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As enrollment in CS programs have risen, it has become increasingly
difficult for teaching staff to provide timely and detailed guidance on

student projects. To address this, instructors use automated assess- 1 INTRODUCTION
ment tools to evaluate students’ code and processes as they work. In computer science courses, projects are typically presented to
Even with automation, understanding students’ progress, and more students as a set of requirements, which they must implement. Eval-
importantly, if students are making the ‘right’ progress toward the uation of student work may include testing, both student-authored
solution is challenging at scale. To help students manage their time tests and teaching staff (TS) tests. To transform a set of requirements
and learn good software engineering processes, instructors may to code students must apply multiple cognitive and metacognitive
create intermediate deadlines, or milestones, to support progress. skills such as problem decomposition and goal setting [5] as well
However, student’s adherence to these processes is opaque and as core software development practices including code design, test
may hinder student success and instructional support. Better un- development, and debugging. This combination of skills may be
derstanding of how students follow process guidance in practice overwhelming to novices [8]. Instructors will often support stu-
is needed to identify the right assignment structures to support dents’ development processes by adding intermediate milestones
development of high-quality process skills. with earlier deadlines that break the overall project into stages.
We use data collected from an automated assessment tool, to Some examples include skeleton code, specific components such
calculate a set of 15 progress indicators to investigate which types of as an object hierarchy, or unit tests. This staging helps encourage
progress are being made during four stages of two projects in a CS2 the students to make useful progress rather than waiting until the
course. These stages are split up by milestones to help guide student last minute [16]. However the benefit of such approaches is lim-
activities. We show how looking at which progress indicators are ited by the rapid growth in CS enrollment [9], and by complex
triggered significantly more or less during each stage validates projects, which make it difficult to offer useful intermediate guid-
whether students are adhering to the goals of each milestone. We ance. Checking each student’s solution is simply infeasible in a
also find students trigger some progress indicators earlier on the large class. Instructors must cut down on the amount they assess
second project suggesting improving processes over time. by hand and thus, instructors have turned to automated assessment
tools to evaluate intermediate and final submissions [6].
CCS CONCEPTS Using automated assessment tools along with version control

systems such as GitHub allows us to collect data on students’ devel-
opment processes as well as their final performance [6, 7]. Edwards
and Li [1], for example, analyzed process data to design a set of 15
progress indicators for code projects. Each indicator focuses on a
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expectations. Knowing the types of progress students make at each
stage of a project can help TS tailor their feedback to help students
be more successful and adjust future iterations of the course.

2 RELATED WORK

A central focus to our study is defining progress through a post-hoc
analysis of progress indicators on student projects. In this section,
we cover background on automated assessment tools which can
support the live collection of progress indicators. Then, we discuss
prior work in defining student project progress.

2.1 Automated Assessment Tools

As enrollments have risen, so too has the grading workload for
instructional staff [14]. Instructors use automated assessment tools
(AAT) to reduce time grading, so instructional staff can focus on
student learning and help-seeking [6, 17]. One of the driving factors
for using an AAT is the ability to offer students immediate feedback,
typically written by the instructor, on their submission [14, 17]. If
the feedback is useful, then the students are able to learn what they
did incorrectly, correct the mistake, and re-submit for additional
feedback. However, if the feedback provided by the AAT is not
useful, then students may become discouraged in their ability to
code [15].

While the general goal of an AAT is to automatically grade sub-
missions, different AATs focus on different aspects of the process. In
their literature review, Souza et al. [17] show that AATs have differ-
ent assessment types, approaches, and specialties or customization.
The customization aspect offers a path to guide students [6] or to
collect the data for research purposes [11]. By collecting submis-
sion, build, and feedback data, there is opportunity to research how
students make progress on their solutions [14].

2.2 Progress Indicators

Edwards and Li [1] took the usage of AATs a step further and
proposed a set of 15 indicators for measuring student progress as
they work on a solution using historical project data. The indicators
are split into 2 categories: Indicators 1-7 are used for solution code
and Indicators 8-15 focus on test code and the execution of the
tests. Each indicator aims to capture when a single, potentially
productive activity happens. To determine if any of the indicators
are triggered, they compare the difference in build results between
consecutive submissions by a student on the AAT Web-CAT for a
given project. We define each indicator in Section 3.4.

These indicators have proven their usefulness in showing stu-
dent progress and promoting a growth mindset through the use
of recognition and encouraging feedback messages [2]. Addition-
ally, Edwards and Li extend their work by using these indicators
to gamify teaching non-course skills, such as time management or
planning, by allowing students to complete achievements and level
up based on their progress [3, 10].

3 METHODOLOGY

3.1 Course Background

The data for this study comes from the Fall 2020 offering of a CS2
course at North Carolina State University (NCSU) in Raleigh, a
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research intensive university in the mid-Atlantic United States. The
course is the second of a three-semester introductory computer
science sequence required for computer science majors and minors.
The main topics of the course are software engineering practices
(testing, coverage, static analysis, design), advanced OO (inheri-
tance, interfaces, abstract classes), finite state machines, linear data
structures (usage, implementation, testing, and runtime analysis),
recursion, and recursive linear data structures.

Students in the course were expected to complete 2 projects,
each of which are 22% of their final grade. Each project is split into
two parts: 1) design and system test plan and 2) implementation
and testing. For Part 1, students are expected to create a design
proposal and system test plan for a set of requirements. For the more
substantial Part 2, students are expected to implement a system
designed by the TS; a UML class diagram and high-level function
descriptions are provided. Implementation of a provided design
allows for automated feedback and grading using a custom AAT
[4]. Additionally, the TS writes unit test cases to evaluate the student
implementation of the design. The source code for these tests are
not provided to the students. For this study, we focus on Part 2 of
the projects.

Students submit and manage their projects using a GitHub! En-
terprise server. Each repository is associated with a job on the
Jenkins? continuous integration system. When a student makes a
new commit to GitHub, Jenkins pulls the repository, and runs an
Ant-driven build process that compiles the student source and test
code, runs static analysis tools (Checkstyle3, PMD?, SpotBugsS),
compiles the TS test cases against the student code to ensure they
are matching the public design, runs student-written tests instru-
mented for code coverage, runs TS test cases, and then provides
feedback to the student about the build results. If the build fails
during any of these steps, then the subsequent steps are not run.
There are checks that may stop the build. If the student has a PMD
notification for a poorly written test (e.g., assertTrue(true);),
the TS tests will not run.

Part 2 of the projects included two internal deadlines, called
process points, and a set of done criteria for the automatically graded
portion of the project. The process points help the student maintain
steady progress on the three week timeline for Part 2. For Fall 2020,
we define the process points and done criteria as the following
milestones:

e Milestone 1 - Process Points 1: Skeleton code that com-
piles, contains at least one test case, and is fully compatible
with Javadoc (i.e. it raises no checkstyle notifications). Due
about two weeks before the on-time deadline.

e Milestone 2 - Process Points 2: Student tests achieve 60%
statement coverage on solution code. Due about one week
before the on-time deadline.

e Milestone 3 - AAT Done Criteria: Student tests achieve
80% statement coverage, no static analysis notifications, all
tests passing (student and TS). Students achieving the AAT
Done Criteria see a green ball on Jenkins; however, they still

Lhttps://github.com/
https://www.jenkins.io/
Shttps://checkstyle.sourceforge.io/
“https://pmd.github.io/
Shttps://spotbugs.github.io/
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have documentation refinement and system testing tasks to
complete that are manually graded.

When a student achieves the 60% statement coverage, they ‘un-
lock’ feedback on the TS unit tests. Unlocking the TS unit tests
allows them to see the number of tests that are passing or failing
and for each failing test they receive a hint. This hint will give them
a broad overview of the test, typically the test scenario, and the
expected results. To receive full credit on the automatically graded
portion of the projects, students must complete the final AAT Done
Criteria milestone. Otherwise, students receive a percentage of
the grade item related to how much they were able to accomplish
towards the AAT Done Criteria.

While the process points had official deadlines where we eval-
uate the students’ progress, the achievement of the milestone ex-
pectations is independent of the deadlines and typically achieved
in the order provided. Thus we can define four stages of project
development:

e Stage 0: Any commit before achieving Milestone 1

e Stage 1: Any commit between Milestone 1 and Milestone 2,
inclusive of the commit that achieves Milestone 1

e Stage 2: Any commit between Milestone 2 and Milestone 3,
inclusive of the commit that achieves Milestone 2

e Stage 3: Any commit after achieving Milestone 3, inclusive
of the commit that achieves Milestone 3

The first project focused on implementing finite state machines
and the students worked individually. For the second project, stu-
dents had the option to work in pairs on implementing linear data
structures.

3.2 Participants

Our IRB approval covers the use of student data with a waiver of
consent. Students and their repositories were de-identified by re-
placing student emails and repositories with unique identifiers and
removing all other student specific information. Since we are ag-
gregating the progress indicators across all commits for all projects,
individual student demographic data is not collected for this study.
Table 1 shows we have a total of 495 repositories: 287 from Project
1 and 208 from Project 2.

3.3 Data Mining

The metrics for this study were collected after the semester con-
cluded using BUrLpDATACOLLECTOR®. BUILDDATACOLLECTOR iter-
ates over repositories and runs a modified build for each commit.
The build was modified from the one used for live evaluation to
remove any blocking steps so we can mine all information about
the student’s submission at each commit. After each build is fin-
ished, BuiLpDATACOLLECTOR gathers relevant build results from
the generated output files. This includes commit metadata, notifi-
cations from static analysis tools, passing or failing student and TS
test cases, coverage metrics from ]aCoCo7, and code counts from
CLOCS. The data are stored in a MySQL database.

The BuiLDDATACOLLECTOR collects raw build data. There are
several calculated metrics that are used to identify if a progress

Ohttps://github.com/SOS- CER/BuildDataCollector
https://www.jacoco.org/
8https://github.com/AlDanial/cloc
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indicator is triggered. We use the term ‘src’ to indicate a metric
associated with student-implemented solution code. Any metrics
associated with student-written test code is indicated with the term
‘test’. The TS provides all user interface code, so user interface files
are not included when calculating metrics. Most metrics are a sum
of all the items of that type in the ‘src’ or ‘test’ portions of the code.
For example, testAsserts is the sum of all assert statements in the
test code. The remaining calculated metrics are defined below. We
gathered the srcComplexMissed and srcComplexCovered metrics
through the complexity coverage measure from JaCoCo[18] as a
measure of the cyclomatic complexity.

e totalNotifications = count(Checkstyle) + count(PMD) +
count(SpotBugs) for src and test code
o srcComplex = srcComplexMissed + srcComplexCovered

ize — —srcCode
o srcMethodSize = srcMethods
e srcCommentDensity = srcComments
srcCode
e testSrcCodeRatio = LestCode
srcCadAe/I hod
ig — testMethods
e testSrcMethodRatio = L2 572078
e statementCoverage = SrcCodeCovered
" Zrcdc%de 4
_ srcMethodsCovered
o methodCoverage = SrcAéIethalds ; )
e conditionalCoverage = sreComplexCovered
srcComplex
ity = LestAsserts
¢ aSSErtDenszty ~ testMethods

After mining, we ran a script to calculate the progress indica-
tors triggered and if milestone conditions are met, regardless of
deadlines, for each commit.

3.4 Progress Indicators

The progress indicators (PI) rely on the metrics defined above gen-
erated from the mined data. To identify if an indicator is triggered,
we compare the associated metric of the student’s current commit
to their immediately prior commit. Depending on if the difference
in metric is positive or negative, the script records if the indicator
has been triggered or not. Some indicators are triggered on a posi-
tive change (e.g., increasing statement coverage), while others are
triggered by a negative change (e.g., decreasing test failures).

Our approach differs from how Edwards and Li [1] calculate
the metrics. Instead of computing the metrics on a commit by
commit basis, they keep track of the rolling maximum from the
four previous commits. Additionally, we aggregate the number of
commits an indicator triggers across all repositories for our analysis.

The progress indicators are split into two categories: 1-7 are for
solution code and 8-15 focus on test code and the execution of the
tests. We describe how we calculate each indicator:

Solution code indicators:

(1) Increase solution methods: The number of src methods,
srcMethods, increase.

(2) Removing static analysis errors: The number of static
analysis notifications, totalNotifications, decrease.

(3) Reducing cyclomatic complexity: The total src complex-
ity, srcComplex, decreases.

(4) Reducing average method size: The average lines of code
per method for src files, srcMethodSize, decreases.

(5) Increase comments density: The src comment to src code
ratio, srcCommentDensity, increases.


https://github.com/SOS-CER/BuildDataCollector
https://www.jacoco.org/
https://github.com/AlDanial/cloc

Session: Automated Assessment

SIGCSE ’22, March 3-5, 2022, Providence RI, USA

(6) Increase solution classes: The number of src classes, srcClasses, Table 1: Summary statistics comparing the commit counts;

increase.

(7) Increase correctness: The student passes more TS test
cases. Since we record the number of TS test failures, we
identify when the student is failing less TS test cases, or
failures decrease.

Test code and test execution indicators:

(8) Adding new test methods: The number of test methods,
testMethods, increase.

(9) Adding to existing tests: The test code to src code ratio,
testSrcCodeRatio, increases.

(10) Increase number of tests per method: The number of
test methods compared to src methods, testSrcMethodRatio,
increases.

(11) Increase statement coverage: The student-written unit
tests cover more of their src code, statementCoverage, than
it did before.

(12) Increase method coverage: The student-written unit tests
cover more of their src methods, methodCoverage, than be-
fore.

(13) Increase conditional coverage: The student-written tests

cover more of their conditional statements, conditionalCoverage,

than before.

(14) Increase assertion density: The number of assert state-
ments per test method, assertDensity, increases.

(15) Increase number of test classes: The number of test classes,
testClasses, increases.

3.5 Evaluation

For each indicator, we conducted two proportion z-tests [13] across
each pair of stages with Bonferroni correction [12]. The number
of commits in each stage act as the populations, while the percent
of commits where an indicator is triggered acts as the proportion.
These tests tell us whether a significant difference (Bonferroni cor-
rected p-value < 0.0083) exists between stages for each indicator.
Next, we looked to see if any of the stages were significantly differ-
ent from the other three. For each stage of the project, we look at
which indicators happen the most or least often and compare them
to the upcoming milestone deadline requirements. We conduct this
process for each of the two projects and discuss the differences
between them.

3.6 Threats to Validity

The data collected for this study comes from only a single semester,
Fall 2020, of the CS2 course. The Fall 2020 semester was impacted
by the COVID-19 pandemic. The pandemic caused a majority of the
semester to be conducted online which may affect how students
chose to work on their projects.

During the data mining process, before we conducted a full
mine of the data available, we validated our results by manually
assessing the data collected from a small set of student projects.
Additionally, we kept logs of when data mining script ran into errors
and resolved them on a case by case instance. The instructional
staff used the same build process and procedures for each of the
projects making the structure of the data similar which reduces
threats to instrumentation.
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the churn, or number of lines changed; the number of repos
that finished each stage; and the total commits in each stage
between the first and second projects.

l Project 1 l Project 2 l Overall

# Repos \ 287 | 208 | 495
Min commits 3 2 2
Median commits 67 85 74
Max commits 401 264 401
Avg. commits 72.4 100.8 84.3
Total commits 20,788 20,959 41,747
Min churn 0 0 0
25% 4 4 4
Median churn 12 12 12
75% 45 48 47
Max churn 4,256 4,428 4,428
Avg. churn per commit 62.3 58.5 60.4
# Repos finished in Stage 0 31 23 54
# Repos finished in Stage 1 6 3 9
# Repos finished in Stage 2 75 63 138
# Repos finished in Stage 3 175 119 294
Stage 0 total commits 5,931 6,177 | 12,108
Stage 1 total commits 1,382 1,658 3,040
Stage 2 total commits 12,392 12,477 24,869
Stage 3 total commits 1,083 647 1,730

4 RESULTS

Table 1 shows general commit; churn, or lines changed; and reposi-
tory information for each project and overall. For the first project,
we have 287 repositories with an average of 72.4 commits. The
second project includes 208 repositories with an average of 100.8
commits. We did not find a significant difference in results when
filtering out repositories with a large number of commits. The first
project was completed individually and the second project was op-
tional pairs, leading to fewer repositories. We notice that a majority
of the commits had low churn; however, the average is dominated
by a handful of large commits, for example committing TS provided
UI code.

4.1 RQ1: Progress Indicators by Stage

For RQ1, we aggregated the commits for all repositories by stages.
The bottom of Table 1 shows how many commits occurred in each
stage for each project and overall. Most student work occurred in
Stage 0, 29% of the overall commits, and Stage 2, 60% of the overall
commits.

Table 2 shows the percentage of commits that triggered a given
progress indicator for each of the stages for both projects. The
italics indicates which of the proportions are significantly different
from all other stages for a given indicator (p-value < 0.05).

4.1.1 Stage 0. During Stage 0 of both projects, the increasing solu-
tion methods (PI-01), reducing average method size (PI-04), adding
new test methods (PI-08), increasing tests per method (PI-10), and
increasing test classes (PI-15) indicators were triggered more than
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Table 2: Percent of commits per stage that trigger each indicator. A "+" depicts an increase in each indicator, whereas a
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depicts a decrease. Italicized values show an indicator proportion is significantly different than all other stages (p-value <
0.0083). Bold values highlight the stages each indicator is triggered more often in.

Project 1 - Stages Project 2 - Stages
Indicator 0 1 2 3 0 1 2 3
PI-01 + solution methods 16.7% 45%  0.9% 1.5% || 18.1% 50%  2.0% 1.2%
PI-02 - static analysis notifcations || 17.2% 39.9% 14.4% 11.7% || 12.3% 32.3% 14.8% 10.2%
PI-03 - cyclomatic complexity 48% 87% 9.1%  5.3% 52% 9.5% 11.8% 4.0%
PI-04 - avg. method size 18.3% 11.8% 15.1% 13.3% || 21.4% 10.0% 17.4% 11.1%
PI-05 + comment density 22.0% 20.2% 179% 20.5% || 30.0% 20.0% 22.6% 22.9%
PI-06 + solution classes 55% 93% 11% 04% 35% 86% 19% 0.8%
PI-07  + correctness 15.7% 28.2% 30.1% 12.9% || 15.6% 26.8% 37.0% 11.1%
PI-08 + test methods 17.0% 17.7%  75%  7.2% || 14.1% 14.2% 73% 4.8%
PI-09 + test code 26.0% 37.0% 31.8% 32.9% | 23.4% 42.6% 34.8% 25.8%
PI-10  + tests per method 13.9% 20.8% 83%  8.0% | 10.4% 15.5% 8.0% 6.3%
PI-11 + statement coverage 16.1% 21.8% 39.6% 28.5% || 14.2% 27.1% 354% 19.9%
PI-12  + method coverage 8.8% 19.4%  13.5% 5.6% 7.9% 259% 12.6%  6.2%
PI-13  + conditional coverage 13.1% 211% 29.4% 213% || 12.3% 27.0% 27.9% 16.7%
PI-14 + assertion density 13.1% 31.1% 181% 17.5% || 10.8% 37.9% 17.4% 13.4%
PI-15 + test classes 11.7% 8.5% 0.9% 0.7% || 10.2% 8.0% 1.6% 0.8%

they were in other stages of the project. These indicators are asso-
ciated with the structure of the code rather than the functionality.
The coverage indicators (PI-09, PI-11, PI-12, and PI-14) on the other
hand were triggered less often in Stage 0. Since Milestone 1 requires
a compiling skeleton and at least one test class, it makes sense that
students are triggering the structural indicators and not the cover-
age indicators. While most indicators are similar for both projects,
Project 2 triggers increasing comment density (PI-05) more often
(30.0%) during this stage compared to Project 1 (22.0%).

Both PI-01 and PI-15 are triggered statistically more often in
Stage 0 and decline thereafter. These indicators are related to skele-
tal pieces of code required for the first compilation milestone. While
PI-08 and PI-10 are triggered often in this stage as well, they are not
significantly different from all other stages. Each of these indicators
are triggered more in Stages 0 and 1 relative to Stages 2 and 3.

4.1.2  Stage 1. Despite only including a small portion of the total
commits (7.3%), Stage 1 saw several indicators being triggered more
often than other stages: removing static analysis errors (PI-02),
reducing cyclomatic complexity (PI-03), increasing solution classes
(PI-06), increasing correctness (PI-07), adding new test methods
(P1-08), adding to existing tests (PI-09), increasing tests per method
(PI-10), increasing method coverage (PI-12), increasing conditional
coverage (PI-13), and increasing assertion density (PI-14).

PI-02 is triggered significantly more often in this stage. This
makes sense as the static analysis feedback is hidden from students
until their code compiles, which is one of the conditions to pass
Milestone 1. We still expect to see some commits trigger this indica-
tor in Stage 0 since students are required to have zero CheckStyle
notifications before completing Milestone 1. However, students
may put off fixing notifications from the other static analysis tools
until after they have achieved Milestone 1.

For PI-06, we may expect to see this commit follow the trend of
PI-01 and PI-15 and be triggered more often in Stage 0; however,
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it is triggered significantly more often in Stage 1. Students are
required to implement inner classes that are part of a state pattern
for Project 1 and a linked list for Project 2 and they may hold off
on creating these private inner classes until they have a compiling
public skeleton.

We see a lot of commits trigger the testing and coverage indica-
tors at this stage. PI-08 and PI-10 are triggered more often in the
first two stages compared to the latter stages. PI-09, PI-12, and PI-14
are all triggered significantly more often in Stage 1. This implies
the students are working on their test suite to meet the Milestone
2 coverage expectation.

Lastly, PI-07 is triggered more often in this stage compared to the
first and last stage, but not Stage 2. Since the students are passing
more tests, this implies they are making progress on their solution.
PI-11 follows a similar trend to PI-07, but only for Project 2. We
discuss this more in Section 4.2.

4.1.3 Stage 2. Stage 2 is where the bulk of the total commits hap-
pened (59.6%). In this stage, the indicators triggered the most often
compared to other stages were: reducing cyclomatic complexity
(PI-03), reducing average method size (PI-04), increasing correct-
ness (PI-07), adding to existing tests (PI-09), increasing statement
coverage (PI-11), and increasing conditional coverage (PI-13). The
theme of these indicators are driven by testing, both TS and student-
written tests, and the refinement of the solution code. We see in-
dicators related to the increases in methods (PI-01 and PI-08) or
classes (PI-06 and PI-15) triggered significantly less beginning in
this stage. These reflect changes to the structure of the code, which
we do not expect to see this far along in the projects.

For PI-07, PI-11, and PI-13, we see an increase in trigger rate
leading up to the peak in Stage 2. Then, these indicators see a sharp
decline in trigger rate during the final stage. These indicators are
related to passing tests and achieving statement coverage, which
are key elements to reaching Milestone 3 and entering Stage 3.
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While PI-09 was triggered significantly more often in Stage 1, we
still see many commits triggering this indicator in Stage 2, suggest-
ing that students are refining or adding to their tests from feedback
on TS test failures. PI-03 and PI-04 are indicators associated with
refining solution code, which would likely happen as students work
on fixing failures associated with TS unit tests.

4.1.4 Stage 3. Finally, Stage 3 saw the least amount of commits
overall (4.1%). Again, we see the indicators related to structure
are triggered much less (PI-01, PI-06, PI-08, and PI-15). Addition-
ally, removing static analysis errors (PI-02), reducing cyclomatic
complexity (PI-03), and increasing tests per method (PI-10) are all
triggered less during this stage. Students in Stage 3 have already
completed their test suite and removed all static analysis notifica-
tions per Milestone 3.

We do see PI-07, increasing correctness, triggered some in this
stage, even though students should already be passing 100% of TS
unit tests per Milestone 3. After manually checking the data, we
notice that a few students achieve Milestone 3, and thus may move
into Stage 3; however, while they are cleaning up their code before
the final submission, they make a breaking change and need to fix
their code. Thus, they trigger PI-07 when fixing the test failure.

There are only two indicators that happen more often compared
to other stages. They are adding to existing tests (PI-09) and in-
creasing statement coverage (PI-11). The students are not required
to go beyond the 80% statement coverage threshold, but we noticed
many students went above this.

4.2 RQ2: Progress Indicator Project Differences

For most of the progress indicators, the values and the trends were
relatively similar across projects, we will highlight the differences
between Project 1 and Project 2 here to answer RQ2.

During Project 1, fewer commits triggered the increasing com-
ment density (PI-05) during Stage 0 when compared to Project 2:
22.0% for Project 1 and 30.0% for Project 2. Approximately one third
of the students lost points on Project 1 from CheckStyle notifica-
tions relating to Javadocing their code. Project 2 saw fewer students
miss the points associated with these notifications. This implies the
students learned from their mistakes on the first project.

Additionally, there is a difference between projects related to
increasing statement coverage (PI-11). Project 1 saw students focus-
ing on statement coverage during Stages 2 and 3; whereas, Project
2 saw students focusing on statement coverage more during Stages
1 and 2. After Project 1, students may have realized the importance
of statement coverage as a metric of evaluation and changed their
focus to the metric earlier in the project.

Evaluating over both projects do not yield significantly different
results to what we have already shown and thus, we excluded those
for space.

5 DISCUSSION

Overall, the progress indicators demonstrate that students in the
CS2 course are making the appropriate and intended progress dur-
ing the stages of their software development projects. Since one
of the goals of our project is to encourage best practices for soft-
ware development, the patterns of progress indicators suggest that
students are meeting those expectations.
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However, the progress indicators, in their current form, only
tell part of the story about student progress toward solution for
programming projects. In particular, the solution indicators lack
an indicator for when the solution code increases. The focus of
the progress indicators is on perfecting almost complete student
solutions rather than building up to a solution. Therefore, in Stage 1,
the triggered indicators are related to improving the test portion of
the code, but provide no details about the effort students are putting
into the solution portion of the code. The intention of Stage 1 is
that students are working on both solution and test, but students
may focus on test to achieve coverage and hold on implementing
solution until Stage 2. With the indicators in their current form,
we are unable to check whether or not this unwanted behavior is
occurring. Additional indicators may be needed to provide clarity
on what might be forward progress in different stages of the project.
During the start of the project, solution code should be increasing.
Later in project, we would expect refinement related to reducing
cyclomatic complexity (PI-03) and reducing average method size
(P1-04).

Additional refinement of the indicators to measure different
types of progress at various stages of software development would
then allow us to support new feedback mechanisms. For example, if
students were not implementing solution code in Stage 1, the build
process could include feedback with suggestions on where to focus
effort for the project. The majority of work occurs in Stage 2, so
an adjustment of expectations as measured by progress indicators,
may help balance the workload for students.

Edwards and Li [1] identified that commits or submissions that
triggered six of the 15 indicators suggested that students were
making progress on a programming assignment as part of their
evaluation on the suitability of the progress indicators for use. The
assignment considered, to our knowledge, did not have stages as
defined in our study and therefore, the analysis of the indicators trig-
gered at the start, middle, and end of the project was not considered.
We build on the existing progress indicator work by considering
how the indicators can support the identification of positive stu-
dent behaviors when completing programming tasks across the
development timeline.

6 CONCLUSION

We observed patterns in the type of progress students make that
reflect the expectations for each milestone. We saw this with skeletal
progress in Stage 0, statement coverage progress in Stage 1, and
test-focused progress in Stage 2. Additionally, we saw students
commenting their code more often in Stage 0 of Project 2 and the
students started working on coverage earlier in Project 2’s life cycle
compared to the first project suggesting improved development
processes.

The next steps for this research are to validate our results against
other offerings of the same course that have similar milestone spec-
ifications and compare student performance to the indicators being
triggered at each stage. Additionally, we can compare our results
with course offerings that contain different milestone definitions
or different types of feedback mechanisms.
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