58TH ALLERTON CONF. ON COMMUNICATION, CONTROL, AND COMPUTING, 2022 1

Repeated Games, Optimal Channel Capture, and
Open Problems for Slotted Multiple Access

Michael J. Neely
University of Southern California

Abstract— This paper revisits a classical problem of slotted
multiple access with success, idle, and collision events on each slot.
First, results of a 2-user multiple access game are reported. The
game was conducted at the University of Southern California over
multiple semesters and involved competitions between student-
designed algorithms. An algorithm called 4-State was a consistent
winner. This algorithm is analyzed and shown to have an optimal
expected score when competing against an independent version
of itself. The structure of 4-State motivates exploration of the
open question of how to minimize the expected time to capture
the channel for a n-user situation. It is assumed that the system
delivers perfect feedback on the number of users who transmitted
at the end of each slot. An efficient algorithm is developed and
conjectured to have an optimal expected capture time for all
positive integers n. Optimality is proven in the special cases n €
{1,2,3,4,6} using a novel analytical technique that introduces
virtual users with enhanced capabilities.

I. INTRODUCTION

This paper studies simple uncoordinated schemes for human
users to share a multiple access channel. Such schemes are
useful, for example, in internet-of-things situations where
distributed users send bursts of data and must learn an efficient
channel sharing rule based on feedback. In this direction, the
first thrust of this paper considers a series of 2-user slotted
multiple access competitions that were conducted at the Uni-
versity of Southern California (USC) over multiple semesters.
Students were asked to develop their own algorithms for
choosing to transmit, or not transmit, over 100 slots. All pairs
of algorithms competed and the one with the best accumulated
score was declared the winner. An algorithm called 4-State
consistently outperformed the others. It is mathematically
shown that 4-State has an optimal expected score over the class
of all algorithms that compete against independent versions of
themselves. This competition motivates the second thrust of
this paper: Investigating the open question of how to minimize
the expected time to capture the channel for a n-user situation.
This question is of fundamental interest because it explores
the learning times and algorithmic protocols required for a
collection of indistinguishable users to identify a single user
via distributed means.

Algorithms that minimize the first capture time can be used
in a variety of contexts. For example, to maximize throughput,
an extended algorithm might give the first-capturer unhindered
access to the channel for £ additional slots (this amortizes
the slots that were spent trying to establish the first success).
Alternatively, to provide fairness, an algorithm that minimizes

This work was supported by NSF SpecEES 1824418.

the time to the first success given an initial collection of n
users might be recursively repeated for n — 1 users, then n —
2 users, and so on, in order to construct a fair transmission
schedule (such as a round-robin schedule).

The paper treats a classical multiple access scenario with
success, collision, or idle on every slot. However, for the
case with more than two users, it is additionally assumed that
the receiver gives feedback on the number of transmitters at
the end of every slot. This is more detailed feedback than
collision, idle, or success. The number of transmitters can be
determined by various physical estimation techniques, such as
measuring the combined energy in the collisions and/or by
using the bit signature technique of [1] to count the number
of received signatures. The paper develops an algorithm that
can be implemented for any number of users n. The algorithm
is optimal over the structured class of “divide and conquer”
algorithms that throw away a less desirable group once the
n indistinguishable users can be discerned into 2 groups.
For the special case n € {1,2,3,4,6} we show there is no
loss of optimality by considering this structured class. The
proof uses a novel technique that introduces virtual users
with enhanced capabilities. Remarkably, the optimal expected
capture time for the case of 3 users is strictly smaller than
the optimal expected capture time for the case of 2 users. For
n ¢ {1,2,3,4,6} it is not clear if multiple groups should
coexist and transmit simultaneously. This identifies two open
questions: (i) Is the algorithm of this paper optimal for all
values of n? (i) What algorithms are optimal when more
limited feedback information is used?

A. Decentralized control

The problem of distributed minimization of expected cap-
ture time is conceptually similar to the stochastic decision
problem for multiple distributed agents described in [2]. The
work [2] provides an optimal strategy for n = 3 agents
but leaves the case n > 3 open. To date, there are no
known polynomial time solutions for general n. Optimal
distributed strategies for extended problems are developed in
[3], although complexity can grow exponentially in the number
of agents. Unlike [2][3], the agents in the current paper are
not labeled and cannot distinguish themselves. Further, the
expected capture time problem treated in Section IV-A of
this paper (seemingly) suffers from an even worse complexity
explosion than the problems in [2][3].

The problem of this paper is similar to the class of sequen-
tial team problems treated in [4] using concepts of common

58TH ALLERTON CONF. ON COMMUNICATION, CONTROL, AND COMPUTING, 2022 2

information (see also [5]). In the current paper, common
information arises from the feedback that is commonly given
to all users. It may prove fruitful to cast the current paper in
the framework of [4][5]. However, that framework does not
necessarily provide low complexity solutions.

The works [6][7][8] treat distributed channel selection for
multi-access problems using a multi-armed bandit framework
and using the criterion of asymptotic regret. Like the current
paper, [6][7][8] assume the users are not labeled, cannot
distinguish themselves, and experience collisions if multiple
users pick the same channel. The work [6] treats two users
and three stochastic channels, [8] treats multiple users, [7]
treats multiple users in a non-stochastic setting. The channel
model of the current paper is simpler than [6][7][8] and
can easily be shown to yield a constant regret on expected
throughput. However, rather than seeking to minimize regret in
an asymptotic sense, this paper seeks a more stringent form of
optimality: Maximizing throughput over a finite horizon, and
minimizing expected capture time over an infinite horizon. The
resulting control decision structure is different from [6][7][8]
and gives rise to a number of open questions that we partially
resolve in this work.

B. Distributed MAC and repeated games

For randomly arriving data, the classical slotted Aloha pro-
tocol is well known to achieve stability with throughput close
to 1/e. Splitting and tree-based algorithms that are optimized
for Poisson arrivals are treated in [9][10][11][12][13][14] and
shown to increase throughput. Algorithms of this type that
achieve throughput of 0.4878 are developed in [10][11]; The
maximum stable throughput under these assumptions is un-
known but an upper bound of 0.587 is developed in [15]. The
current paper treats a fixed number of users with an infinite
number of packets to send, rather than randomly arriving
users. Thus, there is no stability concern and the corresponding
distributed implementation issues are different.

The problem of minimizing the expected time to capture
the channel in an asymptotic sense and with more limited
feedback is considered in [16][17][18][19]. For n users, the
work [16] shows the time is Q(log(n)) with only success/fail
feedback; the work [17] shows the time is ©(log(log(n)) with
success/idle/collision feedback. In Section IV-A we consider
a problem with more detailed feedback that gives the full
number of colliders. In this case it is trivial to show a constant
upper bound that does not depend on n. Thus, rather than
considering asymptotics with n, we consider the challenging
problem of fully minimizing the expected capture time.

The multi-access game treated in thrust 1 of this paper
is a repeated game and is inspired by the repeated pris-
oner dilemma games in [20][21] (see also, for example,
[22][23][24]). It has been observed that competitions involving
repeated prisoner dilemma games are often won by the simple
Tit-for-Tat strategy that mirrors the opponent decision [20][21].
This is not the case for the multi-access game treated in
the current paper. While a Tit-for-Tat strategy can be used
in the multi-access competitions, and in several semesters
students submitted such algorithms, these algorithms did not

win because: (i) Tit-for-Tat is deterministic and so it nec-
essarily scores zero points when competing against itself;
(ii) Tit-for-Tat performs poorly when it competes against an
algorithm that never transmits. An algorithm called 4-State
consistently wins the competitions. This algorithm has an
initial randomization phase to capture the channel. It also
has a punishing mechanism that seeks to drive the opposing
algorithm to fairly take turns. It is shown that 4-State achieves
an optimal expected score when competing against an inde-
pendent version of itself.

C. Feedback details and physical layer

This paper assumes slotted time with fixed length packets.
Let F[t] be the number of users who transmit on slot ¢ €
{1,2,3,...}. A success occurs if and only if F[t] = 1. For
the m-user situation it holds that F[¢] € {0,1,2,...,n} and

o« F[t] =0 < idle.

e F[t] =1 <= success.

e F[t] >2 <= collision.

The value of F[t] is assumed to be given as feedback at the end
of slot t. If n = 2 then F'[t] is equivalent to the idle, success,
collision feedback of classical slotted Aloha. If n > 2 then
the F'[t] feedback is more detailed. It is assumed that F[t]
can be inferred by the receiver even in the case of a collision.
This can be done, for example, by measuring the energy in the
combined interfering signals and assuming that this energy is
proportional to F[t]. Alternatively, the value of F'[t] can be
inferred by installing a short signature bit pattern in every
packet transmission and using a filter to count the number of
patterns that arise. This method for counting the number of
transmitters is used in the ZigZag multiple access scheme of
[1], which uses timing misalignments to perform interference
stripping. A soft decision decoding version called SigSag is
treated in [25]. Like [1][25], the current paper assumes F[t]
can be accurately counted. However, it does not consider
interference decoding and treats two or more transmissions
on the same slot as a collision from which no information
is obtained (other than the number of packets that collided).
It is worth noting that any realistic scheme for reporting F[t]
will have some probability of reporting error. Nevertheless, for
simplicity, it is assumed that F'[¢] is reported without error.

II. 2-PLAYER MAC GAME

Consider the following 2-player multiple access (MAC)
game: Fix T as a positive integer. The game lasts over T’
consecutive slots. Two players compete to send fixed-length
packets over a single channel during this time. A single
packet transmission takes one time slot. On each slot ¢ €
{1,2,...,T}, each player makes a decision about whether or
not to send a packet. For each player 7 € {1,2} and each slot
te{1,2,...,T}, define X;[t] € {0,1} as the binary decision
variable that is 1 if player ¢ decides to send on slot £, and 0
else. There are three possible outcomes on slot ¢:

o Idle: (X[t], X[t }) (0,0).
o Success: (X1[t], X2[t]) € {(0,1),(1,0)}.
e Collision: (X1[t], X>[t]) = (1,1).

58TH ALLERTON CONF. ON COMMUNICATION, CONTROL, AND COMPUTING, 2022 3

Player ¢ € {1,2} scores a point on slot ¢ if and only
if it is the only player to transmit on that slot. Let F[t] €
{0,1,2} denote the number of transmissions on slot ¢, which
is equivalent to idle/success/collision feedback. Let (S7,.52)
be the score of each player at the end of the game:

S1 =0, Xa[t(1 - Xo[t])
Sy =31, Xat](1 - X[t))

Players 1 and 2 know the value of 7 and the
idle/success/collision structure of the game. However, they
cannot distinguish themselves as Player 1 or Player 2. There-
fore, even if both players have the desire to fairly share the
slots, so that one player transmits only on odd slots and the
other transmits only on evens, there is no a-priori way to
decide who takes the odds and who takes the evens. Each
player knows its own decision on slot ¢. From the feedback
F[t] it can infer the decision of its opponent. For each player
and each slot ¢t > 2 define Hyeir[t] and Hopponent[t] as the
history of decisions up to but not including slot ¢ as seen from
the perspective of that player. For example, defining H; e [t]
and H; opponent|[t] for each player ¢ € {1,2} means that

Hl,self[t] = H2,opponent [t]
= (Xi[1], X1[2],..., X1[t — 1))

Hl,opponent [t] = HZ,Self[t]
= (X2[1], X2[2],..., Xa[t — 1])

ey

@

A. Random and deterministic algorithms

Algorithms are allowed to make any desired decisions based
on the feedback, including randomized decisions. A general
algorithm can be mathematically represented by a sequence
of Borel measurable functions f1, fa, ..., fr such that

f1:10,1) = {0,1}
fo:[0,1) x {0,1} 7 x {0,1}*"1 = {0,1} Vte{2,...,T}

where the decisions X [t] are given by

X[1] = £()
X[t] = ft(Uv Hself [t]a Hopponent [t])

where U is a randomization variable that is uniformly dis-
tributed over [0,1). The randomness of U can be used to
facilitate randomized decisions.! Players are assumed to use
independent randomization variables. In particular, if Players 1
and 2 implement independent versions of the same algorithm,
they use the same functions fi,..., fr but they use indepen-
dent random variables Uy ~ U[0,1) and Us ~ U[0,1).

A deterministic algorithm is one that contains no random-
ization calls. Such an algorithm can be characterized by a
sequence of functions {g;}7_, that only use H,.¢[t] and
H,pponent|t] as inputs (with no randomization variable)

g1 € {07 1}
gi {0,137 x {0, 1}t = {0,1} Vte{2,...,T}

Vie{2,...,T}

'A random variable U ~ UJ[0,1) has binary expansion U =
o1 Bm2™™ with {B, }_70,?:1 i.i._d_. equally likely bits that can be used
to make sequences of randomized decisions.

So X[1] = g1 is the deterministic decision on slot ¢ = 1 and
X[t] = ge(Hserf[t], Hopponent[t]) Vte{2,....,T} (3)

Lemma 1: A deterministic algorithm scores zero points
against itself.
Proof: See [26]. O

B. Tournament structure

Competitions of these 2-player MAC games were con-
ducted over 7 semesters amongst students in the EE 550
Data Networks class at the University of Southern California.
If there were k algorithms competing in a given semester,
then all algorithms ¢ € {1,...,k} were paired against all
other algorithms j € {1,...,k}. This included a pairing
(4,4) where algorithm ¢ plays against an independent version
of itself. For each algorithm pair (Z,j), the scores of 1000
independent simulations of 100-slot games were averaged to
provide an estimate of the expected score (E[S;],E[S;])
associated with algorithm ¢ playing algorithm j. The total
score of an algorithm is the sum of its scores accumulated
over all other algorithms that it played (including itself). The
algorithm with the largest accumulated score was declared the
winner of the competition for that semester.

The competing algorithms included algorithms that students
designed, an instructor-designed algorithm called 4-state, and
two special algorithms called AlwaysTransmit and Never-
Transmit. AlwaysTransmit transmits on every slot regardless
of history. No opponent can score against AlwaysTransmit.
This algorithm is maximally greedy and was entered into the
competition in order to view its accumulated score in com-
parison with the other algorithms. In contrast, NeverTransmit
never transmits and never scores any points. It tests the ability
of other algorithms to adapt to the situation where they are
the only ones who want channel access.

In addition to the overall score in the competition, the
quality of an algorithm can be understood in terms of figures
of merit o and 3 defined below:

o Self-competition score «: This is the expected score
E [S1] when an algorithm plays an independent copy of
itself. This figure of merit is useful because a good MAC
algorithm will be used by others and hence must perform
well against itself.

« No-competition score 3: This is the expected score E [S]
when an algorithm plays NeverTransmit. This figure of
merit is useful because a good MAC algorithm should
adapt when nobody else is using the channel.

C. Special algorithms
The following algorithms are of key interest:
1) Tit-for-Tat-0 (TFT-0): This is a deterministic policy that
operates as follows:
e X[1]=0.
o Forte {2,3,..., T} X[t] = Xopponent[t — 1].
A variation called Tit-for-Tat-1 (TFT-1) differs only by
having X[1] = 1. Both Tit-for-Tat-0 and Tit-for-Tat-1
mirror the opponent decisions with one slot delay. This

58TH ALLERTON CONF. ON COMMUNICATION, CONTROL, AND COMPUTING, 2022 4

State 1: Independently transmit with prob %
until either | score or the opponent scores.

If I score first/ \ opponent scores first

State 2: Politely remain idle State 3: Transmit repeatedly

v

-

for one slot. until | score.
If opponent
is idle If opponent transmits

State 4: Transmit repeatedly
until collision.

I

Fig. 1.

Algorithm 4-State. The algorithm starts in state 1.

is similar in spirit to the Tit-for-Tat algorithm considered
for prisoner dilemma games [20][21]. It can be shown
that neither version ever looses a game by more than 1
point (regardless of the opponent). However, both Tit-for-
Tat-0 and Tit-for-Tat-1 are deterministic and so they both
have a Self-Competition score of 0. They also have poor
No-Competition scores (0 and 1 for Tit-for-Tat-0 and Tit-
for-Tat-1, respectively).

2) 4-State: This algorithm is given by the diagram in Fig. 1.
The idea is to start by randomly transmitting until the first
success, then move to a turn-based policy that oscillates
between states 2 and 3. On its turn (state 3) it repeatedly
transmits until it scores. This is a punishing mechanism
designed to force the opponent to acknowledge its turn.
Like Tit-for-Tat, it is not difficult to show that 4-State
cannot loose a game by more than 1 point. When compet-
ing against an independent version of itself, 4-state uses
only the first 3 states. The fourth state is added to detect
whether or not it is playing against NeverTransmit: If the
opponent does not take its turn in state 2, the algorithm
moves to state 4 and repeatedly transmits on all remaining
slots (unless there is a collision).

D. Fall 2021 competition

A closeup look at the Fall 2021 competition is given in Fig.
2. That was a small competition with 4-State, AlwaysTransmit,
NeverTransmit, and only 7 student algorithms. Each row i €
{1,...,10} of Fig. 2 shows the score when algorithm ¢ played
against each other algorithm (averaged over 1000 independent
100-slot games). Key algorithms of the 10 are:

o Al: NeverTransmit

o A2: AlwaysTransmit

o A3: 4-State

o A6: This student used Tit-for-Tat-1

The 4-State algorithm (A3) dominated the competition by
earning 324.637 points. Its simulated Self-Competition score
of 49.48 is shown in cell (A3, A3) and this is consistent with
the analytical result of the next section. The AlwaysTrans-
mit algorithm (A2) earned 228.986 points. Tit-for-Tat-1 (A6)
earned only 127.597 points. Its poor performance was due to
a Self-Competition score of 0 and a No-Competition score
of only 1. However, it learns to fairly share with 4-State
(earning 49.69 points in that game, see the (A6, A3) cell).

In tournaments with a larger number of students, there are
more student algorithms that learn to share and Tit-for-Tat-
1 performs better (see Section II-E and [26]). The 4-State
algorithm receives an average score per game of 32.46. It
is interesting to note the following data which is not in the
table: When 4-State is replaced by Tit-for-Tat-0 the average
score per game for Tit-for-Tat-0 is 12.18; that for Tit-for-
Tat-1 is 7.76. Thus, the greedy version of Tit-for-Tat does
worse. The performance of 4-State in the Fall 2021 semester
is qualitatively similar to its performance over 7 different
semesters (4-State winning each time) as reported in [26].

E. Figures of merit

The first two rows of Fig. 3 provide analytical values for
the Self-Competition score o and the No-Competition score
B of 4-State, Tit-for-Tat-0, Tit-for-Tat-1, and AlwaysTransmit
(values of « and [for 4-State are derived in Section III).
The analytical values in the first two rows are consistent
with simulation results. The third row in Fig. 3 provides
a “Tournament Score” ~ which is a simulation result on
the average score per game, considering all games played,
in a large tournament with 135 algorithms (including these
five algorithms together with all student algorithms that were
created over 7 semesters). Each algorithm was paired against
all 135 other algorithms (including an independent version of
itself) in 1000 independent runs of 100-slot games. For this
tournament 4-State performs best; the greedy version of Tit-
for-Tat does significantly worse than the non-greedy version;
the AlwaysTransmit algorithm does significantly worse than
4-State, Tit-for-Tat-0, and Tit-for-Tat-1.

III. ANALYSIS OF THE 2-PLAYER MAC GAME

Theorem 1: Fix T as a positive integer. In a T'-slot game,
the Self-Competition score for 4-State is:

T-1 1

(XZT—FW “@

Further, no other algorithm can achieve a larger Self-
Competition score.

Proof: (Theorem 1 achievability) Consider two independent
versions of 4-State that compete over 1" slots. Let S; and S
be the resulting scores. The algorithms are identical so

a=E[S1] =E[S,] &)

Let Y € {0,1,...,T} denote the random number of initial
slots in which nobody scores (Y = T if nobody ever scores).
When 4-State plays against itself, once the first player scores,
exactly one player will score on each slot thereafter. Thus

T=Y+5 45
Taking expectations of both sides and using (5) gives
T=E[Y]+ 2«
Thus

L _T-E[Y]

: (®)

58TH ALLERTON CONF. ON COMMUNICATION, CONTROL, AND COMPUTING, 2022 5

Al A2 A3 A4 A5 A6 A7 A8 A9 A10 |Totals
Al 0 0 0 0 0 0 0 0 0 0 0
A2 100 0 1 0 47 0| 19.86(10.79 0[50.34| 228.986
A3 | 98.04 0| 49.48 0| 48.43(49.36| 21.15| 25.13 0| 33.06| 324.637
A4 | 40.13 0 1 0| 19.78 0| 20.49(10.74 0 36.4 128.531
A5 | 50.4 0| 0.51 0| 24.6 0| 9.68| 5.39 0| 25.33| 115.909
A6 1 0| 49.69 0| 0.5 0| 19.29(31.87 0| 25.24| 127.597
A7 100 0 19 0.73| 50.8| 19.04| 16.48| 19.05| 0.48| 34.57| 260.159
A8 | 50.54 0| 24.31| 0.02| 24.9(31.52| 18.52| 24.72| 0.1]| 27.17| 201.788
A9 100 0 1 0| 51.3 0| 19.81| 10.78 0[38.15 221.048
A10| 49.92 0| 17.1| 13.83] 24.65| 24.7| 15.45| 22.67| 11.94| 24.76] 205.021

Fig. 2. Results of multi-access game in Fall 2021 semester. Each game consists of 100 slots. Results are averaged over 1000 independent games. The score

of Algorithm 7 € {1, ...,

’ H 4-State \ TFT-0 \ TFT-1 \ AlwaysTran ‘

o || 49.500 0 0 0
B || 98.000 0 1 100
v || 24.613 | 20.410 | 15.326 10.714

Fig. 3. A table of scores (Self-Competition c; No-Competition §; Tourna-
ment) for 4-State, Tit-for-Tat-0, Tit-for-Tat-1, and AlwaysTransmit.

The random variable Y has the following distribution
=(1/2)"*' vie{o,1,...,T -1}

=(1/2)"

)
®)

E[Y]=Y] iPly =i=1-2"T

Substituting this expression into (6) proves (4). O
Proof: (Theorem 1 converse) Consider any algorithm that is
independently used for both players. For convenience, assume
the algorithm is designed to run over an infinite sequence of
slots ¢ € {1,2,3,...} (an algorithm designed for T slots can
be extended to run over an infinite horizon by choosing to not
transmit after time 7"). Arbitrarily assign one of the algorithms
as Player 1 and assign its counterpart (identical) algorithm
as Player 2. For each positive integer 7', define V[T] as the
random sum of scores of both players over the first 7" slots:

VIT] = X0, (X1 [(1 = Xalt]) + Xa[t](1 - X1 [1])]

By symmetry, it follows that the Self-Competition score (over
T slots) is E [V[T]] /2. For each positive integer 7', define s[T']
as the supremum value of E [V[T]] over all algorithms that
independently compete against themselves. Define s[0] = 0.
We want to show s[T]/2 < « for all nonnegative integers 7T,
where « is the value in (4). Specifically, we want to show

ST <T—-1+1/2)7 vre{0,1,2,3,..} (9

We use induction: Suppose (9) holds for T = k for some
nonnegative integer k (it holds for k£ = 0 since s[0] = 0). We
show it also holds for 7' = k£ + 1. Since at most one player
can score on each slot, we surely have

Vik+1 <k+1 (10)

10} is given in row i. Al=NeverTransmit; A2=AlwaysTransmit; A3=4-State; A6=TFT-1.

Let A be the event that there is a success by one of the
players on slot 1, so that A€ is the event that the first slot
results in either an Idle or a Collision. A key observation is

E[V[k + 1]|A°] < s[k])

since the event A° means that neither player scored on the
first slot, there are k slots remaining to accumulate the total
score V[k+1], and no information has been conveyed to either
player on this first slot that would make the expected score
over the remaining k slots larger than s[k].?

Let g be the probability that the algorithm transmits on the
very first slot. Then

P[A] =2¢(1-¢q) < S 2q1—¢q)=1/2 (12
We have
E[V[k+1]]
=E[V[k +1]|A] P[A] + E [V[k + 1]|A°] (1 — P[A])
Y (b + 1)P[A] + s[K](1 — P[A))

s[k] +

s[k] +
(1/2)(k+1

P[A](k + 1 — s[k])

,\
As

(
(1/2)(k + 1 — s[k)
)+ (1/2)s[A]

(1/2)(k =1+ (1/2)")

S
&

g (1/2)(k+1)+

=k+ (1/2)"!
where (a) holds by (10) and (11); (b) holds by (12) and the
fact k + 1 — s[k] > 0 (observe that s[k] < k since at most

one point can be scored per slot); (c) holds by the induction
assumption that (9) holds for 7' = k. Thus

E[V[k+1]] < k+ (1/2)F

This holds for all algorithms. Taking the supremum value of
E [V [k + 1]] over all possible algorithms gives

sk +1] < k+ (1/2)!

2If a non-success on the first slot made the expected score on the remaining
slots more than s[k], one could use an algorithm that starts under the
assumption that a non-existent preliminary slot just had a non-success. That
would achieve an expected k-slot score that is larger than s[k], a contradiction.

58TH ALLERTON CONF. ON COMMUNICATION, CONTROL, AND COMPUTING, 2022 6

which proves that (9) holds for 7= k + 1. O
Lemma 2: Fix T as a positive integer. In a T-slot game,
the No-Competition score [for 4-State is

3

Ba=T—2+ 37 (13)

Proof: See [26]. O

IV. MULTI-USER MAC

Now consider the MAC problem with n users. In this
version of the problem, we assume the receiver can detect the
number of users who transmitted on each slot (as discussed in
Section I-C). The feedback F'[t] given to the users at the end
of each slot ¢ is equal to the number of users who transmitted:

Flt] =0 = Idle
F[t] =1 = Success
F[t] € {2,...,n} = Collision

Note that the feedback value F'[t] specifies the number of
transmitters on slot ¢, but does not indicate which users
transmitted. If n = 2 then this feedback is equivalent to suc-
cess/idle/collision feedback. However, if n > 2 this feedback
is more detailed. It is assumed that all users know the value n
at the start, and this value does not change for the timescale of
interest. For knowledge of n, one can imagine a “slot ¢t = 0”
where all users agree to transmit, so that the feedback signal
F[0] = n communicates n to all users.

The users have no way to distinguish themselves at the
start of slot ¢ = 1, so there are no labels {1,2,...,n} that
the users can identify with. The central goal of this section
and the next is to develop an algorithm that all users can
independently implement that minimizes the expected time to
the first success. Minimizing the time to the first success is
also useful for either maximizing throughput or for quickly
assigning labels to users. Define 2 as the infimum expected
time to the first success in a system with n users.

A. Minimizing the expected time to the first success

For each positive integer n, this subsection develops an
algorithm that is independently implemented by n users and
seeks to minimize the expected time to the first success. There
is no deadline, and so this is an infinite horizon problem. Let
Z,, denote the random time until the first success under a given
n-user algorithm. Define

zn = E[Z,)]

Let p,, denote the transmission probability on the first slot.
The idea is to have the n users independently transmit with
probability p,, on slot 1 and then receive feedback F[1] that
specifies the number of transmitters. If F'[1] = 1 there was a
single success and the algorithm terminates. If F'[1] € {0,n}
then no information that can distinguish the users is gained
and we repeat. If F[1] =4 with ¢ € {2,...,n — 1} then the
n users are partitioned into a group of size ¢ and a group of
size n — i, the values of z; and z,,_; are compared, the least
desirable group is thrown away and the problem is recursively
solved on the remaining group with a residual expected time

min{z;, z,—;}. This section optimizes over this structured
class of algorithms. It should be noted that there is no general
proof that throwing away a group is optimal: Section V proves
this is optimal for the special case n € {1,2,3,4,6}.

1) Case n = 1: If n =1 the algorithm is to transmit with
probability p; = 1, which yields z; = 1.

2) Case n = 2: If n = 2 the algorithm is for both users to
independently transmit each slot with probability po = 1/2,
so that zo = 2.

3) Case n = 3: If n = 3, the users independently transmit
with probability p € (0, 1) on the first slot (the value of p shall
be optimized later). The feedback after slot 1 satisfies F[1] €
{0,1,2,3}. Based on the value of F[1] do the following:

e F[1] =0 (Idle): Repeat.

e F[1] =1 (Success): Done.

o F[1] = 2 (Collision between 2 users): The third user that

did not transmit on slot 1 will transmit alone on slot 2;
the other two users are silent on slot 2.
o F[1] = 3 (Collision between 3 users): Repeat.

The expected time to the first success is:
23 = Yoo B1Zs|F1] = 1] (})p' (1~ p)*

Under this scheme we have

(14)

E[Zs|F[1] = 0] = 1 + 23
E[Zs|F[1] =1] =1
E[Zs|F[1] = 2] = 2
E[Zs|F[1] = 3] = 1+

Substituting these into (14) gives

_ 1431 -p)
C1-pP—(1-p)?

The value of p € (0,1) that minimizes the right-hand-side is

z3

ps =~ 0.411972

and so
{ 1+3p*(1 —p)
Z3 = 11
pe1) (1 —-p® = (1-p)?
It is surprising that z3 < zo, meaning that it is more efficient
to start with 3 users than to start with 2 users.

4) Case n € {4,5,6,...}: Fix n as the number of users
and assume n > 4. On the first slot the users independently
transmit with probability p (to be optimized later) and react
to the feedback F[1] € {0,1,...,n} as follows:

o F[1] = 0 (idle): Repeat.

e F[1] =1 (succes): Done.

e F[1] = ¢ € {2,...,n — 1} (collision of 7 users):
This partitions the users into two groups, one of size i
(consisting of those users who transmitted on the first
slot) and one of size n — i (the others). If z; < z,_; then
follow the optimal algorithm for minimizing the time to
the first success for ¢ users, utilizing only the 7 users who
transmitted (the remaining n —4 users stay silent forever).
Else, follow the optimal algorithm for minimizing the
time to the first success for n — ¢ users, utilizing only the

} ~ 1.78795 (15)

58TH ALLERTON CONF. ON COMMUNICATION, CONTROL, AND COMPUTING, 2022 7

n — ¢ users who did not transmit in the first slot while
the remaining users are silent.
e F[1] = n (collision of n users): Repeat.

The expected time to the first success is then
n n . .
n = E[Z.|F[1] =1 . |p*(1—p)" "
= DB = () -
= (1 +2)(p" + (1 —p)") +np(l —p)" "
n—1
. ny n—i
+ Z;(l + min{z;, z2p—;}) (Z)p (1-p)

Thus

inf
p€(0,1)

Zn =

1+ Z?:_; min{z;, zn_i}(?)pi(l —p)nt
lL—pr—(1—p)
(16)
The values of p,, and z,, can be recursively computed in terms

of z1,...,2n,—1. The first several values are given below:
[n] pn 2
1 1 1
2 0.5 2
3 || 0411972 | 1.78795
4 | 0.302995 | 2.13454
5 || 0.238640 | 2.15575
6 || 0.191461 | 2.26246
7 || 0.166629 | 2.27543

V. CONVERSE

The z, and p,, values of the previous section are optimized
over algorithms that partition users into two groups and throw
away the least desirable group. It is not clear if gains can be
achieved by keeping track of an ever-increasing number of
groups and having multiple groups probabilistically transmit
at the same time. The information state of the problem is
remarkably complex. For each positive integer n, define 2
as the infimum expected time for the first success, considering
all possible algorithms that can be independently implemented
by n users. Clearly 1 < 2z < z,, where %z, are the values
associated with the proposed algorithm of the previous section.
The author conjectures that z, = 2 for all n. This section
proves the conjecture for the special cases n € {1,2,3,4,6}.
The cases n = 4 and n = 6 are particularly challenging. The
following theorem is proven in the next subsections.

Theorem 2: For n € {1,2,3,4,6} we have z = z,.

A. Preliminaries

By definition of z}, for every € > 0 there is an algorithm
that gets arbitrarily close to z;;, so that

z2r <E[Z] <z +e (17)

where Z is the random time to the first success. If € € (0,1/2)
and n > 2 it can be shown that any algorithm that satisfies
(17) uses a probability p for transmitting on the first slot that
satisfies p € [ay,, by,] for certain values a,,, b,, that satisfy 0 <
a, < b, <1 (see [26]).

Lemma 3: Fix n € {2,3,4,...} and € € (0,1/2). Consider
an algorithm that satisfies (17) and let p € [a,,b,] be its
probability of transmitting on the first slot. Then

1—e+ 30, ElZ—1F[1] =] (})p'(1 —p)" "
L—pr—(1=p)»
(18)
Proof: See [26]. O

*
Zp =

B. Cases n € {2,3}

For the case n = 2, see [26] for a proof that 25 > za.
Suppose n = 3. Fix € € (0,1/2). From (18):

- 1—e+E[Z—1|F[1] = 2] 3p*(1 — p)

- 1=p*=(1-p)?
(i) 1—e+3p*(1—p)
T 1-pP—(1-p)?
(b) _ 2(1 —
)

g€fasbs] | 1 —¢% — (1 —¢q)?
where (a) holds because if F[1] = 2 then Z > 2; (b) holds
because p € [as, bs]. This holds for all € € (0,1/2). Since

q € lag,bs] bounds the denominator of the last expression
away from 0, we can take ¢ — 0 to obtain

: 1+3¢%(1 —q) }
za > inf
> = gelas,bs] { 1—¢>—(1—¢q)?

. 1+3¢%(1—q)
> f pu—
—qelf%,n{l—q?’—(l—q)?’ E

where z3 is defined in (15).

*

23

C. Casen =14
Suppose there are 4 users. From (18) and the fact
E[Z — 1|F[1] = 3] > 1 we have
1—e+E[Z—1|F[1] = 2]6p*(1 —p)? + 4p*(1 — p)
1—p*—(1-p)?*
The main challenge is to show the following inequality:

zy >

E[Z—1|F[1] =2] >2 (19)

Once (19) is established, the proof proceeds as in the n = 3
case to show zj > z4 (see [26] for details).

D. Proving (19)

We have n = 4 users. Consider the situation at the end of
slot 1 given that F[1] = 2. Let Z—1 denote the remaining time
until the first success. We shall call this the 2-group situation:
Group A consists of the 2 users who transmitted on the first
slot and Group B consists of the 2 who did not. Let ALG 4
be an algorithm that the two users in group A independently
implement for the remaining slots; let ALG g be an algorithm
that the two users in group B independently implement for the
remaining slots. Define Time(ALG 4, ALGp) as the expected
remaining time (not including the first slot ¢ = 1) to the first
success (from either group). We want to show

Time(ALG4,ALGp) > 2

58TH ALLERTON CONF. ON COMMUNICATION, CONTROL, AND COMPUTING, 2022

We construct a new system with only two devices, called
virtual devices, with enhanced capabilities. We show:

1) The new system can emulate the 2-group situation.
2) Any such emulation in the new system must take at least
2 slots on average.

For simplicity we shift the timeline so that the current slot 2 is
now called slot 1. The two virtual devices act independently as
follows: On each slot t € {1,2,3, ...}, each virtual device can
choose to send any integer number of packets. The feedback
at the end of slot ¢ is F[t] € {0,1,2,...}, which is the sum
number of packets sent by both virtual devices. Consider the
constraint that both devices must independently implement the
same algorithm. Let R be the random time to see the first
success, being a slot where exactly one of the devices sends
exactly one packet. Let 7* be the infimum value of E [R] over
all possible algorithms with this structure.

Lemma 4: With two enhanced virtual devices, the minimum
expected time to the first success is r* = 2.

Proof: See [26]. O

We now show these two virtual devices can emulate the
k = 4 user scenario with two groups A and B running
ALG 4 and ALGp, respectively. The first virtual device runs
two separate programs: One that emulates an independent user
implementing ALG 4, the second independently implementing
ALGp as if it is a separate user. If both ALG4 and ALGp
at this device decide to transmit on the current slot, the device
sends two packets. If only one of ALG4 and ALG g decide
to transmit, the device sends 1 packet. If neither ALG 4 nor
ALGp decide to transmit, the device sends zero packets.
The second device does a similar emulation independently.
The feedback signaling F[t] on each slot ¢ is the same as
if there were 4 users that were initially configured in the 2-
group scenario. Hence, the expected time to achieve the first
success is the same as Time(ALG 4, ALGp). Since this is
also a situation where two enhanced devices independently
implement the same algorithm, we have

Time(ALG 4, ALGR) > r* =2

E. The case n = 6 and beyond

The case n = 6 is proven in [26]. A brief exploration of
this problem for multiple channels is also in [26].

VI. CONCLUSION

A MAC game was introduced. Unlike related prisoner
dilemma games where Tit-for-Tat policies tend to win, the
winning algorithm is a 4-State policy with a randomized initial
phase. Randomization is fundamental because deterministic
algorithms have a zero self-competition score. The policy 4-
State was mathematically shown to maximize the expected
number of points when competing against an independent
version of itself. A closely related problem of minimizing
the expected time required to first capture the channel was
explored. An efficient algorithm was developed and shown to
be optimal when the number of users is in the set {1, 2, 3,4, 6}.
The optimality proof uses a technique that introduces virtual
users with enhanced capabilities.

(1]

[2]

(3]

(4]

(51
[6

[}

[7

—

[8

—_

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]
[22]
[23]
[24]

[25]

[26]

REFERENCES

S. Gollakota and D. Katabi. Zigzag decoding: combating hidden
terminals in wireless networks. SIGCOMM ’08: Proceedings of the
ACM SIGCOMM 2008 conference on Data communication, 2008.

H. S. Witsenhausen. A stochastic decision problem. In T. M. Cover and
B. Gopinath, editors, Open Problems in Communication and Computa-
tion, chapter 3.8, pages 49-50. Springer-Verlag, New York, 1987.

M. J. Neely. Distributed stochastic optimization via correlated schedul-
ing. IEEE/ACM Transactions on Networking, 24(2):759-772, April
2016.

A. Nayyar and D. Teneketzis. Common knowledge and sequential team
problems. [EEE Transactions on Automatic Control, 64(12):5108-5115,
2019.

H. S. Witsenhausen. A standard form for sequential stochastic control.
Mathematical systems theory, 7(1):5-11, 1973.

S. Bubeck and T. Budzinski. Coordination without communication:
optimal regret in two players multi-armed bandits. In Jacob Abernethy
and Shivani Agarwal, editors, Proceedings of Thirty Third Conference
on Learning Theory, volume 125 of Proceedings of Machine Learning
Research, pages 916-939. PMLR, 09-12 Jul 2020.

S. Bubeck, Y. Li, Y. Peres, and M. Sellke. Non-stochastic multi-
player multi-armed bandits: Optimal rate with collision information,
sublinear without. In Jacob Abernethy and Shivani Agarwal, editors,
Proceedings of Thirty Third Conference on Learning Theory, volume
125 of Proceedings of Machine Learning Research, pages 961-987.
PMLR, 09-12 Jul 2020.

D. Kalathil, N. Nayyar, and R. Jain. Decentralized learning for
multiplayer multiarmed bandits. IEEE Transactions on Information
Theory, 60(4):2331-2345, 2014.

D. P. Bertsekas and R. Gallager. Data Networks. New Jersey: Prentice-
Hall, Inc., 1992.

J. Mosely and P. A. Humblet. A class of efficient contention resolution
algorithms for multiple access channels. [EEE Trans. Comm., COM-
33:145-151, 1985.

B. S. Tsybakov and V. A. Mikhailov. Random multiple access of packets:
Part and try algorithm. Problemy Peredachi Inform. (USSR), 16:65-79,
1980.

J. F. Hayes. An adaptive technique for local distribution. IEEE Trans.
Comm., COM-26:1178-1186, 1978.

J. I. Capetanakis. The multiple access broadcast channel: Protocol and
capacity considerations. [EEE Trans. Inform. Theory, 1T-25:505-515,
1979.

B. S. Tsybakov and V. A. Mikhailov. Free synchronous packet access in
a broadcast channel with feedback. Problemy Peredachi Inform. (USSR),
14(4):32-59, 1978.

V. A. Mikhailov and B. S. Tsybakov. Upper bound for the capacity of
a random multiple access system. Problemy Peredachi Inform. (USSR),
17:90-95, 1981.

E. Kushilevitz and Y. Mansour. An w(dlog(n/d)) lower bound for
broadcast in radio networks. SIAM J. Comput, 27(3):702-712, June
1998.

D. E. Willard. Log-logarithmic selection resolution protocols in a
multiple access channel. SIAM J. Comput., 15:468-477, 1986.

R. Bar-Yehuda, O. Goldreich, and A. Itai. On the time-complexity of
broadcast in multi-hop radio networks: An exponential gap between
determinism and randomization. J. Comput. System Sci., 45:104—126,
1992.

T. Jurdzinski and G. Stachowiak. The cost of synchronizing multiple-
access channels. Proc. ACM Symposium on Principles of Distributed
Computing, pages 421430, 2015.

R. Axelrod. More effective choice in the prisoner’s dilemma.
Journal of Conflict Resolution, 24(3):379-403, 1980.

R. Axelrod and W. D. Hamilton. The evolution of cooperation. Science,
211(4489):1390-1396, 1981.

W. Poundstone. Prisoner’s Dilemma: John von Neumann, Game Theory,
and the Puzzle of the Bomb. First Anchor Books Ed., 1993.

M. J. Osborne and A. Rubinstein. A Course in Game Theory. MIT
Press, Cambridge, MA, 1994.

N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani. Algorithmic
Game Theory. Cambridge University Press, New York, 2007.

A. S. Tehrani, A. G. Dimakis, and M. J. Neely. Sigsag: Iterative detection
through soft message-passing. I[EEE Journal of Selected Topics in Signal
Processing, 5(8):1512 — 1523, Dec. 2011.

M. J. Neely. Repeated games, optimal channel capture, and open
problems for slotted multiple access. arXiv:2110.09638v3, Dec. 2021.

The

	Introduction
	Decentralized control
	Distributed MAC and repeated games
	Feedback details and physical layer

	2-player MAC game
	Random and deterministic algorithms
	Tournament structure
	Special algorithms
	Fall 2021 competition
	Figures of merit

	Analysis of the 2-player MAC game
	Multi-user MAC
	Minimizing the expected time to the first success
	Case n=1
	Case n=2
	Case n=3
	Case n{4, 5, 6, …}

	Converse
	Preliminaries
	Cases n {2,3}
	Case n=4
	Proving (19)
	The case n=6 and beyond

	Conclusion
	References

