
Characterizing Student Development Progress: Validating
Student Adherence to Project Milestones

Bradley Erickson

North Carolina State University

Raleigh, NC, USA

bericks@ncsu.edu

Sarah Heckman

North Carolina State University

Raleigh, NC, USA

sarah_heckman@ncsu.edu

Collin F. Lynch

North Carolina State University

Raleigh, NC, USA

cflynch@ncsu.edu

ABSTRACT
As enrollment in CS programs have risen, it has become increasingly

difficult for teaching staff to provide timely and detailed guidance on

student projects. To address this, instructors use automated assess-

ment tools to evaluate students’ code and processes as they work.

Even with automation, understanding students’ progress, and more

importantly, if students are making the ‘right’ progress toward the

solution is challenging at scale. To help students manage their time

and learn good software engineering processes, instructors may

create intermediate deadlines, or milestones, to support progress.

However, student’s adherence to these processes is opaque and

may hinder student success and instructional support. Better un-

derstanding of how students follow process guidance in practice

is needed to identify the right assignment structures to support

development of high-quality process skills.

We use data collected from an automated assessment tool, to

calculate a set of 15 progress indicators to investigate which types of

progress are being made during four stages of two projects in a CS2

course. These stages are split up by milestones to help guide student

activities. We show how looking at which progress indicators are

triggered significantly more or less during each stage validates

whether students are adhering to the goals of each milestone. We

also find students trigger some progress indicators earlier on the

second project suggesting improving processes over time.

CCS CONCEPTS
• Social and professional topics→ Student assessment; • Soft-
ware and its engineering→ Software development techniques;
• Applied computing → Computer-assisted instruction.

KEYWORDS
CS2; Automated assessment tools; Progress indicators

ACM Reference Format:
Bradley Erickson, Sarah Heckman, and Collin F. Lynch. 2022. Characterizing

Student Development Progress: Validating Student Adherence to Project

Milestones. In Proceedings of the 53rd ACM Technical Symposium on Com-
puter Science Education V. 1 (SIGCSE 2022), March 3–5, 2022, Providence, RI,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGCSE 2022, March 3–5, 2022, Providence, RI, USA.
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9070-5/22/03. . . $15.00

https://doi.org/10.1145/3478431.3499373

USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3478431.

3499373

1 INTRODUCTION
In computer science courses, projects are typically presented to

students as a set of requirements, which they must implement. Eval-

uation of student work may include testing, both student-authored

tests and teaching staff (TS) tests. To transform a set of requirements

to code students must apply multiple cognitive and metacognitive

skills such as problem decomposition and goal setting [5] as well

as core software development practices including code design, test

development, and debugging. This combination of skills may be

overwhelming to novices [8]. Instructors will often support stu-

dents’ development processes by adding intermediate milestones

with earlier deadlines that break the overall project into stages.

Some examples include skeleton code, specific components such

as an object hierarchy, or unit tests. This staging helps encourage

the students to make useful progress rather than waiting until the

last minute [16]. However the benefit of such approaches is lim-

ited by the rapid growth in CS enrollment [9], and by complex

projects, which make it difficult to offer useful intermediate guid-

ance. Checking each student’s solution is simply infeasible in a

large class. Instructors must cut down on the amount they assess

by hand and thus, instructors have turned to automated assessment

tools to evaluate intermediate and final submissions [6].

Using automated assessment tools along with version control

systems such as GitHub allows us to collect data on students’ devel-

opment processes as well as their final performance [6, 7]. Edwards

and Li [1], for example, analyzed process data to design a set of 15

progress indicators for code projects. Each indicator focuses on a

single metric of productive activity, such as removing static analysis

notifications or passing a previously failing unit test. In this work

we analyze the evolution of these indicators across all students in

a CS2 course over four stages of two projects. For each indicator,

we determine whether or not there was a statistically-significant

difference between the number of commits where the indicator was

triggered during each stage.

In this paper we focus on the following research questions:

• RQ1: What types of progress indicators do students trigger

during each stage of the project and how do they correspond

to the expectations at each stage?

• RQ2:What differences exist in how the indicators are trig-

gered between different projects either stage by stage or

overall?

Our goal in this study is to gain a deeper understanding of how

students make progress on their programming projects and how

we can validate whether or not students adhere to the milestone

Session: Automated Assessment SIGCSE ’22, March 3–5, 2022, Providence RI, USA

15

https://doi.org/10.1145/3478431.3499373
https://doi.org/10.1145/3478431.3499373
https://doi.org/10.1145/3478431.3499373

expectations. Knowing the types of progress students make at each

stage of a project can help TS tailor their feedback to help students

be more successful and adjust future iterations of the course.

2 RELATEDWORK
A central focus to our study is defining progress through a post-hoc

analysis of progress indicators on student projects. In this section,

we cover background on automated assessment tools which can

support the live collection of progress indicators. Then, we discuss

prior work in defining student project progress.

2.1 Automated Assessment Tools
As enrollments have risen, so too has the grading workload for

instructional staff [14]. Instructors use automated assessment tools

(AAT) to reduce time grading, so instructional staff can focus on

student learning and help-seeking [6, 17]. One of the driving factors

for using an AAT is the ability to offer students immediate feedback,

typically written by the instructor, on their submission [14, 17]. If

the feedback is useful, then the students are able to learn what they

did incorrectly, correct the mistake, and re-submit for additional

feedback. However, if the feedback provided by the AAT is not

useful, then students may become discouraged in their ability to

code [15].

While the general goal of an AAT is to automatically grade sub-

missions, different AATs focus on different aspects of the process. In

their literature review, Souza et al. [17] show that AATs have differ-

ent assessment types, approaches, and specialties or customization.

The customization aspect offers a path to guide students [6] or to

collect the data for research purposes [11]. By collecting submis-

sion, build, and feedback data, there is opportunity to research how

students make progress on their solutions [14].

2.2 Progress Indicators
Edwards and Li [1] took the usage of AATs a step further and

proposed a set of 15 indicators for measuring student progress as

they work on a solution using historical project data. The indicators

are split into 2 categories: Indicators 1-7 are used for solution code

and Indicators 8-15 focus on test code and the execution of the

tests. Each indicator aims to capture when a single, potentially

productive activity happens. To determine if any of the indicators

are triggered, they compare the difference in build results between

consecutive submissions by a student on the AAT Web-CAT for a

given project. We define each indicator in Section 3.4.

These indicators have proven their usefulness in showing stu-

dent progress and promoting a growth mindset through the use

of recognition and encouraging feedback messages [2]. Addition-

ally, Edwards and Li extend their work by using these indicators

to gamify teaching non-course skills, such as time management or

planning, by allowing students to complete achievements and level

up based on their progress [3, 10].

3 METHODOLOGY
3.1 Course Background
The data for this study comes from the Fall 2020 offering of a CS2

course at North Carolina State University (NCSU) in Raleigh, a

research intensive university in the mid-Atlantic United States. The

course is the second of a three-semester introductory computer

science sequence required for computer science majors and minors.

The main topics of the course are software engineering practices

(testing, coverage, static analysis, design), advanced OO (inheri-

tance, interfaces, abstract classes), finite state machines, linear data

structures (usage, implementation, testing, and runtime analysis),

recursion, and recursive linear data structures.

Students in the course were expected to complete 2 projects,

each of which are 22% of their final grade. Each project is split into

two parts: 1) design and system test plan and 2) implementation

and testing. For Part 1, students are expected to create a design

proposal and system test plan for a set of requirements. For themore

substantial Part 2, students are expected to implement a system

designed by the TS; a UML class diagram and high-level function

descriptions are provided. Implementation of a provided design

allows for automated feedback and grading using a custom AAT

[4]. Additionally, the TSwrites unit test cases to evaluate the student

implementation of the design. The source code for these tests are

not provided to the students. For this study, we focus on Part 2 of

the projects.

Students submit and manage their projects using a GitHub
1
En-

terprise server. Each repository is associated with a job on the

Jenkins
2
continuous integration system. When a student makes a

new commit to GitHub, Jenkins pulls the repository, and runs an

Ant-driven build process that compiles the student source and test

code, runs static analysis tools (Checkstyle
3
, PMD

4
, SpotBugs

5
),

compiles the TS test cases against the student code to ensure they

are matching the public design, runs student-written tests instru-

mented for code coverage, runs TS test cases, and then provides

feedback to the student about the build results. If the build fails

during any of these steps, then the subsequent steps are not run.

There are checks that may stop the build. If the student has a PMD

notification for a poorly written test (e.g., assertTrue(true);),
the TS tests will not run.

Part 2 of the projects included two internal deadlines, called

process points, and a set of done criteria for the automatically graded

portion of the project. The process points help the student maintain

steady progress on the three week timeline for Part 2. For Fall 2020,

we define the process points and done criteria as the following

milestones:

• Milestone 1 - Process Points 1: Skeleton code that com-

piles, contains at least one test case, and is fully compatible

with Javadoc (i.e. it raises no checkstyle notifications). Due

about two weeks before the on-time deadline.

• Milestone 2 - Process Points 2: Student tests achieve 60%
statement coverage on solution code. Due about one week

before the on-time deadline.

• Milestone 3 - AAT Done Criteria: Student tests achieve
80% statement coverage, no static analysis notifications, all

tests passing (student and TS). Students achieving the AAT

Done Criteria see a green ball on Jenkins; however, they still

1
https://github.com/

2
https://www.jenkins.io/

3
https://checkstyle.sourceforge.io/

4
https://pmd.github.io/

5
https://spotbugs.github.io/

Session: Automated Assessment SIGCSE ’22, March 3–5, 2022, Providence RI, USA

16

https://github.com/
https://www.jenkins.io/
https://checkstyle.sourceforge.io/
https://pmd.github.io/
https://spotbugs.github.io/

have documentation refinement and system testing tasks to

complete that are manually graded.

When a student achieves the 60% statement coverage, they ‘un-

lock’ feedback on the TS unit tests. Unlocking the TS unit tests

allows them to see the number of tests that are passing or failing

and for each failing test they receive a hint. This hint will give them

a broad overview of the test, typically the test scenario, and the

expected results. To receive full credit on the automatically graded

portion of the projects, students must complete the final AAT Done

Criteria milestone. Otherwise, students receive a percentage of

the grade item related to how much they were able to accomplish

towards the AAT Done Criteria.

While the process points had official deadlines where we eval-

uate the students’ progress, the achievement of the milestone ex-

pectations is independent of the deadlines and typically achieved

in the order provided. Thus we can define four stages of project

development:

• Stage 0: Any commit before achieving Milestone 1

• Stage 1: Any commit between Milestone 1 and Milestone 2,

inclusive of the commit that achieves Milestone 1

• Stage 2: Any commit between Milestone 2 and Milestone 3,

inclusive of the commit that achieves Milestone 2

• Stage 3: Any commit after achieving Milestone 3, inclusive

of the commit that achieves Milestone 3

The first project focused on implementing finite state machines

and the students worked individually. For the second project, stu-

dents had the option to work in pairs on implementing linear data

structures.

3.2 Participants
Our IRB approval covers the use of student data with a waiver of

consent. Students and their repositories were de-identified by re-

placing student emails and repositories with unique identifiers and

removing all other student specific information. Since we are ag-

gregating the progress indicators across all commits for all projects,

individual student demographic data is not collected for this study.

Table 1 shows we have a total of 495 repositories: 287 from Project

1 and 208 from Project 2.

3.3 Data Mining
The metrics for this study were collected after the semester con-

cluded using BuildDataCollector
6
. BuildDataCollector iter-

ates over repositories and runs a modified build for each commit.

The build was modified from the one used for live evaluation to

remove any blocking steps so we can mine all information about

the student’s submission at each commit. After each build is fin-

ished, BuildDataCollector gathers relevant build results from

the generated output files. This includes commit metadata, notifi-

cations from static analysis tools, passing or failing student and TS

test cases, coverage metrics from JaCoCo
7
, and code counts from

CLOC
8
. The data are stored in a MySQL database.

The BuildDataCollector collects raw build data. There are

several calculated metrics that are used to identify if a progress

6
https://github.com/SOS-CER/BuildDataCollector

7
https://www.jacoco.org/

8
https://github.com/AlDanial/cloc

indicator is triggered. We use the term ‘src’ to indicate a metric

associated with student-implemented solution code. Any metrics

associated with student-written test code is indicated with the term

‘test’. The TS provides all user interface code, so user interface files

are not included when calculating metrics. Most metrics are a sum

of all the items of that type in the ‘src’ or ‘test’ portions of the code.

For example, 𝑡𝑒𝑠𝑡𝐴𝑠𝑠𝑒𝑟𝑡𝑠 is the sum of all assert statements in the

test code. The remaining calculated metrics are defined below. We

gathered the 𝑠𝑟𝑐𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑀𝑖𝑠𝑠𝑒𝑑 and 𝑠𝑟𝑐𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝐶𝑜𝑣𝑒𝑟𝑒𝑑 metrics

through the complexity coverage measure from JaCoCo[18] as a

measure of the cyclomatic complexity.

• 𝑡𝑜𝑡𝑎𝑙𝑁𝑜𝑡𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 = 𝑐𝑜𝑢𝑛𝑡 (𝐶ℎ𝑒𝑐𝑘𝑠𝑡𝑦𝑙𝑒) + 𝑐𝑜𝑢𝑛𝑡 (𝑃𝑀𝐷) +
𝑐𝑜𝑢𝑛𝑡 (𝑆𝑝𝑜𝑡𝐵𝑢𝑔𝑠) for src and test code

• 𝑠𝑟𝑐𝐶𝑜𝑚𝑝𝑙𝑒𝑥 = 𝑠𝑟𝑐𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑀𝑖𝑠𝑠𝑒𝑑 + 𝑠𝑟𝑐𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝐶𝑜𝑣𝑒𝑟𝑒𝑑

• 𝑠𝑟𝑐𝑀𝑒𝑡ℎ𝑜𝑑𝑆𝑖𝑧𝑒 = 𝑠𝑟𝑐𝐶𝑜𝑑𝑒
𝑠𝑟𝑐𝑀𝑒𝑡ℎ𝑜𝑑𝑠

• 𝑠𝑟𝑐𝐶𝑜𝑚𝑚𝑒𝑛𝑡𝐷𝑒𝑛𝑠𝑖𝑡𝑦 = 𝑠𝑟𝑐𝐶𝑜𝑚𝑚𝑒𝑛𝑡𝑠
𝑠𝑟𝑐𝐶𝑜𝑑𝑒

• 𝑡𝑒𝑠𝑡𝑆𝑟𝑐𝐶𝑜𝑑𝑒𝑅𝑎𝑡𝑖𝑜 = 𝑡𝑒𝑠𝑡𝐶𝑜𝑑𝑒
𝑠𝑟𝑐𝐶𝑜𝑑𝑒

• 𝑡𝑒𝑠𝑡𝑆𝑟𝑐𝑀𝑒𝑡ℎ𝑜𝑑𝑅𝑎𝑡𝑖𝑜 = 𝑡𝑒𝑠𝑡𝑀𝑒𝑡ℎ𝑜𝑑𝑠
𝑠𝑟𝑐𝑀𝑒𝑡ℎ𝑜𝑑𝑠

• 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = 𝑠𝑟𝑐𝐶𝑜𝑑𝑒𝐶𝑜𝑣𝑒𝑟𝑒𝑑
𝑠𝑟𝑐𝐶𝑜𝑑𝑒

• 𝑚𝑒𝑡ℎ𝑜𝑑𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = 𝑠𝑟𝑐𝑀𝑒𝑡ℎ𝑜𝑑𝑠𝐶𝑜𝑣𝑒𝑟𝑒𝑑
𝑠𝑟𝑐𝑀𝑒𝑡ℎ𝑜𝑑𝑠

• 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑠𝑟𝑐𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝐶𝑜𝑣𝑒𝑟𝑒𝑑

𝑠𝑟𝑐𝐶𝑜𝑚𝑝𝑙𝑒𝑥

• 𝑎𝑠𝑠𝑒𝑟𝑡𝐷𝑒𝑛𝑠𝑖𝑡𝑦 = 𝑡𝑒𝑠𝑡𝐴𝑠𝑠𝑒𝑟𝑡𝑠
𝑡𝑒𝑠𝑡𝑀𝑒𝑡ℎ𝑜𝑑𝑠

After mining, we ran a script to calculate the progress indica-

tors triggered and if milestone conditions are met, regardless of

deadlines, for each commit.

3.4 Progress Indicators
The progress indicators (PI) rely on the metrics defined above gen-

erated from the mined data. To identify if an indicator is triggered,

we compare the associated metric of the student’s current commit

to their immediately prior commit. Depending on if the difference

in metric is positive or negative, the script records if the indicator

has been triggered or not. Some indicators are triggered on a posi-

tive change (e.g., increasing statement coverage), while others are

triggered by a negative change (e.g., decreasing test failures).

Our approach differs from how Edwards and Li [1] calculate

the metrics. Instead of computing the metrics on a commit by

commit basis, they keep track of the rolling maximum from the

four previous commits. Additionally, we aggregate the number of

commits an indicator triggers across all repositories for our analysis.

The progress indicators are split into two categories: 1-7 are for

solution code and 8-15 focus on test code and the execution of the

tests. We describe how we calculate each indicator:

Solution code indicators:

(1) Increase solution methods: The number of src methods,

𝑠𝑟𝑐𝑀𝑒𝑡ℎ𝑜𝑑𝑠 , increase.

(2) Removing static analysis errors: The number of static

analysis notifications, 𝑡𝑜𝑡𝑎𝑙𝑁𝑜𝑡𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 , decrease.

(3) Reducing cyclomatic complexity: The total src complex-

ity, 𝑠𝑟𝑐𝐶𝑜𝑚𝑝𝑙𝑒𝑥 , decreases.

(4) Reducing average method size: The average lines of code
per method for src files, 𝑠𝑟𝑐𝑀𝑒𝑡ℎ𝑜𝑑𝑆𝑖𝑧𝑒 , decreases.

(5) Increase comments density: The src comment to src code

ratio, 𝑠𝑟𝑐𝐶𝑜𝑚𝑚𝑒𝑛𝑡𝐷𝑒𝑛𝑠𝑖𝑡𝑦, increases.

Session: Automated Assessment SIGCSE ’22, March 3–5, 2022, Providence RI, USA

17

https://github.com/SOS-CER/BuildDataCollector
https://www.jacoco.org/
https://github.com/AlDanial/cloc

(6) Increase solution classes:The number of src classes, 𝑠𝑟𝑐𝐶𝑙𝑎𝑠𝑠𝑒𝑠 ,

increase.

(7) Increase correctness: The student passes more TS test

cases. Since we record the number of TS test failures, we

identify when the student is failing less TS test cases, or

𝑓 𝑎𝑖𝑙𝑢𝑟𝑒𝑠 decrease.

Test code and test execution indicators:

(8) Adding new test methods: The number of test methods,

𝑡𝑒𝑠𝑡𝑀𝑒𝑡ℎ𝑜𝑑𝑠 , increase.

(9) Adding to existing tests: The test code to src code ratio,

𝑡𝑒𝑠𝑡𝑆𝑟𝑐𝐶𝑜𝑑𝑒𝑅𝑎𝑡𝑖𝑜 , increases.

(10) Increase number of tests per method: The number of

test methods compared to src methods, 𝑡𝑒𝑠𝑡𝑆𝑟𝑐𝑀𝑒𝑡ℎ𝑜𝑑𝑅𝑎𝑡𝑖𝑜 ,

increases.

(11) Increase statement coverage: The student-written unit

tests cover more of their src code, 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 , than

it did before.

(12) Increase method coverage: The student-written unit tests

cover more of their src methods,𝑚𝑒𝑡ℎ𝑜𝑑𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 , than be-

fore.

(13) Increase conditional coverage: The student-written tests

covermore of their conditional statements, 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 ,

than before.

(14) Increase assertion density: The number of assert state-

ments per test method, 𝑎𝑠𝑠𝑒𝑟𝑡𝐷𝑒𝑛𝑠𝑖𝑡𝑦, increases.

(15) Increase number of test classes:The number of test classes,

𝑡𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠𝑒𝑠 , increases.

3.5 Evaluation
For each indicator, we conducted two proportion z-tests [13] across

each pair of stages with Bonferroni correction [12]. The number

of commits in each stage act as the populations, while the percent

of commits where an indicator is triggered acts as the proportion.

These tests tell us whether a significant difference (Bonferroni cor-

rected p-value < 0.0083) exists between stages for each indicator.

Next, we looked to see if any of the stages were significantly differ-

ent from the other three. For each stage of the project, we look at

which indicators happen the most or least often and compare them

to the upcoming milestone deadline requirements. We conduct this

process for each of the two projects and discuss the differences

between them.

3.6 Threats to Validity
The data collected for this study comes from only a single semester,

Fall 2020, of the CS2 course. The Fall 2020 semester was impacted

by the COVID-19 pandemic. The pandemic caused a majority of the

semester to be conducted online which may affect how students

chose to work on their projects.

During the data mining process, before we conducted a full

mine of the data available, we validated our results by manually

assessing the data collected from a small set of student projects.

Additionally, we kept logs of when datamining script ran into errors

and resolved them on a case by case instance. The instructional

staff used the same build process and procedures for each of the

projects making the structure of the data similar which reduces

threats to instrumentation.

Table 1: Summary statistics comparing the commit counts;
the churn, or number of lines changed; the number of repos
that finished each stage; and the total commits in each stage
between the first and second projects.

Project 1 Project 2 Overall

Repos 287 208 495

Min commits 3 2 2

Median commits 67 85 74

Max commits 401 264 401

Avg. commits 72.4 100.8 84.3

Total commits 20,788 20,959 41,747

Min churn 0 0 0

25% 4 4 4

Median churn 12 12 12

75% 45 48 47

Max churn 4,256 4,428 4,428

Avg. churn per commit 62.3 58.5 60.4

Repos finished in Stage 0 31 23 54

Repos finished in Stage 1 6 3 9

Repos finished in Stage 2 75 63 138

Repos finished in Stage 3 175 119 294

Stage 0 total commits 5,931 6,177 12,108

Stage 1 total commits 1,382 1,658 3,040

Stage 2 total commits 12,392 12,477 24,869

Stage 3 total commits 1,083 647 1,730

4 RESULTS
Table 1 shows general commit; churn, or lines changed; and reposi-

tory information for each project and overall. For the first project,

we have 287 repositories with an average of 72.4 commits. The

second project includes 208 repositories with an average of 100.8

commits. We did not find a significant difference in results when

filtering out repositories with a large number of commits. The first

project was completed individually and the second project was op-

tional pairs, leading to fewer repositories. We notice that a majority

of the commits had low churn; however, the average is dominated

by a handful of large commits, for example committing TS provided

UI code.

4.1 RQ1: Progress Indicators by Stage
For RQ1, we aggregated the commits for all repositories by stages.

The bottom of Table 1 shows how many commits occurred in each

stage for each project and overall. Most student work occurred in

Stage 0, 29% of the overall commits, and Stage 2, 60% of the overall

commits.

Table 2 shows the percentage of commits that triggered a given

progress indicator for each of the stages for both projects. The

italics indicates which of the proportions are significantly different

from all other stages for a given indicator (p-value < 0.05).

4.1.1 Stage 0. During Stage 0 of both projects, the increasing solu-

tion methods (PI-01), reducing average method size (PI-04), adding

new test methods (PI-08), increasing tests per method (PI-10), and

increasing test classes (PI-15) indicators were triggered more than

Session: Automated Assessment SIGCSE ’22, March 3–5, 2022, Providence RI, USA

18

Table 2: Percent of commits per stage that trigger each indicator. A "+" depicts an increase in each indicator, whereas a "-"
depicts a decrease. Italicized values show an indicator proportion is significantly different than all other stages (p-value <
0.0083). Bold values highlight the stages each indicator is triggered more often in.

Project 1 - Stages Project 2 - Stages

Indicator 0 1 2 3 0 1 2 3

PI-01 + solution methods 16.7% 4.5% 0.9% 1.5% 18.1% 5.0% 2.0% 1.2%

PI-02 - static analysis notifcations 17.2% 39.9% 14.4% 11.7% 12.3% 32.3% 14.8% 10.2%

PI-03 - cyclomatic complexity 4.8% 8.7% 9.1% 5.3% 5.2% 9.5% 11.8% 4.0%

PI-04 - avg. method size 18.3% 11.8% 15.1% 13.3% 21.4% 10.0% 17.4% 11.1%

PI-05 + comment density 22.0% 20.2% 17.9% 20.5% 30.0% 20.0% 22.6% 22.9%

PI-06 + solution classes 5.5% 9.3% 1.1% 0.4% 3.5% 8.6% 1.9% 0.8%

PI-07 + correctness 15.7% 28.2% 30.1% 12.9% 15.6% 26.8% 37.0% 11.1%
PI-08 + test methods 17.0% 17.7% 7.5% 7.2% 14.1% 14.2% 7.3% 4.8%

PI-09 + test code 26.0% 37.0% 31.8% 32.9% 23.4% 42.6% 34.8% 25.8%

PI-10 + tests per method 13.9% 20.8% 8.3% 8.0% 10.4% 15.5% 8.0% 6.3%

PI-11 + statement coverage 16.1% 21.8% 39.6% 28.5% 14.2% 27.1% 35.4% 19.9%
PI-12 + method coverage 8.8% 19.4% 13.5% 5.6% 7.9% 25.9% 12.6% 6.2%

PI-13 + conditional coverage 13.1% 21.1% 29.4% 21.3% 12.3% 27.0% 27.9% 16.7%
PI-14 + assertion density 13.1% 31.1% 18.1% 17.5% 10.8% 37.9% 17.4% 13.4%

PI-15 + test classes 11.7% 8.5% 0.9% 0.7% 10.2% 8.0% 1.6% 0.8%

they were in other stages of the project. These indicators are asso-

ciated with the structure of the code rather than the functionality.

The coverage indicators (PI-09, PI-11, PI-12, and PI-14) on the other

hand were triggered less often in Stage 0. Since Milestone 1 requires

a compiling skeleton and at least one test class, it makes sense that

students are triggering the structural indicators and not the cover-

age indicators. While most indicators are similar for both projects,

Project 2 triggers increasing comment density (PI-05) more often

(30.0%) during this stage compared to Project 1 (22.0%).

Both PI-01 and PI-15 are triggered statistically more often in

Stage 0 and decline thereafter. These indicators are related to skele-

tal pieces of code required for the first compilation milestone. While

PI-08 and PI-10 are triggered often in this stage as well, they are not

significantly different from all other stages. Each of these indicators

are triggered more in Stages 0 and 1 relative to Stages 2 and 3.

4.1.2 Stage 1. Despite only including a small portion of the total

commits (7.3%), Stage 1 saw several indicators being triggered more

often than other stages: removing static analysis errors (PI-02),

reducing cyclomatic complexity (PI-03), increasing solution classes

(PI-06), increasing correctness (PI-07), adding new test methods

(PI-08), adding to existing tests (PI-09), increasing tests per method

(PI-10), increasing method coverage (PI-12), increasing conditional

coverage (PI-13), and increasing assertion density (PI-14).

PI-02 is triggered significantly more often in this stage. This

makes sense as the static analysis feedback is hidden from students

until their code compiles, which is one of the conditions to pass

Milestone 1. We still expect to see some commits trigger this indica-

tor in Stage 0 since students are required to have zero CheckStyle

notifications before completing Milestone 1. However, students

may put off fixing notifications from the other static analysis tools

until after they have achieved Milestone 1.

For PI-06, we may expect to see this commit follow the trend of

PI-01 and PI-15 and be triggered more often in Stage 0; however,

it is triggered significantly more often in Stage 1. Students are

required to implement inner classes that are part of a state pattern

for Project 1 and a linked list for Project 2 and they may hold off

on creating these private inner classes until they have a compiling

public skeleton.

We see a lot of commits trigger the testing and coverage indica-

tors at this stage. PI-08 and PI-10 are triggered more often in the

first two stages compared to the latter stages. PI-09, PI-12, and PI-14

are all triggered significantly more often in Stage 1. This implies

the students are working on their test suite to meet the Milestone

2 coverage expectation.

Lastly, PI-07 is triggered more often in this stage compared to the

first and last stage, but not Stage 2. Since the students are passing

more tests, this implies they are making progress on their solution.

PI-11 follows a similar trend to PI-07, but only for Project 2. We

discuss this more in Section 4.2.

4.1.3 Stage 2. Stage 2 is where the bulk of the total commits hap-

pened (59.6%). In this stage, the indicators triggered the most often

compared to other stages were: reducing cyclomatic complexity

(PI-03), reducing average method size (PI-04), increasing correct-

ness (PI-07), adding to existing tests (PI-09), increasing statement

coverage (PI-11), and increasing conditional coverage (PI-13). The

theme of these indicators are driven by testing, both TS and student-

written tests, and the refinement of the solution code. We see in-

dicators related to the increases in methods (PI-01 and PI-08) or

classes (PI-06 and PI-15) triggered significantly less beginning in

this stage. These reflect changes to the structure of the code, which

we do not expect to see this far along in the projects.

For PI-07, PI-11, and PI-13, we see an increase in trigger rate

leading up to the peak in Stage 2. Then, these indicators see a sharp

decline in trigger rate during the final stage. These indicators are

related to passing tests and achieving statement coverage, which

are key elements to reaching Milestone 3 and entering Stage 3.

Session: Automated Assessment SIGCSE ’22, March 3–5, 2022, Providence RI, USA

19

While PI-09 was triggered significantly more often in Stage 1, we

still see many commits triggering this indicator in Stage 2, suggest-

ing that students are refining or adding to their tests from feedback

on TS test failures. PI-03 and PI-04 are indicators associated with

refining solution code, which would likely happen as students work

on fixing failures associated with TS unit tests.

4.1.4 Stage 3. Finally, Stage 3 saw the least amount of commits

overall (4.1%). Again, we see the indicators related to structure

are triggered much less (PI-01, PI-06, PI-08, and PI-15). Addition-

ally, removing static analysis errors (PI-02), reducing cyclomatic

complexity (PI-03), and increasing tests per method (PI-10) are all

triggered less during this stage. Students in Stage 3 have already

completed their test suite and removed all static analysis notifica-

tions per Milestone 3.

We do see PI-07, increasing correctness, triggered some in this

stage, even though students should already be passing 100% of TS

unit tests per Milestone 3. After manually checking the data, we

notice that a few students achieve Milestone 3, and thus may move

into Stage 3; however, while they are cleaning up their code before

the final submission, they make a breaking change and need to fix

their code. Thus, they trigger PI-07 when fixing the test failure.

There are only two indicators that happen more often compared

to other stages. They are adding to existing tests (PI-09) and in-

creasing statement coverage (PI-11). The students are not required

to go beyond the 80% statement coverage threshold, but we noticed

many students went above this.

4.2 RQ2: Progress Indicator Project Differences
For most of the progress indicators, the values and the trends were

relatively similar across projects, we will highlight the differences

between Project 1 and Project 2 here to answer RQ2.

During Project 1, fewer commits triggered the increasing com-

ment density (PI-05) during Stage 0 when compared to Project 2:

22.0% for Project 1 and 30.0% for Project 2. Approximately one third

of the students lost points on Project 1 from CheckStyle notifica-

tions relating to Javadocing their code. Project 2 saw fewer students

miss the points associated with these notifications. This implies the

students learned from their mistakes on the first project.

Additionally, there is a difference between projects related to

increasing statement coverage (PI-11). Project 1 saw students focus-

ing on statement coverage during Stages 2 and 3; whereas, Project

2 saw students focusing on statement coverage more during Stages

1 and 2. After Project 1, students may have realized the importance

of statement coverage as a metric of evaluation and changed their

focus to the metric earlier in the project.

Evaluating over both projects do not yield significantly different

results to what we have already shown and thus, we excluded those

for space.

5 DISCUSSION
Overall, the progress indicators demonstrate that students in the

CS2 course are making the appropriate and intended progress dur-

ing the stages of their software development projects. Since one

of the goals of our project is to encourage best practices for soft-

ware development, the patterns of progress indicators suggest that

students are meeting those expectations.

However, the progress indicators, in their current form, only

tell part of the story about student progress toward solution for

programming projects. In particular, the solution indicators lack

an indicator for when the solution code increases. The focus of

the progress indicators is on perfecting almost complete student

solutions rather than building up to a solution. Therefore, in Stage 1,

the triggered indicators are related to improving the test portion of

the code, but provide no details about the effort students are putting

into the solution portion of the code. The intention of Stage 1 is

that students are working on both solution and test, but students

may focus on test to achieve coverage and hold on implementing

solution until Stage 2. With the indicators in their current form,

we are unable to check whether or not this unwanted behavior is

occurring. Additional indicators may be needed to provide clarity

on what might be forward progress in different stages of the project.

During the start of the project, solution code should be increasing.

Later in project, we would expect refinement related to reducing

cyclomatic complexity (PI-03) and reducing average method size

(PI-04).

Additional refinement of the indicators to measure different

types of progress at various stages of software development would

then allow us to support new feedback mechanisms. For example, if

students were not implementing solution code in Stage 1, the build

process could include feedback with suggestions on where to focus

effort for the project. The majority of work occurs in Stage 2, so

an adjustment of expectations as measured by progress indicators,

may help balance the workload for students.

Edwards and Li [1] identified that commits or submissions that

triggered six of the 15 indicators suggested that students were

making progress on a programming assignment as part of their

evaluation on the suitability of the progress indicators for use. The

assignment considered, to our knowledge, did not have stages as

defined in our study and therefore, the analysis of the indicators trig-

gered at the start, middle, and end of the project was not considered.

We build on the existing progress indicator work by considering

how the indicators can support the identification of positive stu-

dent behaviors when completing programming tasks across the

development timeline.

6 CONCLUSION
We observed patterns in the type of progress students make that

reflect the expectations for eachmilestone.We saw this with skeletal

progress in Stage 0, statement coverage progress in Stage 1, and

test-focused progress in Stage 2. Additionally, we saw students

commenting their code more often in Stage 0 of Project 2 and the

students started working on coverage earlier in Project 2’s life cycle

compared to the first project suggesting improved development

processes.

The next steps for this research are to validate our results against

other offerings of the same course that have similar milestone spec-

ifications and compare student performance to the indicators being

triggered at each stage. Additionally, we can compare our results

with course offerings that contain different milestone definitions

or different types of feedback mechanisms.

Session: Automated Assessment SIGCSE ’22, March 3–5, 2022, Providence RI, USA

20

7 ACKNOWLEDGEMENTS
This material is based upon work supported by NSF under grants

#1525173 (PI: Sarah Heckman), #1714538 (PI: Sarah Heckman),

#1821475 (PI: Collin F. Lynch, CO-PI: Tiffany Barnes and Sarah

Heckman), and #1934975 (PI: Sarah Heckman, CO-PI: Anna Howard

and Tzvetelina Battestilli).

REFERENCES
[1] Stephen Edwards and Zhiyi Li. 2016. Towards Progress Indicators for Measuring

Student Programming Effort during Solution Development. In Proceedings of the
16th Koli Calling International Conference on Computing Education Research (Koli,

Finland) (Koli Calling ’16). Association for Computing Machinery, New York, NY,

USA, 31–40. https://doi.org/10.1145/2999541.2999561

[2] Stephen H Edwards and Zhiyi Li. 2019. Board 43: Designing Boosters and

Recognition to Promote a Growth Mind-set in Programming Activities. In 2019
ASEE Annual Conference & Exposition.

[3] Stephen H. Edwards and Zhiyi Li. 2020. A Proposal to Use Gamification System-

atically to Nudge Students Toward Productive Behaviors. In Koli Calling ’20: Pro-
ceedings of the 20th Koli Calling International Conference on Computing Education
Research (Koli, Finland) (Koli Calling ’20). Association for Computing Machinery,

New York, NY, USA, Article 28, 8 pages. https://doi.org/10.1145/3428029.3428057

[4] Sarah Heckman and Jason King. 2018. Developing Software Engineering Skills

Using Real Tools for Automated Grading. In Proceedings of the 49th ACM Technical
Symposium on Computer Science Education (Baltimore, Maryland, USA) (SIGCSE
’18). Association for Computing Machinery, New York, NY, USA, 794–799. https:

//doi.org/10.1145/3159450.3159595

[5] Cindy E Hmelo-Silver. 2004. Problem-based learning: What and how do students

learn? Educational psychology review 16, 3 (2004), 235–266.

[6] Petri Ihantola, Tuukka Ahoniemi, Ville Karavirta, and Otto Seppälä. 2010. Review

of Recent Systems for Automatic Assessment of Programming Assignments.

In Proceedings of the 10th Koli Calling International Conference on Computing
Education Research (Koli, Finland) (Koli Calling ’10). Association for Computing

Machinery, New York, NY, USA, 86–93. https://doi.org/10.1145/1930464.1930480

[7] Petri Ihantola, Arto Vihavainen, Alireza Ahadi, Matthew Butler, Jürgen Börstler,

Stephen H. Edwards, Essi Isohanni, Ari Korhonen, Andrew Petersen, Kelly

Rivers, Miguel Ángel Rubio, Judy Sheard, Bronius Skupas, Jaime Spacco, Clau-

dia Szabo, and Daniel Toll. 2015. Educational Data Mining and Learning

Analytics in Programming: Literature Review and Case Studies. In Proceed-
ings of the 2015 ITiCSE on Working Group Reports (Vilnius, Lithuania) (ITICSE-
WGR ’15). Association for Computing Machinery, New York, NY, USA, 41–63.

https://doi.org/10.1145/2858796.2858798

[8] Ioannis Karvelas, Annie Li, and Brett A. Becker. 2020. The Effects of Compilation

Mechanisms and Error Message Presentation on Novice Programmer Behavior. In

Proceedings of the 51st ACM Technical Symposium on Computer Science Education
(Portland, OR, USA) (SIGCSE ’20). Association for Computing Machinery, New

York, NY, USA, 759–765. https://doi.org/10.1145/3328778.3366882

[9] Kathleen J. Lehman, Julia Rose Karpicz, Veronika Rozhenkova, Jamelia Harris,

and Tomoko M. Nakajima. 2021. Growing Enrollments Require Us to Do More:
Perspectives on Broadening Participation During an Undergraduate Computing
Enrollment Boom. Association for Computing Machinery, New York, NY, USA,

809–815. https://doi-org.prox.lib.ncsu.edu/10.1145/3408877.3432370

[10] Zhiyi Li and Stephen H Edwards. 2020. Integrating Role-Playing Gamification

into Programming Activities to Increase Student Engagement. In 2020 ASEE
Virtual Annual Conference Content Access.

[11] Raymond Lister. 2010. CS EDUCATION RESEARCH

The Naughties

in CSEd Research: A Retrospective. ACM Inroads 1, 1 (March 2010), 22–24.

https://doi.org/10.1145/1721933.1721942

[12] Ron C Mittelhammer, George G Judge, and Douglas J Miller. 2000. Econometric
foundations pack with CD-ROM. Cambridge University Press.

[13] Roxy Peck. 2008. Introduction to statistics and data analysis. Thomson Brooks/Cole,

Australia Belmont, CA.

[14] Raymond Pettit and James Prather. 2017. Automated Assessment Tools: Too

Many Cooks, Not Enough Collaboration. J. Comput. Sci. Coll. 32, 4 (April 2017),
113–121.

[15] James Prather, Raymond Pettit, Kayla McMurry, Alani Peters, John Homer,

and Maxine Cohen. 2018. Metacognitive Difficulties Faced by Novice Pro-

grammers in Automated Assessment Tools. In Proceedings of the 2018 ACM
Conference on International Computing Education Research (Espoo, Finland)

(ICER ’18). Association for Computing Machinery, New York, NY, USA, 41–50.

https://doi.org/10.1145/3230977.3230981

[16] Clifford A. Shaffer and Ayaan M. Kazerouni. 2021. The Impact of Programming
Project Milestones on Procrastination, Project Outcomes, and Course Outcomes: A
Quasi-Experimental Study in a Third-Year Data Structures Course. Association for

Computing Machinery, New York, NY, USA, 907–913. https://doi-org.prox.lib.

ncsu.edu/10.1145/3408877.3432356

[17] Draylson M. Souza, Katia R. Felizardo, and Ellen F. Barbosa. 2016. A Systematic

Literature Review of Assessment Tools for Programming Assignments. In 2016
IEEE 29th International Conference on Software Engineering Education and Training
(CSEET). 147–156. https://doi.org/10.1109/CSEET.2016.48

[18] Arthur HenryWatson, Dolores RWallace, and Thomas J McCabe. 1996. Structured
testing: A testing methodology using the cyclomatic complexity metric. Vol. 500. US
Department of Commerce, Technology Administration, National Institute of

Session: Automated Assessment SIGCSE ’22, March 3–5, 2022, Providence RI, USA

21

https://doi.org/10.1145/2999541.2999561
https://doi.org/10.1145/3428029.3428057
https://doi.org/10.1145/3159450.3159595
https://doi.org/10.1145/3159450.3159595
https://doi.org/10.1145/1930464.1930480
https://doi.org/10.1145/2858796.2858798
https://doi.org/10.1145/3328778.3366882
https://doi-org.prox.lib.ncsu.edu/10.1145/3408877.3432370
https://doi.org/10.1145/1721933.1721942
https://doi.org/10.1145/3230977.3230981
https://doi-org.prox.lib.ncsu.edu/10.1145/3408877.3432356
https://doi-org.prox.lib.ncsu.edu/10.1145/3408877.3432356
https://doi.org/10.1109/CSEET.2016.48

	Abstract
	1 Introduction
	2 Related Work
	2.1 Automated Assessment Tools
	2.2 Progress Indicators

	3 Methodology
	3.1 Course Background
	3.2 Participants
	3.3 Data Mining
	3.4 Progress Indicators
	3.5 Evaluation
	3.6 Threats to Validity

	4 Results
	4.1 RQ1: Progress Indicators by Stage
	4.2 RQ2: Progress Indicator Project Differences

	5 Discussion
	6 Conclusion
	7 Acknowledgements
	References

