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Reinforcement Learning-Based
Adaptive Biofeedback Engine

for Overground Walking Speed Training
Huanghe Zhang∗†, Shuai Li∗†, Qingya Zhao†, Ashwini K. Rao‡, Yi Guo§, Damiano Zanotto†

Abstract—Wearable biofeedback systems (WBS) have been
proposed to aid physical rehabilitation of individuals with mo-
tor impairments. Due to significant inter- and intra-individual
differences, the effectiveness of a given biofeedback strategy
may vary for different users and across therapeutic sessions,
as a patient’s functional recovery progresses. To date, only a
paucity of research has investigated the use of biofeedback
strategies that can self-adapt based on the user’s response.
This letter introduces a novel reinforcement learning with fuzzy
logic biofeedback engine (RLFLE) for personalized overground
walking speed training. The method leverages reinforcement
learning and a fuzzy inference strategy to continuously modulate
underfoot vibrotactile stimuli that encourage users to achieve
a target walking speed. This stimulation strategy also enables
the determination of a user’s maximum steady-state walking
speed during a gait training session overground. The RLFLE
was implemented in a custom-engineered WBS and validated
against two simpler biofeedback strategies during walking tests
with healthy adults. Participants showed lower walking speed
errors when training with the RLFLE. Additionally, results
indicate that the new method is more effective in determining
an individual’s maximum steady-state walking speed. Given the
importance of walking speed as an indicator of health status and
as an essential outcome of exercise-based interventions, these
results show promise for implementation in future technology-
enhanced gait rehabilitation protocols.

Index Terms—Wearable biofeedback system, instrumented
footwear, human-in-the-loop, reinforcement learning, fuzzy logic,
gait training.

I. INTRODUCTION

WALKING speed is a valid predictor of health status in
a wide range of clinical populations [1]. Low walking

speed is associated with increased risk of falls, cognitive
impairment, and institutionalization in older adults [2], [3].
Conversely, improvements in walking speed have been corre-
lated with better quality of life in patients with Parkinson’s
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disease [4], multiple sclerosis [5], stroke [6] and cerebral
palsy [7]. Moreover, self-selected gait speed represents a major
outcome in many exercise-based rehabilitation programs [8].

The use of external cueing in gait exercises has been shown
to elicit significant improvements in walking speed [9]. Past
research has focused on open-loop strategies using various
modalities, such as visual, auditory, and tactile cues [4], [10],
[11]. While open-loop stimulation methods are relatively easy
to implement, these strategies have several limitations. First,
because gait speed is proportional to the product of cadence
and stride length, it is nearly impossible to accurately predict a
target improvement in walking speed by eliciting a fixed incre-
ment in either variable [12]. Second, due to intra- and inter-
individual variability, the stimulation parameters might only
suit a given individual at a given time [13]. For these reasons,
tuning the stimulation parameters for open-loop strategies
often requires multiple readjustments [14]. Third, open-loop
stimulation methods such as rhythmic auditory stimulation are
typically applied to straight-line walking tasks and assume that
individuals walk at a consistent velocity [11]. Hence, these
methods may not generalize to real-life walking tasks, which
involve changes in speed and direction.

Recent advances in wearable technologies have paved
the way for self-administered gait training protocols in pa-
tients’ living environments [15]. Wearable biofeedback sys-
tems (WBS) represent a promising approach in gait rehabili-
tation, since their gait analysis capability may inform feedback
engines that provide closed-loop visual, auditory, or tactile
stimulation to encourage changes in a person’s gait patterns,
and may also help to assess a patient’s progress longitudinally
[16]. Visual cues delivered by augmented-reality glasses can
be adjusted in real-time according to the user’s current walking
speed [17]; auditory [5] or vibrotactile [18] stimuli can be
triggered at specific gait events to reduce gait variability. More
recently, Yasuda et al. proposed a vibratory cueing system to
improve the walking speed in stroke survivors. Their system
progressively increases the frequency of the rhythmic cues
during a walking session, following a predefined, empirically-
tuned law [19]. Wu et al. applied Gaussian process regression
to generate a personalized model of the user’s response to
rhythmic auditory stimuli offline. Then, they used the model
within an on-line optimization algorithm to elicit desired
changes in the user’s cadence [13]. Despite the growing body
of research on WBS for gait training, how to best design a
biofeedback engine to elicit a target walking speed during
overground exercises is still an open problem.
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Fig. 1. The WBS (a) consists of two insole modules (b), a vibration-control
unit (c), and a single-board computer (d).

Our group has recently developed a minimally obtrusive
WBS that measures stride velocity and gait phase in real-
time, Fig. 1. These two variables are fed to a closed-loop
biofeedback engine to elicit desired changes in the wearer’s
walking speed [12]. Similar to open-loop stimulation meth-
ods, the closed-loop biofeedback engine induces changes in
the wearer’s walking speed by adjusting their cadence via
rhythmic stimuli. However, unlike open-loop strategies, the
method proposed in [12] adjusts the gait phase at which the
stimuli are delivered based on the measured velocity errors,
using anticipatory and delayed feedback to elicit automatic
modulations in the wearer’s cadence that lead to systematic
adjustments in walking speed. This approach is motivated by
the theory of action-perception coupling [20], which states
that human movement is controlled by comparing expected
feedback (generated by internal models) and actual feedback
(i.e., reafference) resulting from a motor command, and this
comparison leads to movement calibration. Consequently, the
execution of a motor task may be affected in a predictable
fashion by artificially manipulating sensory reafferences [21].
While this method has shown promising results, both with
constant and with time-varying target walking speeds, it relies
on the simplistic assumption that users are always able to adapt
to the prescribed target speed. However, how to automatically
determine an appropriate overground target walking speed
for gait exercises is a challenging task, given considerable
inter- and intra-personal differences [13]. Moreover, when
an individual can no longer follow the stimuli (e.g., due to
fatigue), the target speed should be adapted accordingly, to
maintain user engagement in the training task.

To address these two limitations, herein we propose a novel
reinforcement learning with fuzzy logic bioefeedback engine
(RLFLE) that enables adaptive and personalized walking speed
training. The objective of the reinforcement learning (RL)
framework is to learn an optimal policy for an autonomous
agent through repeated interactions with its environment [22].
The RL architecture is particularly suitable for complex sys-
tems that are difficult to model, such as the human motor
control system. Although RL has proven to be an effective
control strategy for lower-extremity powered prostheses [23]

and orthoses [24], [25], none of the past studies has investi-
gated the application of RL to biofeedback systems for gait
training. In the proposed implementation, a fuzzy inference
strategy is introduced to embed expert knowledge into the
RL biofeedback engine. Compared with our previous approach
described in [12], the RLFLE enables the decoupling of the
target gait speed (i.e., the goal speed for the current training
bout) from the guided gait speed (i.e., the speed on which the
vibrotactile stimuli are computed). Specifically, the RLFLE
learns how to best adapt the guided speed on-line, to keep the
wearer engaged in the walking exercise, while progressively
directing him/her towards the target speed.

The contributions of this work can be summarized as
follows: (i) a novel RL-based biofeedback engine (RLFLE)
for personalized walking speed training; (ii) a new method to
determine an individual’s maximum steady-state overground
walking speed, based on the proposed RLFLE; (iii) a valida-
tion of the RLFLE in relation to simpler stimulation strategies,
namely the constant speed (CS) method and the constant
increment (CI) method. The CS method is equivalent to our
previous work [12], which assumes that the target and the
guided speed are coincident. The CI method is based on hard-
coded update rules to adjust the guided speed. These methods
were included to evaluate whether the increased complexity
of the RLFLE is well justified by improved adaptability and
user performance compared to non-adaptive methods. The
remainder of this letter is organized as follows. Section II
describes the WBS; Section III introduces the RLFLE. The
experimental protocol and data analysis are illustrated in
Section IV. Results are presented in Section V and discussed
in Section VI. Finally, the letter is concluded in Section VII.

II. WEARABLE BIOFEEDBACK SYSTEM

The WBS (Fig. 1) builds upon our previous work on in-
strumented footwear [26]–[32]. It features two insole modules,
a vibration-control unit, and a single-board computer (SBC).
Each insole module consists of a eight-cell piezoresistive sen-
sor (IEE Inc., Luxemburg), a nine-DOF (degree-of-freedom)
inertial measurement unit (IMU, Yost Labs Inc., Portsmouth,
OH, USA), four eccentric rotating mass (ERM) motors, a
logic unit, and a Li-Po battery. The piezoresistive sensor array
is used to estimate normal ground reaction forces (GRF).
The logic unit (32-bit ARM Cortex-M4, PJRC, Sherwood,
OR, USA) runs the low-level closed-loop vibrotactile con-
trol (Sec. III-A) and activates the ERM motors through the
vibration-control unit. The SBC fits inside a running belt that
can be worn by the user or can be optionally located off-board
within a 30-meter range from the user. A small Wi-Fi router
connected to the SBC serves as an access point for the WBS.
The SBC runs the RLFLE (Sec. III-B) and the data logger
software. The WBS is lightweight (120 g) and fits in the user’s
shoes. It can be donned in less than 5 minutes. More details
about the design of the WBS can be found in [12].

III. ADAPTIVE BIOFEEDBACK CONTROL WITH RLFLE

The overall control architecture of the WBS is shown in
Fig. 2. The high-level control consists of the RLFLE, which
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Fig. 2. Flowchart of the RLFLE. Vs is the subject’s current gait speed. The
average memory block uses the most recent 6 strides to compute V̄s, the
average gait speed. Vg , Vt, ϕs and ϕWBS are the guided speed, the target
speed, the user’s current gait phase and the target phase, respectively. Q̂ is
the long-term cost of the RLFLE.
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Fig. 3. Effects of closed-loop vibrotactile stimuli on the gait of a representa-
tive study participant. The black line represents the normalized GRF extracted
from the WBS insole. ϕs and ϕWBS are the subject’s current gait phase and
the WBS phase, respectively. The stimuli are triggered every time ϕWBS

crosses zero. If the subject’s current walking speed is slower than the guided
speed (Vs < Vg), the stimuli lead the initial contacts (IC) to encourage a
faster pace (a); Conversely, if Vs > Vg , the stimuli lag the IC, to elicit a
slower pace (b).

includes an average memory block, a recursive least square
block, and a fuzzy inference block. The RLFLE generates
the new guided speed Vg by evaluating the subject’s average
walking speed (V̄s) over the most recent 6 strides in relation to
the target speed (Vt) and the previous guided speed. The new
Vg is then fed to the low-level controller as a feed-forward
term. Through the output ϕWBS , the low-level controller
modulates the gait phase at which discrete plantar vibrotactile
stimuli are delivered to the wearer, with the goal of motivating
him/her to follow Vg . In the following subsections, the low-
level and the high-level controllers are described in detail.

A. Low-level Closed-loop Vibrotactile Control

The low-level controller consists of three modules: WBS, PI
controller, and stimulation engine (Fig. 2). The WBS measures
stride velocity (Vs) and phase of the gait cycle (ϕs) in real-
time. The PI controller takes the measured Vs and the Vg
generated by the RLFLE as the inputs, and computes the
phase shift ∆ϕ, which is added to ϕs to obtain the trigger
phase ϕWBS . The latter determines the instant at which the
stimulation engine will generate the plantar stimuli [12]. The
estimation of Vs starts from the determination of heel strike,
foot-flat, and toe-off events, based on the underfoot multi-
cell piezo-resistive sensor. After compensating for gravity, Vs
is computed by double integration of accelerometric signals

with Zero Velocity Update and Velocity Drift Compensation
techniques, as detailed in [27], [28], [30], [31]. The current
gait phase ϕs is determined by a pool of adaptive frequency
oscillators [33], which take the measured foot pitch angle (i.e.,
the sagittal-plane angle between the foot sole and the ground)
as the input [12]. The stimulation engine delivers a plantar
vibrotactile stimulus with pulse duration of 150 ms each time
ϕWBS crosses zero. The PI controller modulates the phase
shift ∆ϕ of the vibrotactile stimuli relative to the estimated
IC. If Vs < Vg , the stimuli lead the IC to encourage a faster
pace. Conversely, if Vs > Vg , the stimuli lag the IC to elicit
a slower pace (Fig. 3).

B. Formalization of the RLFLE

We consider a Markov decision process described by the
tuple 〈Sk, Ak, Tk, Rk〉, where k is the index of the RLFLE
cycles, each corresponding to 6 consecutive strides1. We define
the state and the action at the k-th cycle as Sk := V̄s,k
and Ak := Vg,k, where V̄s,k and Vg,k indicate the subject’s
average walking speed over the last 6 strides and the guided
speed determined by the RLFLE, respectively. We assume a
deterministic policy (i.e., transition probability Tk ≡ 1) and
compute the stage cost Rk := rk from the velocity error vector
ek as follows:

rk =
1

2
eTkΛ1ek

ek =
[
V̄s,k − Vg,k, Vg,k − Vt,k

]T (1)

In the previous expression, Vt,k indicates the target speed at
the k-th cycle and Λ1 ∈ R2×2 is a diagonal weight matrix.
The associated infinite horizon cost Qk is given by

Qk =

∞∑
i=k

γi−k ri, (2)

where γ = 0.8 is a user-defined discount factor. Qk can be ap-
proximated iteratively by minimizing the temporal difference
error δk at each cycle [22]:

δk = rk + γ Qk+1 −Qk (3)
To do so, we first parameterize Qk as

Qk = W TΦk + εk, (4)
where W ∈ R3 is the weight vector, Φk =[
V̄ 2
s,k, V̄s,kVg,k, Vg,kVt,k

]T
is the activation function, and

εk ∈ R indicates the approximation error. Substituting (4) into
(3) yields:

δk − γεk+1 + εk = rk + γW TΦk+1 −W TΦk (5)
The optimal W (in the least-square sense) can be determined
by minimizing the squared sum of past residuals:

min
k−1∑
i=1

(δi − γεi+1 + εi)
2

= min
k−1∑
i=1

(
(γΦi+1 −Φi)

TW − ri
)2 (6)

1The number of consecutive strides affects the rate of adaptation of Vg and
was empirically tuned during preliminary tests. If the value is too small, the
user may find it hard to follow the varying Vg . If it is too large, it may take
long for the user to adapt to Vg .
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The resulting approximated long-term cost Q̂k is given by
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Fig. 4. Sigmoidal fuzzy membership functions mapping the crisp inputs ec
(a) and el (b) to fuzzified inputs. (c) Rule surface plot illustrating the mapping
between ec, el and crisp output ∆Vg .

Q̂k = Ŵ
T

kΦk, (7)
where the recursive least-square (RLS) method is adopted to
update the weight vector Ŵ k in real-time, using the following
update rules:

Ŵ k = Ŵ k−1 + Kk

(
rk −ΦT

k Ŵ k−1

)
Kk =

P k−1Φk

α+ ΦT
k P k−1Φk

P k =
1

α

(
Im −KkΦ

T
k

)
Φk−1

(8)

In the previous equations, α = 0.998 is the forgetting factor2,
P k, Im ∈ Rm×m are the inverse covariance matrix and the
identity matrix, and Kk ∈ Rm is the Kalman gain vector.
The RLS method was selected for its low computational
complexity. However, to improve the convergence rate of RLS,
the initial values Ŵ 0 and P 0 are determined by solving a
conventional least square (LS) problem on the first batch of
10 RLFLE cycles (i.e., 60 strides) of the current walking bout.
The convergence of this approach was demonstrated in [34].

The action Vg is generated at each RLFLE cycle by a
fuzzy inference strategy that embeds expert rules into the RL
architecture without significantly increasing the computational
load of the high-level controller. The crisp inputs at the k-th
cycle include the tracking error

ec,k = V̄s,k − Vg,k (9)
and the long-term feedback term

el,k = c tanh
(
−λ ∂Jl,k

∂Vg

)
, (10)

where c and λ are positive constant parameters and Jl,k is the
performance index defined as follows:

Jl,k = 1
2

[
Q̂k

rk

]T
Λ2

[
Q̂k

rk

]
(11)

Λ2 is a positive definite diagonal weight matrix controlling
the relative importance of immediate and long-term costs. ec,k
and el,k are converted to fuzzified inputs based on two sets of
N = 11 sigmoidal membership functions shown in Fig. 4(a-b),
resulting in the degrees of membership µi

c (ec,k) and µj
l (el,k),

i, j = 1, .., N . The corresponding N2 fuzzy outputs yi,j
are computed through the fuzzy rule base summarized in
Tab. A (Appendix). These inference rules were determined
empirically through preliminary tests. The fuzzy outputs yi,j
are then combined to determine the increment to the guided

2α controls the importance of recent observations relative to older observa-
tions. α = 1 is equivalent to the conventional least squares algorithm, whereas
α < 1 gives more importance to recent observations.

Algorithm 1 RLFLE algorithm
Initialize:
– collect 10 tuples {V̄s,k, Vg,k, rk, V̄s,k+1} to form batch B
– get initial Ŵ0 and Q̂0 using LS and (7).
while walking in progress do

collect next 6 strides and update Φ, r
update Q̂ using (8), (7)
get ∆Vg using (12)
update the guided speed Vg ← Vg + ∆Vg

end while

speed ∆Vg,k according to the center-of-gravity defuzzification
method [35]:

∆Vg,k =

∑N
i=1

∑N
j=1 yi,jµc (ec,k)µl (el,k)∑N

i=1

∑N
j=1 µc (ec,k)µl (el,k)

(12)

Finally, the new guided speed is computed as:
Vg,k+1 = Vg,k + ∆Vg,k. (13)

The smooth relationship between inputs ec, el and the crisp
output ∆Vg resulting from (12) is illustrated in Fig. 4(c), and
the complete RLFLE algorithm is summarized in Algorithm 1.

IV. PERFORMANCE EVALUATION

To highlight the advantages of the proposed RL-based
stimulation method we compared the immediate effects of
three stimulation methods on the gait of healthy individuals:

i) Constant speed method (CS) : This method only relies on
the low-level closed-loop control described in Sec. III-A
and hence it is equivalent to our previous work [12]. By
following this method, the guided speed Vg is set to a
constant value Vg = Vt instead of being adapted on-the-
fly according to the user’s response. As a consequence,
this method cannot determine an individual’s maximum
steady-state overground walking speed.

ii) Constant increment method (CI) : This method updates
∆Vg based on a myopic policy that only considers the
current tracking error according to the following rule:

∆Vg,k =


0.1 |ec,k|< 0.05m/s

−0.1 ec,k < −0.1m/s

0 otherwise
(14)

The rationale behind this stimulation method is that
the new guided speed Vg,k+1 computed from (13) and
(14) will only be increased when the user is able
to approximately follow Vg,k. Conversely, if the user
cannot reach Vg,k, then Vg,k+1 is decreased by the same
amount to help the user follow the vibrotactile stimuli
and maintain user engagement. In all other cases, the
method assumes that the user is capable of eventually
following Vg,k but needs more adaptation time, hence
∆Vg,k is not updated. Additionally, an upper bound Vt
is set on Vg,k+1, to ensure Vg never exceeds Vt.

iii) RL with fuzzy logic biofeedback engine (RLFLE) : This
method is described in Sec. III-A and Sec. III-B and
represents the main contribution of this work.
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Fig. 5. Participants wearing the WBS were instructed to walk counter-
clockwise (a) along an oval path delimited with disc cones (b).
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Fig. 6. Experimental protocol (CS = constant speed method, CI = constant
increment method, RLFLE = RL with fuzzy logic biofeedback engine).

A. Experimental Protocol

Twelve healthy participants (9M, age 25.7±1.5 yr, height
1.72±0.07 m, weight 73.2±12.1 kg) volunteered for this study.
All participants were healthy adults with no musculoskeletal
or neurological problems that would affect their ability to walk
for 12 minutes. The protocol was approved by the Institutional
Review Board of Stevens Institute of Technology and all
participants provided written consent.

After the system setup, participants were instructed to walk
counter-clockwise (CCW) following an oval path marked on
the floor with disc cones, Fig. 5. The oval path was selected
instead of a straight-line path to test the RLFLE’s performance
in a task that includes both straight and curve walking. First,
participants completed a 2-minute baseline test without stim-
uli, followed by a 10-minute familiarization session, Fig. 6.
The last minute of the baseline test was used to determine
the participant’s average baseline stride velocity (Vb). During
the familiarization session, participants experienced all three
stimulation methods (CS, CI, and RLFLE) in random order.
The goal of the familiarization session was to help participants
get accustomed to the vibrotactile stimuli; therefore, for each
stimulation method the value of Vt was set to Vb for about
one minute, after which it was arbitrarily increased to a value
within the range 1.0 to 1.5 m/s. After the familiarization
session, participants were instructed to complete two 8-minute
walking bouts under CI and RLFLE (Session 1, S1). The goal
of S1 was to validate and characterize the ability of the WBS
to autonomously determine each subject’s maximum steady-
state training speed (Vmax). For this reason, the target walking
speed in S1 was set to a very high value (Vt = 2.5 m/s) which
none of the participants could possibly reach. This enabled a
broad range of admissible values for Vg . Based on the collected
data, Vmax was computed as

Vmax = argmax
v

fnum(v), v ∈ [Vb, Vt], (15)

where fnum is a user-defined function that returns the number

of strides within a walking bout for which the subject’s stride
velocity Vs was ‘sufficiently close’ to a given value v while
the subject approximately followed the current guided velocity
Vg,k, as determined by the following two conditions:

|Vs − v|< 0.1m/s and |Vs − Vg,k|< 0.05m/s (16)
It is worth noting that Vs in (16) indicates the subject’s current
walking speed, which in general differs from the average V̄s,k
discussed in Sec. III-B.

After S1, participants rested for approximately ten minutes.
Then, they were instructed to complete three 11-minute walk-
ing bouts, each under a different stimulation method (Session
2, S2). During S2, the target walking speed Vt was updated
as a function of the elapsed session time t:

Vt(t) =


Vb 0 < t ≤ 100s (STARTUP)
0.5 (Vmax + Vb) 100s < t ≤ 280s (LOW1)
Vmax 280s < t ≤ 460s (HIGH)
0.5 (Vmax + Vb) t > 460s (LOW2)

(17)

For each subject, the value of Vmax used in (17) was set to the
largest of the two estimates (CI vs. RLFLE) computed after
S1 using (15). S2 was included in the protocol to determine
the performance of the RLFLE method in relation to CS and
CI during a low-high-low intensity gait training session.

The sequence of the stimulation methods in all sessions
(familiarization session, S1, S2) was randomized using block
randomization [36]. Participants were instructed to adjust their
gait to the stimuli but were blinded to the purpose of the
stimuli and to the type of stimulation method.

B. Data Analysis

For S1, the group averages of Vmax and fnum(Vmax) were
selected as the outcome metrics. For S2, data analysis was
separated into three sub-sessions as indicated in (17): the
first low-intensity training session (LOW1), the high-intensity
training session (HIGH), and the second low-intensity training
session (LOW2). The maximum percentage overshoot (OS),
and the rising time (RT) were selected as the transient-response
outcome metrics for each sub-session. The mean absolute
velocity error (MAE) computed with respect to the target
speed Vt and the coefficients of variation (CV) of Vs were
regarded as the steady-state outcome metrics. Because it took
participants less than two minutes to adapt to the guiding speed
Vg , we only included the last minute of each sub-session when
computing MAE and CV from S2 data.

Paired Wilcoxon signed-rank tests were carried out to assess
significant (α < 0.05) differences between CI and RLFLE in
determining participants’ Vmax. One-sample Wilcoxon signed-
rank tests were used to check whether increments in Vmax were
significant. We applied two-way repeated-measures ANOVA to
identify significant effects of training intensity (LOW1, HIGH,
and LOW2) and stimulation method (CS, CI, and RLFLE), as
well as potential interactions among the two factors. When
significant effects were identified, post-hoc comparisons using
the Bonferroni-Holm correction were applied as appropriate.
All statistical analysis was carried out in SPSS v28 (IBM
Corporation, Armonk, NY, USA).
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TABLE I
p-VALUE OF THE REPEATED-MEASURES ANOVA AND POST-HOC

ANALYSES.

Metrics Repeated-Measures ANOVA Post-Hoc Analysis for SM
SM TI SM*TI CS/CI CS/RLFLE CI/RLFLE

MAE <0.001 ns ns <0.05 <0.001 <0.001
CV <0.05 ns ns ns <0.01 ns
OS <0.05 ns ns ns <0.05 ns
RT <0.001 <0.01 ns <0.001 <0.01 ns
SM: stimulation method; TI: training intensity; MAE: mean absolute velocity error;
CV: coefficient of variation for velocity; OS: maximum percentage overshoot;
RT: rising time; ns: not significant.

V. RESULTS

Participant’s Vb ranged from 1.12 to 1.60 m/s (1.30±0.15
m/s, mean and standard deviation). Fig. 7(a-b) shows the
trends of Vs, Vg , and Vt for a representative participant during
S1, under the stimulation methods CI and RLFLE. Fig. 7(c-
e) reports the trends of Vs, Vg , and Vt for the same study
participant during S2, under the stimulation methods CS, CI,
and RLFLE. Fig. 8 reports the group averages of MAE,
CV, OS, and RT induced by the three stimulation methods
during S2. Results of the two-way repeated-measures ANOVA
and post-hoc analyses for stimulation method are reported in
Table I.

During S1, the RLFLE induced a significantly larger Vmax

in the study participants, compared to CI. The group aver-
ages of Vmax for CI and RLFLE were 1.73±0.23 m/s and
1.79±0.23 m/s, respectively, with an average increment of 6.0
cm/s (p < 0.05). Moreover, participants were able to maintain
Vmax significantly longer when training with the RLFLE. The
group averages of fnum(Vmax) for CI and RLFLE were 59±15
strides and 71±18 strides, respectively, reflecting an average
increment of 12 strides (p < 0.05). Thus, the estimate of
Vmax obtained with RLFLE reflected more closely the wearer’s
steady-state maximum overground walking speed.

During S2, the RLFLE resulted in significantly smaller
MAE than both CS and CI methods. RLFLE also induced
smaller CV and OS than the other methods, however differ-
ences were significant only between RLFLE and CS. The
CS method yielded a significantly smaller MAE than the
CI method, however no significant differences were found
between CS and CI in terms of CV or OS. RT was significantly
shorter for CS compared to both CI and RFLE, however
differences between CI a RFLE were not significant. The
analysis did not evidence any interactions between training
intensity and stimulation method. Interestingly, RT was the
only outcome metric affected by the training intensity. Post-
hoc analyses revealed significant differences between LOW1
and LOW2 (p < 0.05), and between HIGH and LOW2
(p < 0.05), but no significant difference was found between
LOW1 and HIGH. This suggests that participants responded
more abruptly when Vg decreased compared to when Vg
increased.

VI. DISCUSSION

This letter proposed a novel vibrotactile stimulation method
for personalized walking speed training. To the best of the
authors’ knowledge, this is the first study applying the RL

framework to personalize the biofeedback strategy of a WBS
for gait exercises. Compared to recent work on feedback per-
sonalization for WBS [13], the proposed RLFLE modulates the
stimuli based on direct measures of an individual’s gait speed,
which is a widely used, clinically meaningful outcome for
rehabilitation programs. An interesting feature of the RLFLE
that sets it apart from previous research relies on its ability to
self-determine a subject’s Vmax by progressively increasing Vg
in a subject-specific and adaptive fashion, as indicated by the
S1 data. Past studies on external stimulation for gait training
have set the target exercise velocity Vt to an arbitrarily defined
percentage of an individual’s self-selected gait speed, ranging
from 100%Vb to 125%Vb [13], [37], [38]. However, these
values may not reflect a person’s true Vmax. An automated
way to establish Vmax such as the one proposed here may
aid the design of more targeted gait training protocols, as
well as more direct assessments of key predictors of health
status and gait/balance disturbances (e.g., the walking speed
reserve [39]). Although the CI stimulation method can, in
principle, capture a person’s Vmax, it requires the definition
of strict update rules, as exemplified in (14). Such hard-
coded rules might be sub-optimal for certain users, thereby
affecting the validity of the Vmax estimates, as suggested by
the worse results obtained in S1. Indeed, when comparing the
estimates of Vmax obtained with CI and RLFLE, the average
difference was 6.0 cm/s, which is above the minimal clinically
important difference (MCID) for older adults [40] and persons
with Parkinson’s disease [41]. Further research is warranted
to determine whether the proposed RLFLE can be applied to
assess Vmax in older adults and clinical populations.

In past research, high- and low-intensity walking bouts
have been traditionally analyzed as separate sessions. The
self-adaptation of Vg allows the RLFLE to smoothly direct
the wearer toward a time-varying target velocity Vt, making
it possible to design more versatile, personalized training
protocols. Compared with CS, not only did the RLFLE allow
users to follow Vt more accurately and with less variability,
but it also smoothed their transient response to the stimuli
(i.e., smaller OS, larger RT). While we cannot rule out that
the poorer performances of the CS method might have been
affected, in part, by the participants being exposed to CS to a
lesser extent than they were to CI and RLFLE (since CS was
not used for S1), we believe this is highly unlikely. Indeed, all
3 stimulation methods share the same lower-level controller
triggering the stimuli, and those stimuli are rather intuitive
to follow, regardless of the stimulation modality. For this
reason, participants were likely well accustomed to the plantar
stimuli by the end of the familiarization session. Compared
with CI, the RLFLE significantly improved the accuracy in
the users’ velocity adaptations, although changes in transient
responses were non-significant. This result suggests that the
rules governing how to increase Vg towards a higher Vt should
be different from those associated with decreasing Vg to a
lower Vt. Overall, the higher accuracy yielded by RLFLE
compared to both CI and CS indicate that these non-adaptive
stimulation methods may be less effective in eliciting a desired
Vt in the wearer.

The life-long learning structure is a distinctive feature
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Fig. 7. Trends of Vs, Vg , and Vt for a representative participant under the three stimulation methods (CS, CI, and RLFLE) during S1 (a-b) and S2 (c-e).

Fig. 8. Group averages of the mean absolute velocity error (MAE), coefficient of variation (CV), percentage overshoot (OS), and rising time (RT) induced
by the three stimulation methods (CS, CI, and RLFLE) during S2. Error bars indicate +/-1SE.

differentiating RL from off-line learning methods such as
Gaussian process regression [13]. RL methods based on the
exact solution of Bellman’s equation, such as policy iteration
and value iteration methods [22], [42], traditionally require
large amounts of training data, making them impractical for
real-time applications. Instead, we approximated the long-term
cost Q̂ through parameterization, and used RLS to update
these estimates. This approach takes full advantage of prior
data and achieves reasonable performance without intensive
computation. To simplify the RL modeling and training, only
the average walking speed V̄s was fed as input to the high-
level controller. This leaves a rich set of WBS-measured kine-
matic and kinetic features unused. Furthermore, in the fuzzy
inference strategy, the exploration was conducted by only
relying on the acquired knowledge, without adding exploration
noise. Hence, future work will include the investigation of
additional input features for the high-level controller and the
addition of exploration noise to excite the learning process.
Another limitation of this study is the relatively small and
homogeneous sample size. Future work will test the RLFLE
with larger and more heterogeneous samples (e.g., older adults
with gait and balance impairments). Additionally, this study
only investigated the immediate benefits that occurred through
gait training. A future study will need to assess the carry-over
effects of training with the proposed stimulation method.

VII. CONCLUSION

This study provides proof-of-concept validation of a new
RL-based strategy for wearable biofeedback devices used in
walking exercises within an indoor environment. The pro-
posed RLFLE proved more effective than two non-adaptive
biofeedback strategies in modulating closed-loop underfoot
vibrotactile stimuli to induce a desired gait speed in the
wearer, resulting in lower walking speed errors. Additionally,
results indicated that the RLFLE can autonomously determine

an individual’s maximum steady-state overground gait speed.
Further research is warranted to determine the extent to which
these findings translate to clinical populations with gait and
balance impairments.
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APPENDIX

The table below summarizes the fuzzy rule base used to
combine the current tracking error ec,k (columns) and long-
term feedback el,k (rows) to determine appropriate fuzzy
outputs yi,j (table entries) from which the update of the guided
speed ∆Vg,k is computed according to (12). To obtain fuzzified
inputs, the ranges of ec and el are first split into N = 11
segments labelled as follows: N and P represent ‘Negative’
and ‘Positive’; LL, L, M , and S indicate ‘Very Large’,
‘Large’, ‘Medium’, and ‘Small’; ZE represent the ‘Zero-
Error’ region. Each segment is then assigned a membership
function as shown in Fig. 4(a-b). The maximum and minimum
values of yi,j are set to ±0.4m/s based on preliminary tests.
When ec and el have the same sign, Vg must be incremented
in the same direction. Conversely, if ec and el have opposite
signs, yij is determined based on the following rules:
i) If ec > 0 and el < 0, yij must be positive to reduce the
tracking error.
ii) If ec < 0 and el > 0, yij must be negative to reduce the
tracking error.
iii) If ec ≈ 0, yij is small, and its sign is determined from el.

LLN LN MN SN ZEN ZE ZEP SP MP LP LLP
-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

LLN -0.5 -0.4 -0.3 -0.2 -0.1 -0.1 -0.1 -0.1 0.1 0.2 0.3 0.4
LN -0.4 -0.35 -0.25 -0.15 -0.1 -0.1 -0.1 -0.1 0.1 0.15 0.25 0.35
MN -0.3 -0.3 -0.2 -0.15 -0.1 -0.1 -0.1 -0.1 0.1 0.15 0.2 0.3
SN -0.2 -0.25 -0.2 -0.15 -0.1 -0.1 -0.1 -0.1 0.1 0.15 0.2 0.25
ZEN -0.1 -0.25 -0.2 -0.15 -0.1 -0.1 -0.1 -0.1 0.1 0.15 0.2 0.25
ZE 0 -0.2 -0.2 -0.15 -0.1 -0.1 0 0.1 0.1 0.15 0.2 0.2
ZEP 0.1 -0.25 -0.2 -0.15 -0.1 0.1 0.1 0.1 0.1 0.15 0.2 0.25
SP 0.2 -0.25 -0.2 -0.15 -0.1 0.1 0.1 0.1 0.1 0.15 0.2 0.25
MP 0.3 -0.3 -0.2 -0.15 -0.1 0.1 0.1 0.1 0.1 0.15 0.2 0.3
LP 0.4 -0.35 -0.25 -0.15 -0.1 0.1 0.1 0.1 0.1 0.15 0.25 0.35
LLP 0.5 -0.4 -0.3 -0.2 -0.1 0.1 0.1 0.1 0.1 0.2 0.3 0.4
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