

Two-stage Stochastic Programming for Maintenance Optimization of Multi-component Systems

Zhicheng Zhu, Texas Tech University

Yisha Xiang, Ph.D., Texas Tech University

Ying Liao, Texas Tech University

Key Words: Maintenance optimization, Multi-component systems, Stochastic programming

SUMMARY

As the complexity of modern industrial systems increases faster than ever, it is imperative to develop cost-effective maintenance plan to secure system safety while lowering maintenance cost for complex systems. However, most maintenance studies focus on single-component systems, which are not applicable to complex multi-component systems due to the various interactions among components, such as stochastic dependence, structure dependence and economic dependence. Economic dependence is the most commonly seen one among these interactions. Economic dependence means that any maintenance action incurs a system-dependence cost, regardless of the number of components maintained. Significant cost savings can be achieved by maintaining multiple components jointly instead of separately.

In this paper, we study the maintenance optimization problem of multi-component systems with economic dependence among components. The objective is to determine the maintenance actions at each decision stage over a finite planning horizon so that the total maintenance cost is minimized. Such a maintenance optimization problem is challenging due to the combinatorial maintenance grouping problem with the stochastic component failure process. We present a two-stage stochastic programming model for this problem, which analytically expresses the total cost as a function of maintenance decisions. Progressive hedging algorithm is applied to solve this problem. We conduct a case study by using real-world pavement deterioration data. Experiment results provide insights on how economic dependence affects single-component maintenance decision.

ACRONYMS

CM	corrective maintenance
PM	preventive maintenance
CR	corrective replacement
PR	preventive replacement

NOTATION

n	number of components
N	component set, $N = \{1, 2, \dots, n\}$
T	length of planning horizon

T_s	planning horizon, $T_s = \{1, 2, \dots, T\}$
q	number of individuals
R	individual set, $R = \{1, 2, \dots, q\}$
Ω	scenario set
I_{ir}	individual r of component i
T_{ir}	lifetime of individual r of component i
T_{ir}^ω	Lifetime T_{ir} in scenario ω
T'	Extended planning horizon, $T' = \max_{i,r,\omega} T_{ir}^\omega$
$c_{i,PR}$	lifetime of individual r of component i
$c_{i,CR}$	lifetime T_{ir} in scenario ω
$C_{i,PR}$	total PR cost incurred by individuals of component i in the planning horizon T_s
$C_{i,CR}$	total CR cost incurred by individuals of component i in the planning horizon T_s
C_s	total setup cost in the planning horizon T_s
$Q(\mathbf{x}, \omega)$	objective value of the second stage
d	setup cost
$\eta(t)$	shape parameter of gamma process
γ	rate parameter of gamma process
x_i	equal to 1 when an individual of component i is replaced at the first stage, 0 otherwise
$\tilde{x}_{it}^{r\omega}$	equal to 1 when I_{ir}
z_t	equal to 1 when there is at least one individual maintained at stage t , 0 otherwise
z_t^ω	equal to 1 when there is at least one individual maintained at time t in scenario ω , 0 otherwise

1 INTRODUCTION

Effective maintenance is of vital importance for complex, capital intensive and hazardous industries. Inappropriate maintenance may result in catastrophic failures, such as the loss of Piper Alpha oil platform [1]. Therefore, efficient maintenance planning is essential for the complex systems that consist of multiple components.

However, most studies in the literature focus on single-component system, which is not applicable to multi-component systems due to the various dependence among components, namely, stochastic, structural and economic dependence [2]. Among these three dependences, economic dependence is the most commonly seen, and is considered in this paper.

Typically, systems with economic dependence incurs a system-dependent cost that is known as setup cost when there is any maintenance taking place. This setup cost is considerably large in many industries. For example, plant shutdown is required for the maintenance of critical components in a chemical plant. The downtime loss due to the production loss range from \$5,000 to \$10,000 per hour [3]. The existence of economic dependence implies a joint maintenance of multiple components instead of separately so that setup cost can be shared.

Multi-component maintenance optimization problem joins the stochastic processes regarding the failures of the components with the combinatorial problems regarding the grouping of maintenance activities [4]. The explicit analytical model is therefore complex and sometimes impossible to derive. In the literature, existing models are built on special system assumptions [5], restricted grouping policies [6], or resort to simulation tools [7] to reduce mathematical difficulties. From a solution perspective, most solution methods can only handle a small number of components because of the exponential growth of the problem size [8]. A widely adopted approach to coordinating maintenance activities is to group components with some grouping rules, which can be further divided into direct grouping and indirect grouping. In direct grouping, all components are partitioned into some fixed groups in which components are always maintained jointly [9]. However, this approach is essentially a set-partitioning problem which is NP (nondeterministic polynomial)-complete. An indirect grouping strategy groups preventive maintenance (PM) activities by making PM interval a multiple of a basis interval, so the maintenance of different components can coincide. However, such grouping methods ignore the maintenance opportunities generated by corrective maintenance (CM) at failure [10]. Recently, Patriksson et al. [10] models maintenance optimization problems as a stochastic integer program. The integer L-shaped method proposed in their paper becomes prohibited when the problem scale gets larger.

In this paper, we develop a multi-component maintenance optimization model in a finite-time horizon without any restriction on the types of maintenance activities that can be grouped. The problem is formulated as a two-stage stochastic linear model. We use the progressive hedging algorithm to solve our model. We conduct a case study of road maintenance by using real-world data. Experiment results provide insights on how economic dependence affects single-component maintenance decision.

The remainder of paper is organized as follows. The proposed two-stage stochastic programming model is introduced in section 2. In section 3, we present a numerical example to provide some insights of the optimal maintenance decision for a practical road maintenance case. We conclude this research and discuss the future work in section 4.

2 MODEL DEVELOPMENT AND ALGORITHM

In this section, we propose a two-stage stochastic program to model the maintenance optimization problem for multi-component systems. To the best of our knowledge, this is among the very first efforts that develop an analytical model to

such a problem. Here we consider the system of interest consists of $N = \{1, \dots, n\}$ types of component. We consider two types of maintenance activities, preventive replacement (PR) and corrective replacement (CR) with corresponding costs are $c_{i,PR}$ and $c_{i,CR}$ respectively ($c_{i,PR} < c_{i,CR}$) for component $i \in N$. Each physical instance $r \in R$ that replaced in the r^{th} replacement of a component is called an individual I_{ir} , where $R = \{1, 2, \dots, q\}$. Throughout this paper, we use component only when referring to its type, and refer to physical components as individuals. The system setup cost is denoted by d at any maintenance occasion regardless of the number of individuals replaced.

The maintenance decision process can be divided into two stages. The first stage decision is to select a group of individuals for PR at the current decision time. The second stage decision is to group the individuals for PR at future decision time. We consider a discrete finite planning horizon $\mathcal{T} = \{0, 1, \dots, T\}$. At the first stage, i.e., $t = 0$, we first observe the failure state ξ_i for the individual of component $i \in N$. If the individual of component $i \in N$ is functioning, then $\xi_i = 0$, otherwise $\xi_i = 1$. We then make the decision for the first stage:

$$x_i = \begin{cases} 1, & \text{if the individual of component } i \\ & \text{is replaced at } t = 0, \quad i \in N \\ 0, & \text{otherwise.} \quad i \in N \end{cases}$$

and

$$z = \begin{cases} 1, & \text{if any maintenance occurs at } t = 0, i \in N \\ 0, & \text{otherwise.} \quad i \in N \end{cases}$$

The second stage decisions are the maintenance decisions at time $t \in \mathcal{T} \setminus \{0\}$ that are made after the individual failure states are revealed at $t = 1$. Because of the randomness of component lifetime, we model the lifetime of each component with an appropriate distribution and randomly generate lifetimes for all its individuals. A combination of lifetimes of all individuals of all components is referred to as a scenario. By using this scenario generation method, the lifetimes of individuals are deterministic for a given scenario. For each scenario $\omega \in \Omega$, the decision variables are defined as:

$$\tilde{x}_{it}^{r\omega} = \begin{cases} 1, & \text{if } I_{ir} \text{ is replaced at or before time } t \text{ in scenario } \omega, \\ & i \in N, t \in \mathcal{T}, r \in R, \omega \in \Omega \\ 0, & \text{otherwise.} \quad i \in N, t \in \mathcal{T}, r \in R, \omega \in \Omega \end{cases}$$

and

$$z_t^\omega = \begin{cases} 1, & \text{if any maintenance occurs at time } t \text{ in scenario } \omega \\ & , t \in \mathcal{T}, \omega \in \Omega \\ 0, & \text{otherwise.} \quad t \in \mathcal{T}, \omega \in \Omega \end{cases}$$

The deterministic equivalent form (DEF) of proposed two-stage stochastic model is described as follows.
minimize

$$\begin{aligned} & \sum_{\omega \in \Omega} p(\omega) \left(\sum_{i \in N} \left(\frac{\sum_{i \in R} c_{i,PR} Y_i^{r\omega}}{c_{i,PR}} \right. \right. \\ & \left. \left. - \frac{\sum_{i \in R} c_{i,CR} (1 - Y_i^{r\omega}) - c_{i,CR} (1 - \tilde{x}_{iT}^{r\omega})}{c_{i,CR}} \right) + \frac{\sum_{t \in \mathcal{T}} d z_t^\omega}{c_s} \right) \quad (1a) \end{aligned}$$

subject to

(1m) provides the full definition of variable $y_{it}^{r\omega}$. Constraints (1n) – (1p) are the definitions of variable $w_{it}^{r\omega}$. Constraint (1q) is the binary constraint for all decision variables. The linearization of $|y_{it}^{r\omega}|$ can be found in Equation (2) and constraints (1r) – (1t).

2.3 Progressive hedging algorithm (PHA)

The proposed DEF model is an integer program with pure binary decision variables. The lack of structural property prohibits us to use efficient algorithm to handle this problem, such as Benders decomposition. Therefore, we use progressive hedging algorithm (PHA) to solve the proposed model. PHA is a scenario-by-scenario decomposition method. The optimal solution of each scenario is first obtained without considering non-anticipativity constraint, then PHA penalizes the deviation of first-stage solution from the average solution of all scenarios to force non-anticipativity constraint holds. The detail of PHA is described as follows, where $\mathbf{c}\mathbf{x} + E(Q(\mathbf{x}, \omega))$ is the concise presentation of a two-stage stochastic programming model with \mathbf{x} representing the first-stage decision variables and $Q(\mathbf{x}, \omega)$ representing the subproblem in scenario ω . The penalty factor is denoted by ρ [12].

Progressive hedging algorithm (PHA)

1. Initialization:

Let $v \leftarrow 0, \varepsilon \leftarrow 10^{-2}$;

$$\mathbf{x}_\omega^{(v)} \leftarrow \arg \min_{\mathbf{x}} (\mathbf{c}\mathbf{x} + Q(\mathbf{x}, \omega)), \forall \omega \in \Omega;$$

$$\bar{\mathbf{x}}^v \leftarrow \sum_{\omega \in \Omega} p(\omega) \mathbf{x}_\omega^{(v)};$$

$$\mathbf{w}_\omega^v \leftarrow \rho(\mathbf{x}_\omega^{(v)} - \bar{\mathbf{x}}^v), \forall \omega \in \Omega.$$

2. Update iteration variable: $v \leftarrow v + 1$.

3. Decomposition:

$$\mathbf{x}_\omega^{(v)} \leftarrow \arg \min_{\mathbf{x}} (\mathbf{c}\mathbf{x} + \mathbf{w}_\omega^{v-1} + \frac{\rho}{2} \|\mathbf{x} - \bar{\mathbf{x}}^{v-1}\| + Q(\mathbf{x}, \omega)) \forall \omega \in \Omega.$$

4. Aggregation: $\bar{\mathbf{x}}^v \leftarrow \sum_{\omega \in \Omega} p(\omega) \mathbf{x}_\omega^{(v)}$.

5. Update price: $\mathbf{w}_\omega^v \leftarrow \mathbf{w}_\omega^{v-1} + \rho(\mathbf{x}_\omega^v - \bar{\mathbf{x}}^v), \forall \omega \in \Omega$.

6. Calculate converge distance: $g^v \leftarrow \sum_{\omega \in \Omega} p(\omega) \|\mathbf{x}_\omega^v - \bar{\mathbf{x}}^v\|, \forall \omega \in \Omega$.

7. Termination: If $g^v < \varepsilon$, stop and return optimal solution $\bar{\mathbf{x}}^v$. Else, go to step 2.

3 NUMERICAL EXAMPLE

In this section, we analyze the changes of optimal PM interval when considering economic dependence for a road maintenance case. In practical road maintenance, joint maintenance of multiple road sections can share the setup cost. The setup cost is usually induced by crew travelling, downtime loss etc.. Road condition is evaluated by the international roughness index (IRI) as in units of inches per mile. A larger IRI stands for a worse road condition. According to the Federal Highway Administration, reconstruction (CM) is considered when IRI exceeds 170in./mile. Therefore, 170in./mile is the failure threshold in this example.

3.1 Parameter estimation

We use real-world pavement IRI data over years from the state of Florida [13] to fit the road degradation process

distribution. We select 4 section data as plotted in Figure 3. In each section data, each path represents an independent measurement of the same section.

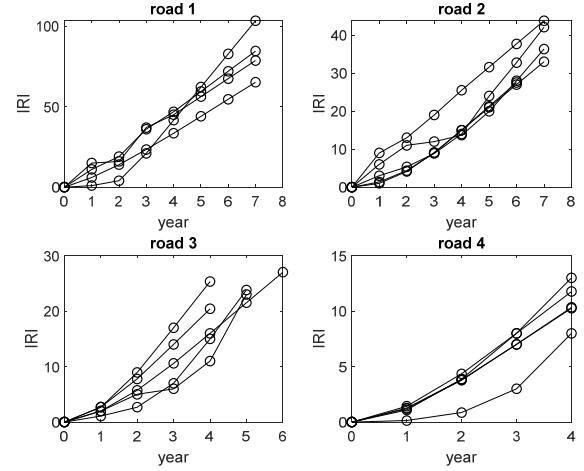


Figure 3. IRI data sets

EM algorithm for gamma process with missing data

$$X_i = \{x_i(t_0), x_i(t_1), \dots, x_i(t_{J_i})\} : i^{\text{th}} \text{ data set.}$$

$t_m = \max_i t_{J_i}$: maximum time that has an observed data point among all data sets.

$\Delta\eta_j = \eta(t_j) - \eta(t_{j-1})$: increment of shape function between two consecutive time points.

$\Delta X_{ij} = x_i(t_j) - x_i(t_{j-1})$: increment between two consecutive time points of i^{th} data set.

At the k^{th} iteration:

(1) E-step:

$$\text{Estimate } x_i(t_m) \text{ for all } i: w_i^k = E[X_i(t_m) | D_{obs}, \theta^k] = \frac{\eta^k(t_m) - \eta^k(t_{i,J_i})}{\gamma^k} + X_i(t_{i,J_i})$$

Estimate $\ln \Delta X_{i,j}$ for i and $j > t_{J_i}$: $E[\ln \Delta X_{i,j} | D_{obs}, \theta^k] = \psi(\Delta\eta_j^k) - \ln \gamma^k$

(2) M-step:

Calculate: $\gamma^{k+1} = \frac{n\hat{\eta}_m}{\sum_{i=1}^n w_i^N}$ and $\Delta\eta_i^{k+1} = \psi^{-1} \left[\frac{1}{n} \sum_{i=1}^n \omega_{i,j}^k + \ln \gamma^{k+1} \right]$ where $\hat{\eta}_m = \sum_{j=1}^m \psi^{-1} \left[\frac{1}{n} \sum_{i=1}^n \omega_{i,j}^k + \ln(n\eta_m) - \ln(\sum_{i=1}^n w_i^k) \right]$ and $\psi(\cdot)$ is the digamma function.

Repeat step (1) and (2) until following condition is met (ε is pre-defined):

$$L(\theta^{N+1}, D_{obs}) - L(\theta^N; D_{obs}) < \varepsilon.$$

We assume the deterioration processes of all sections follow a gamma process with different unknown shape parameters $\eta(t)$ and different rate parameters γ . The shape parameter $\eta(t)$ is a function of time t but the function form is also unknown. In some section data, several observations in the last several years are missing, e.g., section 2 and section 3. Thus, we use EM

algorithm to estimate the parameters.

The algorithm runs iteratively over two steps – the expectation step (E-step) and the maximization step (M-step). Denote the parameter vector to estimate by θ , the observed data by D_{obs} , the complete data by $D = D_{obs} \cup D_{miss}$ and the log-likelihood function based on D by $L(\theta; D)$. Let θ^k be the estimated parameter vector at the k^{th} EM algorithm. At the expectation step of the $(k + 1)^{\text{th}}$ iteration, the missing data is considered as unknown variables and we obtain the expectations of D_{miss} in terms of θ^k . At the maximization step of the $(k + 1)^{\text{th}}$ iteration, the expectations of D_{miss} are substituted in the log-likelihood function $Q(\theta|\theta^k)$, which is subsequently maximized over θ and then we obtain θ^{k+1} . For a gamma process, EM algorithm with n data sets can be described as shown above.

The output of the EM algorithm is the estimation of $\hat{\theta} = (\hat{\eta}(t_j), \hat{\gamma})$ for $j = \{1, 2, \dots, t_m\}$. By using the section data in Figure 3, we have $\hat{\gamma} = (0.5, 1.27, 1.36, 3.26)$ for section 1 to section 4 respectively. We compare different forms of functions to fit $\hat{\eta}$, such as linear, power and exponential. The result of estimated $\hat{\eta}$ values and best fitting function with corresponding parameters are shown in Figure 4.

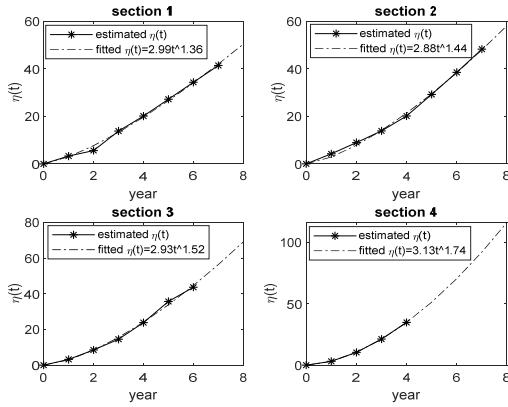


Figure 4. $\hat{\eta}(t)$ estimation

3.2 Experiment results

We consider a planning horizon of $T = 100$ years. The number of sections $n = 4$. The PR cost is 1, CR cost is 10 for all sections. When economic dependence is not considered, the optimal PM intervals can be calculated under age-based policy, which are $\tau = (9, 17, 15, 18)$ years for section 1 to section 4 respectively. When economic dependence is taken into account, the optimal solution is obtained by solving proposed model with PHA. Since we only take first-stage solutions in PHA, we use rolling horizon technique to obtain the solutions of all decision epochs.

We want to figure out how are age-based PM intervals τ changing if we consider economic dependence under different setup cost. Table 1 summarizes the average PM intervals with different setup cost d . For all sections, the average PM interval increases as setup cost increases. The reason is that PM becomes more expensive as setup cost increases. For section 2

and section 4, the age-based PM intervals are close enough so that they have a high chance to group together. Therefore, for both setup costs, section 2 and section 4 have the same PM intervals which increases the possibility that they can be maintained at the same time.

Table 1: average PM interval with different setup cost d

section	age-based	$d = 5$	$d = 100$
1	9	10.9	11.6
2	17	18.8	19
3	15	16.8	17
4	18	18.8	19

4 CONCLUSION

In this paper, we propose a two-stage stochastic program to analytically model the maintenance optimization problem for multi-component systems over the finite planning horizon subject to the uncertainty of component lifetime. The impacts of economic dependence and setup cost are investigated through a road maintenance case. The results show that the optimal PM interval increases when considering economic dependence. In the future research, we will further explore the model structure and analyze the optimal grouping pattern in a more rigorous and comprehensive way.

REFERENCES

- [1] M. E. Paté-Cornell, "Learning from the piper alpha accident: A postmortem analysis of technical and organizational factors," *Risk Analysis*, vol. 13, no. 2, pp. 215-232, 1993.
- [2] L. Thomas, "A survey of maintenance and replacement models for maintainability and reliability of multi-item systems," *Reliability Engineering*, vol. 16, no. 4, pp. 297-309, 1986.
- [3] J. S. Tan and M. A. Kramer, "A general framework for preventive maintenance optimization in chemical process operations," *Computers & Chemical Engineering*, vol. 21, no. 12, pp. 1451-1469, 1997.
- [4] R. Dekker, R. E. Wildeman, and F. A. Van der Duyn Schouten, "A review of multi-component maintenance models with economic dependence," *Mathematical Methods of Operations Research*, vol. 45, no. 3, pp. 411-435, 1997.
- [5] Z. Tian and H. Liao, "Condition based maintenance optimization for multi-component systems using proportional hazards model," *Reliability Engineering & System Safety*, vol. 96, no. 5, pp. 581-589, 2011.
- [6] R. E. Wildeman, R. Dekker, and A. Smit, "A dynamic policy for grouping maintenance activities," *European Journal of Operational Research*, vol. 99, no. 3, pp. 530-551, 1997.
- [7] C. Bérenguer, A. Grall, and B. Castanier, "Simulation and evaluation of condition-based maintenance policies for multi-component continuous-state deteriorating systems,"

in *Proceedings of the foresight and precaution conference*, 2000, pp. 275-82.

[8] B. Castanier, A. Grall, and C. Bérenguer, "A condition-based maintenance policy with non-periodic inspections for a two-unit series system," *Reliability Engineering & System Safety*, vol. 87, no. 1, pp. 109-120, 2005.

[9] A. Van Horenbeek and L. Pintelon, "A dynamic predictive maintenance policy for complex multi-component systems," *Reliability Engineering & System Safety*, vol. 120, pp. 39-50, 2013.

[10] M. Patriksson, A.-B. Strömberg, and A. Wojciechowski, "The stochastic opportunistic replacement problem, part II: a two-stage solution approach," *Annals of Operations Research*, vol. 224, no. 1, pp. 51-75, 2015.

[11] R. L. Rardin and R. L. Rardin, *Optimization in operations research*. Prentice Hall Upper Saddle River, NJ, 1998.

[12] D. Gade, G. Hackebeil, S. M. Ryan, J.-P. Watson, R. J.-B. Wets, and D. L. Woodruff, "Obtaining lower bounds from the progressive hedging algorithm for stochastic mixed-integer programs," *Mathematical Programming*, vol. 157, no. 1, pp. 47-67, 2016.

[13] F. D. o. Transportation, "Flexible pavement condition survey handbook," ed: Author Tallahassee, FL, 2009.

BIOGRAPHIES

Zhicheng Zhu, Ph.D. candidate

Department of Industrial, Manufacturing & System Engineering
Texas Tech University
2500 Broadway
Lubbock, Texas, 79409, USA

e-mail: zhicheng.zhu@ttu.edu

Zhicheng Zhu is a Ph.D. candidate in Department of Industrial, Manufacturing & Systems Engineering at Texas Tech University. He received his B.S. and M.S. in Electrical Engineering from Sun Yat-sen University, China. His main research interests are maintenance optimization, decision-making under uncertainty, and reliability modeling. He is a student member of INFORMS.

Yisha Xiang, Ph.D.

Department of Industrial, Manufacturing & System Engineering

Texas Tech University
2500 Broadway
Lubbock, Texas, 79409, USA
e-mail: yisha.xiang@ttu.edu

Dr. Yisha Xiang is the E. L. Derr Assistant Professor in the Department of Industrial, Manufacturing & Systems Engineering at Texas Tech University. Her current research and teaching interests involves data-driven decision-making under uncertainty and statistical machine learning. Her research has been funded by National Science Foundation, including a CAREER grant, DOE, and industry. She has published articles in refereed journals, such as *INFORMS journal on computing*, *IIE Transactions*, *European Journal of Operational Research*, and *Naval Research Logistics*. She was the recipient of the P.K. McElroy award, Stan Oftshun award, and Doug Ogden award for best papers at the Reliability and Maintainability Symposium. She received her B.S. in Industrial Engineering from Nanjing University of Aero. & Astro., China, and M.S and Ph.D. in Industrial Engineering from University of Arkansas. She is an Associate Editor for *IEEE Transactions Automation Science and Engineering*, and she is a member of IIE and INFORMS.

Ying Liao, Ph.D. student

Department of Industrial, Manufacturing & System Engineering
Texas Tech University
2500 Broadway
Lubbock, Texas, 79409, USA
e-mail: ying.liao@ttu.edu

Ying Liao is a PhD student in the Department of Industrial, Manufacturing & Systems Engineering at Texas Tech University. Her research interest includes reliability modeling, statistical machine learning, and Bayesian analysis. She has published articles in refereed journals such as IIE Transactions and Naval Research Logistics. She was the recipient of Doug Ogden award for the best paper at the Reliability and Maintainability Symposium. She received her B.S. and M.S. in Statistics from Sun Yat-sen University, China. She is a student member of INFORMS and IIE.