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1 BACKGROUND AND CONTEXT
Some courses explicitly teach a problem-solving process [1, 2].
These processes provide sca�olding as students solve problems.
However, to understand where students get stuck in a process, we
must compare courses regardless of their problem-solving process.

2 OBJECTIVES
We present a framework to split the problem-solving process into
four phases: (1) Understand the problem, (2) create a Plan, (3) Imple-
ment the plan, and (4) verify Correctness/debug (UPIC). We applied
this framework to survey responses students provided before join-
ing an online OH queue [3] for a CS1 and intermediate data science
(DS) course. Our goal was to understand which phases students
sought help.

3 METHOD
For each OH interaction, students reported their current UPIC
phase in the pre-survey. For CS1, the question had one option per
phase using the 7-steps terminology [1], a problem-solving process
explicitly taught in that class. The DS course did not have a problem-
solving process. So the teachers used UPIC to design options to
replace an open textbox. See Table 1 for more details. For CS1, we
have four semesters of data, Fall 2020 (Fa20) to Spring 2022 (Sp22),
and three semesters for the DS, Spring 2021 (Sp21) to Sp22. We
collected all at Duke University, a medium private R1 university.
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Table 1: Pre-question options

Course UPIC Option

CS1 Understand Doing an instance of the problem (Step
1 of the 7-steps)

Plan Developing a plan to solve a problem
(Steps 3 and 4 of the 7-steps)

Implement Writing the code to solve a problem
(Step 5 of the 7-steps)

Correctness Testing my program (Step 6 of the 7-
steps)

DS Understand Understanding a problem or directions
Understand Understanding a concept from class
Plan Planning how to solve a problem be-

fore getting into the math/code details
Implement Writing the math/code details to solve

a problem
Correctness Validating/testing/debugging my solu-

tion

4 FINDINGS
For three of the CS1 semesters, students sought the most help with
implementation, see Figure 1. Correctness was usually the second
most common, while understand and plan were the lowest. For DS,
we found much greater variation, see Figure 2. For Sp21, understand
was the most common phase, while for later semesters plan was
signi�cantly the lowest reported and the rest with no signi�cant
order. We suspect this is due to having an autograder introduced in
Fa21.

5 IMPLICATIONS
The UPIC framework enables aggregating di�erent problem-solving
processes for an apples-to-apples comparison. We found that CS1
students usually seek the most help with implementation. For our
DS course, understand was the most common phase when the
course had no autograder. Once the course had an autograder, the
phase proportions are more varied, suggesting that an autograder
in�uences when in the problem-solving process students seek help.

Teachers that do not teach a problem-solving process could use
UPIC as a framework to understand where students struggle or to
create their own problem-solving process.
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Figure 1: UPIC phase distribution for CS1 (N = # interactions).

Figure 2: UPIC phase distribution for DS (N = # interactions).
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