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ABSTRACT

A significant extension of previously introduced continuous eddy simulation methods is presented by introducing minimal error partially
and fully resolving simulation methods for turbulent flows. This approach represents a machine learning strategy for the hybridization of
modeling-focused and resolution-focused simulation methods. It can be applied to well-known equation structures (Spalart-Allmaras type
equations, usually applied two-equation models), and it can be used for different hybridization types and in different computational versions.
Physically, minimal error methods implement a mode interplay, which ensures that the resolution imposed by a model equals the actual flow
resolution. Differently formulated simulation methods reveal two typical errors, and they cannot be expected to provide reliable predictions
under conditions where validation data are unavailable. These problems can be avoided by minimal error formulations of model structures

considered.
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The development of simulation methods for turbulent flows faces
known problems."” Reynolds-averaged Navier-Stokes (RANS) meth-
ods focusing on flow modeling cannot reliably handle complex flows
involving flow separation, as very often seen in applications. Large
eddy simulation (LES) methods focusing on flow resolution are usually
constrained by their resolution requirements, especially for wall-
bounded turbulent flows at high Reynolds number (Re). Hybrid
RANS-LES methods” * were developed to overcome the inapplicabil-
ity of LES and unreliability of RANS. However, there is now a large
variety of such hybrid methods, traditionally applied methods like
wall-modeled LES (WMLES)” "' and detached eddy simulation
(DES),*"*'® and other methods such as scale adaptive simulation
(SAS) methods,”'”"* lattice Boltzmann (LB) methods,'” >’ Reynolds-
stress-constrained LES (RSC-LES),” unified RANS-LES,** partially
averaged Navier-Stokes (PANS),”” " partially integrated transport
modeling (PITM) methods,”””® and continuous eddy simulation
(CES) methods.””” "’ There have been recent attempts to use machine
learning (ML) methods [seen here as computer-aided methods that
apply sample data to (iteratively) improve analyses, models, or simula-
tions, often by minimizing errors] to address the inability of RANS to
deal with separated flow.”" It may be expected that further develop-
ments of hybrid RANS-LES will take place in future decades as long

as there is no convincing guideline about which out of the many avail-
able hybrid RANS-LES have to be preferred.

It is impossible to derive general conclusions via applications of
many hybrid methods to many turbulent flows; that is, it needs theo-
retical guideline to address this issue. Several hybrid RANS-LES were
presented as having theoretical support,” leading to the question of
which theoretical concept should be preferred. For example, CES
methods introduced recently are implied by theory.””” ** For PANS
and PITM structures, it was shown how information about the actual
flow resolution can be implemented in these models (using an approx-
imation, the neglect of substantial derivatives). The methods were
demonstrated to work very well in applications.”** It was also shown
that eddy viscosity model (EVM) PANS and PITM structures can be
extended to Reynolds-stress models (RSM) and probability density
function (PDF) methods applicable to both turbulent velocity and sca-
lar fields.” The question left unaddressed is whether the CES imple-
mentation of resolution information, which differs from other hybrid
RANS-LES, has to be preferred.

The purpose of this paper is to introduce minimal error hybrid
RANS-LES models to provide a basis for the evaluation of model con-
cepts. This will be done by considering usually applied turbulence
models and hybridization methods including DES and WMLES,
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which were not analyzed before in this context. It matters to clarify
assumptions applied. In an analysis option O;, we apply two assump-
tions. Assumption A; is that RANS-type equations can be used to also
cover the LES regime. This assumption (which is applied by almost all
hybrid RANS-LES) has strong theoretical support” including the fact
that it is a requirement for the design of a realizable turbulence
model.”” The analysis here provides additional evidence [see the dis-
cussion of Eq. (2)]. First, the RANS-type equations considered are
structurally consistent with regularly applied LES. Second, among all
equations that can be considered for RANS and LES, the equation
error can be minimized by considering the same equations to perform
both RANS and LES. The attempt to relax assumption A, has a signif-
icant price, it produces a variety of problems that need empirical solu-
tions, and it does not enable minimal error formulations.”
Assumption .4, is that the energy partition (0k/k and J¢/e, see below)
does not change in space and time. This assumption is not a restriction
but a desired stability requirement, and it ensures that physically
equivalent flow regions are equally resolved without significant oscilla-
tions of 6k/k and d¢/e.”” " As alternative to Oy, an option O, will be
considered below, which represents a possible but not required simpli-
fication of option O;.
The analysis basis is given by the incompressible continuity equa-
tion OU; /9x; = 0 and the momentum equation
DU;

Dt

1 0p

p Ox;

d(2vS;) Oy

The tilde refers to space-averaged variables, and D/Dt=09/0t
+U;0/0x; is the filtered Lagrangian time derivative (f is time, and x;
refers to components of the position vector). U; refers to components
of the velocity vector, p is the pressure, p is the constant fluid density, v
is the constant kinematic viscosity, and S;; = (U /0x; + 90U,/ 9x;)/2
is the rate-of-strain tensor. The sum convention is used throughout this
paper. The modeled stress tensor 7; on the right-hand side (RHS) of
Eq. (1) is modeled by an EVM, t;; = 2kd;;/3 — 2v,S;;. Here, J;; is the
Kronecker symbol, and v, = C,k* /e = C,k/w is the modeled viscos-
ity, which involves the model parameter C,, the modeled kinetic energy
k, dissipation rate ¢, and turbulence frequency .””” The reason why
empbhasis is placed on an EVM is the simplicity of equations: it was
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shown recently”” that the extension to corresponding RSM and PDF
methods is straightforward.

To illustrate the approach, let us consider first k — € model-based
KES and KEK equations given in Table I: KE refers to the k — € model,
and KES and KEK refer to the hybridization of the scale equation or k
equation, respectively. The setup of equations considered covers
hybrid formulations used in DES, PANS, PITM, and CES methods.
P =18 is the turbulence production involving the strain rate
S = (28,Sum)"/>. We have C,, = 1.44 and o, = 1.3. In RANS,
o = C,,/C,, where C., = 1.92 implies o« = 1.33. The hybridization of
KES (KEK) equations is addressed by replacing o by an unknown o*
(by replacing € by €, where i, is an unknown). Both KES and KEK
equations can be hybridized in analysis options O, or O,. The differ-
ence of versions is that contributions due to Dk/Dt and De/Dt are
considered in option O; but neglected in option O,. The advantage of
option O, is that these equations do not explicitly involve resolved
contributions via the total modeled viscosity v s,r.” The latter need to
be considered in option O; equations to compensate the inclusion of
Dk/Dt and De/Dt."’

Minimal error methods of equations considered in Table I can be
derived in the following way. The analysis of KES and KEK equations
is equivalent: it simply needs to make use of o* =1+ o —,. We
introduce a model error 1 as residual of the € equation. P is replaced
according to the k equation in this error definition. We apply assump-
tion A,, see the third paragraph. The first variations (denoted by J) of
normalized errors /e and ./k? are obtained, where relations for
0Dy, 0D., 6(Dk/Dt), and 6(De/Dt given in the bracket terms of
Table I are applied. The expressions obtained for error variations
make use of the error definition to replace D.. An extremal error is
given for a vanishing first variation, do} = (of — 1)dt/7 (option O)
and 0o = (o — 1)6L?/L? (option O,). Here, T = k/e = w ! is the
dissipation time scale and L = k' /¢ refers to the modeled length
scale of turbulence. The integration of zero first variation relations
from a complete modeling state to a state of partial modeling implies
o =141 (x—1) and o} =1+ L% (o — 1).” Here, 14 = 7/Tyt
and Ly = L/Ly refer to the modeled to total time scale and length
scale ratios (see the Appendix). We note that o and o recover CES
results.””*’ For all models considered in this paper, we find a zero

TABLE I. Minimal error k — e models: both KES and KEK hybridizations are considered in analysis options O, O, depending on »;. Model errors 4, first variations, and

resulting mode controls o* are provided. Variations applied are given in brackets.
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TABLE II. Minimal error k — « models: both KOS and KOK hybridizations are considered in analysis options Oy, O, depending on ;. Model errors /, first variations, and

resulting mode controls 3 are provided. Variations applied are given in brackets.

Dk Dw P o , 0k 0 v dw
—=P— D, —-— — Lo H-—p Dw) Dy = — *_> u):__t_K
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. . . o(Dk/Dt) oDy ok d(Dw/Dt) 0D, Jw
Anal h Dk/Dt, Do/ Dt, v = ) | ol =) 07k 08 OO/ 0% 00
e Analysis option O, (with Dk/Dt, Dw/Dt, Vi = V4 1) [ Dk/ Dt Dy 3 Do, Dt D, >
P Do _(4) Cu ot Op B dx Tdy pi—1
)L: » 212 px Dwff, sI2E) = 1 *71 o 1 , — =2 1 —
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2T o € 2 @ k) 122 L pg-1) ﬁx—l_Lfmy p—1F

second variation, and we need to ask whether o] and o} provide a
minimum or maximum error. The results are equal to variational
results obtained by considering / = 0; that is, the analysis presented
implies minimal error models.

Corresponding results can be also obtained on the basis of k — @
models, w = 77! is the turbulence frequency (see Table II). Here, KO
refers to the use of k — w models, and KOS and KOK refer to hybrid-
izations of the scale or k equation, respectively. The model parameters
involved are given by C,, = 0.49 and ¢, = 1.8. In RANS, f = C,,/
(CkC,,) where C,,, = 0.072 and C; = 0.09 imply f§ = 1.63. A cross-
diffusion term D,,c = C,k™! (v + 1)[0k/0x;][Ow/Dx;] is often added
to the w equation, which acts like a damping function. It is disregarded
for the following analysis. The hybridization of the KOS (KOK) equa-
tions is accomplished by replacing f# by an unknown f* (by replacing
€ by Y ge, where 15 is an unknown). Minimal error methods of equa-
tions considered in Table II can be derived in the same way as

regarding the corresponding k — e methods. The analysis of KOS and
KOK equations is equivalent if f* = 1+ f — ), is applied. Minimal
error conditions follow from setting the first variations equal to zero.
The integration of these minimal error conditions provides ff; = 1
+14(f—1) and f, =1+ L2 (B — 1) for analysis options O; and
O,, respectively, which recover again corresponding CES results.
Similar to the analysis of k — ¢ models, we applied here variational
relations for diffusion coefficients and substantial derivatives given in
the bracket terms of Table II.

The same approach can be applied to v, models by considering
equations, which cover methods applied in DES and SAS approaches,
see also Ref. 46. Related results are presented in Table 111, and specific
DES and SAS settings are given in Table IV. Production (c,), dissipa-
tion (c;), and turbulent diffusion (¢ and c¢p;) model parameters
are defined in terms of usually applied parameters [the von Kdrman
constant x applied differs slightly from the universal value x = 0.4

TABLE lll. Minimal error DES-SAS type v+ models in options O1, O, depending on v;. Model errors 2, first variations, resulting mode controls *, and variations applied are provided.

Relations of y and y* with D and D.., and implications for D,. in options O and O, (D;? and

D;?) are given in the last row. Specific DES and SAS settings are provided in Table IV.
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TABLE IV. DES and SAS settings related to Table [ll. The log-law consistency conditions
read Gy = G /1<% + (1+ Gp) /o for SAS, we obtain 6C/2({, — {1+ C, 3/4(5) = 1%,

DES: D = d/f}/?,
¢ = Cp1,Ca = = e /K + (1 + i) /0
(Cbl’ Cp2, 0, K) = (0.1355, 0.622, 2/37 0.41)
SAS: D = ‘gvK.,tota a= Cuc;*l/z)
Cp = “(C1 - §3C/1/4/ﬂ2)75d = é’zﬂz/(c/l/szzl
(glv CZ? é’37 C2, 0, K, CA)
I
= (0.87 1.47,0.0288, 0, 2/37 0.41, 0.09)

(Refs. 47 and 48)]. Here, a = 1,S/k = CHC!;I/ % is Bradshaw’s con-
stant (we introduced St = C;l/ %), and it has a log-law value a = C}/ 2,
According to the model structure, we define a characteristic length
scale by £ = v, /8. Different definitions can be applied for the charac-
teristic shear rate S > 0. For the following, there is no need to specify S.
The fully modeled dissipation is denoted by 7y, and y* refers to the
hybridized non-dimensional dissipation. A conceptual difference to
k—e€ and k— o models is the specification of the structure of
y = caly,/[c,D*]; v is introduced correspondingly by defining a
hybridized length scale D*. The most significant difference of DES and
SAS methods is the different definition of D given by D = d/f}/? and
D = ik s> respectively. Here, d is the distance to the wall, and the
function f,, is defined in Ref. 49. The modified von Karman length scale
is given by Cuk ot = |Swot/Siyel> Sty being the derivative of Sior.”
Regarding the analysis of the v, transport equation, it is again beneficial
to distinguish between analysis options O, and O,, which include or
neglect contributions due to Dv; /Dt. We neglect gradients of dv; /v in
space and time, which corresponds to assumption .A,, see the third par-
agraph. The variational analysis of the v, equation follows the analysis
of k — € and k —  models. The RANS parameter 7 is replaced by the
unknown y*. We obtain minimal error models y; =1+ $.'(y — 1)
and 75 =1 + ¢ (y—1) in options O; and O,, respectively: £, =
0/l and S7' =S'/S, ! replace resolution indicators L, and 7.
obtained for k — € and k — ® models; that is, v, models replace charac-
teristic length and time scales by ¢ and S™!. The D%, D3’ expressions
are obtained by combining the y* definition with the corresponding 7*
mode controls.

Regarding the minimal error methods presented above, a ques-
tion of interest is about the comparison with standard LES. To prepare
the discussion of this question in the next paragraph, we consider an
identical rewriting of the modeled viscosity v, = C,k'/?L combined
with the identically rewritten KES/KOS k equation in the O, option
involving the usual diffusion term

Dk K/? [C, 128 )
DL ( A 1| + Dx. 2)
The relation of methods presented here to equilibrium LES can be
seen based on the production-dissipation equilibrium k = C,L*S? of
Eq. (2). Combined with v, = C,k'/2L, we obtain v; = csL*S, where
cs = CZ/ 2 recovers the standard Smagorinsky constant ¢ = 0.1642 if
C, = 0.09 is used. The result v; = csL*S obtained requires an equa-
tion to provide L. The most appropriate way to address this question
is the use of DES-SAS equations to directly provide v,. We note that
tlzle comparison of v; = ¢sL2S with the definition v, = 2 implies
c = Cst.

scitation.org/journal/phf

The comparison of equations presented in the preceding para-
graph with LES shows that these equations are equivalent to standard
equilibrium and k-equation-based LES, and the difference is that
L= A is considered in standard LES (A being the filter width),
whereas L is provided via the scale equation here. We note the follow-
ing regarding the use of a fluctuating L and the non-fluctuating A.
First, by invoking the usual PANS/PITM assumption € = €, only
here for illustration purposes, L = k*/?/e &~ k*/? /¢, needs to be cal-
culated as a fluctuating variable according to its definition. Second, the
approach presented here enables the calculation of an error-free fluc-
tuating L, which does not apply to L = A. In particular, the LES setting
L = A does not ensure that the RANS-type k equation is minimally
affected by fluctuations, the opposite may be the case: depending on
the grid applied, the concept of independent settings of possibly large
A may lead to a large production-to-dissipation ratio C,L*S? /k, which
may significantly enhance the generation of fluctuations.

Table V compares Tables I-III minimal error results (which
recover previous CES results) with usually applied methods by consid-
ering analysis option O, for simplicity. The predominant feature of
minimal error methods is that this approach does not only minimize
the hybridization error, but it implements an error-free mode inter-
play. In hybrid simulations, there are two sorts of resolution informa-
tion: there is the actual resolution seen in simulations (measured, e.g.,
by L.), and there is resolution imposed on the simulation by the
model [given, e.g., by providing in PANS approaches a desired R value
in oj =1+ R(o — 1)]. In minimal error methods, the model receives
information about the actual flow resolution via L., and it imposes a
model-implied resolution equal to the actual flow resolution via
oy =1+ L% (o — 1), see also the illustration in Fig. 1(a). Without this
equality of actual and imposed resolution, there would be no reflection
of actual resolution in the model. By contrast, a typical £; error of
other hybrid methods is that the model imposes a desired resolution
independent of the actual flow resolution [see Fig. 1(b)]. The problem
of this concept is that there is no mechanism to actually implement
the imposed flow resolution. The latter has simple consequences: there
is no way for the model to properly respond to changes of the flow res-
olution implied by grid/Re variations. Another typical (£,) error of
other hybrid methods is the approximate mode interplay representa-
tion discussed below.

In particular, regarding the PANS-PITM comparison in Table V,
we focus on KES/KOS models. We note that usually applied PANS
and PITM approaches (R**™ and R™™™) do not represent minimal
error approaches. The errors implied by these methods are different.
In PANS, where an imposed R™*™ is used, we observe an &, error:
the interaction of resolved and modeled modes (which takes place via
R =L? in CES methods) is dysfunctional because the model does not
receive information about the resolved motion. In regard to PITM, an
&, error is observed: an inconsistent mode interaction R”"™ is applied
in non-homogeneous flow simulations (and e, = 1 is assumed), see
the discussion in Ref. 40. Similar observations can be made in regard
to the comparison of minimal error DES-SAS methods with usually
applied approaches in Table V. According to the model structure, this
comparison is made at best by looking at implications for D, /D. The
DES approach and its variants reveal an £; error, whereas the SAS
approach reveals an &, error ([(,x], represents an approximation to
the minimal error result for D, /D). As seen for PANS and PITM, it is
of interest that DES and SAS, too, correspond to parametrizations of
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TABLE V. Comparison of minimal error results with/EopuIar hybrid RANS-LES, LES, including their error types &4 and &£,. We applied d= min(d, CoesA) (Cpes is a con-

stant), k74 = (Co A/Liot) /(1 + (C A/ Liot)* 1%, and VBE = Vg sor — Vi es.

Method Minimal error (CES) methods Usually applied methods Implied error
PANS-PITM KES: o5 =1+ R(a—1): R = L2 (KOS: o = f}) RPANS — Ry, &
RPITM kT’d &
cal’ Dy 2y 72 «DES o712 ~1/2
DES-SAS 7= o = = T e DB /D =df 7 /(df, 1 ?) &
P22 72 +60-1) aas
D~ /D - ész/guK,tat 52
ML B=1+L0-1) L=y =y —0 5 =n" &
NA &
12y Dk , K7 LES
k Eq.-LES KES/KOS: v, = C,k"/?L, o = VS — T+ D LS = A &
NA &
Equi. LES v = csL2S = 128 PRI roSA? &
y"MLES — 1BL and pLES &

£, as may be seen by using the corresponding D, /D expressions on
the left-hand side (LHS) of Dj/D =20, /[1 4 £ (y — 1)]'%
Similar trends are seen in regard to ML supported model improve-
ments. Only &; error methods are reported so far: the production in a
modeled viscosity equation is modified to enable a match with desired
lift coefficient or skin-friction coefficient distributions. However, to
date, consistent and broadly applicable data-driven improvements for
separated flows have not been achieved."

In regard to the comparison with k-equation LES in Table V, the
LES setting implies L = (A /Ly ) Lyys; that is, L is represented as a frac-
tion of L;,. The latter implies an &£, error: a resolution requirement is
imposed, and the model does not receive information about the actual
resolution. According to the author’s knowledge, &, error type simula-
tions were not reported so far. It is worth noting that there is a differ-
ence between not fully resolving and resolving methods. The correct
functioning of partially resolving methods requires that the model
imposes a resolution equal to the actual resolution (see the discussion
above). This condition is less stringent for resolving LES as long as
both imposed and actual resolutions effectively correspond to an
almost resolving simulation. The problem is that the question of
whether LES resolution requirements are satisfied usually represents a

a) Model learns from sample data how to adjust: data processing [mean modeled, resolved
length (time) scales] in addition to RANS to obtain model coefficients like o,”

viscosity so that imposed
resolution = real resolution

Model equations solved in
simulations depending e.g.
ona, =1+L (o—1).

Fluctuations (sample data)
produced by model equations

'\_/ are used to obtain actual L,.

actual resolution info via L, o
modifications due

to grid/Re effects

non-trivial problem, especially for very high Re flows.”’ In regard to
equilibrium LES, the usual LES assumption L = A in v; = ¢5L*S is
shown in Table V. The price for using v; = csSA? is an implied &;
error: the model imposes a desired resolution independent of the
actual flow resolution. The concept of WMLES makes an attempt to
reflect such information via the inclusion of Vf;L = Vttot — Vires The
latter is restricted to the boundary layer (BL) region, and there is the
question of whether the uncontrolled difference between the imposed
VUt tor and 1 s provides a meaningful representation of the interaction
of resolved and modeled motions.
This analysis can be summarized as follows:

1. A new concept is presented: minimal error partially and fully
resolving simulation methods (i.e., methods that minimize the
hybridization error). This approach represents a variant of ML.
In particular, the methods presented use sample data (resolved
motion produced by the model) on the fly to optimize the simu-
lation by adjusting the model to the actual flow resolution (see
Fig. 1). The approach can be applied in an exact analysis option
O, or in a simplified option O,.

2. The ML-based results presented significantly extend previously
introduced CES methods: the approach enables different

b) No model response to grid/Re implied resolution changes: model is functional
for imposed = actual resolution, otherwise model produces random results

model imposes reso-
lution on simulation

Model equations solved in
simulations depending e.g.
on an imposed a,".

Fluctuations (sample data)
produced by model equations
remain unused in simulations.

modifications due
to grid/Re effects

FIG. 1. An illustration of the interplay of model equations (which represent modeled motion) and fluctuations produced by model equations (which represent resolved motion,
real turbulence): (a) minimal error CES simulations and (b) &1 errors of different hybrid RANS-LES and LES. Details of model equations are given in Tables |-Ill, and o5 (see

Table |, option ©y) is used here as an example for corresponding model parameters.
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hybridizations (KES and KEK, KOS and KOK), and it can be
applied to a variety of hybrid RANS-LES. In contrast to previous
work, widely used DES and WMLES methods are now included.
All the methods presented can be used as (L-driven depending
on the formulation) LES in resolving mode having essential
advantages to standard A-driven LES.

3. On this basis, it is shown that different hybrid RANS-LES mod-
els (PANS, PITM, DES, SAS, and WMLES) reveal £, and &,
errors, there is either no reflection of the actual flow resolution
(a desired flow resolution is imposed, but it cannot be realized
because there is no mechanism for that), or the flow resolution is
approximately involved without accuracy control. Standard LES
suffer from typical £, errors and the usual question of whether
resolution requirements are met.”’

4. The application of the minimal error methods reported here ena-
bles it to overcome these errors. Compared to RANS, the only
difference is the need to implement, basically, the same mode
interplay mechanism, which is relatively simple: it needs the cal-
culation of mean modeled and resolved length or time scales (see
Fig. 1). The approach presented also enables it to overcome other
typical DES and WMLES problems (effect of grid design, grid
matching, and model option settings).

5. We need reliable methods to simulate high Re flows. LES and
experiments are restricted by resolution requirements, and
hybrid RANS-LES are known to be unreliable. The difference
between minimal error methods and other methods is that the
model provides an error-free simulation contribution in
response to the flow resolution (see Fig. 1). Without this ability,
simulation methods cannot provide reliable predictions under
conditions where validation data are unavailable.
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APPENDIX: CALCULATION OF RESOLUTION
INDICATORS

A relevant technical detail of minimal error methods is the calcu-
lation of L (74 is calculated correspondingly). The turbulence length
scale resolution ratio Ly = L/L;; involves modeled (L) and total
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contributions (Ly,).”” The modeled contribution is calculated by
L = (k)*?/(€), where the brackets refer to averaging in time. The total
length scale is calculated correspondingly by Ly = kfo/tz /€tot-
Corresponding to kit = (k) + kyes, €o¢ is the sum of modeled and
resolved contributions, €, = (€) + €. Here, the resolved contribu-
tions are calculated by ks = ((U;U;) — (U NU)) /2, €rs = ((0U;/
ijaf],-/axj) - (8ﬁi/83cj)<6f]i/8xj)).
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