculated the fractal dimension of 
users’ trajectories, scaled from step-by-step stride through to their entire 
path through the VGE, by (5) fractal dimension (Nams & Bourgeois, 
2004), (6) fractal mean (Nams, 2006b), and (7) VFractal (Nams, 1996). 
We also calculated autocorrelation of their sinuosity, using (8) mean 
cosine of turning angle between successive steps, (9) probability of 
turning in the same direction per step, and (9) correlation among the 
cosines of successive turn angles (Caldwell & Nams, 2006; Nams, 
2006a). For comparative validation, we assessed the performance of 

Fig. 19. Events and objects that user-participants recalled from their time in the simulation.  
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user participants in the simulation against different real-world walking 
and urban environments in the United States and Japan (Torrens, 2012), 
and standard movement routines used in mathematical and physics 
models (Torrens et al., 2012). 

4.3. Pre- and post-experiment survey questionnaires 

Participants in both experiments were asked to complete survey 
questionnaires. We used a pre-experiment survey to query participants’ 
background, including demographic information (age, sex), education, 
and profession. We also asked participants if they had any physical 
disabilities. A set of questions then asked users to rank-scale their VR 
experiences: whether they had prior experience with the technology and 
whether VR caused sickness (motion sickness and dizziness are rela
tively common in VR use). We also surveyed participants’ experiences 
on real-world streetscapes: whether they had confidence in their loco
motive skills, whether they regarded themselves as good drivers, and 
whether they follow the rules of the road as a pedestrian (each on a 9- 
unit Likert scale). 

Post-experiment surveys were administered immediately after users 
completed the experiments to capture participants’ reflections on their 
experiences in the VGE/VRE experiments. Participants were asked to 
recall all events and objects that they remembered and to rate the 
immersive nature of the simulation on a Likert scale. They were then 
asked a series of free-response questions: did they face any problems in 
using the equipment, did they understand the experiment instructions, 
what is their usual strategy for driving in crowded parts of the city, 
where do they usually pay the most attention while crossing roads as a 
pedestrian, and do they have any suggestions for improvements to the 
experiments? 

5. Results and findings 

5.1. Insights from EEG 

For experiment 1, we recorded EEG data during user participation. 
The brain wave data for each participant are shown in Fig. 18. With the 
exception of Participants 1 and 2, brainwave activity dropped qualita
tively across all bands during the period in which they were hit by cars 
(shown in pink blocks in Fig. 18). Some general commonalities were 
observed. Data for nine participants exhibited a very marked and sudden 
drop in the frequency of gamma waves (shown in orange in Fig. 18). 
(Gamma bands did drop for Participant 1, but toward the last few in
stances of the crash.) 

The results, although cursory, reveal some relevant findings. First, 
they demonstrate that each participant had a unique experience in the 
simulation, with individualized brain response to the experiments. 
Second, the brainwave data, across all bands, indicated that participants 
were generally alert and focused during the experiments. Gamma-bands 
correspond to the highest frequency waves in the brain, and they are 
associated with intense focus and concentration involved in perception 
(Meador, Ray, Echauz, Loring, & Vachtsevanos, 2002). Third, the sud
den drop in gamma waves was associated with collision with a car, but 
was generally preceded by a steady decline before collision (for participants 
1–7 and 10). This suggests that participants lost focus ahead of the 
collision. A drop in gamma signal is indicative of a quick shift from 
concentration to loss of focus and a decline in perceptual awareness. 

5.2. Insights from user surveys 

On average, participants self-rated their locomotive skills in real- 
world tasks at 7.29 out of 9. Most felt they were good drivers and 

Table 1 
Fractal and trajectory results for 33 human participants in the VGE/VRE experiments.  

ID FD MFD Scale 
(min) 

Scale 
(max) 

Path 
length 

Mean 
step 
size 

No. of 
moves 

Mean 
cosine of 
turning 
angle 

Probability of 
turning in 
same direction 

Correlation 
among cosine of 
successive turn 
angles 

Survey 
age 

Survey 
sex 

Crash? Moved 
straight? 

A 1.2 1.1733 1 17.51 152 0.414 367 0.525 0.5671 −0.0016 22 F N Y 
B 1.1266 1.1011 1 15.23 83.5 0.435 192 0.555 0.5421 0.0009 28 F Y Y 
C 1.2358 1.1885 1 16.61 127 0.067 1905 0.369 0 −0.1243 23 M Y Y 
D 1.1071 1.0864 1 14.05 78.3 0.056 1403 0.428 0.004 −0.1278 24 F Y Y 
E 1.4217 1.4076 1 10.82 89 0.053 1667 0.26 0.0172 −0.1573   Y Y 
F 1.2728 1.1616 1 13.36 65.7 0.043 1534 0.243 0.0142 −0.1056   Y Y 
G 1.3388 1.312 1 10.96 140 0.043 3234 0.292 0.019 −0.1329 26 F N N 
H 1.3178 1.2616 1 10.84 71.2 0.029 2435 0.397 0.0179 −0.1224 25 M Y N 
I 1.233 1.2162 1 12.95 117 0.43 272 0.606 0.6556 0.0057 25 F Y Y 
J 1.1574 1.1354 1 14 91.6 0.043 2141 0.387 0.0053 −0.1145 23 M Y Y 
K 1.1735 1.1673 1 10.28 70.5 0.043 1646 0.364 0.0086 −0.1138 22 F Y Y 
L 1.1368 1.0972 1 14.71 101 0.044 2267 0.366 0.0085 −0.1128 22 M Y Y 
M 1.2951 1.239 1 10.47 94 0.04 2347 0.274 0.0102 −0.1449 26 M Y Y 
N 1.1098 1.0898 1 13.52 135 0.053 2545 0.82 0.6577 0.0042 23 M Y Y 
O 1.153 1.1154 1 13.71 80 0.043 1852 0.916 0.7252 0.007 30 M N N 
P 1.1588 1.1336 1 14.42 83.9 0.056 1507 0.325 0.0073 −0.119   N Y 
Q 1.1907 1.1591 1 14.81 89.8 0.058 1542 0.416 0.0149 −0.1394 24 M N Y 
R 1.1713 1.1501 1 15.63 105 0.071 1478 0.294 0.0212 −0.1258 23 F N Y 
S 1.1751 1.1279 1 13.25 78.9 0.041 1935 0.245 0.0226 −0.1616 21 M N N 
T 1.2141 1.1851 1 13.46 100 0.071 1420 0.21 0.0228 −0.1636 23 F Y N 
U 1.253 1.1995 1 12.06 134 0.057 2328 0.161 0.0432 −0.1683    N Y 
V 1.2219 1.1869 1 15.8 182 0.039 4661 0.458 0.03 −0.2894 24 M Y N 
W 1.1616 1.1142 1 13.69 131 0.048 2761 0.278 0.0346 −0.1527   N Y 
X 1.1347 1.0967 1 13.84 79.2 0.052 1524 0.282 0.018 −0.168 24 M Y Y 
Y 1.0955 1.0647 1 13.15 79.7 0.049 1612 0.244 0.0431 −0.1617   Y Y 
Z 1.2727 1.2276 1 14.18 131 0.062 2112 0.185 0.0527 −0.172   N Y 
α 1.1809 1.1525 1 13.12 118 0.06 1965 0.24 0.0323 −0.1803   N Y 
ß 1.2527 1.2135 1 14.36 131 0.055 2380 0.235 0.0319 −0.1743 24 M Y Y 
Γ 1.1427 1.1027 1 13.24 78.4 0.046 1702 0.248 0.0276 −0.1586 23 F N Y 
Δ 1.1239 1.0777 1 13.22 77.8 0.052 1508 0.26 0.042 −0.1917 23 F N Y 
ε 1.1755 1.1415 1 13.69 88.1 0.057 1552 0.292 0.0157 −0.1533 24 M Y Y 
ζ 1.2886 1.2733 1 14.6 142 0.061 2319 0.247 0.016 −0.1585   Y Y 
θ 1.1642 1.135 1 17.46 118 0.048 2436 0.299 0.0255 −0.1468 28 M N Y  
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followed the rules of the road as pedestrians (average of 5.74 out of 9, 
where 9 indicates that participants “strongly agree” that they follow the 
rules). Participants ranked the immersive experience of the VGE/VRE at 
an average of 7.29 out of 9 and only one participant reported having 
difficulties using our system. 

The survey free-form question that solicited user-participants’ recall 
of the simulation events and objects yielded narrative results. The results 
are parsed for simulation-specific events and objects in Fig. 19. Users 
most conspicuously recalled interaction events with cars and pedes
trians, sounds, and collisions. The most recalled event was conversation 
with simulated pedestrians. User-participants also recalled collisions 
with simulated pedestrians and with cars with relatively high frequency. 
Among the objects recalled, moving objects were remembered with most 
frequency, followed by crossing infrastructure and traffic and pedestrian 
crossing signals. 

The results show that user-participants had a vivid recall of objects 
that they encountered in the VGE/VRE. As we discuss in the results for 
gaze (Section 5.5), users’ recall did also match what the system reported 
they actually gazed upon when in the VGE/VRE. 

5.3. Insights from spatial analysis 

We report spatial analysis results in Table 1 for all trajectories of 
human participants. In Table 2, we present a comparison set taken from 
real-world walkers on streets in in Phoenix, AZ; Salt Lake City, UT; 
Tempe, AZ; and Tokyo and Yokohama in Japan. In Table 3, we show 
comparison results for simulation-generated trajectories on free planes 

by popular movement algorithms. 
On average, users in our experiments traversed 104.41 (sinuous, i.e., 

moving back and forth) meters in the simulation (standard deviation 
27.36 m) with an average of 1895.42 discrete moves. This path length is 
commensurate with the traversal records that we collected for real- 
world streetscapes. The high number of moves recorded is a by- 
product of the exquisite tracking detail that we have access to within 
the simulation, which has a refresh rate of 90 Hz. We note that our 
calculations of fractal dimension are scaled, meaning that the high-detail 
of the simulation is considered in the measurement, as discussed in 
Nams (1996) and in Torrens et al. (2012). We also calculated mean 
fractal dimension (Nams, 2006b) to address this detail concern. 

The average fractal dimension (FD) was 1.2, and the average mean 
fractal dimension (MFD) was 1.17 for our user-participant experiments. 
These were a match to walking recorded at a crowded arts festival in 
Tempe, AZ (FD = 1.23, MFD = 1.2), to a crowded zoo tour in Phoenix, 
AZ (FD = 1.17, MFD = 1.21), and to walking in a retail district of 
Yokohama (FD = 1.21, MFD = 1.18). Turning angle data from also 
matched the Yokohama and Phoenix examples. Our experimental 
average for mean cosine of turning angle was 0.35. The values for our 
observations in Yokohama were 0.361 and for Phoenix were 0.348. Our 
experimental results for correlation among cosine of successive turn 
angles (average of −0.13) were a match to observed data for Tokyo 
(−0.1546) and Yokohama (−0.1536). 

The average experimental probability of turning in the same direc
tion was 0.113, which was not a good match to any of our real-world 
observations. This is likely due to the instructions that we gave to 

Table 2 
Metrics for human walkers on real streetscapes.  

Scenario/ 
environment 

FD MFD Scale 
(min) 

Scale 
(max) 

Path length 
(meters) 

Number of 
moves 

Mean cosine of 
turning angle 

Probability of turning 
in same direction 

Correlation among cosine of 
successive turn angles 

Salt Lake City 
(campus) 

1.0590 1.0441 0 126.91 682.23 2200 0.721 0.028 −0.436 

Salt Lake City 
(downtown) 

1.0356 1.0295 0 951.16 2802.13 35,062 0.923 0.001 −0.477 

Salt Lake City 
(retail) 

1.0611 1.0515 0 498.93 4574.14 64,655 0.875 0 −0.482 

Shibuya crossing 
(path 1) 

1.1686 1.0876 1 54.23 152.76 226 0.403 0.189 −0.099 

Shibuya crossing 
(path 2) 

1.1764 1.1094 1 43.02 144.41 139 0.479 0.301 −0.102 

Shibuya crossing 
(path 3) 

1.1534 1.1024 1 43.28 134.71 156 0.293 0.293 0.102 

Shibuya crossing 
(path 4) 

1.2985 1.2031 1 40.33 161.47 139 0.47 0.375 −0.076 

Shibuya crossing 
(path 5) 

1.3814 1.2629 0 19.62 78.1 116 0.546 0.383 −0.155 

Yokohama (path 
1) 

1.2084 1.184 1 393.54 6122.82 6116 0.361 0.285 −0.154 

Yokohama (path 
2) 

1.1565 1.1037 1 287.09 1204.85 1047 0.463 0.259 −0.25 

Tempe (art 
festival) 

1.2251 1.1951 2 418.02 2759.68 3444 0.633 0.197 −0.295 

Phoenix (zoo, path 
1) 

1.1505 1.1197 0 211.21 1589.67 166 0.702 0.494 0.003 

Phoenix (zoo, path 
2) 

1.0927 1.0743 0 200 1214.39 121 0.644 0.437 0.003 

Phoenix (zoo, path 
3) 

1.0935 1.0775 1 204.06 1008.41 117 0.658 0.409 −0.026 

Phoenix (zoo, path 
4) 

1.2468 1.1891 6 56.45 280.36 30 0.714 0.500 −0.035 

Phoenix (zoo, path 
5) 

1.1656 1.1071 4 59.83 179.77 16 0.190 0.286 −0.232 

Phoenix (zoo, path 
6) 

1.1313 1.0656 2 53.93 150.42 18 0.704 0.625 0.093 

Phoenix (zoo, path 
7) 

1.2715 1.2062 1 18.3 61.99 61 0.348 0.2553 −0.027 

Phoenix (zoo, path 
8) 

1.1251 1.0915 1 238.11 1755.58 177 0.731 0.48 −0.012 

Phoenix (zoo, path 
9) 

1.181 1.1502 1 137.03 834.53 1083 0.358 0.353 −0.036  
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participants to cross all four sides of the intersection if feasible (which 
induces four large ninety degree turns). 

No significant differences in fractal dimension or turning were noted 
by age or sex among user-participants in the experiments. Female par
ticipants had a median FD of 1.17, median MFD of 1.16, median cosine 
of turning angle of 0.33, median probability of turning in the same di
rection of 0.025, and median correlation among cosine of successive 
turning angles of −0.13. For male participants, the results were FD =
1.18, MFD = 1.14, median cosine of 0.333, median probability of 0.02, 
and median correlation of successive turning of −0.14. 

Broadly speaking, our user-participant data shows a poor match to 
algorithm-driven data by popular agent-based methods). This is a 
promising finding for our work, because it shows that user-participants can 

produce realistic walking within immersive simulations, in ways that algo
rithmic movement (such as agent-based models and social force models) 
cannot. In other words, the movement of human users in our system is a 
match to recorded movement of real people walking in real-world 
contexts, and less well-matched to mathematically-driven agent 
models. Put simply: the real behavior of real users in our system comes 
across as quantitatively real. For example, we point out that all values of 
correlation were negative in our experiments, as they were in our real- 
world observations, but this is not the case for simulation-based move
ment using popular algorithms (which generally inaccurately over- 
produce straight-line movement). 

Maps of user trajectories (Fig. 20) illustrated that most users tra
versed the sidewalk and pedestrian crosswalks. A few users veered into 

Table 3 
Metrics for algorithm-driven walkers on featureless planes.  

Simulated scenario FD MFD Scale 
(min) 

Scale 
(max) 

Path length 
(meters) 

Number of 
moves 

Mean cosine of 
turning angle 

Probability of turning 
in same direction 

Correlation among cosine 
of successive turn angles 

Relocation by hopping 1.5743 1.4398 4 68.24 8611.72 5098 0.931 0 −0.514 
Brownian (long- 

range) 
1.2812 1.2621 0 16.15 1253.9 37,188 0.845 0.636 0 

Brownian (medium- 
range) 

1.2293 1.224 0 11.51 327.97 10,031 0.839 0.638 0 

Brownian (short- 
range) 

1.1606 1.1085 0 3.31 171.067 8872 0.907 0.6482 0 

Lévy flight (long- 
range) 

1.1362 1.1309 0 57.14 3467.08 37,188 0.003 0.504 0 

Lévy flight (medium- 
range) 

1.1221 1.1104 0 53.2 1182.99 10,031 0.001 0.508 0 

Lévy flight (short- 
range) 

1.1016 1.1085 0 67.28 1035.21 8973 0 0.498 0 

Random walk (long- 
range) 

1.9983 1.9252 1 54.07 5489.01 37,188 0.703 0 −0.387 

Random walk 
(medium-range) 

1.8501 1.8053 1 18.79 1254 10,031 0.752 0 −0.415 

Random walk (short 
range) 

1.9089 1.8692 1 22.13 1126 8973 0.75 0 −0.409 

Social force 
(simulated crowd) 
(path 1) 

1.4462 1.2618 1 19.58 70.71 3470 1 0.728 0.900 

Social force 
(simulated crowd) 
(path 2) 

1.1433 1.0897 1 31.26 85.7 3470 1 0.763 1.108 

Social force 
(simulated crowd) 
(path 3) 

1.5139 1.3427 1 9.47 74.8 3470 1 0.884 1.032 

Social force 
(simulated crowd) 
(path 4) 

1.2110 1.1469 1 23.84 72.84 3444 1 0.657 1.132 

Social force 
(simulated crowd) 
(path 5) 

1.1152 1.0616 1 28.52 70.99 3470 1 0.790 0.784  

Fig. 20. Trajectory results for all 33 participants in experiment 2.  Fig. 21. Crash location map.  
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the roadway at the sidewalk edge and wandered beyond the bounds of 
the crosswalk. Mapping revealed that most users (82%) made their first 
crossing attempt in a straight-ahead direction at the intersection. Spe
cifically, most users chose to move straight ahead when walking. This 
follows theoretical and observational work from urban studies that has 
suggested that walkers in cities with linear designs tend to preserve 
paths that afford them far-reaching viewsheds of the streetscape ahead 
of them (Penn, 2003). Hillier (2007), for example, suggested that this 
was due to what he termed to be “configurational theory”. 

5.4. Insight from crash results 

The data listeners that we established for the system reported when 
user-participants collided with a simulated car in the system (as well as 
all of the conditions of the simulation before, during, and after that 
collision). Fig. 21 maps the locations in the streetscape in which those 
collisions occurred (across all participants) and we provide a general 
overview in Fig. 22. 

Across the experiments, 20 participants (60.6%) collided with a car 
at least once. Note that none of the cars in the simulation were able to 
run red lights. Seven participants collided with cars once, while 13 were 
in multiple collisions during their (single) exploration of the simulated 
streetscape (nine were hit twice, two were hit three times, and two were 
hit four times). Anecdotally, when asked about this at the end of the 
experiment, most users that collided with cars described that they 
wanted to see how that part of the simulation worked. This could be 

Fig. 22. Crash locations relative to the streetscape.  

Fig. 23. Map of gaze results.  
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Fig. 24. Gaze objects.  
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addressed in future experiments by tasking participants with specifically 
avoiding collisions, rather than the open-ended and task-free approach 
that we employed. 

We compared measures of fractal dimension for user-participants 
that collided with cars and those that did not. For users that did 
collide with cars, their FD was higher (1.2 vs. 1.17 for those that did not 
crash) and their MFD was higher (1.18 vs. 1.14 for those that did not 
crash). Participants that crashed also had more movements (median of 
2204) than those that did not crash (median of 1893.5). This reveals that 
users that ended up in collisions moved more erratically than those that 
did not. (Results for mean cosine of turning angle, probability of turning 
in the same direction, and correlation among cosine of successive 
turning angles were not markedly different among the comparison 
groups.) 

5.5. Insight from gaze results 

Maps of the gaze object locations (Fig. 23) illustrate that users’ gaze 
was largely focused on the crossing area of the simulated streetscape, 
particularly at the crossing edge and curb of crosswalks. The frequency of 
gaze per VGE object across all participants are shown in Fig. 24. Users 
gazed most frequently at buildings, followed by the sidewalk and zebra 
crossings. This reveals that much of users’ gaze while in the experiment 
was focused on the built environment. Note that this is not what they 
recalled after the experiment. In their free-form surveys, participants 
recalled mostly streetscape objects in the simulation. This perhaps sug
gests that users took the built surroundings for granted. 

Moving entities (cars and simulated pedestrians) were the second- 
most gazed upon objects in the simulation, and this result does match 
user recall from the survey data. Results for gaze demonstrate that user- 

participants tended to look at the road and cars more than at crossing 
signals. This makes sense: once a crossing signal indicates that it is safe 
to cross, a walker may usually conclude that the signal holds for a period 
of time (e.g., for 20 s of crossing permission) and then turns their 
attention to collisions with other pedestrians, as well as staying within 
the bounds of the pedestrian crossing. 

Most users were staring at either cars or buildings at the moment that 
they collided with cars in the simulation (Fig. 24). In the case of 
buildings, this perhaps suggests that users were looking in the distance 
when in a crossing. In the case of cars, it reveals that users noticed cars at 
the last moments before a collision (recall that cars would honk to warn 
user-participants of impending collision). Because most of the users that 
did collide with cards were struck in the crosswalk, the results also 
indicate that participants were gazing at a variety of crossing objects 
(and not necessarily traffic) when struck, including the crosswalk (zebra 
crossing), traffic lights, and pedestrian signals. 

6. Limitations and future work 

The overarching aim of the work that this paper describes was to 
enhance the level of realism in urban modeling, principally by bringing 
real human users to parity with simulations of urban pedestrian dy
namics. We approached this using a scheme for inverse augmentation. 
Chasing realism is always a daunting tasks, and our approach has some 
limitations that can be improved upon in future work. 

The first relates to the realistic system behavior of the geographic 
automata. Our application is to pedestrian behavior, but commensurate 
driver behavior would be a useful counterfoil. We have been exper
imenting with coupling the CARLA simulator (Dosovitskiy, Ros, Code
villa, Lopez, & Koltun, 2017) with our system (Fig. 25). CARLA offers 
some sophisticated driving dynamics, but currently lacks matching 
pedestrian dynamics. Building connections between the two could be 

Fig. 25. Our implementation of the CARLA driver behavior model with 
geographic automata pedestrian simulation in the system. The pedestrian is 
jaywalking and the vehicle has detected this and come to an abrupt stop outside 
of its usual traffic signal event. 

Fig. 26. Wireless implementation of the system on the Oculus HMD and a remote Android viewscreen.  

Fig. 27. AR implementation on an Apple iPhone.  
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useful. 
The second relates to the plausibility of the VGE/VRE setting for user 

participants, relative to their real-world experiences. That so many users 
actually were struck by cars in the simulation is obviously unrealistic. An 
experimental design, e.g., games with a purpose (von Ahn, 2006), that 
rewards users for avoiding collisions could straightforwardly resolve 
this. We are also exploring whether it is feasible to support multiple 
human users in the simulation at once, which would open-up the pos
sibility of placing real and synthetic confederates in the model to 
establish plausible dynamics of mimicry and peer behavior. 

The third relates to congruence. Reliance on a tethered HMD can be 
limiting, although no users mentioned so in our experiments. Recently, 
we have ported the system to a wireless HMD (Fig. 26), although 
wireless systems currently lack significant computing resources to run 
high-detail simulations. 

Fourth, while we regard our use of encephalography to empirically 
assess user congruence with the system as promising (we are unaware of 
any other urban modeling literature that has attempted this), we have 
some work ahead of us to develop EEG as a diagnostic simulation tool. In 
particular, we hope to do more exhaustive EEG testing to study which 
simulation and user events correspond to. This will invariably require 
that we collect matching data for real-world scenarios. 

Fifth, we experimented with porting the system to augmented reality 
(AR) platforms. An early prototype is shown in Fig. 27, wherein our 
entire system was run directly via Unity on an Apple iPhone using AR Kit. 
The “VGE” in this case is a real street in Brooklyn, which can be docked 
to our system through map-matching. The use of an augmented 
approach, alongside our inverse augmentation, would support richer 
comparisons between the real-world and our simulations. 

7. Conclusions 

In this paper, we contend that approaches from AR can be inverted to 
emphasize human users in participant roles within simulations. Ulti
mately, this leads to a new class of VGE which we might consider to be 
"Augmented Virtual Environments" (AGEs), which combine VGEs, geo
simulation, and GIS with real-world and user-driven dynamics. We 
demonstrated that emphasizing human users in simulation (alongside 
synthetic model processes such as agency) allows simulation scenarios 
to be brought to closer parity with real-world behaviors of pedestrians 
than might otherwise be possible with purely agent-driven models (our 
tests against ABMs in Table 3 show this empirically). We regard this 
finding as significant in drawing simulation experiments into more 
useful alignment with theory, and perhaps with decision support 
systems. 

Key, in pulling this off, is to accomplish parity with a broad sense of 
realism, which we considered along three dimensions of presence, 
plausibility, and congruence. To address presence, we fused VGEs, VREs, 
and geosimulation to establish a dynamic and lively substrate for 
immersive representation of urban scenes. To tackle plausibility, we 
parameterized that substrate with high-detail models, going as far as to 
include data from fieldwork and studio-based examination of locomo
tion. To support congruence, we introduced the concept of geographic 
passthrough as a way to map simulated spaces and phenomena to real- 
world physicality of walking and looking around. 

We highlight some key details involved in building these capabilities. 
First, we developed a coupled VGE with realistic behavior-driven agent 
models for vehicles and pedestrians. This allowed us to populate simu
lated urban scenes with realistically dynamic activity. Agents were 
designed with very high-fidelity detail and implemented as geographic 
automata for efficient functioning within VGE systems. Agent locomo
tion was calibrated to real human users’ motion capture data. All agent 
characters in the model reacted naturally to human participants as they 
would in the real world, including gaze and interest, velocity-based 
steering, avoiding collisions, and engaging in conversation. Second, 
the model allowed real human participants to directly immerse 

themselves in the simulation in real-time using VR HMDs. Rather than 
simply standing in front of a screen, users were able to move physically 
in the real world and their behavior was directly reflected in the VGE/ 
VRE and adapted to by its simulated characters. Third, we developed a 
series of data listeners to continually monitor the simulation and export 
massive troves of information, in real-time, as the simulation unfolds. 
This allowed us to build very detailed records of cause-and-effect type 
relationships during simulation-assisted experiments. We showed how 
these data can be used to perform comparative behavioral analyses in 
the simulation, and that the outputs can be paired to real-world obser
vations. Key in this design was implementation of a gaze system that 
allowed us to note every single thing that a user looked at during their 
time in the simulation, as well as where they were when they did so, and 
what was going on around them. This opens up the possibility that the 
simulation environment can be used as a proxy for real-world context. 
We showed, for example, that it can be used to assess the fleeting de
cisions that users make when crossing the road. Fourth, we performed 
experiments to monitor the brain activity of users while engaged in the 
experiments using sensor-assisted electroencephalography. While pre
liminary, this work suggests that users’ neurological appreciation for the 
simulation has bearing on (and perhaps linkage to) their real-world 
brain activity of perception, action, and cognition. 
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