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SUMMARY 

As the complexity of modern industrial systems increases 
faster than ever, it is imperative to a develop cost-effective 
maintenance plan to secure system safety while lowering 
maintenance cost for complex systems. However, most 
maintenance studies focus on single-component systems, 
which are not applicable to complex multi-component systems 
due to the various interactions among components, such as 
stochastic dependence, structure dependence and economic 
dependence. Economic dependence is the most commonly seen 
one among these interactions. Economic dependence means 
that any maintenance action incurs a system-dependence cost, 
regardless of the number of components maintained. 
Significant cost savings can be achieved by maintaining 
multiple components jointly instead of separately.  

In this paper, we study the maintenance optimization 
problem of multi-component systems with economic 
dependence among components. The objective is to determine 
the maintenance actions at each decision stage over a finite 
planning horizon so that the total maintenance cost is 
minimized. Such a maintenance optimization problem is 
challenging due to the combinatorial maintenance grouping 
problem with the stochastic component failure process. We 
present a two-stage stochastic programming model for this 
problem, which analytically expresses the total cost as a 
function of maintenance decisions. Progressive hedging 
algorithm is applied to solve this problem. We conduct a case 
study by using real-world pavement deterioration data. 
Experiment results provide insights on how economic 
dependence affects single-component maintenance decision. 

ACRONYMS 

CM        corrective maintenance 
PM preventive maintenance 
CR         corrective replacement 
PR         preventive replacement 

NOTATION 

n number of components 
N component set, N = {1, 2, …, n} 
T length of planning horizon 

Ts planning horizon, Ts = {1, 2, …, T} 
q number of individuals 
R individual set, R = {1, 2, …, q} 
Ω scenario set 
Iir  individual r of component i 
Tir lifetime of individual r of component i 
Tir

ω Lifetime Tir in scenario ω 

T'  Extended planning horizon, max
, ,

T Tiri r



     

ci,PR lifetime of individual r of component i 
ci,CR lifetime Tir in scenario ω 
Ci,PR total PR cost incurred by individuals of component i 

in the planning horizon Ts  
Ci,CR total CR cost incurred by individuals of component i 

in the planning horizon Ts 
Cs total setup cost in the planning horizon Ts 
Q(x, ω) objective value of the second stage  
d setup cost 
η(t) shape parameter of gamma process 
γ rate parameter of gamma process 
xi equal to 1 when an individual of component i is 

replaced at the first stage, 0 otherwise  
𝑥෤௜௧
௥ఠ        equal to 1 when Iir 

zt equal to 1 when there is at least one individual 
maintained at stage t, 0 otherwise 

zt
ω equal to 1 when there is at least one individual 

maintained at time t in scenario ω, 0 otherwise 

1 INTRODUCTION 

Effective maintenance is of vital importance for complex, 
capital intensive and hazardous industries. Inappropriate 
maintenance may result in catastrophic failures, such as the loss 
of Piper Alpha oil platform [1]. Therefore, efficient 
maintenance planning is essential for the complex systems that 
consist of multiple components. 

However, most studies in the literature focus on single-
component system, which is not applicable to multi-component 
systems due to the various dependence among components, 
namely, stochastic, structural and economic dependence [2]. 
Among these three dependences, economic dependence is the 
most commonly seen, and is considered in this paper. 
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Typically, systems with economic dependence incurs a system-
dependent cost that is known as setup cost when there is any 
maintenance taking place. This setup cost is considerably large 
in many industries. For example, plant shutdown is required for 
the maintenance of critical components in a chemical plant. The 
downtime loss due to the production loss range from $5,000 to 
$10,000 per hour [3]. The existence of economic dependence 
implies a joint maintenance of multiple components instead of 
separately so that setup cost can be shared. 

Multi-component maintenance optimization problem joins 
the stochastic processes regarding the failures of the 
components with the combinatorial problems regarding the 
grouping of maintenance activities [4]. The explicit analytical 
model is therefore complex and sometimes impossible to 
derive. In the literature, existing models are built on special 
system assumptions [5],restricted grouping policies [6], or 
resort to simulation tools [7] to reduce mathematical 
difficulties. From a solution perspective, most solution methods 
can only handle a small number of components because of the 
exponential growth of the problem size [8]. A widely adopted 
approach to coordinating maintenance activities is to group 
components with some grouping rules, which can be further 
divided into direct grouping and indirect grouping. In direct 
grouping, all components are partitioned into some fixed 
groups in which components are always maintained jointly [9]. 
However, this approach is essentially a set-partitioning problem 
which is NP (nondeterministic polynomial)-complete. An 
indirect grouping strategy groups preventive maintenance (PM) 
activities by making PM interval a multiple of a basis interval, 
so the maintenance of different components can coincide. 
However, such grouping methods ignore the maintenance 
opportunities generated by corrective maintenance (CM) at 
failure [10]. Recently, Patriksson et al. [10] models 
maintenance optimization problems as a stochastic integer 
program. The integer L-shaped method proposed  in their paper 
becomes prohibited when the problem scale gets larger. 

In this paper, we develop a multi-component maintenance 
optimization model in a finite-time horizon without any 
restriction on the types of maintenance activities that can be 
grouped. The problem is formulated as a two-stage stochastic 
linear model. We use the progressive hedging algorithm to 
solve our model. We conduct a case study of road maintenance 
by using real-world data. Experiment results provide insights 
on how economic dependence affects single-component 
maintenance decision. 

The remainder of paper is organized as follows. The 
proposed two-stage stochastic programming model is 
introduced in section 2. In section 3, we present a numerical 
example to provide some insights of the optimal maintenance 
decision for a practical road maintenance case. We conclude 
this research and discuss the future work in section 4. 

2 MODEL DEVELOPMENT AND ALGORITHM 

In this section, we propose a two-stage stochastic program 
to model the maintenance optimization problem for multi-
component systems. To the best of our knowledge, this is 
among the very first efforts that develop an analytical model to 

such a problem. Here we consider the system of interest 
consists of 𝑁 ൌ ሼ1, … ,𝑛ሽ types of component. We consider two 
types of maintenance activities, preventive replacement (PR) 
and corrective replacement (CR) with corresponding costs are 
ci, PR and ci, CR respectively (ci, PR < ci, CR) for component 𝑖 ∈ 𝑁. 
Each physical instance 𝑟 ∈ 𝑅 that replaced in the rth 
replacement of a component is called an individual Iir, where R 
= {1, 2, …, q}. Throughout this paper, we use component only 
when referring to its type, and refer to physical components as 
individuals. The system setup cost is denoted by d at any 
maintenance occasion regardless of the number of individuals 
replaced.  

The maintenance decision process can be divided into two 
stages. The first stage decision is to select a group of individuals 
for PR at the current decision time. The second stage decision 
is to group the individuals for PR at future decision time. We 
consider a discrete finite planning horizon 𝒯 ൌ ሼ0,1, … ,𝑇ሽ. At 
the first stage, i.e., t = 0, we first observe the failure state 𝜉௜ for 
the individual of component 𝑖 ∈ 𝑁. If the individual of 
component 𝑖 ∈ 𝑁 is functioning, then 𝜉௜ ൌ 0, otherwise 𝜉௜ ൌ 1. 
We then make the decision for the first stage: 

𝑥௜ ൌ ൝
1, if the individual of component 𝑖 
is replaced at 𝑡 ൌ 0,                 𝑖 ∈ 𝑁 
0, otherwise.                              𝑖 ∈ 𝑁

 

and 

𝑧 ൌ ൜
1, if any maitenance occurs at 𝑡 ൌ 0, 𝑖 ∈ 𝑁 

0, otherwise. 𝑖 ∈ 𝑁
 

The second stage decisions are the maintenance decisions 
at time 𝑡 ∈ 𝒯\ሼ0ሽ that are made after the individual failure 
states are revealed at t = 1. Because of the randomness of 
component lifetime, we model the lifetime of each component 
with an appropriate distribution and randomly generate 
lifetimes for all its individuals. A combination of lifetimes of 
all individuals of all components is referred to as a scenario. By 
using this scenario generation method, the lifetimes of 
individuals are deterministic for a given scenario. For each 
scenario 𝜔 ∈ 𝛺, the decision variables are defined as: 

𝑥෤௜௧
௥ఠ ൌ ൝

1, if 𝐼௜௥  is replaced at or before time 𝑡 in scenario 𝜔,
                                                𝑖 ∈ 𝑁, 𝑡 ∈ 𝒯, 𝑟 ∈ 𝑅,𝜔 ∈ 𝛺 
0, otherwise.                      𝑖 ∈ 𝑁, 𝑡 ∈ 𝒯, 𝑟 ∈ 𝑅,𝜔 ∈ 𝛺

 

and  

𝑧௧
ఠ ൌ ൝

1, if any maintenance occurs at time 𝑡 in scenario 𝜔
                                                                         , 𝑡 ∈ 𝒯,𝜔 ∈ 𝛺 

0, otherwise.                                               𝑡 ∈ 𝒯,𝜔 ∈ 𝛺
 

The deterministic equivalent form (DEF) of proposed two-
stage stochastic model is described as follows. 
minimize 

∑ 𝑝ሺ𝜔ሻቌ∑ ቌ∑ 𝑐௜,୔ୖ𝑌௜
௥ఠ

௜∈ோᇣᇧᇧᇧᇤᇧᇧᇧᇥ
஼೔,ౌ౎

                                  ൅௜∈ேఠ∈ఆ

∑ 𝑐௜,ୈሺ1 െ 𝑌௜
௥ఠሻ െ௜∈ோ 𝑐௜,ୈሺ1 െ 𝑥෤௜்

௥ఠሻᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
஼೔,ి౎

ቍ  ൅∑ 𝑑𝑧௧
ఠ

௧∈𝒯ᇣᇧᇧᇤᇧᇧᇥ
஼౩

ቍ(1a) 

subject to 
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𝑥෤௜௧
௥ఠ ൑ 𝑥෤௜,௧ାଵ

௥ఠ , 𝑖 ∈ 𝑁, 𝑡 ∈ 𝒯\ሼ𝑇ሽ, 𝑟 ∈ 𝑅,𝜔 ∈ 𝛺  (1b) 

𝑥෤௜,௧ାଵ
௥ାଵ,ఠ ൑ 𝑥෤௜,௧

௥ఠ , 𝑖 ∈ 𝑁, 𝑡 ∈ 𝒯\ሼ𝑇ሽ, 𝑟 ∈ 𝑅\ሼ𝑞ሽ,𝜔 ∈ 𝛺 (1c) 

∑ ൫𝑥෤௜௧
௥ఠ െ 𝑥෤௜,௧ିଵ

௥ఠ ൯௥∈ோ ൑ 𝑧௧
ఠ, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝒯\ሼ0ሽ,𝜔 ∈ 𝛺 (1d) 

𝑥෤௜௧
௥ఠ ൑ 𝑥෤௜, ೔்,ೝశభഘ

௥ାଵ,ఠ , 𝑖 ∈ 𝑁, 𝑡 ∈ ൛0, … ,𝑇 െ 𝑇௜,௥ାଵ
ఠ ൟ 

    , 𝑟 ∈ 𝑅\ሼ𝑞ሽ,𝜔 ∈ 𝛺  (1f) 

𝑥෤௜ ೔்భ
ഘ

ଵఠ ൌ 1, 𝑖 ∈ ሼ𝑗 ∈ 𝑁|𝑇௝ଵ
ఠ ൑ 𝑇ሽ,𝜔 ∈ 𝛺  (1g) 

𝑥෤௜଴
௥ఠ ൌ 0, 𝑖 ∈ 𝑁, 𝑟 ∈ 𝑅\ሼ1ሽ,𝜔 ∈ 𝛺   (1h) 

𝑥௜ ൌ 𝑥෤௜଴
ଵఠ, 𝑖 ∈ 𝑁,𝜔 ∈ 𝛺    (1i) 

𝑥௜ ൒ 𝜉௜ , 𝑖 ∈ 𝑁     (1j) 

𝑌௜
ଵఠ ൌ 1 െ 𝑤௜ ೔்భ

ഘ
ଵఠ , 𝑖 ∈ 𝑁,𝜔 ∈ 𝛺   (1k) 

𝑌௜
௥ఠ ൌ

ቆ∑ ห௬೔೟
ೝഘห

೅శ೅೔ೝ
ഘ

೟స೅೔ೝ
ഘ ା∑ ௪೔೟

ೝഘ೅೔ೝ
ഘషభ

೟సబ ቇ

ଶ
  

, 𝑖 ∈ 𝑁, 𝑟 ∈ 𝑅\ሼ1ሽ,𝜔 ∈ 𝛺 (1l) 

𝑦௜௧
௥ఠ ൌ 𝑤௜௧

௥ఠ െ 𝑤௜,௧ି ೔்ೝ
ഘ

௥ିଵ,ఠ  

      , 𝑖 ∈ 𝑁, 𝑟 ∈ 𝑅\ሼ1ሽ, 𝑡 ∈ ሼ𝑇௜,௥
ఠ ,𝑇ᇱሽ,𝜔 ∈ 𝛺 (1m) 

𝑤௜௧
௥ఠ ൌ 𝑥෤௜௧

௥ఠ െ 𝑥෤௜,௧ିଵ
௥ఠ , 𝑖 ∈ 𝑁, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝒯\ሼ0ሽ,𝜔 ∈ 𝛺 (1n) 

𝑤௜଴
௥ఠ ൌ 𝑥෤௜଴

௥ఠ , 𝑖 ∈ 𝑁, 𝑟 ∈ 𝑅,𝜔 ∈ 𝛺   (1o) 

𝑤௜௧
௥ఠ ൌ 0,   𝑖 ∈ 𝑁, 𝑟 ∈ 𝑅, 𝑡 ∈ ሼ𝑇 ൅ 1, … ,𝑇ᇱሽ,𝜔 ∈ 𝛺 (1p) 

𝑥෤௜௧
௥ఠ , 𝑥௜ , 𝑧௧

ఠ ,𝑤௜௧
௥ఠ ,𝑌௜௧

௥ఠ ∈ ሼ0, 1ሽ 

, 𝑖 ∈ 𝑁, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝒯,𝜔 ∈ 𝛺 (1q) 

2.1 Objective function 

The total cost in function (1a) consists of (1) sum of PR 
and CR costs incurred by individuals of component i in the 
planning horizon, denoted by 𝐶௜,୔ୖ and 𝐶௜,ୈ respectively and 
(2) total system setup cost 𝐶ୱ. Probability of scenario 𝜔 ∈ 𝛺 is 
denoted by 𝑝ሺ𝜔ሻ. Auxiliary variable 𝑌௜

௥ఠ indicates individual 
Iir in scenario 𝜔 takes PR when equals to 1 and CR when equals 
to 0. However, to derive 𝑌௜

௥ఠ from variables 𝑥෤௜௧
௥ఠ is non-trivial 

because 𝑥෤௜௧
௥ఠ has no indication of maintenance type. Next, we 

will show how we get 𝑌௜
௥ఠ. 

Variable 𝑌௜
௥ఠ is defined in constraints (1k) and (1l). From 

(1n), auxiliary variable 𝑤௜௧
௥ఠ equals to 1 when Iir is replaced at 

time t and 0 otherwise. For an individual Iir, one way to 
determine its replacement type is to examine the time interval 
between the replacements of individuals Ii,r-1 and Iir, as shown 
in Figure 1. Suppose that individuals 𝐼௜,௥ିଵ and Iir are replaced 
at time t1 and t2, (i.e., 𝑤௜௧భ

௥ିଵ,ఠ ൌ 1 and 𝑤௜௧మ
௥ఠ) respectively. If the 

difference between t2 and t1 equals to the lifetime of Iir, namely, 
𝑇௜௥
ఠ, the Ii,r is replaced at the end of its lifetime and the 

replacement type CR. Otherwise, the replacement is PR. 

Therefore, we have ∑ |𝑦௜௧
௥ఠ|்

௧ୀ଴ ൌ ∑ ቚ𝑤௜௧
௥ఠ െ 𝑤௜,௧ି ೔்ೝ

ഘ
௥ିଵ,ఠ ቚ்

௧ୀ଴ ൌ 0 

for CR (Figure 1(a)) and ∑ |𝑦௜௧
௥ఠ|்

௧ୀ଴ /2 ൌ 1 for PR (Figure 
1(b)), where 𝑦௜௧

௥ఠ is defined in constraint (1m). 
However, there is a boundary issue in ∑ |𝑦௜௧

௥ఠ|்
௧ୀ଴ . From 

constraint (1m) 𝑦௜௧
௥ఠ ൌ 𝑤௜௧

௥ఠ െ 𝑤௜,௧ି ೔்ೝ
ഘ

௥ିଵ,ఠ , time t can only be no 

smaller than 𝑇௜௥
ఠ. Therefore, the summation ∑ |𝑦௜௧

௥ఠ|்
௧ୀ଴  cannot 

start from t = 0. One approach to solving this issue is to extend 

to time horizon to 𝑇ᇱ ൌ 𝑇 ൅ max
௜,௥,ఠ

𝑇௜௥
ఠ and let 𝑤௜௧

௥ఠ ൌ 0 for t > T, 

so that 𝑌௜
௥ఠ ൌ ቀ∑ |𝑦௜௧

௥ఠ|்ା ೔்ೝ
ഘ

௧ୀ ೔்ೝ
ഘ ൅ ∑ 𝑤௜௧

௥ఠ೔்ೝ
ഘିଵ

௧ୀ଴ ቁ /2 (constraint (1l)) 

can be used to indicate the maintenance type. Figure 2 
illustrates this issue. 

 

Figure 1. Illustration of distinguishing PR and CR 

 

Figure 2. Illustration of boundary issue 

The absolute function, |𝑦௜௧
௥ఠ|, can be linearized by a pair of 

deviation variables 𝑢௜௧
௥ఠ and 𝑣௜௧

௥ఠ [11]. We replace |𝑦௜௧
௥ఠ| with 

Equation (2) in the constraint (1l), and add constraint (1r) to (1t) 
in the DEF model. Notice that constraint (1s) is unnecessary for 
the linearization but can lead to a stronger formulation. 

|𝑦௜௧
௥ఠ| ൌ 𝑢௜௧

௥ఠ ൅ 𝑣௜௧
௥ఠ , 𝑖 ∈ 𝑁, 𝑟 ∈ 𝑅, 𝑡 ∈ ሼ0, … ,𝑇ᇱሽ,𝜔 ∈ 𝛺(2) 

𝑦௜௧
௥ఠ ൌ 𝑢௜௧

௥ఠ െ 𝑣௜௧
௥ఠ , 𝑖 ∈ 𝑁, 𝑟 ∈ 𝑅, 𝑡 ∈ ሼ0, … ,𝑇ᇱሽ,𝜔 ∈ 𝛺(1r) 

𝑢௜௧
௥ఠ ൅ 𝑣௜௧

௥ఠ ൑ 1 , 𝑖 ∈ 𝑁, 𝑟 ∈ 𝑅, 𝑡 ∈ ሼ0, … ,𝑇ᇱሽ,𝜔 ∈ 𝛺 (1s) 

𝑢௜௧
௥ఠ ,𝑢௜௧

௥ఠ ∈ ሼ0, 1ሽ, 𝑖 ∈ 𝑁, 𝑟 ∈ 𝑅, 𝑡 ∈ ሼ0, … ,𝑇ᇱሽ,𝜔 ∈ 𝛺 (1t) 

2.2 Constraints 

Constraint (1b) is the definition of 𝑥෤௜௧
௥ఠ, which ensures that 

individual Ii,r is replaced at or before t + 1 when it is replaced 
at or before t. Constraint (1c) implies that individual Ii,r+1 can 
only be replaced after Ii,r is replaced. Constraints (1d) and (1e) 
ensures that the maintenance cost d incurs when any component 
is replaced at time t. Constraints (1f) and (1g) ensure that 
individual Ii,r has to be replaced before or at the end of its 
lifetime 𝑇௜௥

ఠ. Constraint (1h) implies that only individual 1 
could be replaced at time 0. In stochastic programming, it is 
required that the decision at t = 0 is the same as xi for all 
scenarios, known as the non-anticipativity constraint, and this 
constraint is imposed by constraint (1i). The constraint (1j) 
forces all failed components at time t = 0 to be replaced. 
Constraints (1k) and (1l) define the auxiliary variable 𝑌௜

௥ఠ, 
which is critical to identify the type of maintenance. Constraint 
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(1m) provides the full definition of variable 𝑦௜௧
௥ఠ. Constraints 

(1n) – (1p) are the definitions of variable 𝑤௜௧
௥ఠ. Constraint (1q) 

is the binary constraint for all decision variables. The 
linearization of |𝑦௜௧

௥ఠ| can be found in Equation (2) and 
constraints (1r) – (1t). 

2.3 Progressive hedging algorithm (PHA) 

The proposed DEF model is an integer program with pure 
binary decision variables. The lack of structural property 
prohibits us to use efficient algorithm to handle this problem, 
such as Benders decomposition. Therefore, we use progressive 
hedging algorithm (PHA) to solve the proposed model. PHA is 
a scenario-by-scenario decomposition method. The optimal 
solution of each scenario is first obtained without considering 
non-anticipativity constraint, then PHA penalizes the deviation 
of first-stage solution from the average solution of all scenarios 
to force non-anticipativity constraint holds. The detail of PHA 
is described as follows, where cx + E(Q(x, ω)) is the concise 
presentation of a two-stage stochastic programming model with 
x representing the first-stage decision variables and Q(x, ω) 
representing the subproblem in  scenario ω . The penalty factor 
is denoted by 𝜌 [12]. 

 
Progressive hedging algorithm (PHA) 

1. Initialization: 
Let v ← 0, ε ← 10-2; 
xω(v) ← arg minx (𝐜𝐱 ൅ 𝑄ሺ𝐱,𝜔ሻ), ∀ω∊ Ω; 
𝐱ത௩←∑ 𝑝ሺ𝜔ሻ𝐱ఠ௩ఠ∈ஐ ; 
𝐰ఠ
௩← 𝜌ሺ𝐱ఠ௩ െ 𝐱ത௩ሻ, ∀ω∊ Ω. 

2. Update iteration variable: v ← v + 1. 
3. Decomposition:  

xω(v) ← arg minx(𝐜𝐱 ൅ 𝐰ఠ
௩ିଵ ൅

ఘ

ଶ
 ‖𝐱 െ 𝐱ത௩ିଵ‖ ൅

𝑄ሺ𝐱,𝜔ሻሻ ∀ω∊ Ω. 
4. Aggregation: 𝐱ത௩←∑ 𝑝ሺ𝜔ሻ𝐱ఠ௩ఠ∈ஐ . 
5. Update price: 𝐰ఠ

௩←𝐰ఠ
௩ିଵ ൅ 𝜌ሺ𝐱ఠ௩ െ 𝐱ത௩ሻ, ∀ω∊ Ω. 

6. Calculate converge distance: gv ←∑ 𝑝ሺ𝜔ሻ‖𝐱ఠ௩ െఠ∈ஐ
𝐱ത௩‖, ∀ω∊ Ω. 
7. Termination: If gv < ε, stop and return optimal solution 
𝐱ത௩. Else, go to step 2. 

3 NUMERICAL EXAMPLE 

In this section, we analyze the changes of optimal PM 
interval when considering economic dependence for a road 
maintenance case. In practical road maintenance, joint 
maintenance of multiple road sections can share the setup cost. 
The setup cost is usually induced by crew travelling, downtime 
loss etc.. Road condition is evaluated by the international 
roughness index (IRI) as in units of inches per mile. A larger 
IRI stands for a worse road condition. According to the Federal 
Highway Administration, reconstruction (CM) is considered 
when IRI exceeds 170in./mile. Therefore, 170in./mile is the 
failure threshold in this example. 

3.1 Parameter estimation 

We use real-world pavement IRI data over years from the 
state of Florida [13] to fit the road degradation process 

distribution. We select 4 section data as plotted in Figure 3. In 
each section data, each path represents an independent 
measurement of the same section.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. IRI data sets 

 
We assume the deterioration processes of all sections follow a 
gamma process with different unknown shape parameters η(t) 
and different rate parameters γ. The shape parameter η(t) is a 
function of time t but the function form is also unknown. In 
some section data, several observations in the last several years 
are missing, e.g., section 2 and section 3. Thus, we use EM 

EM algorithm for gamma process with missing data 

𝑋௜ ൌ ൛𝑥௜ሺ𝑡଴ሻ, 𝑥௜ሺ𝑡ଵሻ,⋯ , 𝑥௜൫𝑡௃೔൯ൟ : i
th data set. 

𝑡௠ ൌ max
௜
𝑡௃೔ : maximum time that has an observed data 

point among all data sets. 
∆𝜂௝ ൌ 𝜂൫𝑡௝൯ െ 𝜂൫𝑡௝ିଵ൯  : increment of shape function 
between  
two consecutive time points. 
∆𝑋௜௝ ൌ 𝑥௜൫𝑡௝൯ െ 𝑥௜൫𝑡௝ିଵ൯ : increment between two 
consecutive  
time points of ith data set. 
At the kth iteration: 
(1) E-step:  

Estimate 𝑥௜ሺ𝑡௠ሻ for all i: 𝑤௜
௞ ൌ 𝐸ሾ𝑋௜ሺ𝑡௠ሻ|𝐷௢௕௦,𝜃௞ሿ 

ൌ
𝜂௞ሺ𝑡௠ሻ െ 𝜂௞൫𝑡௜,௃೔൯

𝛾௞
൅ 𝑋௜൫𝑡௜,௃೔൯ 

Estimate 𝑙𝑛 ∆𝑋௜,௝ for i and j > 𝑡௃೔: 
𝐸ൣln∆𝑋௜,௝ ห𝐷௢௕௦,𝜃௞൧ ൌ 𝜓൫∆𝜂௝

௞൯ െ ln 𝛾௞ 
 
(2) M-step:  

Calculate: 𝛾୩ାଵ ൌ
௡ఎෝ೘

∑ ௪೔
ಿ೙

೔సభ
 and ∆𝜂௜

௞ାଵ ൌ

𝜓ିଵ ቂ
ଵ

௡
∑ 𝜔௜,௝

௞௡
௜ୀଵ ൅ ln 𝛾௞ାଵቃ where 𝜂̂௠ ൌ

∑ 𝜓ିଵ ቂ
ଵ

௡
∑ 𝜔௜,௝

௞௡
௜ୀଵ ൅ lnሺ𝑛𝜂௠ሻ െ ln൫∑ 𝑤௜

௞௡
௜ୀଵ ൯ቃ௠

௝ୀଵ  and 𝜓ሺ∙

ሻ is the digamma function. 
Repeat step (1) and (2) until following condition is met 
(ε is pre-defined) : 

𝐿ሺ𝜃ேାଵ;𝐷௢௕௦ሻ െ 𝐿ሺ𝜃ே;𝐷௢௕௦ሻ ൏ 𝜀. 
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algorithm to estimate the parameters. 
The algorithm runs iteratively over two steps – the 

expectation step (E-step) and the maximization step (M-step). 
Denote the parameter vector to estimate by 𝜃, the observed data 
by 𝐷௢௕௦, the complete data by 𝐷 ൌ 𝐷௢௕௦ ∪ 𝐷௠௜௦௦ and the log-
likelihood function based on 𝐷 by 𝐿ሺ𝜃;𝐷ሻ. Let 𝜃௞ be the 
estimated parameter vector at the 𝑘th EM algorithm. At the 
expectation step of the ሺ𝑘 ൅ 1ሻth iteration, the missing data is 
considered as unknown variables and we obtain the 
expectations of 𝐷௠௜௦௦ in terms of 𝜃௞. At the maximization step 
of the ሺ𝑘 ൅ 1ሻth iteration, the expectations of 𝐷௠௜௦௦ are 
substituted in the log-likelihood function 𝑄ሺ𝜃|𝜃௞ሻ, which is 
subsequently maximized over 𝜃 and then we obtain 𝜃௞ାଵ. For 
a gamma process, EM algorithm with n data sets can be 
described as shown above. 

The output of the EM algorithm is the estimation of 𝜃෠ ൌ
൫𝜂̂൫𝑡௝൯, 𝛾ො൯ for j = {1, 2, …, tm}. By using the section data in 
Figure 3, we have 𝛾ො ൌ ሺ0.5, 1.27, 1.36, 3.26ሻ for section 1 to 
section 4 respectively. We compare different forms of functions 
to fit 𝜂̂, such as linear, power and exponential. The result of 
estimated 𝜂̂ values and best fitting function with corresponding 
parameters are shown in Figure 4.  
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 4. 𝜂̂ሺ𝑡ሻ estimation 

3.2 Experiment results 

We consider a planning horizon of T = 100 years. The 
number of sections n = 4. The PR cost is 1, CR cost is 10 for all 
sections. When economic dependence is not considered, the 
optimal PM intervals can be calculated under age-based policy, 
which are 𝜏 ൌ ሺ9, 17, 15, 18ሻ years for section 1 to section 4 
respectively. When economic dependence is taken into 
account, the optimal solution is obtained by solving proposed 
model with PHA. Since we only take first-stage solutions in 
PHA, we use rolling horizon technique to obtain the solutions 
of all decision epochs.  

We want to figure out how are age-based PM intervals 𝜏 
changing if we consider economic dependence under different 
setup cost. Table 1 summarizes the average PM intervals with 
different setup cost d. For all sections, the average PM interval 
increases as setup cost increases. The reason is that PM 
becomes more expensive as setup cost increases. For section 2 

and section 4, the age-based PM intervals are close enough so 
that they have a high chance to group together. Therefore, for 
both setup costs, section 2 and section 4 have the same PM 
intervals which increases the possibility that they can be 
maintained at the same time. 

Table 1: average PM interval with different setup cost d 

section age-based d = 5 d = 100 

1 9 10.9 11.6 

2 17 18.8 19 

3 15 16.8 17 

4 18 18.8 19 

4 CONCLUSION 

In this paper, we propose a two-stage stochastic program 
to analytically model the maintenance optimization problem for 
multi-component systems over the finite planning horizon 
subject to the uncertainty of component lifetime. The impacts 
of economic dependence and setup cost are investigated 
through a road maintenance case. The results show that the 
optimal PM interval increases when considering economic 
dependence. In the future research, we will further explore the 
model structure and analyze the optimal grouping pattern in a 
more rigorous and comprehensive way. 
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