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ABSTRACT

Wetlands account for up to 70% of the natural source of methane (CH,) in terrestrial
ecosystems on a global scale. Soil microbes are the ultimate producers and biological
consumers of CH, in wetlands. Therefore, simulating microbial mechanisms of CH, pro-
duction and consumptionwould improve the predictability of CH,4 flux in wetland ecosys-
tems. In this study, we applied a microbial-explicit model, the CLM-Microbe, to simulate
CH,4 flux in three major natural wetlands in northeastern China. The CLM-Microbe model
was able to capture the seasonal variation of gross primary productivity (GPP), dissolved
organic carbon (DOC), and CH, flux. The CLM-Microbe model explained more than 40% of
the variation in GPP and CH, flux across sites. Marsh wetlands had higher CH, flux than
mountain peatlands. Ebullition dominated the CH, transport pathway in all three wet-
lands. The methanogenesis dominates while methanotroph makes a minor contribution to
the CH, flux, making all wetlands a CH, source. Sensitivity analysis indicated that micro-
bial growth and death rates are the key factors governing CH, emission and vegetation
physiological properties (finr) and maintenance respiration predominate GPP variation.
Explicitly simulating microbial processes allows genomic information to be incorporated,
laying a foundation for better predicting CH, dynamics under the changing environment.
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Introduction

Natural wetlands store approximately 30% of soil car-
bon (C) on the land (Melton et al. 2013); those C will be
released into the atmosphere either as methane (CH,)
or CO,, depending on the soil redox potential (Le and
Jean 2001). Wetlands roughly account for one-third of
the increasing atmospheric CH, concentration (Bhullar
et al. 2014; Bridgham et al. 2013; Saunois et al. 2020).
CH,4, a potent greenhouse gas, has a global warming
potential 28 times larger than carbon dioxide (CO,)
(Bridgham et al. 2013; Harmsen et al. 2020; Schaefer
2019). The rising CH,; concentration contributed to
22% of climate warming caused by anthropogenic
activities since the Industrial Revolution (IPCC 2017).
However, the estimates of CH, emissions remain highly
uncertain (Saunois et al.,, 2020), particularly in natural
wetlands (Jackson et al., 2020). From a global perspec-
tive, natural wetlands are the largest and most uncer-
tain source of atmospheric CH, (Bousquet et al. 2006a;
Kirschke et al. 2013a; Zhang et al. 2017a).

The land surface CH, flux depends on the balance of
microbial methanogenesis and methanotrophy (Fazli,
Man, and Shah 2013). When there is a lack of electron

acceptors (oxygen, nitrate, sulfate, iron, and manga-
nese), anaerobic fermentation will occur, and metha-
nogens will use fermentation products (hydrogen and
CO,, acetic acid, and methyl compounds) to produce
CH,4 (Cordruwisch, Seitz, and Conrad 1988; McGlynn
2017; Sieber, Mclnerney, and Gunsalus 2012; Thauer
et al. 2008; Timmers et al. 2017). Under aerobic condi-
tions, CH, is oxidized to CO, by methanotrophs. Both
processes occur and determine the direction of CH,
flux. Although these processes have been well-
understood, microbial models with explicit representa-
tion of methanogenesis and methanotrophy are still in
their infancy (Xiaofeng et al. 2015; Xu et al,, 2016). In
addition, the ecosystem research on modeling wetland
CH, processes in China is rare (Sun et al. 2018; Wang,
Zeng, and Tong 2007; Xiaofeng and Tian 2012).
Wetland ecosystem models can be categorized
as empirical models and process-based models.
The empirical models are primarily based on
empirical equations obtained from a large amount
of data to make predictions. The observed CO, and
CH,4 fluxes are directly related to environmental
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factors such as groundwater level, soil tempera-
ture, and net primary productivity (NPP) (Zhang
et al. 2017a). However, due to the lack of mechan-
istic representation of the CH,; cycle in these
empirical models, there are usually large discrepan-
cies between the measured and simulated flux
when the models are used in different times and
regions (Huang, Sass, and Fisher 1998; Meng et al.
2012; Morin et al. 2014; Wania et al. 2013), which
has restricted the popularization and application of
these models (Xu et al.,, 2016). The process-based
models consider the major biogeochemical pro-
cesses of CH,4 cycling to achieve accurate predict-
ability of CH,4 cycling within a specific ecosystem
(Kirschke et al. 2013; Hangin et al. 2016). In recent
years, some CH, models have been developed and
applied to simulate CH,; cycling in natural wet-
lands. For example, Lipson et al. (2012) used the
DLEM model to explore the CH, exchange between
the atmosphere and marshland over China.
Tingting et al. (2020) verified the application of
the CH4MOD model in the natural wetlands of
the Sanjiang Plain. Zhang et al. (2020a) used the
TRIPLEX-GHG model to simulate the spatial pattern
of CH4; emissions in the Qinghai-Tibet Plateau.
Additionally, Lund-Potsdam-Jena Wetland
Hydrology and Methane (LPJ-WHyMe), Terrestrial
Ecosystem Model (TEM), Denitrification-
Decomposition model (DNDC), and other models
have been applied to simulate wetland CH, fluxes
in the Arctic, Europe, and the world (Chadburn
et al. 2020; Tingting et al. 2020; Melton et al.
2013; Nzotungicimpaye et al. 2020; Youmi et al.
2020; Wania, Ross, and Prentice 2010).

The CLM-Microbe is a microbial-explicit model that
simulates substrates, production, oxidation, transport
of CH4 and their environmental controls, along with
microbial mechanisms for soil C mineralization
(Xiaofeng et al. 2014, 2015; Yihui et al. 2019). A key
advantage is that it represents multiple microbial func-
tional groups. In this study, we used the CLM-Microbe
model to simulate GPP and CH, flux in three wetlands.
There are three objectives of this study: (1) to evaluate
the performance of the CLM-Microbe model in simu-
lating CH,4 flux in wetlands of northeastern China; (2) to
investigate the differences in CH, cycling among three
major wetlands; (3) to identify the key factors control-
ling on GPP and CH, flux among the wetland types.

Methodology
Site description

This study applied the model to three wetland ecosys-
tems in northeast China, including marshland in the
Sanjiang Plain (47.58°N, 133.52°E), peatland in the
Changbai Mountain (42.35°N, 126.38°E), and the

swamp in the Lesser Khingan Mountain (48.16°N,
128.5°E). These three sites represent two major wet-
land types in northeastern China, freshwater marshes
on the lowland<apos;>s plains (Sanjiang Plain) and
mountain peatlands (Changbai Mountain and Lesser
Khingan Mountain).

The Sanjiang Plain features the largest freshwater
wetland in China. It has a continental monsoon cli-
mate, with a mean annual temperature of 2.52°C and
a mean annual precipitation of 558 mm. The wetland
in the Changbai Mountain has a continental monsoon
climate, with a mean annual temperature of 3.3°C and
mean annual precipitation of 1054 mm. The precipita-
tion is primarily occurring during July-August. The
early spring snowfall and precipitation lead to
a water table of 10 cm. The dominant plant commu-
nity in the wetland is Carex sphagnum. There is huge
Holocene peat stored in the wetland, with a thickness
of 4-5 m. The upper part is mainly moss peat, and
a frozen layer is formed in winter. The Lesser Khingan
Mountain is located between Greater Khingan
Mountain and Changbai Mountain and is one of the
major areas with swamps in China. This site has
a continental humid monsoon climate, with a mean
annual temperature of 0.4°C and mean annual preci-
pitation of 630 mm (primarily occurring during July-
August). It primarily consists of forest swamps, shrub
swamps, grass swamps, and moss swamps.

Data sources

The CH, flux was monitored using the close-path eddy
covariance technique and static chamber approach.
Flux measurement periods were from May to October
in 2012 and 2013 at the Sanjiang Plain (Table 1) (Sun
et al. 2018). The CH, flux for the Changbai Mountain
and Lesser Khingan Mountain was obtained through
periodic sampling by a static chamber approach
(Huang 2016; Shi 2019). We extracted CH,4 flux data
for these two sites from the published articles by soft-
ware GetData version 2.26 (http://getdata-graph-
digitizer.com/). The observational GPP data of
Sanjiang Plain and Changbai Mountain are calculated
with net ecosystem C exchange (NEE) and ecosystem
respiration (ER) (Cao 2015.). The GPP data of Lesser
Khingan Mountain is obtained by extracting the GPP
data of MODIS (MOD17A) products (Yuan et al. 2020;
Maosheng et al. 2005).

Modeling experiment

Model description and driving forces

The CLM-Microbe model branches from the framework
of default CLM4.5 by developing a new microbial func-
tional group-based module for CH, production and
consumption (Xiaofeng et al. 2015), in association
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Table 1. Atmospheric forcing data and flux data source.
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Sites Data Year Source
Sanjiang Plain Atmospheric forcing data  2005-2018 Sanjiang Plain Marsh Wetland Ecological Experimental Station
GPP 2012-2013 (http://sjm.cern.ac.cn/meta/metaData)
CH,4 2012-2013
DOC 2013-2014 Xiaofeng et al. (2015)
Changbai Mountains Atmospheric forcing data  2003-2018 China Meteorological Forcing Dataset
(https://data.tpdc.ac.cn/en/data/8028b944-daaa-4511-8769-965612652c49/)
GPP 2011 Cao (2015.)
CH, 2016 Shi (2019)
DOC 2017 Han et al. (2018)
Lesser Khingan Mountains ~ Atmospheric forcing data  2010-2018 China Meteorological Forcing Dataset
(https://data.tpdc.ac.cn/en/data/8028b944-daaa-4511-8769-965612652c49/)
GPP 2010-2011 MODIS
(https://Ipdaac.usgs.gov/products/mod17a2hv006/)
CH, 2013-2014 Huang (2016)
DOC 2014 Xu et al,, (2016)

with the decomposition subroutines in CLM4.5 (Koven
et al. 2013; Thornton et al. 2007). It incorporates new
mechanisms of DOC fermentation, hydrogenotrophic
methanogenesis, acetoclastic methanogenesis, aero-
bic methanotrophy, anaerobic methanotrophs, and
H, production (Xiaofeng et al. 2015; Yihui et al. 2019).
Detailed mathematical expressions for CH, production
and consumption processes were organized in
Xiaofeng et al. (2015) and Yihui et al. (2019), Wang
et al. (2022)). The processes of microbial assimilation
of C can be referred to in Xiaofeng et al. (2014) and
Liyuan et al. (2021a), Liyuan et al. (2021b)). The code for
the CLM-Microbe model is archived at Github (https://
github.com/email-clm/clm-microbe). The model ver-
sion used in this study was checked out from GitHub
on 18 June 2018.

In our previous study, the CLM-Microbe model
was validated for simulating the dynamics of CO,
and CH,4 emissions from incubation experiments on
Arctic soils with invariant soil temperature and soil
water content (Xiaofeng et al. 2015). In addition, the
CLM-Microbe model was applied to examine the
microtopographic impacts on CO, and CH, flux in
the Arctic tundra ecosystem (Yihui et al. 2019) and
microbial seasonality on soil C cycling in terrestrial
ecosystems (He et al, 2021b). In this study, we
focused on the fully incorporated CLM-Microbe
model, with model simulations for each wetland
type. Eighteen key parameters were chosen for
model parameterization, which represents the
decomposition of organic C, methanogenesis, micro-
bial growth, and plant photosynthesis and respira-
tion and therefore controls the GPP and CH, flux
(Table 2).

The model driving forces include meteorological,
edaphic, and vegetation datasets. The meteorological
data include air temperature, relative humidity, incom-
ing solar radiation, longwave radiation, precipitation
rate, surface pressure, and surface winds.
Meteorological variables of Changbai Mountain (2003-
2018) and Lesser Khingan Mountain (2010-2018) were
extracted from China<apos;>s Meteorological Forcing

Dataset (https://data.tpdc.ac.cn/en/data/8028b944-
daaa-4511-8769-965612652c49/) by the longitude and
latitude information. Since the standardized forcing
data are in half-hourly time steps, the extracted 3-hourly
data for each study site was interpolated to half-hourly
step by using linear interpolation in R programming (R
for Window version 4.0.2). The forcing data of Sanjiang
Plain marsh wetland (2005-2018) was from the Sanjiang
Plain Experimental station (Table 1). The observed soil
and vegetation variables, such as plant functional type
(PFT), were used for model parameterization and
validation.

Model implementation

In this study, we set up model simulations with the
CLM-Microbe model separately for each site. The
model implementation was carried out in three stages.
First, the accelerated model spin-up was set up for
2,000 years to allow the system to accumulate
C. Then, a final spin-up was set up for 50 years to

Table 2. Key parameters for sensitivity analysis (see Xiaofeng
et al. 2015).

Parameter Ecological meaning

KACE Half-saturation coefficient of available carbon
mineralization

AceProdACmax Maximum rate of acetate production from
available carbon

YAceMethanogens Growth efficiency of acetoclastic
methanogens

YH2Methanogens Growth efficiency of H,-CO,-dependent
methanogens

YMethanotrophy Growth efficiency of aerobic methanotroph

GrowRAceMethanogens Growth rate of acetoclastic methanogens

DeadRAceMethanogens Death rate of acetoclastic methanogens

GrowRH2Methanogens ~ Growth rate of H,-CO,-dependent
methanogens

DeadRH2Methanogens  Death rate of H,-CO,-dependent
methanogens

GrowRmethanotrophs  Growth rate of aerobic methanotroph

DeadRMethanotrophs  Death rate of aerobic methanotroph

finr Fraction of leaf N in the Rubisco enzyme

grperc Growth respiration parameter

bdnr Bulk denitrification

br_mr Base rate of maintenance respiration

Froot_leaf New fine root C per new leaf C

K_dom Decomposition rate constant dissolved
organic matter

Dom_diffus Diffusion of dissolved organic matter
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allow the ecosystem to transient to a state with the
realistic decomposition rates before the transient
simulations that cover the period of 1850-2018
(Koven et al. 2013; Thornton et al., 2005).

The model parameterization was initialized with the
default parameters in Xiaofeng et al. (2015) and Yihui
et al. (2019); it was performed within their ranges to
determine the optimal values of parameters in the
microbial module for simulating the observational
GPP and CH, flux for each site. For the marshland in
the Sanjiang Plain, the observed data of GPP and CH,
flux during 2012-2013 were used for model validation.
For the peatland at the Changbai Mountain, we
extracted the GPP data during 2011 (Cao 2015.) and
CHj, flux data during 2016 (Shi 2019) from the publica-
tions. For Lesser Khingan Mountain, we extracted the
GPP data during 2010-2011 from MODIS and CH,4 flux
data during 2013-2014 (Huang 2016).

Model evaluation

Simple linear regression was conducted to evaluate the
model performance in terms of GPP and CH, flux. The
error statistics were used to quantify the difference
between the modeled results and observational data.
In order to verify the accuracy of the model, we used
three accuracy evaluation indicators, coefficient of
determination (R?), root mean square error (RMSE), and
mean absolute error (MAE), to evaluate model efficacy.

n ~\2
R2:M M

i i _,V)z
n o 2
RMSE — 1| 2= Vi =30 Or’,’ v @
MAE:Zi:1|r):i_yi| (3)

Where y; is the observed value; y; means the simulated
value; n is the number of data points. The MAE indicates
the mean error of the model simulation, and thus lower
MAE values suggest better model performance. The RMSE
quantifies the mean error of model simulation with low
values indicating high model accuracy. Higher R? values
indicate better performance of the model, while lower R?
values mean worse model performance and a smaller
proportion of variation is explained by the model. It is
noteworthy that R? is not suitable for assessing the good-
ness-of-fit for the dataset with small sample size.

Sensitivity analysis

To identify the most important process and the most
sensitive parameters for CH, and GPP dynamics, a global
sensitivity analysis was conducted for each wetland
type. It focused on the 18 parameters related to plant
and microbial processes that are critical for microbial
biogeochemistry (Table 2). For each parameter, we set

up model simulations with +20% and —20% changes
and investigated the responses of the modeled GPP and
CH; flux. The index S, comparing the change in the
model output relative to the model response for
a nominal set of parameters, was calculated based on
the flowing equation (Xiaofeng et al. 2015):

s (Ra — Rn)/Rn @

(Pa — Pn)/Pn

where S is the ratio of the standardized change in
model response to the standardized change in para-
meter values. Ra and Rn are model responses for
altered and nominal parameters, respectively, and Pa
and Pn are the altered and nominal parameters,
respectively. S is negative if the direction of model
response opposes the direction of parameter change
(Xiaofeng et al. 2015; Yihui et al. 2019; Yuan et al,,
2021a 2021; Yuan et al., 2021b).

Results

Comparison of simulated GPP and CH, flux
against observational data

The CLM-Microbe model was able to reconstruct the GPP
and CH, flux during the study period for all three sites
(Table 3; Figure 2). For example, the simulated temporal
variations in GPP and CH, flux were consistent with
observational data (R* = 0.41 for all sites). There were
slight differences in simulated and observed variables
among sites; specifically, modeled GPP was more consis-
tent with the observed data for the Lesser Khingan
Mountain (R? = 0.93, P < 0.001; Figure 2c) than for the
Sanjiang Plain (R? = 0.49, P < 0.001; Figure 2a) and
Changbai Mountain (R® = 0.45, P < 0.001; Figure 2b). For
the dynamics of CH, flux, modeled CH,4 flux was more
consistent with the observational fluxes for the Changbai
Mountain (R? = 0.91, P = 0.012; Figure 2e) than for the
Sanjiang Plain (R’ = 0.55, P < 0.001; Figure 2d) and Lesser
Khingan Mountain (R = 0.41, P = 0.01; Figure 2f).
Furthermore, the molded DOC, the immediate substrate
of CH,4 production, was consistent with the observational
data (Table 3).

The MAE and RMSE values suggested large varia-
tions in model performance when simulating GPP and
CH4 among sites. The MAE and RMSE varied within
a range of 28- and 27- fold, respectively, among sites.
Both MAE and RMSE values for CH, showed 30-fold
variations among sites.

Variability of CH, flux and GPP dynamic among
three sites

Modeled GPP exhibited large variabilities among sites
(Figure 3). The marshland wetland in the Sanjiang
Plain has an annual modeled GPP of 589.1 g C/m?/
year; the annual GPP was simulated to be 1319.0 g C/
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Table 3. Site level evaluation of the goodness-of-fit criteria computed for the simulated GPP (gC/m?/d), CH, flux (gC/m?/d) and
DOC.

GPP CH, flux DOC (mg/cm?)
Site R? RMSE MAE R? RMSE MAE Modeled Observed
Sanjiang Plain 0.49 1.13 0.86 0.55 411 33.67 0.28 0.24
Changbai Mountain 0.45 0.04 0.03 0.91 0.94 0.76 1.1 227
Lesser Khingan Mountain 0.93 0.14 0.08 0.41 138 117 0.26 1.44

MAE, mean absolute error; RMSE, root mean square error; R% R square. MAE and RMSE values indicate the mean error of the model, smaller
values represent higher model performance. R? values mean the proportion of variation is explained by the mode; higher R? values indicate
better model performance. R? is not suitable for assessing the goodness-of-fit for a small amount of data due to the large bias in small

samples.

m?/year for the wetlands in the Changbai Mountain,
and modeled 171.3 g C/m?/year for the swamp in the
Lesser Khingan Mountain. For all three sites, the GPP
reached its highest value in the summers of the year.
The daily modeled maximum values of GPP in the
Sanjiang Plain, Changbai Mountain, and Lesser
Khingan Mountain were 5.8 g C/m?%/d, 12.5 g C/m?%/
d, and 1.9 g C/m?/d, respectively. Compared with the
Sanjiang Plain, the simulated GPP of Changbai
Mountain and Lesser Khingan Mountain has a much
higher fluctuation.

Meanwhile, there were large variations in modeled
CH, flux among sites, with a range of 0.34 t0 26.9 g C/
m?/year. The annual modeled CH, emissions in the
Sanjiang Plain were the largest at 26.9 g C/m?/year,
followed by the Lesser Khingan Mountain at 0.66 g C/
m?/year, and the Changbai Mountain has the smallest
modeled CH, emissions at only 0.34 g C/m?/year. The
Sanjiang Plain freshwater marsh wetlands, as the lar-
gest source of CH, emissions, have released 79 times
more annual CH4; flux than the Mountain peatland
(Lesser Khingan Mountain). The peak modeled CH,
flux occurred in the summer period, and the maxi-
mum modeled daily emissions of Sanjiang Plain,

110° E 115°E 120° E 125° E 130°E 135°E 140° E
1 1 1 1 1 1 1
~50° N
; Lesser Khingan/Mountains \
~ ; Sanjiang Pldin
—45° N
Jinchuan W
~40° N
‘ Site Location
1 |:| Wetland
I:I Other
l:l boundary
200
""" IMiles
-35° N

Figure 1. Site location map of the study area; purples diamonds are the sites for model simulations with the background as

wetland distribution in northeastern China.
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Changbai Mountain, and Lesser Khingan Mountain
were 247.9 mg C/m?/year, 42 mg C/m?/year, and
5.9 mg C/mz/year, respectively.

Modeled biomass of methanogens

The modeled microbial biomass for methanogenesis
showed obvious seasonality at different depths at
three sites (Figure 4). There was almost no fluctuation
of microbial biomass in spring and winter. The microbial
biomass of Lesser Khingan Mountain began to increase
suddenly from mid-July and then dropped to stabilize in

early October. But there was almost no seasonal change
in acetoclastic methanogens biomass below 40 cm
(Figure 4c). Different from Lesser Khingan Mountain,
the seasonal changes of methanogenesis in the
Sanjiang Plain and the Changbai Mountain were rela-
tively similar, strongly fluctuating between April and
October (Figure 4 a-4b, Figure 4 d-4e).

There are significant differences in biomass of
methanogens at the three sites (Figure 4). The
simulation results showed that Changbai
Mountain has the largest acetoclastic methanogens
biomass, with a mean of 1.37e™* mol/m?, followed
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by Lesser Khingan Mountain and Sanjiang Plain,
with a mean of 2.32e™® and 1.57e™® mol/m3,
respectively. The Sanjiang Plain had the largest
hydrogenotrophic methanogens biomass, followed
by Changbai Mountain and Lesser Khingan
Mountain, with a mean value of 2.55¢7%, 1.85¢°°,
and 7.47e”’ mol/m?, respectively.

Modeled CH, transport pathway among three
sites

Modeled CH,; flux showed that wetland types had
a profound impact on CH, transport pathways
(Figure 5). The modeled CH, flux showed obvious
seasonality in plant-mediated transport, diffusion,
and ebullition at Sanjiang Plain and Changbai
Mountain, while the plant-mediated transport did
not show a clear seasonal pattern in Lesser

Acetotrophic methanogens
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Khingan Mountain. The model estimated that the
main CH, transport pathway in the wetland was
ebullition at an annual scale. The contribution of
ebullition transmission in the freshwater wetland
(Sanjiang Plain) to CH,; emissions is lower than
that of mountain peatlands (Changbai Mountain
and Lesser Khingan Mountain), which are 58.96%
in Sanjiang Plain, 82.41% in Changbai Mountain,
and 71.06% in Lesser Khingan Mountain. Plant-
mediated transport in freshwater wetland, as
the second-largest transport pathway after ebulli-
tion, is significantly different from mountain peat-
lands. Among them, the contribution rate of plant-
mediated transport in Lesser Khingan Mountain was
only 0.003%, which was almost negligible
(Figure 5c). Diffusion, as the second-largest trans-
port pathway of alpine peatlands, has the smallest
contribution to CH,; emissions in freshwater

Hydrogenotrophic methanogens
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Figure 4. Temporal trend of microbial functional group (acetoclastic methanogens (a, ¢, e), and hydrogenotrophic methanogens
(b, d, f)) across three sites. (a, b) Sanjiang Plain; (c, d) Changbai Mountain; (e, f) Lesser Khingan Mountain.
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Figure 5. The CLM-Microbe model simulated CH, transport pathways and their contributions to the annual CH, flux at three sites.
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wetlands indeed. In addition, the simulation results
can clearly foresee the early spring CH,4 pulse when
the frozen soil melts in the spring (Figure 5).

Sensitivity analysis

The dynamics of CH, and GPP are sensitive to some
parameters of photosynthesis, plant growth respira-
tion, maintenance respiration, decomposition, CH,4

production, growth and death of methanogens,
and growth and death of methanotrophs
(Figure 6). The simulated CH, fluxes were sensitive
to most of the 18 key parameters, while GPP was
sensitive to the parameters controlling respiration
and photosynthesis. Specifically, the CH, flux was

strongly  sensitive to the parameters of
GrowRmethanotrophs, AceProdAcemax, KAce,
DeadACEMethanogens, GrowACEMethanogens for



Sanjiang Plain and Changbai Mountain, which
means that acetate production and methanotrophs
were the key controls on CH, flux. The changes of
GrowRmethanotrophs are significantly different in
the CH,4 flux response between the two wetland
types. In freshwater wetland (S = 0.02 for CH,4 flux
with —20% change and S = 0.02 for CH,4 flux with
+20% change in Sanjiang Plain), whether the
GrowRmethanotrophs increase or decreases, the
CH,4 flux shows an upward trend, but the opposite
is true in mountain peatlands (S = —1.14 for CH,
flux with —20% change and S = —2.34 for CH,4 flux
with +20% change in Changbai Mountain). The
magnitude of the AceProdAcemax on CH,4 flux were
the same between Sanjiang Plain (S = 0.18 for CH,
flux with —20% change and S = 0.08 for CH, flux
with 4+20% change) and Changbai Mountain
(S = 0.63 for CH4 flux with —20% change and
S = 0.50 for CH4; flux with +20% change). But it
showed a positive correlation in Lesser Khingan
Mountain (S = —0.03 for CH,4 flux with —20% change
and S = 0.04 for CH, flux with +20% change).

In addition, photosynthesis and DOC also affect CH,
production. In the freshwater wetland, CH, flux was
sensitive to the fraction of leaf nitrogen in the Rubisco
enzyme functioning in photosynthesis (fInr). The high
response was in freshwater marshes (S = 1.44 for CH,
flux with —20% change and S = —1.11 for CH, flux with
+20% change in Sanjiang Plain), followed by peatlands
(S = 0.14 for CH,4 flux with —20% change and S = 0.07
for CH,4 flux with +20% change in Changbai Mountain).
CH, flux also responded to changes in autotrophic
respiration (grperc and br_mr; Figure 6a). In the moun-
tain peatlands (Changbai Mountain and Lesser
Khingan Mountain), the parameters of the acetic acid
methanogenesis pathway are still the main factors
affecting CH, production. But its sensitivity is weaker
than that of freshwater marshes (Figures 6 b and c).

The most important processes of GPP dynamics are
related to photosynthesis and respiration, which con-
trol C fixation and release from wetlands. The fInr and
grperc were identified as the primary factor for GPP,
NPP, ER, and NEE (Figure 6). As increases in the flnr
lead to decrease in GPP, NEE, ER and NPP in the
Sanjiang Plain (S = —1.71 for GPP, S = —2.49 for NEE,
S = -1.61 for ER, and S = —1.47 for NPP with +20%
change) but GPP, NEE, ER and NPP raise in the
Changbai Mountain (S = 0.32 for GPP, S = 0.37 for
NEE, S = 0.32 for ER, and S = 0.35 for NPP with +20%
change) and Lesser Khingan Mountain (S = 1.00 for
GPP, S = 0.58 for NEE, S = 0.93 for ER and, S = 0.47 for
NPP with +20% change). There was a significant
increase in GPP, NEE, ER and NPP for all sites with
decreased fInr. As decrease in the grperc lead to
decrease in GPP, ER and NPP in the Sanjiang Plain
and Lesser Khingan Mountain but a NEE rise in the
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Changbai Mountain. In addition, GPP, NEE, ER and
NPP were sensitive to maintenance respiration
(br_mr) and froot_leaf in the Sanjiang Plain
(Figure 6a).

Discussions

Simulation of CH, emissions from wetlands in
Northeast China

The CLM-Microbe model produced consistent results
with the observed CH, flux and GPP in wetland eco-
systems (Figure 1-2). However, we also observed poor
CH, flux simulation results at some sites, such as CH,
flux at Changbai Mountain and Lesser Khingan
Mountain (Figure 4, Table 3). There may be several
reasons for the relatively poor performance of the
CLM-Microbe model at those sites. First, the available
observational data were not too large, resulting in
small R? values at those sites. The R? is not suitable
for assessing the goodness-of-fit for a small amount of
data due to the large bias in small samples (He et al.,
2021). Compared with the Sanjiang Plain, we observed
smaller MAE and RMSE values in Changbai Mountain
and Lesser Khingan Mountain. Second, the difference
in measurements methods for CH, flux is also an
important factor. In the method section, we mentioned
that the eddy covariance technique is used to measure
CH,4 flux in Sanjiang Plain, while the static chamber
approach is used in Changbai Mountain and Lesser
Khingan Mountain. As we know, the static chamber
approach has its inherent shortcomings. It changes
the temperature and pressure in the box, destroys
the soil environment, and affects CH, emissions. In
addition, this method has large spatial variability and
large single-point observation errors, requiring a lot of
repetition, and it is difficult to achieve long-term con-
tinuous observation (Wang et al. 2013). The biggest
advantage of the eddy covariance technique is to
achieve long-term continuous observation of large-
scale ecosystems without damaging the environment
(Wang et al. 2013). The inter-annual differences in CH,
flux measured by the static chamber approach are
obvious. Third, although the microbial processes of
CH4 production and oxidation are included in our
model, the lack of microbial data makes it difficult to
verify the microbial biomass changes of methanogens.
This might be one of the reasons for relatively low
model performances. Yihui et al. (2019) also pointed
out the impact of topography on simulations should
be considered when using the CLM-Microbe model.

Wetland types impacts on CH, flux

Our results show that there are significant differences in
GPP and CH, flux between freshwater wetlands and
peatlands, which is mainly due to differences in
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Figure 6. Sensitivity analysis of the CLM-Microbe model in terms of gross primary productivity (GPP), net ecosystem carbon
exchange (NEE), ecosystem respiration (ER), net primary productivity (NPP), and methane (CH,) flux to 18 parameters (KAce,
AceProdACmax, GrowAceMethanogens, GrowH2Methanogens, GrowRMethanotrophs, DeadAceMethanogens, DeadH2Methanogens,
DeadRMethanotrophs, YAceMethanogens, YH2Methanogens, YMethanotrophs, k_dom, dom_diffus, froot_leaf, flnr, grperc, bdnr, and
br_mr) for (a) Sanjiang Plain, (b)Changbai Mountain, and (c) Lesser Khingan Mountain. The symbols “+"and “-" indicate a 20%
increase or 20% decrease of parameter values. Darker red and darker blue indicate a stronger positive or negative model response
to a parameter change. S is negative if the direction of model response opposes the direction of a parameter change, and vice

versa.

vegetation composition (Figure 3). The dominant spe-
cies in the Sanjiang Plain are aerenchyma sedge plants,
while the Changbai Mountain is dominated by Carex
sphagnum and shrubs, and the Lesser Khingan
Mountain is dominated by sphagnum moss. There are
obvious differences in plant species and productivity
among wetland types, and this difference leads to dif-
ferences in CH, flux (Ding et al. 2002). Through the
simulation results of the model, we found that there is
a large difference in plant-mediated transport between
the three sites. The plant-mediated transport in the
Sanjiang Plain accounted for 23.96%, while in Lesser
Khingan Mountain only accounts for 0.003% of CH,
emissions (Figure 5). Plant species are important factors
influencing the ability of plants to transport CH,; (Sun
et al. 2012; Bhullar et al.,, 2014; Han et al. 2017; Lawrence
et al. 2017). Previous studies have pointed out that the
plant-mediated transport pathway of the C. lasiocarpa
wetland only accounts for about 30% of CH,4 emissions,
which is similar to our results (Sun et al. 2012; Ding, Cai,
and Wang 2004). In addition, not only due to the high

capacity for freshwater marsh plants to transport CH,
into the atmosphere but due to more plant litter inun-
dated in the standing water, which could provide sub-
strate for CH, production (Ding et al. 2002).

Through sensitivity analysis, we found that the rate of
microbial growth and death is a key constraint on CH,
dynamics in wetlands (Xiaofeng et al. 2015; Herndndez
et al. 2017). In the summer months, higher microbial
biomass was associated with a higher CH, flux in the
wetland (Figure 3 and Figure 4). The results implied that
a positive correlation existed between the microbial
biomass and CH, flux. Additionally, the microbial com-
position also has a significant impact on the methano-
genic pathway in wetlands (Xiaofeng et al. 2015;
Xueyang et al. 2020). The acetotrophic and hydrogeno-
trophic pathways have been reported to be the main
methanogenic pathway in most environments (Angle
et al. 2017; Thauer 1998; Zhang et al. 2019). Freshwater
marshes are dominated by hydrogenotrophic methano-
gens, while alpine peatlands are dominated by aceto-
clastic methanogens (Figure 4), which can indicate that
the Changbai Mountain and Lesser Khingan Mountain



are mainly produced by aceticlastically (by disproportio-
nation of acetate to CO, and CH,), and the Sanjiang
Plain is dominated by hydrogenotrophic methanogen-
esis (CO,+ H,) (Hernandez et al. 2017).

Model implications

This study has dual implications for model develop-
ment and understanding CH; mechanisms in natural
wetlands of northeastern China. The successful appli-
cation of the CLM-Microbe model in simulating CH,
flux in regions beyond of its original domain indicates
the feasibility of the model structure. Meanwhile, the
simulated dynamics of methanogenesis are consistent
with the CH, production, suggesting the microbial
dominance on CH,4 production. Many previous studies
reported the predominance of substrates or water
table on CH, flux (Whiting and Chanton 1993; Lipson
et al. 2012; Zona et al. 2009); the causes might be the
microbial responses to water table and ignorance of
microbial mechanisms in those studies. Further geno-
mic analysis in association with CH, processes should
provide critical information for model development
and validation (Xiaofeng et al. 2015).

The implication of CH,4 budget is primarily for the
wetlands in Northeast China. Northeast China features
the largest freshwater wetlands in China, and the nat-
ural wetlands can be found in mountains and plains.
The large C storage in these ecosystems will likely be
decomposed by microorganisms and released in the
form of CH, when the climate continues warming
(Song et al. 2012; Wang et al. 2017). In this study, the
CLM-Microbe model performed well in capturing the
variabilities in GPP and CH, flux for primary wetland
types in northeastern China, which emphasizes the
importance of spatial heterogeneity in simulating CH,
flux in wetland ecosystem CH, models. The simulated
differences in GPP and CH, emissions between fresh-
water wetlands and peatlands are consistent with pre-
vious studies (Sun et al. 2018; Xueyang et al. 2020).
Furthermore, the sensitivity analysis showed that the
photosynthetic (finr) and respiratory (br_mr) para-
meters of plants are highly sensitive at all sites.
Therefore, plant composition is one of the main rea-
sons for the difference in CH, emissions. In addition,
the peak CH,4 emission varies among different wetland
types, especially in Sanjiang Plain and Lesser Khingan
Mountain. The reason may be that Lesser Khingan
Mountain is located in the permafrost region, and the
methanogens reach their maximum activity at the end
of the growing season, thereby increasing the CH, flux
(Sun et al. 2018). Given the changing environment, the
differences in CH,4 flux among wetlands call for accu-
rate estimations of regional CH, flux at the regional
scale (Song et al. 2019).
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The prospect

With a modeling study, we found that environmental
factors affect CH, emission by influencing microbial
processes in the natural wetlands. The important role
of microorganisms in the wetland ecosystem was
demonstrated (Given and Dickinson 1975; He et al.,,
2021; Villa 2020; Wallenius et al. 2021; Xiaofeng et al.
2015; Xu et al., 2016; Zhang et al. 2020a). Although the
results of this paper prove that the CLM-Microbe
model can simulate the CH, flux in northern wetlands,
follow-up works are still needed. First, we have recog-
nized the importance of microorganisms in the pro-
duction and oxidation of CH,4 in wetlands; genomic
data in association with the microbial function should
be thus used for model parameterization. This allows
the model to more accurately capture the dynamics in
CH,4 production and oxidation. Second, with a warming
climate, the area of permafrost has shrunk, and the
active layer has deepened, which has caused
a substantial impact on the C budget in wetlands.
However, the scarcity of CH, flux data caused difficul-
ties in model validation and application. We call for the
monitoring of specific CH,4 processes and the establish-
ment of an open data platform, such as ChinaFLUX and
FLUXNET, to further develop the model.

Conclusions

We parameterized the CLM-Microbe model against the
field observational data of CO, and CH, flux in three
major wetland types in northeastern China and then
applied the model to understand processes and envir-
onmental factors affecting GPP and CH, flux at differ-
ent wetland types in northeastern China. The results
showed that the CLM-Microbe model was able to
reconstruct the observed GPP dynamics and CH, flux.
The modeled results showed that freshwater marsh
wetlands (Sanjiang Plain) have higher CH, emissions
than mountain peatlands (Changbai Mountain and
Lesser Khingan Mountain). However, Changbai
Mountain has the largest GPP, followed by Sanjiang
Plain, and Lesser Khingan Mountain has the smallest.
The model estimated that the main CH, flux transport
pathway in the wetland was ebullition at an annual
time scale. The modeled results showed that the fresh-
water marsh wetlands mainly use the hydrogeno-
trophic CH, production, and the mountain peatlands
mainly use the process of acetolactic CH, production.
Model sensitivity analysis determined that the growth
and death rate of microorganisms and the availability
of substrates are the most important factors in control-
ling CH,; emissions from wetland ecosystems.
Photosynthesis and respiration have a more significant
impact on GPP, NEE, ER, and NPP. QOur finding high-
lights the importance of explicit representation of
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microbial mechanisms on C cycling in northeastern
China, which will improve the simulation performance
of CH,4 cycling under climate change. Our results also
provide an important scientific basis for the quantifica-
tion and prediction of the CH, budget in wetland areas
in northeastern China.
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