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Abstract—This paper proposes an efficient direction of depar-
ture (DOD) and direction of arrival (DOA) estimation method
for multi-input multi-output (MIMO) systems. For uncorrelated
scenarios, the redundancy of the covariance matrix is first exploited
by establishing its concise representation through redundancy re-
duction, which transforms the original large-size covariance matrix
into a smaller-size matrix without loss of useful angle information.
Then, the resulting transformed matrix, which retains a salient
structure, permits efficient two-dimensional (2D) angle estimators
working on a reduced-size problem for DOD and DOA estima-
tion. Compared with conventional subspace-based methods, the
proposed method incorporating an appropriate 2D angle estimator
is more computationally efficient and can achieve higher estimation
accuracy for small numbers of snapshots and low signal-to-noise
ratios, which are verified by simulation results.

Index Terms—DOD and DOA estimation, MIMO systems,
redundancy reduction representation, transformation matrix
construction.

I. INTRODUCTION

IRECTION of departure (DOD) and direction of arrival

(DOA) estimation plays an important role in parame-
ter estimation for multi-input multi-output (MIMO) systems,
where two-dimensional (2D) subspace-based angle estimation
algorithms are applied [1]-[10]. For example, ESPRIT [3] and
2D-MUSIC [4], as two representative algorithms, have been
widely employed. However, to implement 2D-MUSIC, a 2D
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spectral peak searching is required, at a cost of an expensively
high computation load. To overcome this disadvantage, an ef-
ficient reduced-dimension MUSIC (RD-MUSIC) [5] has been
developed by dividing the simultaneous 2D spectral peak search
into separate one dimensional (1D) angle estimators. The RD-
MUSIC, as an efficient modification of 2D-MUSIC, still belongs
to the class of subspace-based algorithms. For RD-MUSIC, an
eigenvalue decomposition (EVD) on the covariance matrix of the
observations is still required similar to ESPRIT and 2D-MUSIC.
The EVD operation results in a computational complexity that
is cubic in the product of the numbers of transmitters and re-
ceivers in the MIMO system denoted by /V and M, respectively,
which can be computationally expensive as N and/or M go
large [11].

In this paper, an efficient angle estimation method is proposed
for MIMO systems, by exploring a potential redundancy struc-
ture hidden in the 2D covariance and exploiting it to derive a
transformation from the covariance to its core matrix which en-
ables a new design of 2D estimators for angle estimation. In do-
ing so, the main contributions of this letter are summarized as fol-
lows: 1) aredundancy reduction representation of the 2D covari-
ance matrix is first proposed by exploiting its redundancy struc-
ture; 2) based on such a redundancy reduction representation, an
efficient linear construction from the original large covariance to
its concise core matrix is then derived in a closed-form expres-
sion, which is parameterized by its dimensions /N and M only; 3)
2D angle estimators are developed over the core matrix for DOD
and DOA estimation. Different from standard subspace-based
methods where EVD operations are always required, the pro-
posed method relies on a simple linear transformation only. Fur-
ther, thanks to the sparsity nature of the transformation matrix,
such a linear transformation can be applied in a computation-
efficient manner. As a result, the proposed method is more
efficient than its subspace-based counterparts. Simulation results
demonstrate the efficiency and effectiveness of the proposed
method.

Notations: a, a and A denote a scalar, a vector and a matrix,
respectively. (-)7, (-)*, and (-) are the transpose, conjugate,
and conjugate transpose of a vector or matrix. diag(a) generates
a diagonal matrix with the diagonal elements constructed from
a. vec(-) stacks all the columns of a matrix into a vector and
vec 1(+) is the inverse operation of vec(-). e, and q, are the
vectors with only the a-th element being one and zeros else-
where. I, is an a-size identity matrix and K, is an a-size anti-
diagonal identity matrix. A is the pseudoinverse of A. ® is the
Kronecker product. ® is the Khatri-Rao product. E{-} denotes
expectation.
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II. PROBLEM FORMULATION

Consider a MIMO system equipped with uniform linear arrays
(ULA) at both its transmit and receive base stations, where N
and M antennas are spaced with half-wavelength, respectively.
This MIMO system can be either a MIMO communications
system [8], [9] or a bistatic MIMO radar system [10]. Assume
that there are K uncorrelated targets or channel paths for the
bistatic MIMO radar system or the MIMO communications
system, respectively. Assuming orthogonal transmit waveforms,
the output of the matched filters at the receiver contaminated by
noise can be expressed as [5]

y(t) = z(t) + n(t)
K

= Z sk(t)ar(0k) @ ai(or) + n(t)

k=1
=A,(0)0 A (p)s(t)+n(t), t=1,...,L, (1)

where sy (t) is the radar cross section complex coefficient of the
k-th target for bistatic MIMO radar systems or the path gain of
the k-th channel path for MIMO communications systems. L
is the number of collected snapshots. The receive and transmit
steering vector a,.(0y) and a;(¢y) of size M and N are of the
form

ar(ak) _ [l,e*jﬂ'Sin((’k), e efj‘rr(wal)sin(Gk)}T

a;(¢p) = [1,e77msm0n)

where 6, and ¢j are the corresponding DOA and DOD of
the k-th target/path with respect to the receive array nor-
mal and transmit array normal, respectively. n(t) is the ad-
ditive Gaussian white noise vector satisfying NV(0, 021y ).
And, s(t) =[s1(t),...,sx(®)]T, 0=[01,....0k]", &=
[¢17 ey (bK}T, AT(O) = [ar(Ol), ey aT(HK)] and At(¢) =
[ai(#1), .-, ai(Px)]

Given y(t) collected from (1), the covariance matrix of the
observation is

R, =E{y(t)y" (t)} = Ry + 0*Inn

K

= Zrk(ar(9k)®at(¢k))(ar(ek)®at(¢k))H+021MN
=1

= (A;(0) ® A(d))Rs(A,(0) © A(9)" + UQIMN,3

(3)

, e Im(N-1) Sin(cbk)]T7 )

where
R, = (A.(0) ® A($))Ri(A,(0) © A(d)"  (4)

is the  noise-free covariance matrix with R, =
diag(r1,...,7x) = 0 being a diagonal positive semidefinite
matrix. In practical applications, R, is estimated over L
collected snapshots through R, = + S0 y(t)y™ (¢).

The goal of 2D angle estimation in this letter is to recover the
unknown DOD and DOA pairs { ¢y, 0 } . from Ry

III. PROPOSED METHOD

This section proposes an efficient 2D angle estimation method
for MIMO systems. In doing so, we first develop a redundancy
reduction representation of the covariance matrix by exploiting
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the redundancy of the covariance matrix. Then, a transformation
matrix is constructed as a linear mapping which transforms the
original large-size covariance matrix into a smaller-size core
matrix without losing any useful information. Finally, 2D angle
estimation is developed over such a smaller-size core matrix.

A. Redundancy Reduction Representation
By vectorizing (3), we have
vec(R,) = vec(R,,) + o?vec(Iyn)- 5)

Based on (4) and the diagonal feature of R, the first term on
the right hand side of (5) can be expressed as

K
vee(Ro)= Y ri(al (k) @ aj(ér)) © (ar(0r) © ar(dn))-
k=1
(6)

The key innovation is now to rewrite the basic term in (6) as
(a;(0r) ® a;(¢i)) @ (ar(0r) @ ar(or))
= ¥(a,(0k) ® ay(r)), ©)
where a..(0) € C*M~! and a(¢x) € C*N 1 are given by

alr(gk):[efjﬂ(Mfl)sin(Gk)’ T ejw(]\lfl)sin(ek)]T

)

a;(m):[eﬂ'ﬂ(l\f*l)Sin(m)’ S T ejﬂ(Nfl)Sin(m)]Tl 8)

The tall matrix
U=(IyOERI ) (G @G yN)eCM N *CM-1)2N-1) " (q)

is defined as a redundancy-reduction representation matrix that
is determined by NV and M only, where E = Zjvzl (eJT Iy
ej) € CNMXNM yith e; € CV is the commutation matrix,
Gy is defined as

T -
Gy =[G4, ,GYy ] € CMXEM) (10)

with the i-th block matrix G'ar; = [0a7(a—i)» B 0,007 x (i-1) )
i=1,...,M, and Gy eCN**2N1) s defined similarly as
(10). Substituting (7) into (6), we have

K

vec(R,) =¥ Z rra,. (0r) ® ay(¢r)
k=1

= Wvec(A, ()R, AT (0)) = Bvec(Z), (11)

where Z is called the core matrix of the original covariance R,
in this letter. We have Z=A/(¢) R, AT (8)cCN-1)x(2M-1)
with  AL(¢) = [a}(é1), ..., al(6K)]  and  AL(0) =
[@l.(61),...,al.(0k)]. Moreover, the second term on the
right hand side of (5) can be written as

o?vec(Iyn) = 0?®vec(Q), (12)
where Q = qnql; with gy € C2V-! and g, € C?M-L,
Hence, substituting (11) and (12) into (5), we have

vec(R,) = ¥vec(Z + 0°Q). (13)

According to (11), note that Z not only has a smaller size
than R, but also contains all the 2D angle information which
is decoupled along its rows and columns. Therefore, we can
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efficiently retrieve the unknown angles from Z once Z is ob-
tained. Now, the task boils down to obtaining an estimate of Z
from R,,.

B. Transformation Matrix Construction

In fact, the linear projection from vec(Z + 02Q) to vec(R,)
in (13) is an injective mapping. Hence, the representation matrix
W is a full column rank matrix, which allows to rewrite (13)
through the pseudoinverse of ¥ as

vec(Z + 0%Q) = ¥lvec(R,) = Tvec(R,), (14)

where T = ¥t € C@M-1)(2N-1)xM*N* ¢ the transformation
matrix satisfying
TP = Ion—1)2n-1)- (15)

Next, we point out that besides making a detour to obtain
T from W, T can be directly constructed based on several
small-size sparse matrices with known M and N, which is more
computation-efficient.

One of the properties of the commutation matrix [12] is

ETE =1Iyy.
Further, the definitions of G and G in (10) lead to [11]
GGy =Wy =diag([1,...,M—1,M,M—1,...,1]);

(16)

GLGy =Wy =diag([1,...,N-1,N,N—1,...,1]).
(17)
Hence, we have

(Iy@RETQIN)Iy@ERIN) = Iz
(Wi GL)O(W NG (GuRGN) = Ian-1)2n-1)-

(18)
Combining (9), (15) and (18), we have
T =((WyGy)® Wy GR))In®E" ®Iy). (19)
Hence, with T" in (19), Z can be obtained from (14) as
Z = vec '(Tvec(R,)) — 0°Q. (20)

Moreover, considering the covariance matrix at hand is the
sample covariance R, and the effect of the unknown noise term

can be igored, the estimate of Z can be approximately obtained
from (20) as

Z = vec }(Tvec(Ry)). 21

C. Angle Estimation

Note that the transformed smaller-size Z has a salient struc-
ture. Specifically,

Z = Aj(¢)R,AT(0) (22)

can be regarded as a cross-correlation matrix collected from
a virtual cross array with A}(¢), A*(0) and R, being the
two manifold matrices and signal correlation matrix. By now,
we transform the original problem of DOD and DOA esti-
mation from the covariance matrix R, for MIMO systems
to a smaller-size problem of 2D DOA estimation from the
core matrix Z also known as a cross-correlation matrix for

IEEE SIGNAL PROCESSING LETTERS, VOL. 29, 2022

TABLE I
THE COMPUTATIONAL COMPLEXITY OF DIFFERENT ALGORITHMS

Algorithm Computational Complexity Highest
Order

2D- O{LM?N?+M3N3+n’ [MN(MN-K)+ M?3N3

MUSIC MN — K[}

RD- O{LM?2N? + M3N3 + n[(M?2N + M3N3

MUSIC  M?)(NM — K) + M?]}

ESPRIT O{LM2?N? + M3N3 + 2K?(M — 1)N + M3N?3
2K2?(N —1)M + 6K3}

Proposed O{LM?N?+M?2N2+80(2M —2)3+2K3} M?2N?

an equivalent cross array [13], [14]. While the literature about
angle estimation algorithms for cross arrays is limited, in this
letter, we adopt the cross-correlation based algorithms for an
L-shaped array [15]-[21] for 2D angle estimation since their
cross-correlation matrices have similar structures. Hence, we
develop a two-step method. In the first step, we obtain the
estimate of Z from the sample covariance Ry via (21). Then, in
the second step, 2D angle estimators for L-shaped arryas can be
employed with the obtained Z for DOD and DOA estimation.
Moreover, to guarantee the proposed method has the unique
solution, we have K<2min{M, N}—2. In other words, the
largest detectable number is 2 min{ M, N} —2.

It is worth noting that with different 2D angle estimators,
the resulting two-step algorithms will generally have distinct
behaviors in terms of the estimation accuracy and computational
complexity. Specifically, with an appropriate 2D angle estimator,
e.g., the ESPRIT-like algorithm [16], the resulting redundancy
reduction based ESPRIT (RR-ESPRIT) is one of the most effi-
cient compared with traditional subspace-based methods, which
will be verified in the next section.

IV. COMPUTATIONAL COMPLEXITY

In this section, we analyze the computational complexity
of the proposed RR-ESPRIT compared with the traditional
2D-MUSIC, RD-MUSIC and ESPRIT algorithms. Note that the
transformation matrix 7" is only determined by M and N and
can be constructed offline via (19). Moreover, according to (19),
there is only one non-zero element in every column of T'. In other
words, T is a sparse matrix with only M2 N2 nonzero elements.
Hence, the transformation in (21) produces a computation load
of only O(M?N?). Other main computational costs of the
RR-ESPRIT come from the sample covariance construction and
the ESPRIT-like algorithm. The total computational complexity
of the RR-ESPRIT compared with that of the 2D-MUSIC,
RD-MUSIC and ESPRIT is listed in Table I, where n is the
number of searching steps for the spectral peak search.

From Table I, note that the first summands of all the methods
are the same, which represent the complexity of the sample
covariance construction. The second summands of the three
subspace-based methods describe the complexity of the EVD,
while that of the proposed method is the complexity of the sparse
matrix multiplication, followed by the complexity of the specific
angle retrieval algorithms. Fig. 1 presents the computational
complexity of the different algorithms versus the number of
antennas at each base station with L = 10, K =3 and n =
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Fig. 1. The computational complexity of different algorithms versus M (N =
M) with L = 10, K = 3 and n = 18000.

18000. As shown in Fig. 1, the curves of the subspace-based
methods have similar slopes with different scaling. In contrast,
the proposed method has a more gradual slope. That is because,
with the growth of M and NN, the second summands of the
computational complexity order as in Table I are O(M3N3) and
O(M?N?) for the subspace-based methods and the proposed
method respectively, which contribute the main computation.
Moreover, compared with the subspace-based methods, the pro-
posed RR-ESPRIT becomes the most efficient one when the
numbers of antennas (N = M) go large, e.g., M > 8. Hence,
given the recovered Z from (21), it is important to choose a
proper 2D angle estimator, e.g., the ESRPIT-like. The resulting
algorithm yields an efficient angle estimation method especially
with large M and/or N.

V. SIMULATION RESULTS

This section presents the numerical results to evaluate the
DOD and DOA estimation performance of the proposed method
for MIMO systems. The root mean squared error (RMSE)
is used to measure the estimation accuracy as RMSE =
7 Skt (3 2onit (B —00)> + (D0 —01)?)) 2, where M,,
0%, and ¢y ,, respectively denote the number of Monte-Carlo
trials, and the estimates of 6, and ¢y, in the n-th experiment. The
RR-ESPRIT algorithm is employed as the proposed method,
while the conventional subspace-based algorithms such as ES-
PRIT [3] and RD-MUSIC [5] as well as the CRB [6] are depicted
as benchmarks. We omit the 2D-MUSIC in simulations since
it has a similar performance as RD-MUSIC but at a higher
computational complexity [5]. As the same settings applied
in Fig. 1, the angle search step size for the RD-MUSIC is
set to 0.01°, i.e., n = 18000. In simulations, a bistatic MIMO
radar system with M = N = 14 is adopted. We also consider
there are three equal power uncorrelated targets (X = 3) located
at (¢1,01) = (100, 150), (¢2,02) = (200,250) and (¢3,93) =
(30°,35°).

First, Fig. 2 shows the RMSE of the aforementioned algo-
rithms versus the SNR with L = 10. The figure shows that the
proposed RR-ESPRIT outperforms ESPRIT and RD-MUSIC
at low SNRs, e.g., SNR < 2. This is because, with the trans-
formation in (21), the estimation error between Ry and R, is
averaged, which leads to error elimination to a certain extent.
Although the RD-MUSIC has the best estimation performance
at high SNRs, it consumes the highest computational cost from

1055

—e—Proposed
—<—RD-MUSIC
—=—ESPRIT
---CRB

0 4
SNR(dB)

Fig. 2. Angle estimation RMSE versus SNR with L = 10.
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Fig. 3. Angle estimation RMSE versus Snapshots with SNR = 0 dB.

Fig. 1. Moreover, the proposed RR-ESPRIT is the most efficient
one among these algorithms. Hence, the RR-ESPRIT is a nice
alternative to the subspace-based methods at low SNRs.
Further, the RMSE of the aforementioned algorithms versus
the number of snapshots is presented in Fig. 3. As shown in
Fig. 3, the proposed RR-ESPRIT can even work better than
the others with very few snapshots, L = 10. Moreover, the
RR-ESPRIT outperforms the ESPRIT at a small number of
snapshots, e.g., L < 110. Hence, the RR-ESPRIT is not only
more computationally efficient, but also achieves a better esti-
mation performance than other counterparts when the number
of snapshots is small. Therefore, the proposed method with
an appropriate 2D angle estimator is a nice alternative to the
traditional subspace-based methods when N and/or M go large,
especially at low SNRs and small numbers of snapshots.

VI. CONCLUSION

In this paper, an efficient DOD and DOA estimation method
is proposed for MIMO systems. Given the sample covariance
matrix, we first establish a redundancy reduction representation
to represent the large-size covariance matrix by its smaller-size
core matrix. Next, a transformation matrix that depicts the linear
mapping from the covariance to its core matrix is constructed
via several simple and sparse composition matrices. Finally,
an efficient 2D angle estimator is developed by exploiting the
salient structure of the transformed smaller-size core matrix,
which benefits from a lower computational complexity and can
achieve a better accuracy at low SNRs and small numbers of
snapshots, compared with traditional subspace-based methods.
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