
UPIC a Problem-Solving Framework: Understand, Plan,
Implement, and Correctness/Debugging

Sadhana Suryadevara
sadhana.suryadevara@duke.edu

Duke University
Durham, North Carolina, USA

Kristin Stephens-Martinez
ksm@cs.duke.edu
Duke University

Durham, North Carolina, USA

CCS CONCEPTS
• Social and professional topics ! CS1; Computer science
education.

KEYWORDS
o�ce hours, problem-solving process, cs1, data science

ACM Reference Format:
Sadhana Suryadevara and Kristin Stephens-Martinez. 2022. UPIC a Problem-
Solving Framework: Understand, Plan, Implement, and Correctness/Debugging.
In Proceedings of the 2022 ACM Conference on International Computing Edu-
cation Research V.2 (ICER 2022), August 7–11, 2022, Lugano and Virtual Event,
Switzerland. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/
3501709.3544286

1 BACKGROUND AND CONTEXT
Some courses explicitly teach a problem-solving process [1, 2].
These processes provide sca�olding as students solve problems.
However, to understand where students get stuck in a process, we
must compare courses regardless of their problem-solving process.

2 OBJECTIVES
We present a framework to split the problem-solving process into
four phases: (1) Understand the problem, (2) create a Plan, (3) Imple-
ment the plan, and (4) verify Correctness/debug (UPIC). We applied
this framework to survey responses students provided before join-
ing an online OH queue [3] for a CS1 and intermediate data science
(DS) course. Our goal was to understand which phases students
sought help.

3 METHOD
For each OH interaction, students reported their current UPIC
phase in the pre-survey. For CS1, the question had one option per
phase using the 7-steps terminology [1], a problem-solving process
explicitly taught in that class. The DS course did not have a problem-
solving process. So the teachers used UPIC to design options to
replace an open textbox. See Table 1 for more details. For CS1, we
have four semesters of data, Fall 2020 (Fa20) to Spring 2022 (Sp22),
and three semesters for the DS, Spring 2021 (Sp21) to Sp22. We
collected all at Duke University, a medium private R1 university.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICER 2022, August 7–11, 2022, Lugano and Virtual Event, Switzerland
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9195-5/22/08.
https://doi.org/10.1145/3501709.3544286

Table 1: Pre-question options

Course UPIC Option

CS1 Understand Doing an instance of the problem (Step
1 of the 7-steps)

Plan Developing a plan to solve a problem
(Steps 3 and 4 of the 7-steps)

Implement Writing the code to solve a problem
(Step 5 of the 7-steps)

Correctness Testing my program (Step 6 of the 7-
steps)

DS Understand Understanding a problem or directions
Understand Understanding a concept from class
Plan Planning how to solve a problem be-

fore getting into the math/code details
Implement Writing the math/code details to solve

a problem
Correctness Validating/testing/debugging my solu-

tion

4 FINDINGS
For three of the CS1 semesters, students sought the most help with
implementation, see Figure 1. Correctness was usually the second
most common, while understand and plan were the lowest. For DS,
we found much greater variation, see Figure 2. For Sp21, understand
was the most common phase, while for later semesters plan was
signi�cantly the lowest reported and the rest with no signi�cant
order. We suspect this is due to having an autograder introduced in
Fa21.

5 IMPLICATIONS
The UPIC framework enables aggregating di�erent problem-solving
processes for an apples-to-apples comparison. We found that CS1
students usually seek the most help with implementation. For our
DS course, understand was the most common phase when the
course had no autograder. Once the course had an autograder, the
phase proportions are more varied, suggesting that an autograder
in�uences when in the problem-solving process students seek help.

Teachers that do not teach a problem-solving process could use
UPIC as a framework to understand where students struggle or to
create their own problem-solving process.

ACKNOWLEDGMENTS
We thank Brandon Fain and the support of the National Science
Foundation grant #1934965.

https://doi.org/10.1145/3501709.3544286
https://doi.org/10.1145/3501709.3544286
https://doi.org/10.1145/3501709.3544286


ICER 2022, August 7–11, 2022, Lugano and Virtual Event, Switzerland Sadhana Suryadevara and Kristin Stephens-Martinez

Figure 1: UPIC phase distribution for CS1 (N = # interactions).

Figure 2: UPIC phase distribution for DS (N = # interactions).

REFERENCES
[1] Andrew D. Hilton, Genevieve M. Lipp, and Susan H. Rodger. 2019. Translation

from Problem to Code in Seven Steps. In Proceedings of the ACM Conference on
Global Computing Education (Chengdu,Sichuan, China) (CompEd ’19). Association
for Computing Machinery, New York, NY, USA, 78–84. https://doi.org/10.1145/
3300115.3309508

[2] Yanyan Ren, Shriram Krishnamurthi, and Kathi Fisler. 2019. What Help Do
Students Seek in TA O�ce Hours?. In Proceedings of the 2019 ACM Conference

on International Computing Education Research (Toronto ON, Canada) (ICER ’19).
Association for Computing Machinery, New York, NY, USA, 41–49. https://doi.
org/10.1145/3291279.3339418

[3] Aaron J. Smith, Kristy Elizabeth Boyer, Je�rey Forbes, Sarah Heckman, and Ketan
Mayer-Patel. 2017. My Digital Hand: A Tool for Scaling Up One-to-One Peer
Teaching in Support of Computer Science Learning. In Proceedings of the 2017 ACM
SIGCSE Technical Symposium on Computer Science Education (Seattle, Washington,
USA) (SIGCSE ’17). Association for Computing Machinery, New York, NY, USA,
549–554. https://doi.org/10.1145/3017680.3017800

https://doi.org/10.1145/3300115.3309508
https://doi.org/10.1145/3300115.3309508
https://doi.org/10.1145/3291279.3339418
https://doi.org/10.1145/3291279.3339418
https://doi.org/10.1145/3017680.3017800

	1 Background and Context
	2 Objectives
	3 Method
	4 Findings
	5 Implications
	Acknowledgments
	References

