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Abstract— Gait abnormalities and postural instability have
been linked to cognitive decline in older adults, however the
causal relationships between cognitive capacity and gait is
still an open problem. Emerging portable technologies may
help elucidate these connections by enabling gait analysis in
out-of-the-lab settings, with higher sensitivity than timed gait
assessment tests. The purpose of this work was to evaluate the
associations between cognitive ability (Montreal Cognitive As-
sessment scores) and measures of gait and balance disturbance
(spatiotemporal gait parameters, dynamic margin of stability)
in a group of older adults, under a dual-task walking paradigm,
using an integrated gait analysis system that features a mobile
robot and in-shoe sensors. Results of hierarchical regression
analyses adjusted for age and gender indicated that decline
in cognitive ability in older adults is independently associated
with more conservative overground gait patterns (i.e., smaller
absolute values of the anteroposterior margin of stability) and
increased gait variability (i.e., larger coefficients of variation
in stride time and stride velocity) when performing dual-task
walking. These results provide proof-of-concept validation of
the applicability of integrated robotic and wearable sensors
technologies to out-of-the-lab gait analysis in older adults.

Index Terms— Wearable Technology, Instrumented Footwear,
Assistive Robots, Ambulatory Gait Analysis, Dynamic Margin
of Stability.

I. INTRODUCTION

Independent mobility is an essential indicator of physical
health status and a predictor of fall risk [1] and cognitive
function [2] in older individuals. A growing body of research
has shown that poor walking performance correlates with
cognitive impairment in older adults [2], [3]. In these studies,
the dual-task paradigm, which requires individuals to walk
while performing a secondary cognitive task, has often been
used to investigate associations between gait and cognitive
impairment [4]. Several clinical tools are available to assess
physical and cognitive functions in older adults. Among
these, the Short Physical Performance Battery (SPPB) has
been identified as a reliable and persistent predictor of
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functional deterioration [1], [5]. The Montreal Cognitive As-
sessment (MoCA) is a highly sensitive cognitive impairment
assessment tool [6] that has shown positive correlation with
SPPB scores [7] and negative correlation with gait impair-
ments and fall risk [8]. However, the common mechanisms
underlying the relationship between motor performance and
cognitive ability are still not well understood. The emerging
gait and balance monitoring technologies may help elucidate
these mechanisms by enabling more accessible, sensitive, and
objective measurements in out-of-the lab settings.

Several research groups have proposed mobile robots
equipped with vision-based sensors (i.e., infrared, depth, and
RGB cameras) as tools for gait analysis and monitoring [9].
RGB-D cameras offer real-time three-dimensional tracking
of the human body, while the mobility of the robotic platform
compensates for the limited field of view of the RGB-D
cameras. In [10], an RGB-D sensor was fitted on a mobile
robot to monitor an individual’s 3D body motion and assess
their gait while they navigated in a pre-mapped environment.
The authors of [11] proposed a robotic system to analyze gait
patterns in clinical environments. Their system comprises a
mobile robot equipped with RGB-D sensors for monitor-
ing human motion and a LIDAR sensor for mapping and
localization. In [12], an on-board laser scanner was added
to the RGB-D sensors to increase the robustness of the
robot motion tracking capabilities for individuals that used
mobility aids, such as walkers and crutches.

To enhance the quality of life in older adults, it is critical to
develop new tools that can automatically detect the onset of
cognitive decline, thereby allowing early interventions [13].
Inertial measurement units (IMUs) are increasingly being
used to capture gait patterns that may predict future dementia
[14]. A study that relied on shank-attached IMUs showed
that spatial and temporal gait parameters in older adults are
predictive of cognitive decline at two-year follow up [15].

Fusing data from multiple diverse sensors holds significant
potential for gait analysis [16], [17]. Yet, no research to date
has investigated associations between motor and cognitive
functions using an integrated robot and wearable sensor
system. The objective of this study is to investigate asso-
ciations between cognitive ability and measures of gait and
balance disturbance (namely, spatiotemporal gait parameters
and dynamic margin of stability (MoS) in the sagittal and
frontal planes) in community dwelling older adults during



Fig. 1. Integrated robot and wearable sensor system used to administer
walking tests to older adults in a senior center.

overground walking tasks, using a dual-task paradigm. To
the best of the authors’ knowledge, this is the first study
analyzing associations between cognitive ability and mea-
sures of dynamic stability during overground walking. This
capability is enabled by an integrated robot and wearable
sensor system recently developed by our team, which was
previously validated in a laboratory environment with healthy
adults [18], [19]. This paper builds upon our previous studies
and provides an investigation of how a clinical measure of
cognitive function (MoCA scores) is associated with changes
in gait and balance metrics captured by the integrated system
during dual-task walking in older adults. Furthermore, to
assess clinical feasibility of the technology, we explored as-
sociations between the same gait metrics and a standardized
clinical motor function assessment (SPPB).

The rest of the paper is organized as follows: Section II
provides an overview of the integrated robot and wear-
able sensor system. Section III summarizes the methods
we applied to estimate spatiotemporal gait parameters and
margin of stability from the robot and wearable sensors
data. Section IV describes the experimental protocol and
Section V illustrates the multivariate regression models used
to investigate associations between clinical scores (MoCA or
SPPB) and gait parameters. Section VI presents the results
of the analysis. Lastly, the paper is concluded in Section VII.

II. SYSTEM DESCRIPTION

The mobile robot system (Fig. 1, top) consists of a P3-DX
differential drive robot, an Azure Kinect sensor, a Kinect v1
sensor, and a laptop [18]. The Azure Kinect sensor facing
backward captures an individual’s lower-body movements.
The poses of the pelvis and ankle joints are recorded in
the Azure Kinect sensor frame and then transformed to the
world coordinate frame. This allows the robot to precede the
test subject at a constant distance of approximately 1.5 m
while monitoring their gait. The Kinect v1 sensor facing
forward is utilized to map the environment and estimate the
current position of the P3-DX robot. The laptop computer is

located on the robot and is responsible for data acquisition
and processing using the methods described in Sec. III.
The wearable sensor system (Fig. 1, bottom) consists of
insoles instrumented with a nine degree-of-freedom IMU and
a eight-cell array of force-sensitive resistors (FSRs) [20].
Each insole is connected to a logic unit that is attached to
the postero-lateral side of the wearer’s own shoes. The logic
units are used to gather data from the insole sensors. The
raw signals are sent to the robot laptop at 270 Hz via UDP
and converted into clinically relevant gait parameters in real
time, as described in the following section.

III. ESTIMATION OF GAIT PARAMETERS

A. Spatiotemporal Gait Parameters

Temporal gait parameters are extracted from FSR signals.
Instances of heel strike (HS) and toe-off (TO) are detected
when the sum of the FSR signals underneath the hindfoot and
forefoot exceeds or drop below a fixed threshold. The time
interval during which the normalized acceleration of the foot
(as estimated by the insole-embedded IMU) lies below an
empirically-determined threshold is used to detect the foot-
flat phase (FF) of each gait cycle. Stride time (ST) is defined
as the time interval between two successive HS of the same
foot. Swing time is computed as the time interval between
TO and the following HS of the same foot. Swing percent
(SWP) is calculated as the ratio of swing time over ST. The
system calculates spatial gait parameters from the position
of the IMUs during the FF. The IMU positions at FF are
first measured in the Azure Kinect frame and then mapped
to the world frame using the robot localization capability.
The distance between two consecutive IMU positions of the
same foot at FF yields the stride length (SL). Stride velocity
(SV) is calculated as the ratio of SL over ST. More details
about the spatiotemporal gait parameters estimation can be
found in [18], [20].

B. Dynamic Margin of Stability

Dynamic margin of stability (MoS) is a common measure
to quantify an individual’s ability to maintain balance during
walking. The MoS extends the condition of static stability
to dynamic conditions, by accounting for the velocity of the
body center of mass [21]. The MoS is defined as the distance
between the extrapolated center of mass (XCoM, denoted ξ),
and the base of support (BoS). The XCoM is determined by
adding to the vertical projection of center of mass (CoM,
denoted r) a term that is proportional to the CoM velocity
ṙ, as described by

ξ = r + ṙ
ω0

, (1)

where ω0 is the natural frequency

ω0 =
√

g
l (2)

and g, l are the gravity acceleration and the average height
of the CoM in the sagittal plane, respectively.

To estimate the MoS, we fuse the data from the robot
and wearable sensors. The Azure Kinect sensor is used to
track the pelvis and foot poses. We transform these poses



Fig. 2. Definition of MoS, MoSAP, and MoSML given the locations of
12 virtual markers (filled and un-filled black circles) tracked by the robotic
system. Filled circles delimit segments of the feet that are in contact with
the ground, which are used to determine the BoS.

from the Kinect frame to the world frame using the robot
location. The foot pose estimates are refined by an Extended
Kalman Filter (EKF) that fuses the raw measurements by
the Kinect sensor with the linear acceleration and angular
velocity of the corresponding foot measured by the insole
IMU. To determine the BoS from the estimated foot poses,
6 virtual markers are placed on the geometric boundary of
each foot, with 3 markers representing the forefoot and 3
markers representing the hindfoot segments (Fig. 2). At each
timestamp, we consider the subset of the 12 virtual markers
corresponding to the foot segments that are currently in con-
tact with the ground, as indicated by the FSRs readings. The
BoS is estimated as the convex hull of this subset of virtual
markers. Furthermore, the current foot pose estimates and
the FSR readings determine the Center of Pressure (CoP),
which is used by a second EKF to estimate the CoM velocity
ṙ. This EKF also improves the accuracy of the raw CoM
approximated by the pelvis pose measurements made by the
robot sensors, thereby providing a more accurate estimate
of XCoM via (1). With the BoS and XCoM available, the
MoS is calculated at each timestamp as the signed distance
between the BoS and XCoM (positive if the XCoM lies
inside the BoS, and negative otherwise). The MoS time series
is then projected onto the AP and ML axes1 and the following
3 scalars are extracted at each gait cycle: MoSAP is the mean
of the AP projection of the MoS measured over the gait
cycle; MoSML,pos and MoSML,neg are the positive and negative
ML projections of the MoS integrated over the gait cycle,
respectively. More details about the MoS estimation can be
found in [19].

IV. EXPERIMENTAL PROTOCOL

Twenty-four community dwelling individuals aged 65 and
older (Tab. I) were recruited from a community center in
Queens (New York City, NY). The study was approved by
the IRBs of Columbia University and Stevens Institute of
Technology, and all participants provided written informed
consent.

All experiments took place in a common area within the
community center. An oval path, approximately 38-meter

1The AP axis was estimated, stride by stride, from the segment connecting
the location of the most recent HS to the previous HS of the ipsilateral foot.

long, was marked on the floor with adhesive tape to serve as
the nominal path for all the walking trials (Fig. 3). First, two
trained research staff administered the MoCA and the SPPB
tests. The MoCA was selected given its high sensitivity and
low ceiling effects for individuals with mild cognitive im-
pairments [26]. The SPPB examines balance, lower extremity
muscular capacity, and mobility, and has been widely used
as an accurate and reliable assessment of physical function
[27]. Afterwards, each participant completed 2 laps along
the oval path, at their preferred pace (familiarization trial,
FS). The goal of FS was to get the subjects accustomed to
walking with the instrumented insoles while the mobile robot
preceded them. After the FS, each participant completed 2
additional walking trials, each consisting of 4 laps along
the same oval path, while their gait was monitored by the
integrated robot/insole system. One trial required subjects to
walk at their preferred pace (normal walking, N), the other
one included a secondary cognitive task (dual-task walking,
D). The cognitive task required the study participants to
count backwards by 3, starting from a random number. Both
the sequence of the trials (N, D) and the walking direction
(clockwise, counterclockwise) were assigned to participants
using a Latin square design.

V. STATISTICAL ANALYSIS

We analyzed 3 groups of gait parameters: i) mean and
coefficient of variation (CV) of SL, SV, ST, SWP, MoSAP,

TABLE I
DEMOGRAPHIC INFORMATION, MOCA SCORES, SPPB SCORES

Age, mean (SD) 75.8 (5.4)
Sex, n (%)

Male 8 (33.3%)
Female 16 (66.7%)

BMI [kg/m2], mean (SD) 26.13 (4.18)
Height [m], mean (SD) 1.61 (0.07)
Weight [kg], mean (SD) 67.5 (12.5)
Gait speed [m/s] (SD) 0.98 (0.19)

Normal (≥ 1 m/s) [22] 54.17%
Risk for adverse events (0.6-0.8 m/s) [23] 12.50%
Impaired individuals (≤ 0.6 m/s) [23] 4.17%

MoCA (0-30), mean (SD) 21.5 (3.6)
Cognitive impairment (≤ 26) [24] 100%

SPPB (0-12), mean (SD) 8.3 (1.5)
Risk for disability (<10) [25] 75%

BMI: Body mass index; SD: Standard Deviation; MoCA: Montreal
Cognitive Assessment; SPPB: Short Physical Performance Battery.

Fig. 3. Oval path used for the walking trials (a) and illustration of the
experimental protocol (b). N and D indicate normal and dual-task walking,
respectively.



TABLE II
SUMMARY GAIT PARAMETERS FOR N AND D TRIALS

N D
Mean SD Mean SD

ST
Mean [s] 1.17 0.14 1.20 0.15
CV (%) 3.72 1.14 3.91 2.04

SWP
Mean (%GC) 35.11 2.79 34.78 2.46
CV (%) 6.12 5.09 6.87 5.12

SL
Mean [m] 1.13 0.14 1.10 0.15
CV (%) 5.97 2.28 6.00 1.72

SV
Mean [m/s] 0.98 0.20 0.94 0.2
CV (%) 7.44 2.6 7.77 3.29

MoSAP
Mean [m] -0.151 0.072 -0.128 0.072

MoSML,pos
Mean [m] 0.026 0.009 0.027 0.010

MoSML,neg
Mean [m] -0.022 0.012 -0.024 0.016

SD: Standard Deviation; CV: Coefficient of Variation; N: Normal
walking; D: Dual-task walking.

MoSML,pos, and MoSML,neg, separately for trials N and D; ii)
differences of the mean and CV values of each gait parameter
between the two trials (i.e., D−N); iii) ratio of the mean and
CV values of each gait parameter between the two trials (i.e.,
D/N). We applied hierarchical linear regression to examine
whether SPPB and MoCA scores could predict the aforemen-
tioned gait metrics, after statistically adjusting for the effects
of age and gender. To this end, for each gait parameter we
fitted separate linear regression models, first by introducing
age and gender as predictors (base model), then by adding
either SPPB or MoCA scores (complete models). Age and
gender were added as predictors in the base model because
spatiotemporal parameters and dynamic MoS are age-related
and sex-specific variables [28]. If there was a significant
(α = 0.05) increase in the proportion of variation explained
by the complete models for a given gait parameter, we
concluded that SPPB (or MoCA) scores were independently
associated with that parameter. The assumption of normal
distribution for the residuals was verified by reviewing the
standardized residuals’ normal probability plots. We further
checked for deviations from linearity and homoscedasticity
by evaluating the scatterplots of the standardized residuals
plotted against the standardized expected values. SPSS v28
(IBM Corporation, Armonk, NY) was used to perform all
analyses.

VI. RESULTS

Table II summarizes mean and CV of the gait parameters
for normal walking (trial N) and dual-task walking (trial D).
Table III shows the coefficients of determination (R2) of
the base and complete models, along with their difference
(∆R2). Unstandardized regression coefficients (B) are re-
ported for the clinical scores. Standardized coefficients (β)
are included for all predictors in each complete model. For
the sake of brevity, only the complete models resulting in
significant ∆R2 are included in the table.

The analysis evidenced that SPPB is positively associated
with SL and negatively associated with MoSAP. Additionally,
MoCA scores were found to be independently associated
with changes in ST and SV variability between trials N and
D, and with the D/N ratio of MoSAP. It is worth noting that
βSPPB and βMoCA were larger than βage and βgender in all
the significant models, indicating that the predictive ability of
SPPB and MoCA are stronger than those of age and gender.

Figure 4 shows the partial regression plots for age, gender,
and MoCA scores for all significant models. The angular
coefficients of these lines represent the unstandardized re-
gression coefficients of each predictor (age, gender, MoCA
scores). From these plots, it can be inferred that the variabil-
ity accounted for by the MoCA scores in each of the three
models exceeded that of age and gender.

VII. DISCUSSION AND CONCLUSION

This paper is the first work reporting associations be-
tween MoCA scores, a measure of cognitive ability, and
MoS, a measure of dynamic stability, in older adults during
overground walking tasks. To achieve this goal, we used
an integrated robot and wearable sensor system recently
developed by our group. While the MoS has been widely
used to study dynamic balance in older adults and other
populations [29], only few studies [30]–[32] have applied
the MoS to overground walking tasks, which more closely
resemble real-life walking.

Our analysis indicated that SPPB and MoCA are asso-
ciated with distinct gait domains. The positive association
between SPPB and SL is in line with previous research
[33] and further underscores the role of SPPB as a valid
measure of mobility and physical function in older adults.
Knee extensor muscles contribute to SL [34] and SPPB
evaluates strength in these muscles through the five times
sit-to-stand component of the assessment [35]. Additionally,
static balance performance, which SPPB evaluates through
three standing balance sub-tests, is known to be positively
correlated with SL [36]. Thus, both associations can explain
the correlation between SPPB and SL. The negative associ-
ation between SBBP and MoSAP was possibly mediated by
SL, since MoSAP is known to decrease as SL increases [37].
Interestingly, SPPB was not associated with SV, even though
one component of the SPPB compound score specifically
targets gait speed. One possible explanation is that SPPB
determines preferred walking speed by relying on a short (3
or 4 m) walking test, whereas in our tests SV was computed
as the average gait speed over a 150-meter walking bout.
Hence, the estimates of SV were likely affected by fatigue.

In our sample, older adults with lower levels of cognitive
impairment showed smaller increases in gait variability and
less pronounced AP adaptations when performing a sec-
ondary cognitive task. Associations between increased stride-
to-stride fluctuations in gait parameters and cognitive decline
have been consistently reported in the literature [38]. Such
associations have been linked to shared brain networks for
gait control and cognition, which are challenged by dual-task
walking [39]. Furthermore, a smaller ratio of MoSAP between



TABLE III
MULTIPLE REGRESSION MODELS

R2
M1 R2

M12 ∆R2 BSPPB (95%CI) βage βgender βSPPB

MEAN

SL N 0.115 b0.429 b0.314 b0.057 (0.020,0.094) 0.009 -0.202 0.609
SL D 0.218 b0.516 b0.298 b0.057 (0.022, 0.092) -0.199 -0.096 0.593

MoSAP N 0.034 a0.276 a0.242 a − 0.224 (-0.046, -0.002) -1.116 0.169 -0.521
MoSAP D 0.095 a0.340 a0.244 a − 0.025 (-0.045,-0.005) -0.083 0.252 -0.537

R2
M1 R2

M2 ∆R2 BMoCA (95%CI) βage βgender βMoCA

CV
ST (D-N) 0.014 a0.230 a0.215 a − 0.273 (-0.520,-0.025) -0.255 0.192 -0.499
SV (D-N) 0.003 a0.208 a0.205 a − 0.588 (-1.142, -0.033) -0.132 0.031 -0.487

MEAN MoSAP (D/N) 0.244 a0.491 a0.247 a0.228 (0.055, 0.402) -0.281 0.028 0.544

R2
M1 and R2

M2 are the coefficients of determination for the base models (age, gender) and for the complete models (age, gender, SPPB or MoCA),
respectively. ∆R2 is defined as

(
R2

M2 −R2
M1

)
. The unstandardized regression coefficients BSPPB and BMoCA are reported along with their 95%

confidence intervals (CI). β indicates the standardized regression coefficients for each predictor in the complete models. Suffixes N and D indicate normal
and dual-task walking, respectively. Note: ap < 0.05, bp < 0.01,cp < 0.001.
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Fig. 4. Partial regression plots for the gait parameters showing significant associations with MoCA scores. The x axes represent the residuals from
regressing the omitted predictor against the remaining predictors in the model. The y axes represent the residuals from regressing a gait parameter against
all the predictors but one (age, gender or MoCA scores)

fast and preferred gait speed is an indicator of conservative
gait strategies in older adults at risk of falling [30]. Similarly,
our results on the D/N ratio of MoSAP suggest that older
adults with higher levels of cognitive impairment tend to
show more marked AP adaptations toward conservative gait
patterns when performing a secondary cognitive task.

One limitation of this study is the small sample size.
Additionally, because the participants’ performances in the
cognitive task were not quantified, it was impossible to
investigate potential mediating effects of task prioritization
on the gait patterns measured during the dual-task condition
[40]. Future work will include using the integrated system to
assess longitudinal changes in gait and dynamic balance of
older adults and those with neurological disorders following

a rehabilitation program.

ACKNOWLEDGMENT

This work was supported by the US National Science
Foundation under Grants IIS-1838799 and IIS-1838725. Q.
Z. and Z. C. gratefully acknowledge the support of the Fer-
nando Fernandez PhD Robotics Summer Term Fellowship.

REFERENCES

[1] E. L. McGough, R. G. Logsdon, V. E. Kelly, and L. Teri, “Functional
mobility limitations and falls in assisted living residents with dementia:
physical performance assessment and quantitative gait analysis,” J
Geriatr Phys Ther, vol. 36, no. 2, pp. 78–86, 2013.

[2] M. L. Callisaya, C. P. Launay, V. K. Srikanth, J. Verghese, G. Allali,
and O. Beauchet, “Cognitive status, fast walking speed and walking
speed reserve—the Gait and Alzheimer Interactions Tracking (GAIT)
study,” Geroscience, vol. 39, no. 2, p. 231, 2017.



[3] J. Davis, S. P. Knight, R. Rizzo, O. A. Donoghue, R. A. Kenny,
and R. Romero-Ortuno, “A linear regression-based machine learning
pipeline for the discovery of clinically relevant correlates of gait speed
reserve from multiple physiological systems,” in 2021 29th European
Signal Processing Conference (EUSIPCO). IEEE, 2021, pp. 1266–
1270.

[4] Q. Yang, C. Tian, B. Tseng, B. Zhang, S. Huang, S. Jin, and J. Mao,
“Gait change in dual task as a behavioral marker to detect mild
cognitive impairment in elderly persons: A systematic review and
meta-analysis,” Archives of physical medicine and rehabilitation, vol.
101, no. 10, pp. 1813–1821, 2020.

[5] H. Baezner, C. Blahak, A. Poggesi, L. Pantoni, D. Inzitari, H. Chabriat,
T. Erkinjuntti, F. Fazekas, J. Ferro, P. Langhorne et al., “Association
of gait and balance disorders with age-related white matter changes:
the LADIS study,” Neurology, vol. 70, no. 12, pp. 935–942, 2008.

[6] Z. S. Nasreddine, N. A. Phillips, V. Bédirian, S. Charbonneau,
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