
58TH ALLERTON CONF. ON COMMUNICATION, CONTROL, AND COMPUTING, 2022 1

Repeated Games, Optimal Channel Capture, and

Open Problems for Slotted Multiple Access
Michael J. Neely

University of Southern California

Abstract— This paper revisits a classical problem of slotted
multiple access with success, idle, and collision events on each slot.
First, results of a 2-user multiple access game are reported. The
game was conducted at the University of Southern California over
multiple semesters and involved competitions between student-
designed algorithms. An algorithm called 4-State was a consistent
winner. This algorithm is analyzed and shown to have an optimal
expected score when competing against an independent version
of itself. The structure of 4-State motivates exploration of the
open question of how to minimize the expected time to capture
the channel for a n-user situation. It is assumed that the system
delivers perfect feedback on the number of users who transmitted
at the end of each slot. An efficient algorithm is developed and
conjectured to have an optimal expected capture time for all
positive integers n. Optimality is proven in the special cases n ∈
{1, 2, 3, 4, 6} using a novel analytical technique that introduces
virtual users with enhanced capabilities.

I. INTRODUCTION

This paper studies simple uncoordinated schemes for human

users to share a multiple access channel. Such schemes are

useful, for example, in internet-of-things situations where

distributed users send bursts of data and must learn an efficient

channel sharing rule based on feedback. In this direction, the

first thrust of this paper considers a series of 2-user slotted

multiple access competitions that were conducted at the Uni-

versity of Southern California (USC) over multiple semesters.

Students were asked to develop their own algorithms for

choosing to transmit, or not transmit, over 100 slots. All pairs

of algorithms competed and the one with the best accumulated

score was declared the winner. An algorithm called 4-State

consistently outperformed the others. It is mathematically

shown that 4-State has an optimal expected score over the class

of all algorithms that compete against independent versions of

themselves. This competition motivates the second thrust of

this paper: Investigating the open question of how to minimize

the expected time to capture the channel for a n-user situation.

This question is of fundamental interest because it explores

the learning times and algorithmic protocols required for a

collection of indistinguishable users to identify a single user

via distributed means.

Algorithms that minimize the first capture time can be used

in a variety of contexts. For example, to maximize throughput,

an extended algorithm might give the first-capturer unhindered

access to the channel for k additional slots (this amortizes

the slots that were spent trying to establish the first success).

Alternatively, to provide fairness, an algorithm that minimizes

This work was supported by NSF SpecEES 1824418.

the time to the first success given an initial collection of n
users might be recursively repeated for n− 1 users, then n−
2 users, and so on, in order to construct a fair transmission

schedule (such as a round-robin schedule).

The paper treats a classical multiple access scenario with

success, collision, or idle on every slot. However, for the

case with more than two users, it is additionally assumed that

the receiver gives feedback on the number of transmitters at

the end of every slot. This is more detailed feedback than

collision, idle, or success. The number of transmitters can be

determined by various physical estimation techniques, such as

measuring the combined energy in the collisions and/or by

using the bit signature technique of [1] to count the number

of received signatures. The paper develops an algorithm that

can be implemented for any number of users n. The algorithm

is optimal over the structured class of “divide and conquer”

algorithms that throw away a less desirable group once the

n indistinguishable users can be discerned into 2 groups.

For the special case n ∈ {1, 2, 3, 4, 6} we show there is no

loss of optimality by considering this structured class. The

proof uses a novel technique that introduces virtual users

with enhanced capabilities. Remarkably, the optimal expected

capture time for the case of 3 users is strictly smaller than

the optimal expected capture time for the case of 2 users. For

n /∈ {1, 2, 3, 4, 6} it is not clear if multiple groups should

coexist and transmit simultaneously. This identifies two open

questions: (i) Is the algorithm of this paper optimal for all

values of n? (ii) What algorithms are optimal when more

limited feedback information is used?

A. Decentralized control

The problem of distributed minimization of expected cap-

ture time is conceptually similar to the stochastic decision

problem for multiple distributed agents described in [2]. The

work [2] provides an optimal strategy for n = 3 agents

but leaves the case n > 3 open. To date, there are no

known polynomial time solutions for general n. Optimal

distributed strategies for extended problems are developed in

[3], although complexity can grow exponentially in the number

of agents. Unlike [2][3], the agents in the current paper are

not labeled and cannot distinguish themselves. Further, the

expected capture time problem treated in Section IV-A of

this paper (seemingly) suffers from an even worse complexity

explosion than the problems in [2][3].

The problem of this paper is similar to the class of sequen-

tial team problems treated in [4] using concepts of common

58TH ALLERTON CONF. ON COMMUNICATION, CONTROL, AND COMPUTING, 2022 2

information (see also [5]). In the current paper, common

information arises from the feedback that is commonly given

to all users. It may prove fruitful to cast the current paper in

the framework of [4][5]. However, that framework does not

necessarily provide low complexity solutions.

The works [6][7][8] treat distributed channel selection for

multi-access problems using a multi-armed bandit framework

and using the criterion of asymptotic regret. Like the current

paper, [6][7][8] assume the users are not labeled, cannot

distinguish themselves, and experience collisions if multiple

users pick the same channel. The work [6] treats two users

and three stochastic channels, [8] treats multiple users, [7]

treats multiple users in a non-stochastic setting. The channel

model of the current paper is simpler than [6][7][8] and

can easily be shown to yield a constant regret on expected

throughput. However, rather than seeking to minimize regret in

an asymptotic sense, this paper seeks a more stringent form of

optimality: Maximizing throughput over a finite horizon, and

minimizing expected capture time over an infinite horizon. The

resulting control decision structure is different from [6][7][8]

and gives rise to a number of open questions that we partially

resolve in this work.

B. Distributed MAC and repeated games

For randomly arriving data, the classical slotted Aloha pro-

tocol is well known to achieve stability with throughput close

to 1/e. Splitting and tree-based algorithms that are optimized

for Poisson arrivals are treated in [9][10][11][12][13][14] and

shown to increase throughput. Algorithms of this type that

achieve throughput of 0.4878 are developed in [10][11]; The

maximum stable throughput under these assumptions is un-

known but an upper bound of 0.587 is developed in [15]. The

current paper treats a fixed number of users with an infinite

number of packets to send, rather than randomly arriving

users. Thus, there is no stability concern and the corresponding

distributed implementation issues are different.

The problem of minimizing the expected time to capture

the channel in an asymptotic sense and with more limited

feedback is considered in [16][17][18][19]. For n users, the

work [16] shows the time is Ω(log(n)) with only success/fail

feedback; the work [17] shows the time is Θ(log(log(n)) with

success/idle/collision feedback. In Section IV-A we consider

a problem with more detailed feedback that gives the full

number of colliders. In this case it is trivial to show a constant

upper bound that does not depend on n. Thus, rather than

considering asymptotics with n, we consider the challenging

problem of fully minimizing the expected capture time.

The multi-access game treated in thrust 1 of this paper

is a repeated game and is inspired by the repeated pris-

oner dilemma games in [20][21] (see also, for example,

[22][23][24]). It has been observed that competitions involving

repeated prisoner dilemma games are often won by the simple

Tit-for-Tat strategy that mirrors the opponent decision [20][21].

This is not the case for the multi-access game treated in

the current paper. While a Tit-for-Tat strategy can be used

in the multi-access competitions, and in several semesters

students submitted such algorithms, these algorithms did not

win because: (i) Tit-for-Tat is deterministic and so it nec-

essarily scores zero points when competing against itself;

(ii) Tit-for-Tat performs poorly when it competes against an

algorithm that never transmits. An algorithm called 4-State

consistently wins the competitions. This algorithm has an

initial randomization phase to capture the channel. It also

has a punishing mechanism that seeks to drive the opposing

algorithm to fairly take turns. It is shown that 4-State achieves

an optimal expected score when competing against an inde-

pendent version of itself.

C. Feedback details and physical layer

This paper assumes slotted time with fixed length packets.

Let F [t] be the number of users who transmit on slot t ∈
{1, 2, 3, . . .}. A success occurs if and only if F [t] = 1. For

the n-user situation it holds that F [t] ∈ {0, 1, 2, . . . , n} and

• F [t] = 0 ⇐⇒ idle.

• F [t] = 1 ⇐⇒ success.

• F [t] ≥ 2 ⇐⇒ collision.

The value of F [t] is assumed to be given as feedback at the end

of slot t. If n = 2 then F [t] is equivalent to the idle, success,

collision feedback of classical slotted Aloha. If n > 2 then

the F [t] feedback is more detailed. It is assumed that F [t]
can be inferred by the receiver even in the case of a collision.

This can be done, for example, by measuring the energy in the

combined interfering signals and assuming that this energy is

proportional to F [t]. Alternatively, the value of F [t] can be

inferred by installing a short signature bit pattern in every

packet transmission and using a filter to count the number of

patterns that arise. This method for counting the number of

transmitters is used in the ZigZag multiple access scheme of

[1], which uses timing misalignments to perform interference

stripping. A soft decision decoding version called SigSag is

treated in [25]. Like [1][25], the current paper assumes F [t]
can be accurately counted. However, it does not consider

interference decoding and treats two or more transmissions

on the same slot as a collision from which no information

is obtained (other than the number of packets that collided).

It is worth noting that any realistic scheme for reporting F [t]
will have some probability of reporting error. Nevertheless, for

simplicity, it is assumed that F [t] is reported without error.

II. 2-PLAYER MAC GAME

Consider the following 2-player multiple access (MAC)

game: Fix T as a positive integer. The game lasts over T
consecutive slots. Two players compete to send fixed-length

packets over a single channel during this time. A single

packet transmission takes one time slot. On each slot t ∈
{1, 2, . . . , T}, each player makes a decision about whether or

not to send a packet. For each player i ∈ {1, 2} and each slot

t ∈ {1, 2, . . . , T}, define Xi[t] ∈ {0, 1} as the binary decision

variable that is 1 if player i decides to send on slot t, and 0
else. There are three possible outcomes on slot t:

• Idle: (X1[t], X2[t]) = (0, 0).
• Success: (X1[t], X2[t]) ∈ {(0, 1), (1, 0)}.

• Collision: (X1[t], X2[t]) = (1, 1).

58TH ALLERTON CONF. ON COMMUNICATION, CONTROL, AND COMPUTING, 2022 3

Player i ∈ {1, 2} scores a point on slot t if and only

if it is the only player to transmit on that slot. Let F [t] ∈
{0, 1, 2} denote the number of transmissions on slot t, which

is equivalent to idle/success/collision feedback. Let (S1, S2)
be the score of each player at the end of the game:

S1 =
∑T

t=1 X1[t](1−X2[t])

S2 =
∑T

t=1 X2[t](1−X1[t])

Players 1 and 2 know the value of T and the

idle/success/collision structure of the game. However, they

cannot distinguish themselves as Player 1 or Player 2. There-

fore, even if both players have the desire to fairly share the

slots, so that one player transmits only on odd slots and the

other transmits only on evens, there is no a-priori way to

decide who takes the odds and who takes the evens. Each

player knows its own decision on slot t. From the feedback

F [t] it can infer the decision of its opponent. For each player

and each slot t ≥ 2 define Hself [t] and Hopponent[t] as the

history of decisions up to but not including slot t as seen from

the perspective of that player. For example, defining Hi,self [t]
and Hi,opponent[t] for each player i ∈ {1, 2} means that

H1,self [t] = H2,opponent[t]

= (X1[1], X1[2], . . . , X1[t− 1]) (1)

H1,opponent[t] = H2,self [t]

= (X2[1], X2[2], . . . , X2[t− 1]) (2)

A. Random and deterministic algorithms

Algorithms are allowed to make any desired decisions based

on the feedback, including randomized decisions. A general

algorithm can be mathematically represented by a sequence

of Borel measurable functions f1, f2, . . . , fT such that

f1 : [0, 1) → {0, 1}

ft : [0, 1)× {0, 1}t−1 × {0, 1}t−1 → {0, 1} ∀t ∈ {2, . . . , T}

where the decisions X[t] are given by

X[1] = f1(U)

X[t] = ft(U,Hself [t], Hopponent[t]) ∀t ∈ {2, . . . , T}

where U is a randomization variable that is uniformly dis-

tributed over [0, 1). The randomness of U can be used to

facilitate randomized decisions.1 Players are assumed to use

independent randomization variables. In particular, if Players 1

and 2 implement independent versions of the same algorithm,

they use the same functions f1, . . . , fT but they use indepen-

dent random variables U1 ∼ U [0, 1) and U2 ∼ U [0, 1).
A deterministic algorithm is one that contains no random-

ization calls. Such an algorithm can be characterized by a

sequence of functions {gt}
T
t=1 that only use Hself [t] and

Hopponent[t] as inputs (with no randomization variable)

g1 ∈ {0, 1}

gt : {0, 1}
t−1 × {0, 1}t−1 → {0, 1} ∀t ∈ {2, . . . , T}

1A random variable U ∼ U [0, 1) has binary expansion U =∑
∞

m=1
Bm2−m with {Bm}∞

m=1
i.i.d. equally likely bits that can be used

to make sequences of randomized decisions.

So X[1] = g1 is the deterministic decision on slot t = 1 and

X[t] = gt(Hself [t], Hopponent[t]) ∀t ∈ {2, . . . , T} (3)

Lemma 1: A deterministic algorithm scores zero points

against itself.

Proof: See [26].

B. Tournament structure

Competitions of these 2-player MAC games were con-

ducted over 7 semesters amongst students in the EE 550

Data Networks class at the University of Southern California.

If there were k algorithms competing in a given semester,

then all algorithms i ∈ {1, . . . , k} were paired against all

other algorithms j ∈ {1, . . . , k}. This included a pairing

(i, i) where algorithm i plays against an independent version

of itself. For each algorithm pair (i, j), the scores of 1000

independent simulations of 100-slot games were averaged to

provide an estimate of the expected score (E [Si] ,E [Sj])
associated with algorithm i playing algorithm j. The total

score of an algorithm is the sum of its scores accumulated

over all other algorithms that it played (including itself). The

algorithm with the largest accumulated score was declared the

winner of the competition for that semester.

The competing algorithms included algorithms that students

designed, an instructor-designed algorithm called 4-state, and

two special algorithms called AlwaysTransmit and Never-

Transmit. AlwaysTransmit transmits on every slot regardless

of history. No opponent can score against AlwaysTransmit.

This algorithm is maximally greedy and was entered into the

competition in order to view its accumulated score in com-

parison with the other algorithms. In contrast, NeverTransmit

never transmits and never scores any points. It tests the ability

of other algorithms to adapt to the situation where they are

the only ones who want channel access.

In addition to the overall score in the competition, the

quality of an algorithm can be understood in terms of figures

of merit α and β defined below:

• Self-competition score α: This is the expected score

E [S1] when an algorithm plays an independent copy of

itself. This figure of merit is useful because a good MAC

algorithm will be used by others and hence must perform

well against itself.

• No-competition score β: This is the expected score E [S1]
when an algorithm plays NeverTransmit. This figure of

merit is useful because a good MAC algorithm should

adapt when nobody else is using the channel.

C. Special algorithms

The following algorithms are of key interest:

1) Tit-for-Tat-0 (TFT-0): This is a deterministic policy that

operates as follows:

• X[1] = 0.

• For t ∈ {2, 3, . . . , T}: X[t] = Xopponent[t− 1].

A variation called Tit-for-Tat-1 (TFT-1) differs only by

having X[1] = 1. Both Tit-for-Tat-0 and Tit-for-Tat-1

mirror the opponent decisions with one slot delay. This

58TH ALLERTON CONF. ON COMMUNICATION, CONTROL, AND COMPUTING, 2022 5

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 Totals

A1 0 0 0 0 0 0 0 0 0 0 0

A2 100 0 1 0 47 0 19.86 10.79 0 50.34 228.986

A3 98.04 0 49.48 0 48.43 49.36 21.15 25.13 0 33.06 324.637

A4 40.13 0 1 0 19.78 0 20.49 10.74 0 36.4 128.531

A5 50.4 0 0.51 0 24.6 0 9.68 5.39 0 25.33 115.909

A6 1 0 49.69 0 0.5 0 19.29 31.87 0 25.24 127.597

A7 100 0 19 0.73 50.8 19.04 16.48 19.05 0.48 34.57 260.159

A8 50.54 0 24.31 0.02 24.9 31.52 18.52 24.72 0.1 27.17 201.788

A9 100 0 1 0 51.3 0 19.81 10.78 0 38.15 221.048

A10 49.92 0 17.1 13.83 24.65 24.7 15.45 22.67 11.94 24.76 205.021

Fig. 2. Results of multi-access game in Fall 2021 semester. Each game consists of 100 slots. Results are averaged over 1000 independent games. The score
of Algorithm i ∈ {1, ..., 10} is given in row i. A1=NeverTransmit; A2=AlwaysTransmit; A3=4-State; A6=TFT-1.

4-State TFT-0 TFT-1 AlwaysTran

α 49.500 0 0 0

β 98.000 0 1 100

γ 24.613 20.410 15.326 10.714

Fig. 3. A table of scores (Self-Competition α; No-Competition β; Tourna-
ment γ) for 4-State, Tit-for-Tat-0, Tit-for-Tat-1, and AlwaysTransmit.

The random variable Y has the following distribution

P [Y = i] = (1/2)i+1 ∀i ∈ {0, 1, . . . , T − 1} (7)

P [Y = T] = (1/2)T (8)

Hence

E [Y] =
∑T

i=0 iP [Y = i] = 1− 2−T

Substituting this expression into (6) proves (4).

Proof: (Theorem 1 converse) Consider any algorithm that is

independently used for both players. For convenience, assume

the algorithm is designed to run over an infinite sequence of

slots t ∈ {1, 2, 3, . . .} (an algorithm designed for T slots can

be extended to run over an infinite horizon by choosing to not

transmit after time T). Arbitrarily assign one of the algorithms

as Player 1 and assign its counterpart (identical) algorithm

as Player 2. For each positive integer T , define V [T] as the

random sum of scores of both players over the first T slots:

V [T] =
∑T

t=1 [X1[t](1−X2[t]) +X2[t](1−X1[t])]

By symmetry, it follows that the Self-Competition score (over

T slots) is E [V [T]] /2. For each positive integer T , define s[T]
as the supremum value of E [V [T]] over all algorithms that

independently compete against themselves. Define s[0] = 0.

We want to show s[T]/2 ≤ α for all nonnegative integers T ,

where α is the value in (4). Specifically, we want to show

s[T] ≤ T − 1 + (1/2)T ∀T ∈ {0, 1, 2, 3, ...} (9)

We use induction: Suppose (9) holds for T = k for some

nonnegative integer k (it holds for k = 0 since s[0] = 0). We

show it also holds for T = k + 1. Since at most one player

can score on each slot, we surely have

V [k + 1] ≤ k + 1 (10)

Let A be the event that there is a success by one of the

players on slot 1, so that Ac is the event that the first slot

results in either an Idle or a Collision. A key observation is

E [V [k + 1]|Ac] ≤ s[k] (11)

since the event Ac means that neither player scored on the

first slot, there are k slots remaining to accumulate the total

score V [k+1], and no information has been conveyed to either

player on this first slot that would make the expected score

over the remaining k slots larger than s[k].2

Let q be the probability that the algorithm transmits on the

very first slot. Then

P [A] = 2q(1− q) ≤ sup
q∈[0,1]

2q(1− q) = 1/2 (12)

We have

E [V [k + 1]]

= E [V [k + 1]|A]P [A] + E [V [k + 1]|Ac] (1− P [A])

(a)

≤ (k + 1)P [A] + s[k](1− P [A])

= s[k] + P [A](k + 1− s[k])

(b)

≤ s[k] + (1/2)(k + 1− s[k])

= (1/2)(k + 1) + (1/2)s[k]

(c)

≤ (1/2)(k + 1) + (1/2)(k − 1 + (1/2)k)

= k + (1/2)k+1

where (a) holds by (10) and (11); (b) holds by (12) and the

fact k + 1 − s[k] ≥ 0 (observe that s[k] ≤ k since at most

one point can be scored per slot); (c) holds by the induction

assumption that (9) holds for T = k. Thus

E [V [k + 1]] ≤ k + (1/2)k+1

This holds for all algorithms. Taking the supremum value of

E [V [k + 1]] over all possible algorithms gives

s[k + 1] ≤ k + (1/2)k+1

2If a non-success on the first slot made the expected score on the remaining
slots more than s[k], one could use an algorithm that starts under the
assumption that a non-existent preliminary slot just had a non-success. That
would achieve an expected k-slot score that is larger than s[k], a contradiction.

58TH ALLERTON CONF. ON COMMUNICATION, CONTROL, AND COMPUTING, 2022 6

which proves that (9) holds for T = k + 1.

Lemma 2: Fix T as a positive integer. In a T -slot game,

the No-Competition score β for 4-State is

β4 = T − 2 +
3

2T
(13)

Proof: See [26].

IV. MULTI-USER MAC

Now consider the MAC problem with n users. In this

version of the problem, we assume the receiver can detect the

number of users who transmitted on each slot (as discussed in

Section I-C). The feedback F [t] given to the users at the end

of each slot t is equal to the number of users who transmitted:

F [t] = 0 =⇒ Idle

F [t] = 1 =⇒ Success

F [t] ∈ {2, . . . , n} =⇒ Collision

Note that the feedback value F [t] specifies the number of

transmitters on slot t, but does not indicate which users

transmitted. If n = 2 then this feedback is equivalent to suc-

cess/idle/collision feedback. However, if n > 2 this feedback

is more detailed. It is assumed that all users know the value n
at the start, and this value does not change for the timescale of

interest. For knowledge of n, one can imagine a “slot t = 0”

where all users agree to transmit, so that the feedback signal

F [0] = n communicates n to all users.

The users have no way to distinguish themselves at the

start of slot t = 1, so there are no labels {1, 2, . . . , n} that

the users can identify with. The central goal of this section

and the next is to develop an algorithm that all users can

independently implement that minimizes the expected time to

the first success. Minimizing the time to the first success is

also useful for either maximizing throughput or for quickly

assigning labels to users. Define z∗n as the infimum expected

time to the first success in a system with n users.

A. Minimizing the expected time to the first success

For each positive integer n, this subsection develops an

algorithm that is independently implemented by n users and

seeks to minimize the expected time to the first success. There

is no deadline, and so this is an infinite horizon problem. Let

Zn denote the random time until the first success under a given

n-user algorithm. Define

zn = E [Zn]

Let pn denote the transmission probability on the first slot.

The idea is to have the n users independently transmit with

probability pn on slot 1 and then receive feedback F [1] that

specifies the number of transmitters. If F [1] = 1 there was a

single success and the algorithm terminates. If F [1] ∈ {0, n}
then no information that can distinguish the users is gained

and we repeat. If F [1] = i with i ∈ {2, . . . , n − 1} then the

n users are partitioned into a group of size i and a group of

size n− i, the values of zi and zn−i are compared, the least

desirable group is thrown away and the problem is recursively

solved on the remaining group with a residual expected time

min{zi, zn−i}. This section optimizes over this structured

class of algorithms. It should be noted that there is no general

proof that throwing away a group is optimal: Section V proves

this is optimal for the special case n ∈ {1, 2, 3, 4, 6}.

1) Case n = 1: If n = 1 the algorithm is to transmit with

probability p1 = 1, which yields z1 = 1.

2) Case n = 2: If n = 2 the algorithm is for both users to

independently transmit each slot with probability p2 = 1/2,

so that z2 = 2.

3) Case n = 3: If n = 3, the users independently transmit

with probability p ∈ (0, 1) on the first slot (the value of p shall

be optimized later). The feedback after slot 1 satisfies F [1] ∈
{0, 1, 2, 3}. Based on the value of F [1] do the following:

• F [1] = 0 (Idle): Repeat.

• F [1] = 1 (Success): Done.

• F [1] = 2 (Collision between 2 users): The third user that

did not transmit on slot 1 will transmit alone on slot 2;

the other two users are silent on slot 2.

• F [1] = 3 (Collision between 3 users): Repeat.

The expected time to the first success is:

z3 =
∑3

i=0 E [Z3|F [1] = i]
(

3
i

)

pi(1− p)3−i (14)

Under this scheme we have

E [Z3|F [1] = 0] = 1 + z3

E [Z3|F [1] = 1] = 1

E [Z3|F [1] = 2] = 2

E [Z3|F [1] = 3] = 1 + z3

Substituting these into (14) gives

z3 =
1 + 3p2(1− p)

1− p3 − (1− p)3

The value of p ∈ (0, 1) that minimizes the right-hand-side is

p3 ≈ 0.411972

and so

z3 = inf
p∈(0,1)

{

1 + 3p2(1− p)

1− p3 − (1− p)3

}

≈ 1.78795 (15)

It is surprising that z3 < z2, meaning that it is more efficient

to start with 3 users than to start with 2 users.

4) Case n ∈ {4, 5, 6, . . .}: Fix n as the number of users

and assume n ≥ 4. On the first slot the users independently

transmit with probability p (to be optimized later) and react

to the feedback F [1] ∈ {0, 1, . . . , n} as follows:

• F [1] = 0 (idle): Repeat.

• F [1] = 1 (succes): Done.

• F [1] = i ∈ {2, . . . , n − 1} (collision of i users):

This partitions the users into two groups, one of size i
(consisting of those users who transmitted on the first

slot) and one of size n− i (the others). If zi ≤ zn−i then

follow the optimal algorithm for minimizing the time to

the first success for i users, utilizing only the i users who

transmitted (the remaining n−i users stay silent forever).

Else, follow the optimal algorithm for minimizing the

time to the first success for n− i users, utilizing only the

58TH ALLERTON CONF. ON COMMUNICATION, CONTROL, AND COMPUTING, 2022 7

n − i users who did not transmit in the first slot while

the remaining users are silent.

• F [1] = n (collision of n users): Repeat.

The expected time to the first success is then

zn =
n
∑

i=0

E [Zn|F [1] = i]

(

n

i

)

pi(1− p)n−i

= (1 + zn)(p
n + (1− p)n) + np(1− p)n−1

+

n−1
∑

i=2

(1 + min{zi, zn−i})

(

n

i

)

pi(1− p)n−i

Thus

zn = inf
p∈(0,1)

{

1 +
∑n−1

i=2 min{zi, zn−i}
(

n
i

)

pi(1− p)n−i

1− pn − (1− p)n

}

(16)

The values of pn and zn can be recursively computed in terms

of z1, . . . , zn−1. The first several values are given below:

n pn zn

1 1 1

2 0.5 2

3 0.411972 1.78795

4 0.302995 2.13454

5 0.238640 2.15575

6 0.191461 2.26246

7 0.166629 2.27543

V. CONVERSE

The zn and pn values of the previous section are optimized

over algorithms that partition users into two groups and throw

away the least desirable group. It is not clear if gains can be

achieved by keeping track of an ever-increasing number of

groups and having multiple groups probabilistically transmit

at the same time. The information state of the problem is

remarkably complex. For each positive integer n, define z∗n
as the infimum expected time for the first success, considering

all possible algorithms that can be independently implemented

by n users. Clearly 1 ≤ z∗n ≤ zn, where zn are the values

associated with the proposed algorithm of the previous section.

The author conjectures that zn = z∗n for all n. This section

proves the conjecture for the special cases n ∈ {1, 2, 3, 4, 6}.

The cases n = 4 and n = 6 are particularly challenging. The

following theorem is proven in the next subsections.

Theorem 2: For n ∈ {1, 2, 3, 4, 6} we have z∗n = zn.

A. Preliminaries

By definition of z∗n, for every ε > 0 there is an algorithm

that gets arbitrarily close to z∗n, so that

z∗n ≤ E [Z] ≤ z∗n + ε (17)

where Z is the random time to the first success. If ε ∈ (0, 1/2)
and n ≥ 2 it can be shown that any algorithm that satisfies

(17) uses a probability p for transmitting on the first slot that

satisfies p ∈ [an, bn] for certain values an, bn that satisfy 0 <
an < bn < 1 (see [26]).

Lemma 3: Fix n ∈ {2, 3, 4, . . .} and ε ∈ (0, 1/2). Consider

an algorithm that satisfies (17) and let p ∈ [an, bn] be its

probability of transmitting on the first slot. Then

z∗n ≥
1− ε+

∑n−1
i=2 E [Z − 1|F [1] = i]

(

n
i

)

pi(1− p)n−i

1− pn − (1− p)n

(18)
Proof: See [26].

B. Cases n ∈ {2, 3}

For the case n = 2, see [26] for a proof that z∗2 ≥ z2.

Suppose n = 3. Fix ε ∈ (0, 1/2). From (18):

z∗3 ≥
1− ε+ E [Z − 1|F [1] = 2] 3p2(1− p)

1− p3 − (1− p)3

(a)

≥
1− ε+ 3p2(1− p)

1− p3 − (1− p)3

(b)

≥ inf
q∈[a3,b3]

{

1− ε+ 3q2(1− q)

1− q3 − (1− q)3

}

where (a) holds because if F [1] = 2 then Z ≥ 2; (b) holds

because p ∈ [a3, b3]. This holds for all ε ∈ (0, 1/2). Since

q ∈ [a3, b3] bounds the denominator of the last expression

away from 0, we can take ε → 0 to obtain

z∗3 ≥ inf
q∈[a3,b3]

{

1 + 3q2(1− q)

1− q3 − (1− q)3

}

≥ inf
q∈(0,1)

{

1 + 3q2(1− q)

1− q3 − (1− q)3

}

= z3

where z3 is defined in (15).

C. Case n = 4

Suppose there are 4 users. From (18) and the fact

E [Z − 1|F [1] = 3] ≥ 1 we have

z∗4 ≥
1− ε+ E [Z − 1|F [1] = 2] 6p2(1− p)2 + 4p3(1− p)

1− p4 − (1− p)4

The main challenge is to show the following inequality:

E [Z − 1|F [1] = 2] ≥ 2 (19)

Once (19) is established, the proof proceeds as in the n = 3
case to show z∗4 ≥ z4 (see [26] for details).

D. Proving (19)

We have n = 4 users. Consider the situation at the end of

slot 1 given that F [1] = 2. Let Z−1 denote the remaining time

until the first success. We shall call this the 2-group situation:

Group A consists of the 2 users who transmitted on the first

slot and Group B consists of the 2 who did not. Let ALGA

be an algorithm that the two users in group A independently

implement for the remaining slots; let ALGB be an algorithm

that the two users in group B independently implement for the

remaining slots. Define T ime(ALGA, ALGB) as the expected

remaining time (not including the first slot t = 1) to the first

success (from either group). We want to show

T ime(ALGA, ALGB) ≥ 2

58TH ALLERTON CONF. ON COMMUNICATION, CONTROL, AND COMPUTING, 2022 8

We construct a new system with only two devices, called

virtual devices, with enhanced capabilities. We show:

1) The new system can emulate the 2-group situation.

2) Any such emulation in the new system must take at least

2 slots on average.

For simplicity we shift the timeline so that the current slot 2 is

now called slot 1. The two virtual devices act independently as

follows: On each slot t ∈ {1, 2, 3, . . .}, each virtual device can

choose to send any integer number of packets. The feedback

at the end of slot t is F [t] ∈ {0, 1, 2, . . .}, which is the sum

number of packets sent by both virtual devices. Consider the

constraint that both devices must independently implement the

same algorithm. Let R be the random time to see the first

success, being a slot where exactly one of the devices sends

exactly one packet. Let r∗ be the infimum value of E [R] over

all possible algorithms with this structure.

Lemma 4: With two enhanced virtual devices, the minimum

expected time to the first success is r∗ = 2.

Proof: See [26].

We now show these two virtual devices can emulate the

k = 4 user scenario with two groups A and B running

ALGA and ALGB , respectively. The first virtual device runs

two separate programs: One that emulates an independent user

implementing ALGA, the second independently implementing

ALGB as if it is a separate user. If both ALGA and ALGB

at this device decide to transmit on the current slot, the device

sends two packets. If only one of ALGA and ALGB decide

to transmit, the device sends 1 packet. If neither ALGA nor

ALGB decide to transmit, the device sends zero packets.

The second device does a similar emulation independently.

The feedback signaling F [t] on each slot t is the same as

if there were 4 users that were initially configured in the 2-

group scenario. Hence, the expected time to achieve the first

success is the same as T ime(ALGA, ALGB). Since this is

also a situation where two enhanced devices independently

implement the same algorithm, we have

T ime(ALGA, ALGB) ≥ r∗ = 2

E. The case n = 6 and beyond

The case n = 6 is proven in [26]. A brief exploration of

this problem for multiple channels is also in [26].

VI. CONCLUSION

A MAC game was introduced. Unlike related prisoner

dilemma games where Tit-for-Tat policies tend to win, the

winning algorithm is a 4-State policy with a randomized initial

phase. Randomization is fundamental because deterministic

algorithms have a zero self-competition score. The policy 4-

State was mathematically shown to maximize the expected

number of points when competing against an independent

version of itself. A closely related problem of minimizing

the expected time required to first capture the channel was

explored. An efficient algorithm was developed and shown to

be optimal when the number of users is in the set {1, 2, 3, 4, 6}.

The optimality proof uses a technique that introduces virtual

users with enhanced capabilities.

REFERENCES

[1] S. Gollakota and D. Katabi. Zigzag decoding: combating hidden
terminals in wireless networks. SIGCOMM ’08: Proceedings of the

ACM SIGCOMM 2008 conference on Data communication, 2008.
[2] H. S. Witsenhausen. A stochastic decision problem. In T. M. Cover and

B. Gopinath, editors, Open Problems in Communication and Computa-

tion, chapter 3.8, pages 49–50. Springer-Verlag, New York, 1987.
[3] M. J. Neely. Distributed stochastic optimization via correlated schedul-

ing. IEEE/ACM Transactions on Networking, 24(2):759–772, April
2016.

[4] A. Nayyar and D. Teneketzis. Common knowledge and sequential team
problems. IEEE Transactions on Automatic Control, 64(12):5108–5115,
2019.

[5] H. S. Witsenhausen. A standard form for sequential stochastic control.
Mathematical systems theory, 7(1):5–11, 1973.

[6] S. Bubeck and T. Budzinski. Coordination without communication:
optimal regret in two players multi-armed bandits. In Jacob Abernethy
and Shivani Agarwal, editors, Proceedings of Thirty Third Conference

on Learning Theory, volume 125 of Proceedings of Machine Learning

Research, pages 916–939. PMLR, 09–12 Jul 2020.
[7] S. Bubeck, Y. Li, Y. Peres, and M. Sellke. Non-stochastic multi-

player multi-armed bandits: Optimal rate with collision information,
sublinear without. In Jacob Abernethy and Shivani Agarwal, editors,
Proceedings of Thirty Third Conference on Learning Theory, volume
125 of Proceedings of Machine Learning Research, pages 961–987.
PMLR, 09–12 Jul 2020.

[8] D. Kalathil, N. Nayyar, and R. Jain. Decentralized learning for
multiplayer multiarmed bandits. IEEE Transactions on Information

Theory, 60(4):2331–2345, 2014.
[9] D. P. Bertsekas and R. Gallager. Data Networks. New Jersey: Prentice-

Hall, Inc., 1992.
[10] J. Mosely and P. A. Humblet. A class of efficient contention resolution

algorithms for multiple access channels. IEEE Trans. Comm., COM-
33:145–151, 1985.

[11] B. S. Tsybakov and V. A. Mikhailov. Random multiple access of packets:
Part and try algorithm. Problemy Peredachi Inform. (USSR), 16:65–79,
1980.

[12] J. F. Hayes. An adaptive technique for local distribution. IEEE Trans.

Comm., COM-26:1178–1186, 1978.
[13] J. I. Capetanakis. The multiple access broadcast channel: Protocol and

capacity considerations. IEEE Trans. Inform. Theory, IT-25:505–515,
1979.

[14] B. S. Tsybakov and V. A. Mikhailov. Free synchronous packet access in
a broadcast channel with feedback. Problemy Peredachi Inform. (USSR),
14(4):32–59, 1978.

[15] V. A. Mikhailov and B. S. Tsybakov. Upper bound for the capacity of
a random multiple access system. Problemy Peredachi Inform. (USSR),
17:90–95, 1981.

[16] E. Kushilevitz and Y. Mansour. An ω(d log(n/d)) lower bound for
broadcast in radio networks. SIAM J. Comput, 27(3):702–712, June
1998.

[17] D. E. Willard. Log-logarithmic selection resolution protocols in a
multiple access channel. SIAM J. Comput., 15:468–477, 1986.

[18] R. Bar-Yehuda, O. Goldreich, and A. Itai. On the time-complexity of
broadcast in multi-hop radio networks: An exponential gap between
determinism and randomization. J. Comput. System Sci., 45:104–126,
1992.

[19] T. Jurdzinski and G. Stachowiak. The cost of synchronizing multiple-
access channels. Proc. ACM Symposium on Principles of Distributed

Computing, pages 421–430, 2015.
[20] R. Axelrod. More effective choice in the prisoner’s dilemma. The

Journal of Conflict Resolution, 24(3):379–403, 1980.
[21] R. Axelrod and W. D. Hamilton. The evolution of cooperation. Science,

211(4489):1390–1396, 1981.
[22] W. Poundstone. Prisoner’s Dilemma: John von Neumann, Game Theory,

and the Puzzle of the Bomb. First Anchor Books Ed., 1993.
[23] M. J. Osborne and A. Rubinstein. A Course in Game Theory. MIT

Press, Cambridge, MA, 1994.
[24] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani. Algorithmic

Game Theory. Cambridge University Press, New York, 2007.
[25] A. S. Tehrani, A. G. Dimakis, and M. J. Neely. Sigsag: Iterative detection

through soft message-passing. IEEE Journal of Selected Topics in Signal

Processing, 5(8):1512 – 1523, Dec. 2011.
[26] M. J. Neely. Repeated games, optimal channel capture, and open

problems for slotted multiple access. arXiv:2110.09638v3, Dec. 2021.

	Introduction
	Decentralized control
	Distributed MAC and repeated games
	Feedback details and physical layer

	2-player MAC game
	Random and deterministic algorithms
	Tournament structure
	Special algorithms
	Fall 2021 competition
	Figures of merit

	Analysis of the 2-player MAC game
	Multi-user MAC
	Minimizing the expected time to the first success
	Case n=1
	Case n=2
	Case n=3
	Case n{4, 5, 6, …}

	Converse
	Preliminaries
	Cases n {2,3}
	Case n=4
	Proving (19)
	The case n=6 and beyond

	Conclusion
	References

