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SUMMARY

As the complexity of modern industrial systems increases
faster than ever, it is imperative to a develop cost-effective
maintenance plan to secure system safety while lowering
maintenance cost for complex systems. However, most
maintenance studies focus on single-component systems,
which are not applicable to complex multi-component systems
due to the various interactions among components, such as
stochastic dependence, structure dependence and economic
dependence. Economic dependence is the most commonly seen
one among these interactions. Economic dependence means
that any maintenance action incurs a system-dependence cost,
regardless of the number of components maintained.
Significant cost savings can be achieved by maintaining
multiple components jointly instead of separately.

In this paper, we study the maintenance optimization
problem of multi-component systems with economic
dependence among components. The objective is to determine
the maintenance actions at each decision stage over a finite
planning horizon so that the total maintenance cost is
minimized. Such a maintenance optimization problem is
challenging due to the combinatorial maintenance grouping
problem with the stochastic component failure process. We
present a two-stage stochastic programming model for this
problem, which analytically expresses the total cost as a
function of maintenance decisions. Progressive hedging
algorithm is applied to solve this problem. We conduct a case
study by using real-world pavement deterioration data.
Experiment results provide insights on how economic
dependence affects single-component maintenance decision.

ACRONYMS
CM corrective maintenance
PM preventive maintenance
CR corrective replacement
PR preventive replacement
NOTATION

number of components
component set, N= {1, 2, ..., n}
length of planning horizon

N~z =

978-1-6654-2432-5/22/$31.00 ©2022 IEEE

Ts planning horizon, 7s= {1, 2, ..., T}
q number of individuals

R individual set, R= {1, 2, ..., ¢}

Q scenario set

1 individual r of component i

T lifetime of individual » of component i

Ty° Lifetime T}, in scenario ®
. . w
T Extended planning horizon, 7’ = max Tir
Lr,w
CiPR lifetime of individual » of component i
CiCR lifetime T} in scenario ®

Cipr  total PR cost incurred by individuals of component i
in the planning horizon T

Cicrk  total CR cost incurred by individuals of component i
in the planning horizon T

o total setup cost in the planning horizon Ty

O(x, ) objective value of the second stage

d setup cost

n(?) shape parameter of gamma process

y rate parameter of gamma process

Xi equal to 1 when an individual of component i is
replaced at the first stage, 0 otherwise

X equal to 1 when I;;

Z equal to 1 when there is at least one individual
maintained at stage ¢, 0 otherwise

z® equal to 1 when there is at least one individual

maintained at time ¢ in scenario w, 0 otherwise
1 INTRODUCTION

Effective maintenance is of vital importance for complex,
capital intensive and hazardous industries. Inappropriate
maintenance may result in catastrophic failures, such as the loss
of Piper Alpha oil platform [1]. Therefore, efficient
maintenance planning is essential for the complex systems that
consist of multiple components.

However, most studies in the literature focus on single-
component system, which is not applicable to multi-component
systems due to the various dependence among components,
namely, stochastic, structural and economic dependence [2].
Among these three dependences, economic dependence is the
most commonly seen, and is considered in this paper.
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Typically, systems with economic dependence incurs a system-
dependent cost that is known as setup cost when there is any
maintenance taking place. This setup cost is considerably large
in many industries. For example, plant shutdown is required for
the maintenance of critical components in a chemical plant. The
downtime loss due to the production loss range from $5,000 to
$10,000 per hour [3]. The existence of economic dependence
implies a joint maintenance of multiple components instead of
separately so that setup cost can be shared.

Multi-component maintenance optimization problem joins
the stochastic processes regarding the failures of the
components with the combinatorial problems regarding the
grouping of maintenance activities [4]. The explicit analytical
model is therefore complex and sometimes impossible to
derive. In the literature, existing models are built on special
system assumptions [5],restricted grouping policies [6], or
resort to simulation tools [7] to reduce mathematical
difficulties. From a solution perspective, most solution methods
can only handle a small number of components because of the
exponential growth of the problem size [8]. A widely adopted
approach to coordinating maintenance activities is to group
components with some grouping rules, which can be further
divided into direct grouping and indirect grouping. In direct
grouping, all components are partitioned into some fixed
groups in which components are always maintained jointly [9].
However, this approach is essentially a set-partitioning problem
which is NP (nondeterministic polynomial)-complete. An
indirect grouping strategy groups preventive maintenance (PM)
activities by making PM interval a multiple of a basis interval,
so the maintenance of different components can coincide.
However, such grouping methods ignore the maintenance
opportunities generated by corrective maintenance (CM) at
failure [10]. Recently, Patriksson et al. [10] models
maintenance optimization problems as a stochastic integer
program. The integer L-shaped method proposed in their paper
becomes prohibited when the problem scale gets larger.

In this paper, we develop a multi-component maintenance
optimization model in a finite-time horizon without any
restriction on the types of maintenance activities that can be
grouped. The problem is formulated as a two-stage stochastic
linear model. We use the progressive hedging algorithm to
solve our model. We conduct a case study of road maintenance
by using real-world data. Experiment results provide insights
on how economic dependence affects single-component
maintenance decision.

The remainder of paper is organized as follows. The
proposed two-stage stochastic programming model is
introduced in section 2. In section 3, we present a numerical
example to provide some insights of the optimal maintenance
decision for a practical road maintenance case. We conclude
this research and discuss the future work in section 4.

2 MODEL DEVELOPMENT AND ALGORITHM

In this section, we propose a two-stage stochastic program
to model the maintenance optimization problem for multi-
component systems. To the best of our knowledge, this is
among the very first efforts that develop an analytical model to

such a problem. Here we consider the system of interest
consists of N = {1, ..., n} types of component. We consider two
types of maintenance activities, preventive replacement (PR)
and corrective replacement (CR) with corresponding costs are
ci,pr and ¢;, cr respectively (c;, pr < ¢;, cr) for component i € N.
Each physical instance v € R that replaced in the "
replacement of a component is called an individual 7;,, where R
={1,2, ..., q}. Throughout this paper, we use component only
when referring to its type, and refer to physical components as
individuals. The system setup cost is denoted by d at any
maintenance occasion regardless of the number of individuals
replaced.

The maintenance decision process can be divided into two
stages. The first stage decision is to select a group of individuals
for PR at the current decision time. The second stage decision
is to group the individuals for PR at future decision time. We
consider a discrete finite planning horizon 77 = {0,1, ..., T}. At
the first stage, i.e., = 0, we first observe the failure state &; for
the individual of component i € N. If the individual of
component i € N is functioning, then §; = 0, otherwise &; = 1.
We then make the decision for the first stage:

isreplaced att = 0, ieEN

1, if the individual of component i
Xl' = [
0, otherwise. iEN

and
{1, if any maitenance occursatt = 0,i € N
z= .
0, otherwise.i € N

The second stage decisions are the maintenance decisions
at time t € T\{0} that are made after the individual failure
states are revealed at r = 1. Because of the randomness of
component lifetime, we model the lifetime of each component
with an appropriate distribution and randomly generate
lifetimes for all its individuals. A combination of lifetimes of
all individuals of all components is referred to as a scenario. By
using this scenario generation method, the lifetimes of
individuals are deterministic for a given scenario. For each
scenario w € (2, the decision variables are defined as:

1,if I;, is replaced at or before time t in scenario w,
J?irt“’z{ IEN,teT, r€ER,wEN
0, otherwise. iENteET, TER,WEN
and
1,if any maintenance occurs at time t in scenario w
zP = { JtET, weEN
0, otherwise. teT,weENN

The deterministic equivalent form (DEF) of proposed two-

stage stochastic model is described as follows.
minimize

YowenP(W)| Xien | Zier Ci,PRYim +

Cipr

2ier Cicr(1 = Y7“) — ¢ cr(1 = Xi7°) | + Xeerdzf |(1a)
-

Cicr Cs

subject to
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X <% L ENtET\[TLrERwEN (1b)
XN <®P, ieNteT\{ThreR\{gwe (lo)
Yoer(XP — %2, )<zP,ieNteT\{0bwe (1d)
~ ~T+1, .

7 < x{,;'i’“;:, i€N,tef{0,.., T -T2}

, T ER\{q}, w €N (1)
JZ}T‘:’?=1,ie{jEN| D <Thwen (1g)
XI® =0,i € N,r €ER\{1},w € 0 (1h)
X, =X iEN,wEN (1i)
x; 2§, LEN (15
Yi1w=1—wi1T‘f,’,1,,L'EN,a)€.Q (1k)

T+TE TW T('?”_ Tw

— (Zt:ﬂgmt [+2¢20 " )

t 2
,i€EN,7 € R\{1},w €2 (1])
Vie = wie —wi e

JEN,T€R\{1},t (T4, T, w €N (Im)
wi’ =% —%{,,i€N,r€RteT\{0},w €N (In)
wi’ =xj>,iEN,TER,WEN (10)
wi?»=0 ieNr€eRte{T+1,...T',,owe (lp)

f{tw,xilzg” Wirtw: L'Ty,:w € {0: 1}
JEN,TrERtET,weEN (19)

2.1 Objective function

The total cost in function (la) consists of (1) sum of PR
and CR costs incurred by individuals of component i in the
planning horizon, denoted by C;pr and C;cg respectively and
(2) total system setup cost Cg. Probability of scenario w € 2 is
denoted by p(w). Auxiliary variable ¥ indicates individual
I, in scenario w takes PR when equals to 1 and CR when equals
to 0. However, to derive Y/ from variables %] is non-trivial
because ¥}’ has no indication of maintenance type. Next, we
will show how we get Y.

Variable Y] is defined in constraints (1k) and (11). From
(In), auxiliary variable w/® equals to 1 when Jj, is replaced at
time ¢ and O otherwise. For an individual /;, one way to
determine its replacement type is to examine the time interval
between the replacements of individuals /;,-; and 7;,, as shown
in Figure 1. Suppose that individuals I;,_; and /;; are replaced
at time £ and 5, (i.e., Wl-';:l’w = 1and wj
difference between #, and #; equals to the lifetime of /;, namely,
TZ, the I;, is replaced at the end of its lifetime and the
replacement type CR. Otherwise, the replacement is PR.
T | Tw T rw r-lLw | _ 0
t=0lYit

= Lt=0 (Wit _Wi,t—Tio.r)
for CR (Figure 1(a)) and X7_o|yi®|/2 =1 for PR (Figure
1(b)), where y}/,* is defined in constraint (1m).
However, there is a boundary issue in Y.7_|y5*|. From
r—1L,w :
time ¢ can only be no

constraint (Im) y;” = wj” —w; " o,
’ r

smaller than T. Therefore, the summation Y,I_,|y/*| cannot
start from # = 0. One approach to solving this issue is to extend

) respectively. If the

Therefore, we have

to time horizon to T’ = T + max T and let w/® = 0 for t> T,
i,r,w

w
T+TE

—rw
=Ty

so that ¥;“ = (Z lyre| + Z:’:O_l Wirt‘") /2 (constraint (11))

can be used to indicate the maintenance type. Figure 2
illustrates this issue.

ro_oor _oor-1
Yit, = Wi, = Wig,-1, = 0

Y

P B
Yit, = Wit, = Wit,-1, =0

Individual Z;-

Individual [, OO ——A o
1 h—T; h & r
«— T, —
(a) CR
Yie, =wl, = wigtr, =1 Yita1y = Wit e, —Wie, = -1
— T !
Individual £, - ©] 6-T, . |o 7 0+l 1
t
Individual 7 -1 - ’
| b-Tr h n T
T, —

#® replacement
(b) PR
O no replacement

Figure 1. lllustration of distinguishing PR and CR

Excluded Not Defined
| SO v SR
Individual /; ; % g . 2 U

T—1."T, ,""/"+ Ty "t T T+1_ 7T

Individual /iy OCN——%N—C NGOG NV—C ——"——0O—>1
t 6L-T, T=-T,T-T,+1 T T

O no replacement

1
% replacement

Figure 2. Illlustration of boundary issue

The absolute function, |y;|, can be linearized by a pair of

deviation variables u}” and v* [11]. We replace |y} ”| with
Equation (2) in the constraint (11), and add constraint (1r) to (1t)
in the DEF model. Notice that constraint (1s) is unnecessary for
the linearization but can lead to a stronger formulation.

il =ui +v®,ieNreRrtef0,..,T'},w € NQ)
Vi =uf —vi®,ieN,reRte{0,..,T'}weN(]r)
u +v®<1,i€NreRrRte{0,..,T'}weN (ls)
u,ul? €{0,1},i e N,re R,t €{0,...,T'},w € 2 (1t)

2.2 Constraints

Constraint (1b) is the definition of X7, which ensures that
individual /;, is replaced at or before ¢ + 1 when it is replaced
at or before 7. Constraint (1c) implies that individual 7;,+1 can
only be replaced after J;, is replaced. Constraints (1d) and (1e)
ensures that the maintenance cost d incurs when any component
is replaced at time ¢. Constraints (1f) and (1g) ensure that
individual 7/;, has to be replaced before or at the end of its
lifetime T. Constraint (1h) implies that only individual 1
could be replaced at time 0. In stochastic programming, it is
required that the decision at # = 0 is the same as x; for all
scenarios, known as the non-anticipativity constraint, and this
constraint is imposed by constraint (1i). The constraint (1j)
forces all failed components at time # = 0 to be replaced.
Constraints (1k) and (11) define the auxiliary variable Y,
which is critical to identify the type of maintenance. Constraint
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(1m) provides the full definition of variable y;*. Constraints
(In) — (1p) are the definitions of variable w;/”. Constraint (1q)
is the binary constraint for all decision variables. The
linearization of |y/’| can be found in Equation (2) and
constraints (1r) — (1t).

2.3 Progressive hedging algorithm (PHA)

The proposed DEF model is an integer program with pure
binary decision variables. The lack of structural property
prohibits us to use efficient algorithm to handle this problem,
such as Benders decomposition. Therefore, we use progressive
hedging algorithm (PHA) to solve the proposed model. PHA is
a scenario-by-scenario decomposition method. The optimal
solution of each scenario is first obtained without considering
non-anticipativity constraint, then PHA penalizes the deviation
of first-stage solution from the average solution of all scenarios
to force non-anticipativity constraint holds. The detail of PHA
is described as follows, where ¢x + E(Q(x, w)) is the concise
presentation of a two-stage stochastic programming model with
x representing the first-stage decision variables and O(x, w)
representing the subproblem in scenario w . The penalty factor
is denoted by p [12].

Progressive hedging algorithm (PHA)

1. Initialization:
Letv <« 0, &« 102
X" «— arg minx (cx + Q (X, w)), Ve Q;
X" —Ypea P(@)Xg);
wy— p(xy, —XY), Vwe Q.
2. Update iteration variable: v < v + 1.
3. Decomposition:
X, <« arg ming(cx +wy ! +§ [lx — x| +
Q(x, w)) Vwe Q.
4. Aggregation: XV« cqp(w)XY,.
5. Update price: wl,«w/ ™1 + p(x?, — X"), Voe Q.
6. Calculate converge distance: g" <), cqp(w)||XY, —
X”||, Ve Q.
7. Termination: If g"<e¢, stop and return optimal solution
x". Else, go to step 2.

3 NUMERICAL EXAMPLE

In this section, we analyze the changes of optimal PM
interval when considering economic dependence for a road
maintenance case. In practical road maintenance, joint
maintenance of multiple road sections can share the setup cost.
The setup cost is usually induced by crew travelling, downtime
loss etc.. Road condition is evaluated by the international
roughness index (IRI) as in units of inches per mile. A larger
IRI stands for a worse road condition. According to the Federal
Highway Administration, reconstruction (CM) is considered
when IRI exceeds 170in./mile. Therefore, 170in./mile is the
failure threshold in this example.

3.1 Parameter estimation

We use real-world pavement IRI data over years from the
state of Florida [13] to fit the road degradation process

distribution. We select 4 section data as plotted in Figure 3. In
each section data, each path represents an independent
measurement of the same section.

road 2

road 1

D
D
20 10 D
x x P
10 5
00 00
0 1 2 3 4 5 6 0 1 2 3 4

year year

Figure 3. IRI data sets

EM algorithm for gamma process with missing data

X; = {xi(to),xl-(tl), ---,xi(t]i)} : i data set.
t, = maxt;, : maximum time that has an observed data
l

point among all data sets.
An; =n(t) —n(tj-1)
between
two consecutive time points.
AXi; = xi(t;) — xi(tj-1)
consecutive
time points of i data set.
At the k™ iteration:
(1) E-step:

Estimate x;(t,,) for all i: w¥ = E[X;(tm)|Dops, 6%]

K K

¥ (tm) —n*(tiy,)

= + Xi(ti),)

vk
Estimate  InAX;; for i

E[InAX; j |Dops, 6%] = p(An¥) —Iny*

: increment of shape function

increment between two

and j >t

i

(2) M-step:
Calculate: ykHt = ’?LTVN and Ank+t =
=1"i
[t .
Pt [;2111 wgfj +1n y"“] where fim =

™o [FE0 wf + In(ny,) — In(T, k)] and
) is the digamma function.
Repeat step (1) and (2) until following condition is met
(¢ is pre-defined) :
L(ON*Y; D) — L(BY; D) < &

We assume the deterioration processes of all sections follow a
gamma process with different unknown shape parameters #(7)
and different rate parameters y. The shape parameter #(7) is a
function of time ¢ but the function form is also unknown. In
some section data, several observations in the last several years
are missing, e.g., section 2 and section 3. Thus, we use EM
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algorithm to estimate the parameters.

The algorithm runs iteratively over two steps — the
expectation step (E-step) and the maximization step (M-step).
Denote the parameter vector to estimate by 6, the observed data
by D,ps, the complete data by D = D,ps U Dy and the log-
likelihood function based on D by L(8;D). Let 8% be the
estimated parameter vector at the k™ EM algorithm. At the
expectation step of the (k + 1)™ iteration, the missing data is
considered as unknown variables and we obtain the
expectations of D¢, in terms of 8%. At the maximization step
of the (k+ 1)" iteration, the expectations of D, are
substituted in the log-likelihood function Q(68]6%), which is
subsequently maximized over 8 and then we obtain 8%, For
a gamma process, EM algorithm with » data sets can be
described as shown above.

The output of the EM algorithm is the estimation of § =
(ﬁ(tj),)?) forj = {1, 2, ..., t»}. By using the section data in
Figure 3, we have ¥ = (0.5,1.27,1.36, 3.26) for section 1 to
section 4 respectively. We compare different forms of functions
to fit 7}, such as linear, power and exponential. The result of
estimated 7 values and best fitting function with corresponding
parameters are shown in Figure 4.

section 1
60 60

section 2

—%— estimated 5 (t)
————— fitted 5(t)=2.88tM.44

—%— estimated ()

————— fitted 7(t)=2.9911.36 |

year year
section 4

section 3

—%— estimated 1(t) 7
P fitted 7(t)=3.13t".74 //

—%— estimated 5(t)
—-—-—fitted n(t)=2.93t1.52

n(t)
N B
o 8 3
n(t)
° 3
N
N\
N

Figure 4. 71(t) estimation
3.2 Experiment results

We consider a planning horizon of 7'= 100 years. The
number of sections n =4. The PR cost is 1, CR cost is 10 for all
sections. When economic dependence is not considered, the
optimal PM intervals can be calculated under age-based policy,
which are T = (9,17, 15, 18) years for section 1 to section 4
respectively. When economic dependence is taken into
account, the optimal solution is obtained by solving proposed
model with PHA. Since we only take first-stage solutions in
PHA, we use rolling horizon technique to obtain the solutions
of all decision epochs.

We want to figure out how are age-based PM intervals t
changing if we consider economic dependence under different
setup cost. Table 1 summarizes the average PM intervals with
different setup cost d. For all sections, the average PM interval
increases as setup cost increases. The reason is that PM
becomes more expensive as setup cost increases. For section 2

and section 4, the age-based PM intervals are close enough so
that they have a high chance to group together. Therefore, for
both setup costs, section 2 and section 4 have the same PM
intervals which increases the possibility that they can be
maintained at the same time.

Table 1: average PM interval with different setup cost d

section age-based d=5 d=100
1 9 10.9 11.6
2 17 18.8 19
3 15 16.8 17
4 18 18.8 19

4 CONCLUSION

In this paper, we propose a two-stage stochastic program
to analytically model the maintenance optimization problem for
multi-component systems over the finite planning horizon
subject to the uncertainty of component lifetime. The impacts
of economic dependence and setup cost are investigated
through a road maintenance case. The results show that the
optimal PM interval increases when considering economic
dependence. In the future research, we will further explore the
model structure and analyze the optimal grouping pattern in a
more rigorous and comprehensive way.
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