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Abstract
An active lifestyle can mitigate physical decline and cognitive impairment in older adults. Regular walking exer-
cises for older individuals result in enhanced balance and reduced risk of falling. In this paper, we present a study
on gait monitoring for older adults during walking using an integrated system encompassing an assistive robot
and wearable sensors. The system fuses data from the robot onboard RGB-D sensor with inertial and pressure
sensors embedded in shoe insoles, and estimates spatiotemporal gait parameters and dynamic margin of sta-
bility in real-time. Data collected with 24 participants at a community center reveal associations between gait
parameters, physical performance (evaluated with the Short Physical Performance Battery, SPPB), and cognitive
ability (measured with the Montreal Cognitive Assessment, MoCA). The results validate feasibility of using such a
portable system in out-of-the-lab conditions, and will be helpful for designing future technology-enhanced exercise
interventions to improve balance, mobility and strength and potentially reduce falls in older adults.

1. Introduction
An active lifestyle can mitigate physical and cognitive decline in older adults, and prolong functional
independence (Ahlskog et al. (2011); Hirvensalo et al. (2000)). Walking is a preferred and the most
accessible exercise modality among older adults (Morris and Hardman (1997)). Regular walking exer-
cises may improve balance, increase muscle strength and reduce the risk of falls. Individual or group
walking programs are routinely offered at senior centers, either indoor or outdoor (Eyler et al. (2003)),
but the increasing shortage of trained caregivers due to population aging and increased life expectancy
is posing a serious threat to the sustainability of such initiatives in the future. Group activities allow a
single trainer to supervise multiple seniors simultaneously, but make it difficult for caregivers to track
individual progress and tailor exercise goals to a person’s functional level. Self-administered walking
programs are suitable for seniors with moderate impairments, but adherence to the protocols rely on
trainees’ intrinsic motivation factors, which are difficult to control (Osoba et al. (2019)).

Because alterations in walking patterns (i.e., gait speed, gait variability) may be markers of frailty
(Montero-Odasso et al. (2005)), precursors of fall (Hausdorff et al. (2001)), and indicators of neurolog-
ical or musculoskeletal disorders (Maddox (2013)), gait assessments are often included within health
screening for older adults (Winter (1991)). Prior work has shown that analysis of gait under complex
conditions, for instance, while performing a secondary cognitive task, can detect important markers of
function and future risk for falls (Porciuncula et al. (2016); Osoba et al. (2019)). Traditional gait anal-
ysis relies on clinical observation and timed mobility tests (Steffen et al. (2002)) that have moderate
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discriminatory power (Gates et al. (2008)). Quantitative gait analysis may provide superior diagnostic
power than traditional tests (Verghese et al. (2009)), but requires dedicated laboratory space and costly
equipment (electronic walkways, motion capture systems, force plates) that most senior centers cannot
afford. Lack of mobility and limited workspace represent two additional drawbacks of these systems,
since they constrain the maximum number of consecutive footfalls that can be measured in a given time
interval, which negatively affects the reliability of the estimated gait variability (Hollman et al. (2010)).
Robotics and wearable technology can be leveraged to measure gait parameters over any distance, and
administer personalized exercises to community dwelling older adults. To this aim, researchers have
proposed depth imaging sensors, wearable sensors, and assistive robots (Szymański et al. (2014)).

A comprehensive review of the applications of stationary depth imaging sensors in elderly care,
including movement analysis and balance training, can be found in Webster and Celik (2014). RGB-
D cameras (Stone and Skubic (2011); Gabel et al. (2012); Clark et al. (2013)) and laser range sensors
(LRS) (Pallejà et al. (2009); Yorozu et al. (2014)) can estimate a basic set of gait parameters, but
they share some of the drawbacks of optical motion capture systems, e.g., constrained workspaces
and occlusions. Stationary cameras also require costly modifications to an individual’s home, and their
acceptance is hampered by users’ privacy concerns. In camera-based balance trainers, the user’s move-
ments are continuously compared to a database of template movements, and the user is provided with
real-time feedback on his/her performance (Lange et al. (2011); Kayama et al. (2013); Lin et al. (2013)).

Wearable systems consist of a network of sensors, a smartphone to log and relay data to a remote
unit, and a data analysis unit that converts these signals into clinically relevant information (Patel et al.
(2012)). Wearable sensors have been used for gait assessments and to administer game-like balance
training exercises in older adults (De Morais and Wickström (2011); Rao (2019)). Among the wearable
systems for gait assessments, in-shoe devices are promising since they allow for minimally obtrusive,
ubiquitous measurements (Hegde et al. (2016); Zanotto et al. (2017)). Yet, compared to laboratory
equipment, they can measure a limited set of gait parameters, which are typically restricted to the sagit-
tal plane. While in-shoe devices can reliably estimate temporal gait parameters, they are less accurate
than laboratory equipment in measuring spatial parameters (Mariani et al. (2010a); Rampp et al. (2015);
Minto et al. (2016); Zhang et al. (2022)).

The use of mobile robots to administer exercises has also been proposed in recent years. Com-
pared with virtual trainers, robots’ physical embodiment is thought to increase seniors’ engagement
and intrinsic motivation —both critical factors for the success of rehabilitation interventions —as robots
may exhibit human-like social behaviors (Bainbridge et al. (2011); Fasola and Mataric (2012)). To date,
most studies have focused on chair aerobics (Fasola and Mataric (2010); Gorer et al. (2017)), while
limited research has explored the use of mobile robots as tools for gait analysis (Yorozu and Taka-
hashi (2015)) or walking exercises (Piezzo et al. (2017a)) for older adults. In these applications, limited
workspace and obstruction-related issues typical of depth image sensors are mitigated by leveraging
the robot’s mobility (Leica et al. (2015); Piezzo and Suzuki (2017)).

While wearable sensors and mobile robots equipped with onboard depth image sensors may meet
the mobility requirements of a portable system capable of administering ubiquitous and autonomous
gait assessments and walking exercises to older adults, the potential behind their combined use has
been largely overlooked thus far (Moschetti et al. (2019); Cifuentes et al. (2014)). In this paper, we
present an integrated system consisting of a mobile robot and in-shoe sensors, where the mobile robot
guides the older adult to walk on a designated track during overground walking exercises. Together with
the in-shoe sensors that the older adults wear, the robot autonomously measures spatio-temporal gait
parameters in real-time, and estimates dynamic margin of stability (MoS) for potential assessment of
the fall risk. We validate the system with older adults at a community center. Performance evaluations of
the guided robot control are reported with satisfactory results. Accuracy of the autonomous gait param-
eters estimation is quantified using a validated electronic walkway, and the results show comparable
or better performance than existing methods. Associations between gait metrics, physical performance,
and cognitive ability are analyzed, revealing larger increases in gait variability and more pronounced
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adaptations toward conservative gait strategies in older adults with higher levels of cognitive impair-
ment performing a secondary cognitive task. Survey results that measure participants’ attitudes towards
technology and our integrated system are reported with summarized data.

While our recent work (Zhang et al. (2020); Chen et al. (2022)) focused on spatiotemporal gait
analysis and MoS estimation, and validated these methods with healthy individuals under controlled
laboratory conditions, this paper focuses on validation of the system with older adults at a community
center in guided walking exercises with a clinically-oriented protocol. New contributions include: i) a
design of mobile robot motion planning and distance-keeping control to guide older adults in walking
exercises; ii) an evaluation of the system’s accuracy on gait monitoring during walking exercises with
older adults in a community center; iii) an investigation of how the Montreal Cognitive Assessment
(MoCA) score, a clinical measure of cognitive function, is independently associated with changes in
gait and balance metrics captured by the integrated system during dual-task walking in older adults; iv)
an analysis of older adults’ attitude toward the proposed technology.

The remainder of this paper is organized as follows. Section 2 presents our integrated robot and wear-
able sensor system and the experimental protocols. Section 3 presents the robot subsystem design and
its performance validation, where the robot maps the environment, localizes itself, and autonomously
controls its motion for path tracking and distance keeping with the human subject. The autonomous
gait parameter monitoring and MoS estimation are described in Section 4 with performance validation.
The association between physical performance, cognitive ability, and gait parameters is presented in
Section 5. The participant attitude survey results are presented in Section 6. Study limitations are dis-
cussed in Section 7, together with directions of future work. Finally, the paper is concluded in Section
8 with brief remarks.

2. System and Experimental Protocol
2.1. Integrated Robot and Wearable Sensor System
Our system consists of a wheeled mobile robot and an instrumented footwear subsystem. The mobile
robot is a customized P3-DX differential drive robot equipped with a laptop computer (Intel Core
i7-9750H CPU, Nvidia RTX 2060 GPU) that works as the onboard computing device, a backward-
facing Azure Kinect sensor for gait monitoring, and a forward-facing Kinect v1 sensor for mapping and
localization. The instrumented footwear subsystem (Zhang et al. (2017); Zhang et al. (2020)) consists
of a pair of insoles, each featuring 8 piezoresistive cells (from IEE S.A., Luxemburg), underneath the
left and right calcaneus, the lateral arch, the head of the first, third and fifth metatarsals, the hallux,
and the toes, respectively. An inertial measurement unit (IMU, Yost Labs Inc., Portsmouth, OH) is
embedded in each insole under the medial arch. Together with the insole, a Li-Po-battery-powered
logic unit is clipped laterally on the shoe of the subject, which is composed of a 32-bit ARM Cortex-
M4 microcontroller and a Wi-Fi module for the purpose of streaming data from the IMU and pressure
sensors to the robot. The robot and the logic units of the instrumented footwear communicate in a
local area network through a wireless router. The laptop computer on the robot controls the robot’s
motion and processes the data from both the robot and instrumented footwear subsystems. Programs
for robot motion control, data acquisition and gait analysis run as Robot Operating System (ROS) nodes
in Ubuntu 18.04 with ROS Melodic. Figure 1 shows the integrated robot and wearable sensor system
leading a study participant in a walking exercise.

2.2. Experimental Protocol
We recruited 24 participants from the Center for Active Older Adults in the Sunnyside Community Ser-
vices (Queens, NY). The center offers meals, activities and exercise classes for older adults. Participants
were recruited into the study if they were (1) between the ages of 65-85 years, (2) regularly attended
the Center for Active Older Adults, (3) Able to walk a distance of 50 meters independently, (4) Willing
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Figure 1. The system consists of a P3-DX mobile robot and an instrumented footwear subsystem. The Azure Kinect sensor (shown in the
right picture) is used for gait monitoring. The Kinect sensor (shown in the left picture) is used for robot mapping and localization. A validated
electronic walkway is used as the reference system to validate the system’s accuracy in measuring gait parameters.

and able to follow the study protocol, and (5) Able to understand English or Spanish. We excluded par-
ticipants if (1) They had an acute medical illness 30 days before study participation, (2) had a history of
cardiopulmonary, neurological or musculoskeletal disorder that affected their ability to walk, (3) Had a
history of heart disease or uncontrolled blood pressure, (4) loss of sensation in the lower limbs, and (5)
History of seizure disorder. Study procedures were approved by the Institutional Review Board (IRB)
at Columbia University Medical Center (Protocol #: AAAS0003) and the IRB at Stevens Institute of
Technology (Protocol #: 2019-014). The research team and center staff screened potential participants
for eligibility. All participants were explained the study purpose and procedures, and provided written
informed consent before participating in the study. Following consent, we recorded demographic and
anthropometric data, administered the cognitive test (Montreal Cognitive Assessment) and the Short
Physical Performance Battery (SPPB).

2.2.1. Assessments
Demographic and Anthropometric Information: We recorded the following information from each
participant: date of birth, sex, race, ethnicity, handedness, highest level of education, and history of
injury to the lower limbs in the past six months. We also recorded anthropometric data such as height,
weight, leg length, and shoe size. The anthropometric data were used for calculation of gait data.
Montreal Cognitive Assessment: In order to screen for cognitive deficits, a trained researcher adminis-
tered the Montreal Cognitive Assessment (MoCA). The MoCA is a quick screening tool that has been
extensively tested in older adults (Luis et al. (2009); Dale et al. (2018)). In addition, participants per-
formed a serial 3 counting backwards task. Participants were given a 3-digit number and were asked to
count backwards by 3 for a period of 1-minute. We recorded the number of digits counted and errors.
The serial 3 task was used as a baseline to compare with the performance of the same task while walk-
ing.
Short Physical Performance Battery (SPPB): The short physical performance battery is a set of three
tests that assess lower extremity strength, balance and mobility in older adults. Two trained researchers
administered the SPPB. To assess functional strength, participants performed a timed five times sit-to-
stand task. We assessed balance by asking participants to stand for 10 seconds with their feet in three
different positions (together side-by-side, semi-tandem with one foot slightly in front of the other, and
tandem with one foot directly in front of the other with the heel of the front foot touching the toe of
the rear foot). We recorded the time for each of the three tasks. In order to assess mobility, participants



Wearable Technologies 5

Table 1. Demographic Information, MoCA Scores, SPPB Scores

N=24
Age, mean (SD) 75.8 (5.4)
Sex, n (%)

Male 8 (33.3%)
Female 16 (66.7%)

Height [cm], mean (SD) 160.7 (7.0)
Weight [kg], mean (SD) 67.5 (12.5)
MoCA [0-30], mean (SD) 21.5 (3.6)

Cognitive impairment (≤ 26) (Damian et al. (2011)) 100%
SPPB [0-12], mean (SD) 8.3 (1.5)

Risk for disability (<10) (Guralnik et al. (1994)) 75%

completed two trials of timed 4-meter walk. Administering the SPPB took approximately 10 minutes.
The SPPB has been extensively tested for reliability and validity in older individuals (Guralnik et al.
(1994)). A summary of the study participants’ demographic data, anthropometric data, and asssessment
scores is reported in Table 1.
Normal and Dual-task Walking: Following these assessments, participants were provided with instru-
mented insoles of appropriate size and were oriented to the mobile robot. The experiment was
conducted in the common area at the community center. An oval path, approximately 38-meter long,
was marked on the floor with adhesive tape to serve as the nominal path for all the walking trials
(Figure 2). First, each participant walked 2 laps along the marked oval path, at their preferred speed
to familiarize with the integrated system (familiarization trial, FS). Following the FS, each participant
completed 2 walking trials, normal walking trial (N), and dual-task walking trial (D), each consisting
of 4 laps along the same oval path, while their gait was tracked by the integrated robot/insole sys-
tem. The normal walking trial required subjects to walk at their preferred speed. The dual-task walking
trial required participants to walk at their preferred speed while counting backwards by 3, starting
from a random 3-digit number. The trial sequence (N, D) as well as the direction of the walking task
(clockwise, counterclockwise) were balanced across the study participants using a Latin square design.

Figure 2. Dimensions of the human path marked on the floor in the community center where all experiments were conducted.

2.2.2. COVID-19 Safety Protocol
Data were collected between July 13, 2021 and August 26, 2021, during six separate visits to the
community center. As data collection took place during the COVID-19 pandemic, safety protocols were
in place to protect the participants, staff, and the research team. The NYC Department for the Aging
required all persons to present either proof of vaccination or a negative PCR test to enter the center. In
addition, an indoor mask mandate was in place during testing. At the time of data collection, the average
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COVID-19 infection rate in the NYC area was 408 cases on July 13 (first day of data collection) and
1,899 cases on August 26 (last day of data collection; The New York Times (2022)).

3. Mobile Robot Localization and Control Design
During the “Normal and Dual-task Walking” as described in the previous section, the robot leads the
participant to walk on the oval path and monitors the participant’s gait. To perform this task, the mobile
robot is programmed to autonomously map the environment, track the participant’s body joints using
its onboard RGB-D sensor, and maintain certain distance from the participant while he/she walks on
the oval path marked on the ground. In this section, we describe the autonomous mapping and local-
ization method, robot motion planning, and distance-keeping controller design. Validation data and
performance evaluation are presented at the end of this section.

3.1. Robot Mapping and Localization
For the robot to guide the participant to walk on the marked oval path, the robot first needed to map
the environment and localize itself in the map during the guided walking trial. RTAB-Map (Real-Time
Appearance-Based Mapping), an open-source library (Labbé and Michaud (2019)), is used for visual
Simultaneous Localization and Mapping (SLAM), which fuses the robot’s wheel odometry with the
RGB-D data from the forward-facing Kinect v1 (i.e., Kinect for XBox 360) sensor on the robot. To
map the environment, we tele-operated the robot using a wireless keyboard and drove the robot along
the marked track several times in both clockwise and counter-clockwise directions, which allowed
feature building and loop closure in the SLAM process. The generated map is visualized in RViz (a 3D
visualization tool for ROS applications) in Figure 3 with obstacles rendered by colored cubes.

Figure 3. Map generated by RTAB-Map using visual-SLAM, and the path (red-colored curve) planned by the robot.

3.2. Robot Motion Planning and Distance-Keeping Control
To plan the robot motion trajectory, we design a global robot path as shown in Figure 4 (a), so that the
human can always be in the field of view (FOV) of the robot during walking. Let 𝑞𝑅 ≜ [𝑥𝑅, 𝑦𝑅, 𝜃𝑅]T

be the robot configuration vector. The kinematic model of the P3-DX differential drive robot can be
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(a)

(b)
Figure 4. (a) The planned paths for the human (in green) and the robot (in blue); (b) The relative position of the human (denoted by H) and
the differential drive robot during guided walking. The (𝑋𝑊 , 𝑌𝑊 ) axes represent the world (or global) coordinates, and the (𝑋𝑅 , 𝑌𝑅) axes
represent the robot (or local) coordinates.

written as: 
¤𝑥𝑅
¤𝑦𝑅
¤𝜃𝑅

 =

𝑣𝑅 cos 𝜃𝑅
𝑣𝑅 sin 𝜃𝑅
𝜔𝑅

 (1)

where [𝑥𝑅, 𝑦𝑅]T is the midpoint of the two wheels, 𝜃𝑅 denotes the heading of the robot, and the control
vector 𝑢𝑅 ≜ [𝑣𝑅, 𝜔𝑅]T includes the linear velocity 𝑣𝑅 and the angular velocity 𝜔𝑅.
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To generate the robot control input 𝑢𝑅, we utilize a local motion planner, Dynamic Window
Approach (DWA)1 (Fox et al. (1997)). This method searches a set of trajectories, each of which con-
sists of a sequence of achievable velocities in the planning horizon, for the robot to get from the current
pose to the desired pose. Let the desired distance between the human and the robot be 𝜌∗, which is
chosen to be 1.5m in our experiments. To maintain this distance, we design a proportional-integral (PI)
controller:

𝑣′𝑅 (𝑡) = 𝐾𝑃Δ𝜌(𝑡) + 𝐾𝐼

∫ 𝑡

0
Δ𝜌(𝜏)𝑑𝜏 (2)

where 𝜌(𝑡) is the measured distance between the robot and the human, and Δ𝜌(𝑡) ≜ 𝜌(𝑡) − 𝜌∗ is
the measured distance error. The control parameters were chosen as 𝐾𝑃 = 0.6𝑠−1 and 𝐾𝐼 = 0.13𝑠−2.
Directly using the linear velocity 𝑣′

𝑅
(𝑡) in 𝑢𝑅 (𝑡) would change the global path planned previously; for

the robot to track the planned path 𝜉∗
𝑅

, we scale the control input 𝑢𝑅 (𝑡) as

𝑢𝑅 (𝑡) ↦→
𝑣′
𝑅
(𝑡)

𝑣𝑅 (𝑡)
𝑢𝑅 (𝑡) (3)

This scaling does not change the curvature of the tracked path and hence preserves the planned global
path. The robot keeps the desired distance 𝜌∗ = 1.5m by changing its speed (i.e., the linear velocity
𝑣𝑅 (𝑡)) according to the human’s actual walking speed.

3.3. Performance of the Robot Controller
Figure 5 shows the robot and participant paths of a representative four-lap walking trial recorded by
the robot computer using the pose estimate provided by the onboard SLAM algorithm. As shown in the
plots, the robot follows the planned trajectories with satisfactory performance.

Figure 5. Robot and human paths during four laps of a representative walking trial. The solid dots denote the start positions of the robot (in
blue) and the study participant (in green). In this trial, the study participant walked in the counter-clockwise (CCW) direction.

One key design goal of the path planning algorithm is to keep the following participant in the center
of the FOV of the Azure Kinect sensor, so that the robot can track the human joint movement in the gait

1https://wiki.ros.org/dwa_local_planner.

https://wiki.ros.org/dwa_local_planner
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monitoring task (to be discussed in Section 4). Figure 6 shows the collected samples of the Azure Kinect
sensor measurement of the joint positions from 22 participants in the study. A total of 24 older adults
participated in the walking tests, but due to technical issues (discussed in Section 7), robot control data
for 2 participants were not available to use. The Kinect sensor depth FOV takes the shape of a truncated
cone with the near clipping plane at 0.25m from the optical center, the far clipping plane at 2.88m and
the apex angle being 120 deg. It can be seen that the Kinect sensor measurement of the human joints is
mostly centered in the FOV.

Figure 6. Top view of the sample distribution of the joint position measurement (relative to the Kinect depth FOV), including pelvis (left),
left ankle (middle), and right ankle (right), using 22 subjects’ data collected in the study. The pink region is the intersection of the depth FOV,
and the height of the horizontal plane is indicated on the top of each subfigure.

Figure 7 illustrates the distance-keeping performance of the robot controller. As shown in Figure
7(Top) the human-robot distance is maintained around the desired value of 1.5m. Additionally, Figure
7(Bottom) indicates that the robot can match the participant’s walking speed. The fluctuation of the
trajectories is caused by the measurement noise and the feedback nature of the controller (2) that uses
the measured human-robot distance to control the robot.

Figure 7. Robot distance-keeping performance in a representative four-laps walking trial. Time histories of the actual distance between the
robot and the following participant, measured by the robot onboard sensors (Top). Time histories of the robot’s and the participant’s speeds,
measured by the robot onboard sensors (Bottom).
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We calculated the mean absolute error (MAE) and the error standard deviation (ESD) for both the
distance and the velocity errors between the robot and the human, across all 22 participants, as shown
in Figure 8. We excluded the initial 15s and the last 5s of each walking trial, as those are transient
periods for the controller to stabilize. The distance error is lower than 0.18m and the velocity error is
below 0.25m/s. Thus, the robot can guide the participants to walk on the pre-designated path, and can
maintain the desired distance from the participant during the walking exercise.

(a) (b)
Figure 8. Bar plots of MAE and ESD for 22 participants: (a) human-robot distance error, and (b) human-robot velocity error.

4. Autonomous Gait Monitoring and MoS Estimation
During the robot guided walking, the backward-facing Azure Kinect (RGB-D sensor) located on the
robot tracks the pelvis and foot poses of the participant following the robot. Extended Kalman Filter
(EFK) based methods were developed to fuse the data from the robot RGB-D sensor and the in-shoe
pressure sensors and IMUs and estimate spatiotemporal gait parameters and the margin of stability
(MoS). We briefly describe the methods in the next two subsections.

4.1. Estimation of Spatiotemporal Gait Parameters
Temporal gait parameters were extracted using insole-embedded force-sensitive resistors (FSRs). Heel
strike (HS) and toe-off (TO) events were detected when the sum of the FSR signals crossed an
empirically-determined threshold. Stride time (ST) was defined as the time interval between two con-
secutive HS of the same foot. Swing time was defined as the time interval between a TO event and the
following HS of the same foot. Swing percent (SwP) was computed as swing time divided by the ST of
the corresponding stride. Spatial gait parameters were extracted by fusing data from the in-shoe IMUs
and the robot onboard RGB-D camera. The angular velocity and acceleration obtained from the IMUs,
and the poses of the IMUs obtained from the robot onboard camera were fed in the Extended Kalman
Filter (EKF) to estimate the foot poses. Foot-flat (FF) phases are determined as the time intervals dur-
ing which the normalized acceleration of the IMU was less than a predefined threshold. Stride length
(SL) was determined as the distance between two successive IMU locations of the same foot at FF.
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Stride velocity (SV) was computed as the ratio of SL over ST. A detailed description of this method is
presented in Chen et al. (2022).

4.2. MoS Estimation
MoS was proposed by Hof et al. (2005) as a measure of stability in human movement control. Modeling
the human as an inverted pendulum, Hof et al. postulated that the condition for maintaining balance is
that the extrapolated center of mass (XCoM) falls inside the Base of Support (BoS). The MoS has been
extensively used to analyze dynamic balance in older adults (Watson et al. (2021)), whereas limited
research has focused on overground walking tasks (Ohtsu et al. (2020); Iwasaki et al. (2021)), which
are more representative of real-world walking. In estimating MoS, the RGB-D sensor on the robot
tracks the participant’s pelvis, transfers the measurement from the sensor frame to the world frame,
and projects it to the 2D ground position as the body center of mass (CoM). After estimating CoM
and its velocity, XCoM was obtained as the sum of the CoM and a term proportional to the velocity of
CoM (Hof et al. (2005)). BoS was determined by the estimated foot poses using the convex hull of the
set of vertices of the BoS polygon. The MoS was calculated at each timestamp as the signed distance
between the BoS and XCoM (positive if XCoM is inside the BoS, and negative otherwise). For each
gait cycle, the MoS time series was time-normalized into 100 equally spaced points in the gait phase
domain and projected onto the anteroposterior (AP) and mediolateral (ML) axes. Subsequently, the
following 3 scalars were extracted at each gait cycle: MoSAP was the mean of the AP projection of the
MoS measured over the gait cycle; MoSML,pos (MoSML,neg) was the positive (negative) ML projection
of the MoS integrated over the gait cycle. More details on the EFK based method for MoS estimation
can be found in Chen et al. (2022).

4.3. Validation of Gait Monitoring Capability and Comparison with Related Works
A total of 2562 strides were simultaneously collected by the integrated mobile robot and wearable
sensor system, and by a validated electronic walkway (a 6-meter Zeno Walkway, Protokinetics LLC,
Havertown, PA, US). The electronic walkway, which served as the reference system for validation
purposes, was located in the middle of the straight-line section of the oval path shown in Figure 3
(a). A total of 24 older adults participated in the walking tests. Due to technical issues, estimations of
spatial gait parameters and MoS were not available for 2 participants. During the normal walking trials,
participants’ stride length (SL) ranged from 0.85 to 1.42 m (1.12 ± 0.14 m, mean ± SD), stride velocity
(SV) ranged from 0.56 to 1.27 m/s (0.98 ± 0.20m/s), step width (SW) ranged from 0.02 to 0.15 m (0.09
± 0.03 m), stride time (ST) ranged from 0.97 to 1.52 s (1.17 ± 0.14 s), and swing percent (SwP) ranged
from 26.35 to 35.60 % (35.11 ± 2.79 %).

Mean absolute errors (MAE) of the spatiotemporal gait parameters were determined by comparing
stride-by-stride gait metrics extracted from the integrated system with the corresponding values mea-
sured by the reference walkway. Data are reported in Table 2, along with results from recent related
studies. In general, gait analysis systems based on IMUs show lower accuracy in estimating spatial gait
parameters. This indicates that conventional error reduction techniques such as zero velocity updates
(ZUPT) (Ferrari et al. (2015)) and velocity de-drift (Rampp et al. (2014)), which are often used in
IMU-based devices, cannot fully eliminate accumulated errors in the foot displacements. Renggli et al.
(2020) reported higher accuracy than similar IMU-based systems, however the accuracy of their system
was validated using only 60 strides from 3 subjects. Another drawback of IMU-based devices is the dif-
ficulty in estimating the relative position of the feet to determine spatial inter-limb gait parameters. To
overcome this issue, Renggli et al. (2020) used the tilting angle at the foot-flat phase and a predefined
distance between the feet to estimate SW, however this method resulted in lower accuracy compared to
robot onboard cameras (Piezzo et al. (2017b)). Robot onboard cameras represent a promising method to
capture both inter- and intra-limb spatial gait parameters, but their accuracy relies on the robot’s ability
to maintain a predefined distance between the subject and the camera. Cifuentes et al. (2014) reported
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Table 2. Accuracy of the spatial-temporal gait parameters estimated by different systems

Ref. Subjects Population Systems
MAE

SL (m) SV (m/s) SW (m) ST (s) SwP (%)
Zhang et al. (2022) 95 OA frail IMU+FSR 0.059 0.048 - 0.017 -

Renggli et al. (2020) 3 A healthy IMU 0.029𝑎 0.018𝑎 0.092𝑎 0.024𝑎 -
Rampp et al. (2014) 101 OA geriatric inpatients IMU 0.063 - - 0.029 -

Mariani et al. (2010b) 10 OA healthy IMU > 0.030 > 0.030 - - -
Foo et al. (2022) 7 A healthy Robot - - 0.054 0.035 -

Jäschke et al. (2018) 3 A 2 healthy, 1 hip dysplasia Robot - 0.029 - 0.014 -
Piezzo et al. (2017a) 3 A healthy Robot - - 0.025𝑏 - -
Bonnet et al. (2015) 1 A - Robot 0.022 - - - -

Moschetti et al. (2019) 19 A healthy Robot+IMU 0.054 0.067 - - -
Cifuentes et al. (2014) 1 A - Robot+IMU - 0.005 - - -

Our Work 24 OA healthy Robot+IMU+FSR 0.019 0.018 0.048 0.008 3.220
𝑎 Estimated based on the reported mean error and standard deviation, assuming a normal distribution.
𝑏 Estimated as the ratio between the sum of the reported MAE and the number of the subject.

OA: Older adults; A: Adults.

higher accuracy than other robot and IMU-based systems, however the accuracy of their prototype was
evaluated at low speeds (i.e., < 0.4 m/s) and their definition of velocity does not conform to the con-
ventional definition of SV. As described in Sec. 4.1, in our integrated system in-shoe FSRs were used
to obtain temporal gait parameters (ST, SwP), the robot onboard camera and the IMUs were used to
estimate spatial gait parameters (SL, SW), and combined data was used to calculate SV. This approach
resulted in higher accuracy in terms of spatiotemporal gait parameters compared to the IMU-based sys-
tem introduced by Rampp et al. (2014) and the robot-based systems described in Jäschke et al. (2018)
and Guffanti et al. (2021). A possible explanation is that detecting HS and TO events from IMU accel-
eration peaks, as done in Rampp et al. (2014), might not be an accurate strategy with older adults, who
often show unclear gait events (e.g., shuffling gait). In that same study, the accumulated error in the dou-
ble integration process might have lowered the accuracy of spatial gait parameters. For the robot-based
systems presented in Jäschke et al. (2018) and Guffanti et al. (2021), spatiotemporal gait parameters
were estimated by a Kinect sensor based on the position of a person’s ankle, instead of the real foot
placement, and this approximation might have contributed to lower the accuracy of their systems.

5. Associations between Physical Performance, Cognitive Ability, and Gait Parameters
We explored how the spatiotemporal gait parameters and MoS measured during the N and D trials cor-
related with MoCA scores and SPPB scores. To this end, Hierarchical linear regression was used to
determine if SPPB and MoCA scores were independently associated with 3 groups of gait parameters:
i) mean and coefficient of variation (CV) of SW, SL, SV, ST, SwP, MoSAP, MoSML,pos, and MoSML,neg,
separately for trials N and D; ii) differences of the mean and CV values of each gait parameter between
the two trials (i.e., D-N); iii) ratio of the mean and CV values of each gait parameter between the two
trials (i.e., D/N). Differences and ratios of the mean values of gait parameters measured during dual-
task walking and natural walking have been used in previous works to identify fallers (Commandeur
et al. (2018)) and to explore balance strategies (Ohtsu et al. (2020)). Because dynamic MoS and spa-
tiotemporal parameters are affected by age and gender (Lee et al. (2021)), we included both age and
gender as predictors in the base models. The complete models differ from the base models in that they
include either SPPB or MoCA as additional predictors. SPSS v28 (IBM Corporation, Armonk, NY)
was used to perform all analyses. All models resulting in significant (𝛼 = 0.05) associations between
SPPB (or MoCA) and one gait parameter are reported in Table 3. SL was positively correlated with
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Table 3. Multiple regression models

𝑅2
𝑀1 𝑅2

𝑀12 Δ𝑅2 𝐵𝑆𝑃𝑃𝐵 (95%CI) 𝛽𝑎𝑔𝑒 𝛽𝑔𝑒𝑛𝑑𝑒𝑟 𝛽𝑆𝑃𝑃𝐵

MEAN

SL_N 0.115 𝑏0.429 𝑏0.314 𝑏0.057 (0.020,0.094) 0.009 -0.202 0.609
SL_D 0.218 𝑏0.516 𝑏0.298 𝑏0.057 (0.022, 0.092) -0.199 -0.096 0.593

MoSAP_N 0.034 𝑎0.276 𝑎0.242 𝑎 − 0.224 (-0.046, -0.002) -1.116 0.169 -0.521
MoSAP_D 0.095 𝑎0.340 𝑎0.244 𝑎 − 0.025 (-0.045,-0.005) -0.083 0.252 -0.537

𝑅2
𝑀1 𝑅2

𝑀2 Δ𝑅2 𝐵𝑀𝑜𝐶𝐴 (95%CI) 𝛽𝑎𝑔𝑒 𝛽𝑔𝑒𝑛𝑑𝑒𝑟 𝛽𝑀𝑜𝐶𝐴

CV
ST_(D-N) 0.014 𝑎0.230 𝑎0.215 𝑎 − 0.273 (-0.520,-0.025) -0.255 0.192 -0.499
SV_(D-N) 0.003 𝑎0.208 𝑎0.205 𝑎 − 0.588 (-1.142, -0.033) -0.132 0.031 -0.487

MEAN MoSAP_(D/N) 0.244 𝑎0.491 𝑎0.247 𝑎0.228 (0.055, 0.402) -0.281 0.028 0.544
𝑅2
𝑀1 and 𝑅2

𝑀2 are the coefficients of determination for the base models (age, gender) and for the complete models (age, gender, SPPB or MoCA),

respectively. Δ𝑅2 is defined as
(
𝑅2
𝑀2 − 𝑅2

𝑀1

)
. Regression coefficients 𝐵𝑆𝑃𝑃𝐵 and 𝐵𝑀𝑜𝐶𝐴 are reported along with their 95% confidence

intervals (CI). 𝛽 indicates the standardized regression coefficient for each predictor in the complete models. Suffixes 𝑁 and 𝐷 indicate normal and

dual-task walking, respectively. Note: 𝑎 𝑝 < 0.05, 𝑏 𝑝 < 0.01,𝑐 𝑝 < 0.001.

SPPB scores, and MoSAP was negatively correlated with SPPB scores. Moreover, the changes in vari-
ability of ST and SV between the N and D trials were negatively correlated with MoCA scores, and the
D/N ratio of MoSAP was positively correlated with MoCA scores.

The results shown in Table 3 suggest that SPPB and MoCA are associated with distinct gait domains.
The values of the standardized coefficients (𝛽) indicate that SPPB and MoCA had stronger predictive
ability than age and gender in all the significant models. Moreover, consistent with previous research
(MacAulay et al. (2015)), SPPB scores were positively associated with SL. Knee extensor muscles
contribute to SL (Jabbar et al. (2021)) and SPPB evaluates strength in these muscles through the five
times sit-to-stand component of the assessment (Mentiplay et al. (2020)). Additionally, static balance
performance, which SPPB evaluates through three standing balance sub-tests, is known to be positively
correlated with SL (Lee et al. (2020)). Thus, both associations can explain the correlation between
SPPB and SL. The negative association between SBBP and MoSAP was possibly mediated by SL,
since MoSAP is known to decrease as SL increases (Lencioni et al. (2020)). Interestingly, SPPB was
not associated with SV, even though one component of the SPPB compound score specifically targets
gait speed. One possible explanation is that SPPB determines preferred walking speed by relying on a
short (3- or 4-meter) walking test, whereas in our tests SV was computed as the average gait speed over
a 150-meter walking bout. Hence, the estimates of SV were likely affected by fatigue.

In our sample, older adults with lower levels of cognitive impairment (i.e., higher MoCA scores)
showed smaller increases in gait variability and less pronounced AP adaptations when performing a
secondary cognitive task. Associations between increased stride-to-stride fluctuations in gait parameters
and cognitive decline have been consistently reported in the literature (Pieruccini-Faria et al. (2021)).
Such associations have been linked to shared brain networks for gait control and cognition, which are
challenged by dual-task walking (Morris et al. (2016)). Furthermore, a smaller ratio of MoSAP between
fast and preferred gait speed is an indicator of conservative gait strategies in older adults at risk of falling
(Ohtsu et al. (2020)). Similarly, our results on the D/N ratio of MoSAP suggest that older adults with
higher levels of cognitive impairment tend to show more marked AP adaptations toward conservative
gait patterns when performing a secondary cognitive task.

6. Subject Attitude Survey Results
After engaging in the walking exercise, 23 participants answered questions about the assistive robot and
the insoles. One participant did not answer any of these questions. Participants answered two questions
about the assistive robot: “The robot is useful in guiding me walking on a designated path” (M = 4.04,
SD = 0.71) and “The robot seamlessly adjusts its speed to keep certain distance from me” (M = 3.83,
SD = 0.83) on a 1 (Fully Disagree) to 5 (Fully Agree) scale. Participants also answered two questions
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about the insoles “The insoles were comfortable to wear” (M = 4.26, SD = 0.54) and “The insoles
did not hinder my steps” (M = 3.83, SD = 1.07) on a 1 (Fully Disagree) to 5 (Fully Agree) scale. A
distribution of participant responses to each of the four questions is shown in Figure 9. Participants
attitudes regarding both the assistive robot and insoles were predominately positive, noting that the
assistive robot was useful in guiding them on a walking path (78.3% agreed or fully agreed) and was
able to adjust speed appropriately (78.2% agreed or fully agreed). Similarly, participants reported that
the insoles were comfortable (95.6% agreed or fully agreed) and did not hinder their ability to walk
(73.9% agreed or fully agreed).

In addition, participants were asked "It is likely that I’ll use such a robot in my home for guided
walking exercises" (M = 2.83, SD = 1.53) on a 1 (Fully Disagree) to 5 (Fully Agree) scale. A follow-up
question asked participants to further explain their answer. Seven participants provided a response to the
open-ended question. Sample responses included seeing the utility in having an assistive robot to help
at home: "When I think of people who are currently stuck at home because they cannot move around
as before, I wish they had the opportunity to have some kind of robot to help them live a better life
without an outside help." In a similar comment, a participant noted that they "would take the robot and
use it at home." Another participant mentioned being interested in using an assistive robot to exercise:
"would like to use it as I like everything that is exercise." Lastly, three participants mentioned a lack of
space in their small apartments as being an unknown in personal usage, e.g., "My apartment is tiny, it
would need to be a small robot in order for me to consider using at home" "I would take the robot and
use it at home." These open-ended responses generally align with the positive attitudes found in the
quantitative measures but include some nuance surrounding limitations (e.g., living in a small space)
that might hinder personal usage. Given that this study was conducted in New York City, living in a
small apartment is common for many. As such, concerns about space issues when using an assistive
robot at home may be less prominent in rural or suburban areas.

Figure 9. Summary of subject attitude survey.

7. Study Limitations and Future Work
The goal of this work was to validate the feasibility of using an integrated robot and wearable sensor
system to administer guided walking tasks to older adults in out-of-the-lab settings. While the results
validated feasibility, this study had several limitations.

First, as the robot we used is a wheeled mobile robot, it suffers from locomotion limitations. For
example, it cannot navigate stairs and its navigation performance deteriorates when moving on uneven
terrains. In our tests, the electronic walkway that was used as the reference system for performance
validation posed locomotion challenges for the robot. While the robot could navigate on and off the
walkway, this caused small vibrations to the on-board RGB-D sensors that negatively affected the body
tracking performance during brief time periods.
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Second, as the robot uses RGB-D sensors for SLAM, it is sensitive to light conditions of the envi-
ronment. While we found that the robot was generally robust to the indoor lighting in different weather
conditions such as rainy or sunny days, in one instance the direct sunlight coming through a sky-window
in the common area of the community center where tests were carried out interfered with the Kinect
sensor’s FOV, so that the robot could not localize itself correctly. This limitation can be mitigated in
our future work by adding other sensors (such as Lidars) that are not sensitive to lighting conditions, at
the cost of more expensive sensors on the robot.

Furthermore, due to the exploratory nature of this study, we enrolled a relatively small sample of
older adults. Thus, the results we obtained might not be representative of the general population of
community dwelling older adults. The limited sample size also prevented us from compensating for
additional confounding factors (e.g., race, ethnicity, number of medications, etc.) which are known to
affect gait and balance. However, a sample size of 22, with an alpha level of 0.05, power of 0.8, with
3 independent predictors in our multiple regression models, allowed us to obtain a moderate effect
size of 0.65. Despite the limitations, our work allowed us to validate a novel integrated system that
can potentially be used outside the confines of a laboratory situation. In addition, the novel system
was able to accurately collect gait and MoS data that were associated with standardized clinical tests
of cognition (MoCA) and physical performance (SPPB). The combined results from the clinical tests
and integrated novel system highlight the importance of including gait in routine clinical assessment
of physical performance in older adults. In addition, the results will be helpful in designing exercise
interventions to improve balance, mobility and strength and potentially reduce falls in older adults.

Future work will include quantifying participants’ performances in the cognitive task, in order to
investigate potential mediating effects of task prioritization on the gait patterns measured during the
dual-task condition (Fallahtafti et al. (2021))).

8. Conclusion
In this paper, we presented a feasibility study for an integrated mobile robot and wearable sensors sys-
tem designed to administer guided walking exercises to older adults in out-of-the-lab conditions. The
robot guided study participants to walk on a designated oval path, while maintaining a predefined dis-
tance from them. During the walking exercises, the robot onboard computer fused data obtained by the
robot RGB-D sensor and the insole-embedded sensors to estimate spatiotemporal gait parameters and
MoS in real-time. The accuracy of the system was assessed against a reference electronic walkway,
demonstrating the feasibility of the proposed approach. Associations between gait metrics, physical
performance, and cognitive ability were discussed. A subject attitude survey revealed general accep-
tance of the robotic system by the study participants. Future work will include using the integrated
robot and wearable sensors system to assess longitudinal changes in gait and dynamic balance in older
adults following a multi-session gait rehabilitation program.
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