
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2022 1

Deep Reinforcement Learning Control
of a Boiling Water Reactor

Xiangyi Chen and Asok Ray Fellow, IEEE

Abstract—This paper presents (nonlinear) control system syn-
thesis for a boiling water reactor (BWR) by using artificial intel-
ligence (AI)-based reinforcement learning (RL), where the perti-
nent algorithm is Deep Deterministic Policy Gradient (DDPG).
The BWR model, used in this paper, exhibits limit cycling
and/or chaotic behavior in different regions of operation. The
performance of the RL control system is compared with that
of a control system synthesized by the standard H∞ theory.
The results of comparison show that the RL control system
outperforms the H∞ control system for disturbance rejection,
stability under perturbation, and set-point tracking in a majority
of the test cases.

Index Terms—BWR control, Reinforcement learning, Deep
Deterministic Policy Gradient

NOMENCLATURE

a agent action (scalar-valued in this work)
aLB lower bound of the action space
aUB upper bound of the action space
ai agent action at step i (e.g., i = t, t+ 1)
a′ agent action value generated by a policy de-

pending on the environment state s′

ãt agent action with additive noise at step t
At agent action random variable at step t
A action space of a MDP
B minibatch of interactions experiencing
c excess delayed neutron precursor concentra-

tion, normalized to steady-state neutron density
C neutron precursor concentration
D coefficient of the Doppler effect of fuel tem-

perature
gm gain factor of CRDS servomotor
Gt return of the rest of an episode after step t
Gm CRDS servomotor transfer function
Gn NPMS fission chamber transfer function
kf position feedback gain of CRDS
kn gain factor of NPMS fission chamber
km reactivity gain factor of CRDS position
K size of a minibatch of interaction experiences
L number of tests per policy evaluation
M total number of episodes used in agent training
n excess neutron density, normalized to steady-

state neutron density
N neutron density

Xiangyi Chen, is with the Department of Nuclear Engineering, Pennsylvania
State University, University Park, 16802 PA, USA (e-mail: xxc90@psu.edu).

Asok Ray is with the Departments of Mechanical Engineering, Nuclear
Engineering, and Mathematics, Pennsylvania State University, University
Park, 16802 PA, USA (e-mail: axr2@psu.edu).

nref set-point of excess neutron density
P environment dynamics of a MDP
q value of a state-action pair
q̂ approximated value of a state-action pair (s, a)
q̂′ approximated value of a state-action pair

(s′, a′)
qπ value function of a state-action pair under

policy π
r reward value generated by an environment
ri reward value generated by an environment at

step i, (e.g., i = t, t+ 1)
R replay buffer
Ri reward random variable at step i (e.g., i =

t, t+ 1)
Ra

t+1 reward random variable component of mini-
mizing control rod movement at step t+ 1

Rc
t+1 reward random variable component of explo-

ration restriction at step t+ 1
Rd

t+1 reward random variable component of differ-
ence between the neutron density and set-point
at step t+ 1

R reward space of a MDP
s nine-dimensional state vector: s1, s2, . . . , s9

and also (scalar) Laplace transform variable
si environment state value at step i
s′ environment state after one-step state transition
St environment state random variable at step t
St+1 environment state random variable at step t+1
S state space of a MDP
t continuous time in Eqs. (1) to (5), (8) to (10);

when t is a subscript, it is a discrete-time step
T total number of interactions per episode
Te excess fuel temperature
u control command
w parameter set for a value neural network
w− parameter set for a target value neural network
wa weight of a reward component for minimizing

the control rod movement
wd weight of the reward component of a difference

between the neutron density and the set-point
W constraint penalty
x internal state of NPMS fission chamber
y readout of NPMS fission chamber
yi readout of NPMS fission chamber at step i

(e.g., i = t, t+ 1)
z control rod position
żi control rod speed at step i (e.g., i = t, t+ 1)
α1 learning rate for a value neural network

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2022 2

α2 learning rate for a policy neural network
β delayed neutron precursors fraction
γ discount rate
δ temporal difference error
θ set of parameters of a policy neural network
θ− parameter set of a target policy neural network
κi coefficients in March-Leuba BWR model (i =

1, 2, 3, 4)
λ decay constant for delayed neutron precursors
Λ neutron generation time
µ ratio of ξ and ξ0
ξ coefficient related to the void reactivity and

heat transfer in March-Leuba BWR model
ξ0 critical value of ξ for BWR instability
π policy in an agent
π∗ set of optimal policies
ρ excess overall reactivity
ρα excess void reactivity feedback
ρu excess reactivity inserted by control rod
σ standard deviation of action Gaussian noise
τ soft update ratio for target neural networks
τm time constant of CRDS
τn time constant of NPMS fission chamber

ACRONYMS

AI artificial intelligence
A3C asynchronous advantage actor critic
BWR boiling water reactor
CRDS control rod drive system
DDPG deep deterministic policy gradient
ILC iterative learning control
NPP nuclear power plant
MDP Markov decision process
MLP multi-layer perceptron
MPC model predictive control
NPMS neutron power measurement system
OC optimal control
PID proportional-integral-derivative
POMDP partially observable Markov decision process
RL reinforcement learning
RLC reinforcement learning control
RNN recurrent neural network
SAC soft actor critic
TD temporal difference

I. INTRODUCTION

The boiling water reactor (BWR) nuclear plants are often
subjected to large nonlinearities especially when the reactor
power is high and the coolant flow rate is low [1]. The plant
and its controller together could behave as a non-dissipative
system, where large power oscillations may occur. It is pos-
sible to encounter instability events occurring in BWR power
plants [2], which suggests that the conventional proportional-
integral-derivative (PID) controllers are not suitable for BWR
control in highly nonlinear regions. To circumvent this in-
stability problem, numerous controller design methods have
been investigated; examples are H∞ control [3], fuzzy logic

control [4], and adaptive predictive control [5], to name a few.
All these methods have the potential to be used for synthesis
of reactor control systems to accommodate the instability
challenge.

In recent years, RL and artificial intelligence (AI) have
attracted the attention of both researchers and practitioners
for controller design. Investigations in some engineering ap-
plications show that a controller synthesized by RL may
often exhibit better performance than those synthesized by
conventional methods. For example, in smart robotics, RL has
shown considerable performance improvement compared to
proportional-integral-derivative (PID), model predictive con-
trol (MPC), and iterative learning control (ILC) [6].

Research in RL is a vast area in which AI, control the-
ory, and other disciplines have contributed. In early stages,
applications of RL in AI and optimal control (OC) have
been studied separately where, in the OC area, RL is also
commonly called approximate dynamic programming. From
the control-theoretic perspectives, research in RL can be clas-
sified as policy iteration, value iteration and actor-critic that
are usually online and on-policy methods; the value function
not only provides the optimal policy but also is a Lyapunov
function [7] that establishes the global asymptotic closed-
loop stability [8]. While RL using AI is being developed,
more innovative methods have used deep neural networks as
function approximators; and many algorithms are off-policy
methods which use experience replay for sampling efficiency.
The problems solved by AI-based RL algorithms are usually
discount problems that the control policies are trained to
maximize the cumulative discounted return. The benefit of
using discounted return is that the algorithm convergence is
guaranteed; however, the value function is not a Lyapunov
function anymore; therefore, the stability is not guaranteed [9].
For controller design, the closed-loop stability is the foremost
consideration. Thus, the closed-loop stability is encoded in the
reward function as a performance index, which the AI-based
RL control policy is trained to maximize. The two branches,
AI and OC, of the RL discipline are also merging, as reported
by Bertsekas [10].

In the nuclear engineering community, the theory of RL
has been explored for a few applications; apparently, the
first application is on autonomous control. The algorithms of
deep Q-learning and Asynchronous Advantage Actor Critic
(A3C) have been studied to replace the human operators for
the tasks of heating-up and power-increase in nuclear power
plants [11], [12]; the algorithm of Soft-Actor Critic (SAC)
has also been proposed to manage emergency situations in
nuclear power plants [13]. The above-mentioned algorithms
(i.e., deep Q-learning, A3C and SAC) are based on the AI
concepts. The second application by Zhong et al. [14] is on
optimal control, which uses the RL concept for controller
synthesis, where an iteration-based integral RL algorithm is
proposed for reactor power tracking control. In this work,
the cost function and the control policy are approximated by
high-order polynomials. In another work reported by Dong et
al. [15], a multi-layer perception (MLP)-based RL controller
is proposed for optimizing the thermal power response of
the nuclear steam supply system by generating the optimal

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2022 3

set-points. In this work, an MLP-based state-observer is
used for system identification and an approximated optimal
control is obtained by solving the algebraic Riccati equation.
Both RL algorithms in [14], [15] belong to the class of
control-theoretic methods. The third application is on an
optimization problem of system design [16] which is not
related to plant control.

Apparently the application of RL using the state-of-the-art
AI tools has not yet been investigated to synthesize a controller
for direct reactivity control. Possible reasons are that the
analysis and synthesis of such control systems are much more
involved than those of the existing methodologies such as
H∞ control [3]. In addition, there are many hyperparameters
of the AI-based RL, which may need to be tuned, and a
systematic way to determine the hyperparameters is yet to be
developed. Nevertheless a combination of RL-based control
and the state-of-the-art AI has a potential of yielding superior
dynamic performance, which will be investigated in this
paper, as succinctly discussed below.

In the current paper, the concept of Deep Deterministic
Policy Gradient (DDPG) [17], [18] is applied to synthesize
a BWR control system for reactivity control; the DDPG is
an online and off-policy method. The synthesis algorithm
is model-free and is capable of accommodating system
uncertainties; therefore, the algorithm is suitable for both
linear and nonlinear regions of the reactor system. This work
serves as an initial research for AI-based RL control of
process variables.

The current paper compares the above RL control system
with a H∞ control system [3]. This comparison is made in
standard ways with respect to various system parameters, e.g.,
by quantifying the performances of: (1) set-point tracking
with a step change in the set-point, and (2) disturbance
rejection with a step reactivity injection. Beyond that, since
the reactor parameters in real-life plants are not static,
the transient operations (caused by either set-point step
change or set-point ramping) are simulated with system
perturbation. These analyses provide an empirical assessment
of robustness of the controllers under consideration and
test their closed-loop system stability; however, there could
be situations, under which the controller may suffer from
loss of performance. Nevertheless, these initial assessments
suggest a positive potential of RL control using an AI
approach, which should draw the attention of the nuclear
engineering community for further investigation to have a
deeper understanding of both system performance & stability
and devise proper methods to enhance the interpretability &
predictability of the control system using deep neural network.

This paper is organized in four sections including the
present section. Section II presents the BWR model of March-
Leuba [19] and its dynamic characteristics as well as the
neutronic power measurement and control rod drive systems
developed by Suzuki et al. [3]. Section III focuses on the
synthesis of RL control and also the performance comparison

between the RL control and H∞ control. The paper is sum-
marized and concluded in Section IV along with suggested
topics of future research.

II. THE NONLINEAR DYNAMICAL SYSTEM OF BWR

This section presents a dynamic model of BWR and a model
of the neutronic power measurement and control rod-drive
systems, on which both RL and H∞ control laws have been
synthesized.

A. The BWR Nuclear Plant model

The BWR model, developed by March-Leuba [19], [20],
has been used by many researchers for instability analysis. The
point-kinetics equations, containing the excess neutron density,
n(t), normalized to the steady-state neutron density, and the
one-group excess delayed neutron precursor concentration,
c(t), also normalized to the steady-state neutron density, are

dn(t)

dt
=

ρ(t)− β

Λ
n(t) + λc(t) +

ρ(t)

Λ
, (1)

dc(t)

dt
=

β

Λ
n(t)− λc(t), (2)

where n(t) and c(t) are defined as: n(t) ≜ N(t)−N |ss
N |ss and

c(t) ≜ C(t)−C|ss
N |ss respectively, and |ss means at a steady state.

The excess fuel temperature, defined as Te(t) ≜ Te(t)−Te|ss,
is calculated as

dTe(t)

dt
= κ1n(t)− κ2Te(t). (3)

The excess void reactivity feedback, defined as ρα(t) ≜
ρα(t)− ρα|ss, is modeled as

d2ρα(t)

dt2
+ κ3

dρα(t)

dt
+ κ4ρα(t) = ξ Te(t) (4)

The excess overall reactivity feedback is the sum of the
feedback of excess void reactivity and fuel temperature,

ρ(t) = ρα(t) +DTe(t). (5)

where the parameter D represents the Doppler effect of fuel
temperature. The pertinent BWR model parameters are listed
in Table I, which have been evaluated by functionally fitting
the transfer function of the stability test 7N of Vermont Yankee
reactor [19].

It is seen from Eq. (1) that the nonlinearity is introduced
through the term ρ(t)n(t), where the reactivity ρ(t) depends
on n(t). The parameter ξ, which is related to the void
reactivity and heat transfer coefficients, determines the reactor
stability. At different values of ξ, compared to its critical value
ξ0 = −3.7 × 10−3, the system evolves from a stable fixed
point to stable limit cycles, and then to chaos [19]. To see
the transitions to various dynamical behaviors, the bifurcation
diagram [21], [22] of extrema of n(t) at various values of the
parameter µ ≜ ξ/ξ0 is plotted in Figure 1. The bifurcation
diagram is plotted with 1,400 different values of µ, uniformly
distributed from 0.9 to 2.3. The asymptotic behavior of the
extrema is simulated for 1,000 s with a step size of 0.001 s for
each µ by using the 4th order Runge-Kutta integration method.

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2022 4

TABLE I: BWR model parameters [19]

Parameters Values Dimensions
κ1 25.04 K · s−1

κ2 0.23 s−1

κ3 2.25 s−1

κ4 6.82 s−2

ξ0 −3.70× 10−3 K−1 · s−2

D −2.52× 10−5 K−1

β 5.6× 10−3 dimensionless
Λ 4.0× 10−5 s−1

λ 0.08 s−1

During the simulation, the initial value of n is set to 0.1 while
other state variables are set to 0. The second half (i.e., 500 -
1,000 s) of the trajectory for each µ value is retained, which
reflects the asymptotic behavior of the dynamical system; the
first half (i.e., 0 - 500 s) of the trajectory for each µ value
is discarded because the transients generated during this time
interval are due to the (spurious) initial conditions. The points
in the trajectory that are greater or smaller than both its last and
next time step neighbouring points are recorded as extrema.
It is seen from Figure 1 that the system attains a stable fixed
point if µ ≤ 1. When 1 < µ ≲ 1.65, limit cycles are formed
through pitchfork bifurcations. When µ ≳ 1.65, (possible)
chaotic behavior is observed.

Fig. 1: Bifurcation diagram of extrema of n(t)

B. Neutronic power measurement & control rod drive systems
As an extension of the BWR model presented in Subsec-

tion II-A, models of the neutronic power measurement system
(NPMS) and the control rod drive system (CRDS) developed
by Suzuki et al. [3] are used for feedback control. The
servomotor of the CRDS is modeled as an integral element:

Gm(s) =
gm
s
, (6)

where the constant gm is assumed to be 0.4.
The first-order lag model is used to represent the dynamics

of the fission chamber and instrumentation electronic circuit:

Gn(s) =
kn

τns+ 1
, (7)

where the gain kn is assumed to be 1.0, and the time constant
τn is assumed to be 0.1 s.

The above models of NPMS and CRDS are represented in
the state-space setting, where all state variables are scalars, as

dx(t)

dt
=

n(t)− x(t)

τn
, y(t) = knx(t), (8)

dz(t)

dt
=

u(t)− z(t)

τm
, ρu(t) = kmz(t), (9)

where x(t) represents the internal signal of the fission chamber
and instrumentation electronic circuit;
y(t) is the readout value of the fission chamber and instrumen-
tation electronic circuit such that y(t) represents the measured
excess neutron density which is derived from the measured
neutron flux and its reference steady-state value;
z(t) is the control rod position;
u(t) is the control command (i.e., the desired position); and
ρu(t) is the reactivity inserted by the control rod which is
proportional to the control rod position.

It is assumed that the position feedback gain, kf , of the
CRDS is 2.5, then the parameters km = 1

kf
= 0.4 and τm =

1
gmkf

= 1. A more detailed description of NPMS and CRDS
is given by Suzuki et al. [3].

With the control rod reactivity compensation, the total
reactivity in Eq. (5) becomes:

ρ(t) = ρα(t) +DTe(t) + ρu(t). (10)

III. CONTROL SYSTEM SYNTHESIS

This section discusses certain aspects of BWR control
system synthesis based on an artificial intelligence (AI)-based
reinforcement learning (RL) algorithm, called deep determin-
istic policy gradient (DDPG) [17], as well as the performance
comparison between the RL and H∞ control systems.

A. Reinforcement learning and optimal control

This subsection presents the basic concepts of the RL and
these concepts are used in the construction of the DDPG
algorithm; a comprehensive introduction to the RL can be
found in Sutton & Barto [23]. In general, the RL scheme
is used to select optimal or suboptimal actions (e.g., control
commands) via interactions between the agent (i.e., controller)
and the environment (i.e., plant) to circumvent the additional
task of system identification implicitly, and RL control has
the system uncertainty accountable. The framework of the
interaction between the agent and the environment is modeled
as a Markov decision process (MDP) [24] as defined below.

Definition 1 (Markov decision process). A Markov decision
process (MDP) is a quadruple (S,A,R,P), where:

• S is a set of states called the state space
• A is a set of actions called the action space
• R is a set of rewards called reward space
• P : S ×R× S ×A → [0, 1] for discrete S,A,R, or
→ [0,+∞) for continuous S,A,R; and
P(s′, r|s, a) is called the environment dynamics, which
defines the conditional probability, P(St+1 = s′, Rt+1 =
r|St = s,At = a), of state and reward values given the
immediately preceding state and action

In Definition 1 as well as in the following contexts, the
subscript, t, is time step index instead of time in seconds.
Based on Definition 1, the state-transition probability, the
reward generating probability conditioned on a state-action
pair and the expected reward for a state-action pair can be
derived. In the following, these functions are defined for the
case of discrete random variables, which can be modified to

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2022 5

the case of continuous random variables. The state-transition
probability is defined as

p(s′|s, a) :=P(St+1 = s′|St = s,At = a)

=
∑
r∈R
P(s′, r|s, a). (11)

The reward generating probability, given the previous state
and action, is defined as

p(r|s, a) :=P(Rt+1 = r|St = s,At = a)

=
∑
s′∈S
P(s′, r|s, a). (12)

The expected reward for a state-action pair is defined as

r(s, a) :=E[Rt+1|St = s,At = a]

=
∑
r∈R

rp(r|s, a). (13)

The state-transition probability, under the state St = s and
an action At = a, determines what is the probability to reach
the next state St+1 = s′. The expected reward for state-action
pair is a function mapping the current state St = s and the
chosen action At = a to the expectation value of the reward to
be obtained. Note that the reward is obtained simultaneously
as the next state has been generated.

The agent uses the state, St, from the environment to de-
termine its action, At, via a function called policy. The policy
maps the state to a deterministic action or a stochastic action
drawn from a probability distribution of actions. Once the
action, At, is applied to the environment, the state, St, of the
environment transits to a new state St+1 and simultaneously
a reward, Rt+1, is generated.

The environment dynamics, P , is the rule to generate the
new state according to Eq. (11) and the reward according
to Eq. (12). The cumulative reward obtained, starting from
current step t through an episode of the agent and environment
interactions, is called return, Gt, defined as

Gt := Rt+1 +Rt+2 + · · ·+RT , (14)

where T is total number of interactions per episode that starts
at t = 0. For AI-based RL algorithms, an augmented return is
more commonly used instead of Eq. (14) for both continuing
(infinite horizon) tasks and episodic (finite time horizon per
episode) tasks:

Gt = Rt+1 + γRt+2 + · · ·+ γT−t−1RT =
T∑

k=t+1

γk−t−1Rk,

(15)
where T is allowed to be a positive integer or ∞; when T is
a positive integer, γ ∈ [0, 1] and when T is ∞, γ ∈ [0, 1);
Eq. (15) is called discounted return, and γ is called discount
rate. For continuing tasks, the reward space needs to be
bounded for guaranteed boundness of the return.

An optimal policy rules the actions that maximize the
expected return in each step. The value function maps the state-
action pair to the expectation value of the return, Gt, averaged
over all possible future transitions for the given current state

and action. The value function of a state-action pair under a
policy, π, is defined as:

qπ(s, a) := Eπ[Gt|St = s,At = a], (16)

The set of optimal policies in a policy space is expressed as:

π∗ = {π|qπ(s, a) ≥ qπ′(s, a) for all π′ and s ∈ S, a ∈ A}.
(17)

The task of a reinforcement learning algorithm is to find one
of the optimal (or suboptimal) policies. In the next section,
the DDPG algorithm is presented which is used to search the
(sub)optimal policy in this paper.

B. Deep deterministic policy gradient algorithm

This subsection presents the principles of the deep deter-
ministic policy gradient (DDPG) algorithm [17], [18], and the
associated pseudo-code is given in Subsection III-E.

The DDPG algorithm, used in this paper, deals with
continuous-action and continuous-space control problems. It
is an actor-critic method of reinforcement learning, which
consists of a policy function parameterized by a neural net-
work (actor) and a value function parameterized by another
neural network (critic). The actor observes the system state
and sends the action to the system as a command signal. The
critic receives the action generated by the actor and the system
state to evaluate the action so as to guide the actor to generate
a (possibly) better action with the given state. The actor is
denoted by a = π(s;θ), where a is the output action, s is the
observed state, and θ is the set of parameters of the neural
network. The critic, q(s, a;w), with the set of parameters
w, takes a and s as inputs and predicts the goodness of
the action based on the observed state. The goodness is the
value defined in Eq. (16), the higher the better. The actor and
critic are improved (via updating the parameters θ and w)
simultaneously during the interactions with the environment.
In general, the actor can generate better actions, and the critic
can give more precise evaluation of the actions.

A single interaction with the environment in the MDP setup
is a quadruple (st, at, rt+1, st+1), where st and at are the
observed state and action made at time step t; rt+1 and st+1

are the reward and the observed state at the time step t+1 after
the internal state transition in the environment is completed.
After each interaction, two important operations are conducted
by the agent as presented in the following two paragraphs.

The first operation is to push the newly generated quadruple
to a database called replay buffer. When pushing a quadruple
into the replay buffer, the time step index t is disregarded;
thus, the instant of a quadruple is denoted as (s, a, r, s′).

The second operation is to pull an arbitrarily selected
minibatch B of quadruples, {(s, a, r, s′)j}Kj=1, from the re-
play buffer to train the actor and critic. For each pulled
quadruple (s, a, r, s′), the critic predicts the value for (s, a):
q̂ = q(s, a;w), while the actor generates the action for s′:
a′ = π(s′;θ) and then the critic makes value prediction
for (s′, a′): q̂′ = q(s′, a′;w). With the results of the above
calculations, a temporal difference (TD) error δ = q̂−(r+γq̂′)
is obtained which quantifies the prediction accuracy of the

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2022 6

critic. In the TD error, the TD target (r+γq̂′) is a guess of the
true value for (s, a) that is assumed to be more accurate than
q̂ because it is one step closer to the true value by involving
the ground truth of r. So the critic is encouraged to make
predictions closer to the TD target to reduce the TD error.
This update is achieved by an one-step gradient descent (or
any other optimizer) with respect to the mean square TD error
as

w ← w − α1∇w
1

|B|
∑

(s,a,r,s′)∈B

δ2(s, a, r, s′;θ,w), (18)

where α1 is the respective learning rate. The actor should
also be updated during the training to generate better actions.
Since the objective of the agent is to maximize the expected
return which is estimated by the critic, the actor should be
updated to generate the actions evaluated by the critic with
higher values. Conducting this update means that the actor
exploits the evaluation of the critic no matter whether the
critic is correct or not. This update is achieved by an one-
step gradient ascent (or any other optimizer),

θ ← θ + α2∇θ
1

|B|
∑
s∈B

q(s, π(s;θ);w), (19)

where α2 is the respective learning rate.
It is assumed that the value function can converge during

iterations and the converged value function has bounded
global maximum; otherwise, the problem cannot be solved
by reinforcement learning. The above training process can be
summarized as follows:

Given the current actor, the critic is updated to predict
more accurate values through learning from TD errors,
while the actor is updated so that the current critic can
provide a higher evaluation of the actor. While the update
of the actor may alter the TD error because a′ is updated
along with the actor update even though s could be the
same; in this case, the critic needs to learn the new
accurate prediction. The driving force behind the above
iterations to train an optimal policy is the ground truth r,
distributed in the state-action space.

One assumption made above in the TD error is that the TD
target (r + γq̂′) is a better estimate than q̂. This manner of
learning a guess from a guess is called bootstrapping [23],
which may suffer from bias and instability. The problem can
be partially resolved by using a different neural network to
evaluate q′ so that the target values are constrained to change
slowly during iteration [17]. These neural networks are called
target actor and target critic because they are designed to
generate the TD target (r + γq̂′) by evaluating q′. The target
actor and target critic, denoted by π(s;θ−) and q(s, a;w−),
have the same structure as the actor and critic but have
different values of the parameters. In each training step, the
parameters of the target actor and target critic are soft-copied
from the actor and critic as

w− ← τw + (1− τ)w−, (20)
θ− ← τθ + (1− τ)θ−, (21)

where the τ ∈ (0, 1] is a weight that is assigned with a small
value to have the target values change slowly during iterations.

It is seen that the target actor and target critic depend on the
actor and critic. Therefore, this method cannot resolve the bias
problem completely. In practice, the target neural networks
are widely used, and show good improvement for the training
process. With the target neural networks, the following TD
error is used:

δ = q(s, a;w)− (r + γq(s′, π(s′;θ−);w−)). (22)

C. Exploration and exploitation

To train the neural networks with better generalization,
the state-action space needs to be explored. In other words,
the replay buffer should contain a variety of experiences
evenly distributed in the state-action space so that a (possible)
overfitting can be avoided. However, exploitation can make
the learning process faster, where the rich experience around
(sub)optimal trajectories often helps the agent to produce
better actions when it is on a correct track. To this end, during
training, Gaussian noise is added to the actions while the
agent interacts with the environment for a trade-off between
exploration and exploitation:

ãt = π(st) + noise (23)

where noise ∼ N (0, σ2). Since the actuator has operation
limitation, the actual action should be limited. Thus the action
is clipped by its higher and lower values as:

ãt = clip(π(st) + noise, aLB , aUB), (24)

where aLB and aUB are the lower bound and upper bound of
the action space, respectively; the function, clip, clips π(st)+
noise according to the lower bound and upper bound.

D. Closed-loop stability of RL-controlled BWR systems

Global stability of nonlinear uncertain dynamical systems,
such as the BWR, is critical for ensuring plant safety and
reliable performance. Analytical tools like Lyapunov second
method (e.g., see [7], [15]) provide a sufficient (and hence
possibly conservative) condition for stability. In other words,
ensuring Lyapunov-based global stability of the BWR system
may compromise its dynamic performance. Such a globally
stable system, of which the strongest case is globally expo-
nential stability, may fail to yield superior performance of the
RLC-based closed-loop systems in comparison to the existing
BWR controllers that are designed by other established control
synthesis techniques such as H∞. A popular and feasible
option is testing of local stability at several operating points
of interest, which does not examine the stability at other
(potentially unstable) points of operation; nevertheless, like
simulation, this approach may be capable of only identifying
some of the potential sources of instability.

The above discussion evinces the fact that stability analysis
of RLC-based BWR systems is indeed a very challenging
task that needs a thorough analytical and experimental in-
vestigation. This issue of stability analysis of RLC-based
BWR systems is suggested as a topic of future research in
Section IV.

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2022 7

E. The pseudo-code of Deep Deterministic Policy Gradient

Based on the principles of Deep Deterministic Policy Gradi-
ent (DDPG) discussed in the Subsections III-B and III-C, the
DDPG algorithm is summarized as a pseudo-code presented in
Algorithm 1. It is noted that the Adam optimizer [25], instead
of the gradient descent and gradient ascent, is used in this
paper; however, in the pseudo-code, the optimizer gradient
descent and gradient ascent are mentioned for the purpose of
illustration only. The policy evaluation is made according to
Algorithm 2, which is used only for convergence monitoring
in the traning process, and it is not involved in the policy
iteration process.

In the pseudo-codes, at time step t, when at is sent to
the environment, the environment returns (st+1, rt+1) after
an internal state transition. The agent action (i.e., control
command), at, is the desired position of the control rod (i.e.,
u in Eq. (9)). The environment internal state transition is
conducted via Runge-Kutta integration of the reactor model
depicted by Eqs. (1) to (4) and Eqs. (8) to (10). The step
size of the Runge-Kutta integration is 0.001 sec and 10 steps
of integration are conducted per state transition. Thus, the
interval of a state transition is 0.01 sec. After the integration is
complete, the updated & observable states are calculated and
are returned as (st+1, rt+1). The synthesis procedure of the
observable states and the return function is presented in the
next two subsections.

F. Identification of observable states

An environment needs to be created for the agent to interact
with. To this end, three basic components in the environment
need to be identified: (i) the environment dynamics; (ii) the
observable states; and (iii) the reward function. The identifi-
cation of the environment dynamics is straight forward in this
paper, which is created by combining the dynamical systems
of the BWR, NPMS and CRDS presented in Section II. The
remaining tasks are to identify the observable states and to
construct the reward function so that the agent can receive the
state and the reward during interactions with the environment.
In this subsection, the observable states are identified, while
the reward function is constructed in the next subsection.

In the setting of BWR control, if only the measured ex-
cess neutron density, y, from neutronic power measurement
system is used as an observed state for the RL agent, then
the current operational condition of the reactor may not be
adequately represented. For example, two different transition
scenarios could have the same yt value at time step t, and
therefore the same action could be taken at time step t;
however, at time step t + 1, the next state, st+1, and the
next reward, rt+1, in those two scenarios could be totally
different. This is due to the fact that the internal states of
the environment for these two scenarios are not necessarily
the same, even though the observed states are the same
(e.g., Tes are different but ys are the same). This kind of
Markov decision process (MDP) problems is called partially
observable Markov decision process (POMDP). To resolve the
inherent difficulties of state representation in POMDP, various
methods have been devised. Examples are: (i) usage of the
recurrent neural network (RNN) [26]; or (ii) simply having

Algorithm 1: Deep Deterministic Policy Gradient
(DDPG)
Randomly initialize policy and value neural networks
parameters, θ,w;

Create target policy and target value neural networks
and conduct the parameters hard copy:
θ−← θ; w− ← w;

Create empty replay buffer R;
for episode← 1 to M do

Initialize environment with random set-point nref

& system parameter µ and observe initial state of
the environment, s1;

for t← 1 to T do
Select action:
at = clip(π(st|θ) + noise, aLB , aUB);

Send at to environment, and receive
(st+1, rt+1);

Store the quad (st, at, rt+1, st+1) in R;
Randomly sample a minibatch of K quads in
R: B = {(s, a, r, s′)j}Kj=1;

Calculate TD error for each selected quad:
δ = q(s, a;w)− (r + γq(s′, π(s′;θ−);w−));

Update w by minimizing the TD errors (e.g.,
using one-step gradient descent):
w ← w − α1∇w

1
|B|

∑
(s,a,r,s′)∈B δ2;

Update θ by maximizing the value network
output (e.g., using one-step gradient ascent):
θ ← θ + α2∇θ

1
|B|

∑
s∈B q(s, π(s;θ);w);

Update w− and θ−:
w− ← τw + (1− τ)w−,
θ− ← τθ + (1− τ)θ−

end
Conduct policy (θ) evaluation according to
Algorithm 2 for training convergence monitoring

end

Algorithm 2: Policy evaluation

Create empty list Rts for recording returns;
for test← 1 to L do

Initialize the return Rt← 0;
Initialize environment with random set-point nref

& system parameter µ and observe initial state of
the environment, s1;

for t← 1 to T do
Select action: at = clip(π(st|θ), aLB , aUB);
Send at to environment, and receive
(st+1, rt+1);
Rt← Rt+ rt+1

end
Store Rt in Rts;

end
Calculate average return: Rtave ← sum(Rts)

L

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2022 8

a vector of consecutive time steps of observed states (e.g.,
(yt, yt−1, · · · , yt−k+1), where k is the length of the vector)
to enhance the information provided to the agent to make
decisions [27]. The first example needs longer time to train
the recurrent layers; and the hyper-parameters of the recurrent
neural network need to be tuned carefully, and this is compu-
tationally expensive. For the second example, a large number
of consecutive observed states are required to circumvent the
problem of under-representation of the environment internal
states, which not only increases the number of parameters in
the neural network, but also requires careful tuning of the
length of the vector of the consecutive observed states. In this
paper, the observable states at time step t are selected to be a
9-element vector s that does not involve recurrent layers and
use only short-length consecutive observed states. The vector
s = [s1, s2, s3, s4, s5, s6, s7, s8, s9] consists of:

• s1 = nref , reference value (set-point);
• s2 = yt, measured value at time step t;
• s3 = at−1, action at time step t− 1;
• s4 = nref − yt, difference between the reference value

and the measured value at time step t;
• s5 =

∑t
i=0(n

ref−yt), accumulated error from beginning
to time step t, which is analogous to the integral;

• s6 = yt−yt−1, first-order difference, which is analogous
to the derivative;

• s7 = yt − 2yt−1 + yt−2, second-order difference, which
is analogous to the second derivative;

• s8 = yt − yt−2, difference between measured value at
time step t and measured value at time step t− 2;

• s9 = yt − yt−3, difference between measured value at
time step t and measured value at time step t− 3.

The selection of this 9-element vector is intuitive and the
rationale is explained as follows. The component s1 is a
specification of the target, where the system should be sta-
bilized. The component s2 is the measured value from the
neutronic power measurement system. Thus, via s1 and s2,
the agent is informed of the reactor power target and the
current measured power that carry the key information for
controlling the reactor. The component s3 is the control
command sent by the agent at the last time step, which can
help the agent to generalize good actions on the cause-and-
effect basis. The components s4, s5, and s6 correspond to
the elements of proportional, integral, and derivative terms
in a PID controller; even if the policy is fitted into a static
linear model of s4, s5, s6, the RL controller should be tuned
as a (sub)optimal PID controller. The component s7 provides
augmented information on the trend of the change of the
measurement. The components s8, and s9 (along with s4)
inform the agent of the recent three steps of the trajectory in
the form of relative values. These relative values are widely
used in deep learning that can make the data stationary, which
reduces the burden of generalization. The number of steps
are chosen as three by trial-and-error through checking the
convergence of the training. Compared to the training of
recurrent layers for generalizing the observed states, the 9-
element vector can be obtained directly without training. In
contrast to only using a long vector of the measured values,

the PID elements used for observation of states provide a more
concise summary of the entire trajectory, and the second-order
derivative provides additional information on the instantaneous
rate of the measurement change.

G. Identification of the reward function

The reward function in the environment signifies what are
the favored transitions. The reward can be designed by (1)
returning a positive value if the action and state are favored
and the larger the more favored, or (2) the reward can be a
negative value to penalize the not favored actions and states;
in this case, when the absolute value of the reward is larger,
it means it is less favored, or (3) the reward can be both
positive or negative. Whether the action and state are favored
or not may depend on the control purpose. For example,
if the control purpose is to drive a plant to reach a new
operation state, the reward function could be the sum of (a)
negative of the distance between current state and desired state
(−|target state−current state|), and (b) negative of the absolute
action (−|action|), because less actuation could be favored
in the sense of saving energy or alleviate the burden on the
actuator.

In this paper, the control objective is to stabilize the system
to its power set-point. The reward used here has negative
values because the objective is to penalize the deviation from
the set-point. The reward in each step is set as negative of the
ℓ1-norm of the difference between the n and nref ,

Rd
t+1 = −|nt+1 − nref |. (25)

By maximizing the cumulative reward of Rd, an optimal
policy should be able to stabilize the system at the set-point
nref as fast as possible.

To minimize the mechanical wear of the control rod mech-
anism, the fast movement of the control rod is penalized:

Ra
t+1 = −|żt|, (26)

where ż ≜ dz
dt is calculated in Eq. (9). It is noted that żt

and ż(t) are different; the former is evaluated at time step t
where t means time step, while the latter is evaluated as a
time derivative at the instant t in seconds.

It is also useful to constrain the internal state of the
environment within a reasonable range to avoid unnecessary
exploration by the agent. A constraint penalty is used to limit
n in the range of (-1, 1). According the definition of n, when
n = −1, the reactor has zero power; and when n = 1, the
power of the reactor is doubled from its reference power value.
The constraint penalty is

Rc
t+1 =

{
0 if nt+1 ∈ (−1, 1),
W otherwise,

(27)

where the value of W is manually tuned based on the conver-
gence of the training. The total reward is a linear combination
of these three rewards:

Rt+1 = wdR
d
t+1 + waR

a
t+1 +Rc

t+1. (28)

The ratio wd/wa can be adjusted. When the ratio is higher, the
control system more rapidly settles down to the set-point, and

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2022 9

the movement of the control rod would be aggressive, and vice
versa. In this paper, the weights are chosen as wd = 10 and
wa = 0.01 by trial-and-error to achieve rapid settling down to
the set-point.

H. Actor and critic architectures

Figure 2 displays the neural network architectures of the
actor and the critic, where both of them are built on the
concept of multilayer perceptron [28] which is one of the
most commonly used architectures for constructing neural
networks. The critic neural network has two branches, one for
the action and another for the observed states, and then they
are concatenated together at later stages to predict the value
defined in Eq. (16). The actor neural network has only one
branch for generating the action. The last activation function
before the action is a tanh function that outputs a value
between −1 and 1. In the environment, it is scaled to −0.02 to
0.02 which makes the control rod saturation accountable. The
selection of the number of neurons and the number of layers is
based on trial-and-error that the selected architecture might not
be optimal. To this end, a topic of future research is suggested
in Section IV so that the neural networks can be further
optimized for fast training and better policy generalization.

I. Results of the trained policy

The RL controller is trained by Algorithm 1 and after
training, the parameters of policy network are kept constant
for subsequent applications. The programming language is
python and the neural networks are constructed and their
parameters are updated by using PyTorch package [29] of
python. The training clock time running on a Linux machine
is approximately 45 s per episode on a PC with an Intel I9-
10850K CPU and a Nvidia-1060-6Gb GPU.

The hyper-parameters of the agent and the environment are
summarized in Table II. Variations of the set-point (nref) are
restricted in the range of −5% to 5% around the reference
steady-state value (n|ss = 0). It is noted, however, that this
range can be made wider at the expense of longer training
time. The parameter µ is restricted in the range of [0.5, 2.0],
which consists of operations around fixed points, limit-cycles,
and chaotic regions, as described in Subsection II-A. In each
episode, the set point, nref , and the system parameter, µ, are
randomly assigned within their respective ranges. The upper
bound and lower bound of the action space are determined
by the above ranges of set-point nref and parameter µ with
the following reasoning. From Eqs. (1) to (4) and Eqs. (8)
to (10), it can be found that, at steady-state equilibrium points,
the control rod position should be −Λnref

km

(
κ1D
Λκ2

+ κ1µξ0
κ2κ4Λ

)
which has the range of [-0.0151, 0.0151]. To provide additional
flexibility of action selection, the lower bound and upper
bound of the action space are extended in the range of [-0.02,
0.02].

To evaluate the convergence during training, the controller
has been tested by 20 randomly generated environments (with
different values of nref and µ) after each episode of training.
The evolution of the training process is illustrated in Figure 3,

TABLE II: Hyper-parameters for agent and environment

Parameters Values
Learning rate α1 and α2 1× 10−4

Discount rate γ 0.99
Soft update ratio τ 0.001
Minibatch size K 1, 024
Number of episodes M 3, 900
Replay buffer size 1× 106

Episode horizon (time simulated per episode) 15 s
Step size of integration using RK4 0.001 s
Agent-environment interaction step size dt 0.01 s
Action space bounds in the agent (aLB , aUP) −1, 1
Action Gaussian noise standard deviation σ 0.01
Action scaling factor in the environment 0.02
µ range in the environment 0.5 to 2.0
Set-point (nref) range in the environment −5% to 5%
Number of tests per policy evaluation L 20
Number of interactions per episode T 1, 500
Constraint penalty W −2, 000
Reward weight wa 0.01
Reward weight wd 10

where the abscissa is the number of episodes and the ordinate
is log(−Return).

During training, after every 100 episodes, an average value
of log(−Return) of the tests is calculated during the immedi-
ately preceding 100 episodes, where there are a total of 2,000
tests = 100 episodes × 20 tests/episode; and the profile of the
average over 2,000 tests is shown in Figure 4. For first 1000
episodes of the training, no convergence criterion is applied.
After the first 1000 episodes, a convergence criterion is applied
for training termination as follows. When the average of
Return of the 2,000 tests does not increase (or equivalently
the average of log(−Return) of the 2,000 tests does not
decrease), the training is said to have converged. The training
lasts for 2, 900 episodes until convergence by the criterion (i.e.,
the average of log(−Return) at the 30th step is not less than
that of the 29th step, as seen in Figure 4).

It is noted that the above convergence criterion does not
guarantee an optimal policy; therefore, a sub-optimal policy is
obtained with a limited number of episodes. After the training
converges, 1,000 more episodes of training are used to confirm
the convergence by manual inspection. The visualization of
this convergence, presented in Figure 4, assures that a decreas-
ing trend of the average value of log(−Return) indeed ends
after the 29th step. Increasing the training episodes may lead to
deliver better policies at the expense of increased computation.
After the training, the policy at 2,900 episodes is used as the
delivered policy and its performance and stability are tested
via the following simulations, where performance of the RL
reactivity controller is reported for comparison with that of a
H∞ controller [3].

Figure 5 presents the performance comparison of the RL
and H∞ control systems for 1% step change in the power
set-point, where the system parameter is selected at three
different values as µ ∈ {0.8, 1.5, 2.0}. It is shown that the
BWR does not have larger power oscillations for all three
cases when the RL controller is used. In contrast, significant
power oscillations appear for H∞ control at µ ∈ {1.5, 2.0},
as seen in Figure 5. The step-response characteristics of the
rise time, settling time, settling minimum, settling maximum

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2022 10

(a) Actor architecture

(b) Critic architecture

Fig. 2: Architectures of the actor (i.e.. policy neural network) and the critic (i.e., value neural network)

Fig. 3: Return evaluation during training process using 20 tests.
The black line indicates the mean value of the 20 tests which
are bounded in the red shaded region.

Fig. 4: Convergence inspection using 2,000 tests per step

and percentage overshoot are summarized in the Table III.
Therefore, the RL controller appears to outperform the H∞
controller in the nonlinear regions where µ = 1.5, 2.0 in
terms of all the above characteristics. In the linear region (e.g.,
µ = 0.8), RL control has shorter rise time & settling time
and smaller overshoot while the settling minimum of the H∞
control is slightly larger than that of RL-based control.

Figure 6 compares the disturbance rejection performance of
the control systems. In this case, a step reactivity disturbance
of 5 cents is inserted at the beginning of the simulation. The
RL control outperforms the H∞ control in all cases (i.e., µ ∈
{0.8, 1.5, 2.0}) and it only takes around 0.16 s for the RL
to settle down, while H∞ needs several seconds for power
settling, as seen in Table IV.

Simulation results in both Figure 5 and Figure 6 show that
the RL control is capable of stabilizing the BWR. These
results also show that RL control is less sensitive to system
parameter perturbations as explained below.

In the simulations of power set-point step change, the
settling time of the BWR using RL control retains around
0.38s as µ is changed from 0.8 to 2.0; in contrast, the settling
time for H∞ control changes from ∼ 0.41s to ∼ 9.7s. For
reactivity disturbances, the settling time for RL control does
not have any noticeable changes for various perturbations of
the system parameter µ; in contrast, the settling time for
H∞ control would vary between 6.06s and 12.14s, as seen
in Figure 6. These comparisons show that RL control is
apparently more robust than H∞ control.

The above simulations are standard ways to assess the
performance of a control system. However, in actual operation
of nuclear power plants (NPPs), the system parameter µ may
not remain constant; it is also interesting to investigate the
response under transient operations with different system pa-
rameter perturbations. Figure 7 qualitatively compares the per-

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2022 11

formance of RL control and H∞ control under perturbations
injected in various ways: step perturbation injections during
both power transient (caused by step power change and power
increase ramping) and constant power operations as well as
sinusoidal perturbation injection at constant power operations.
It is seen that the system using H∞ control has obvious power
oscillations while the system using RL control does not suffer
from power oscillations. In these simulations, the RL control
is seen to withstand various system perturbations (i.e., high-
frequency perturbations like step change and low-frequency
perturbations like sinusoidal excitation), while the H∞ control
appears to be more tolerant of low-frequency perturbations
than high-frequency perturbations.

TABLE III: Characteristics of step response of power change

Chr* µ = 0.8 µ = 1.5 µ = 2.0

RL H∞ RL H∞ RL H∞
RT 0.0151 0.0982 0.0151 0.0983 0.0151 0.0983
ST 0.3870 0.4078 0.3819 10.0763 0.3783 9.6719
SMin 0.0085 0.0090 0.0085 0.0081 0.0085 0.0070
SMax 0.0104 0.0120 0.0104 0.0119 0.0104 0.0119
OS 3.9% 19.7% 3.7% 19.1% 3.6% 18.7%
* Characteristics:

• RT (rise time [s]): time spent for signal to rise from 10% to 90 % of the
desired value

• ST (settling time [s]): time spent for signal to settle within 2% absolute
error between the signal and set-point

• SMin (settling min): minimum value of the signal after the signal has
risen

• SMax (settling max): maximum value of the signal after the signal has
risen

• OS (percentage overshoot): percentage amount that the signal overshoots
the set-point

TABLE IV: Settling time (ST) for step change of reactivity

Chr* µ = 0.8 µ = 1.5 µ = 2.0

RL H∞ RL H∞ RL H∞
ST 0.15 12.14 0.16 6.64 0.16 6.06
* Characteristics:

• ST is the time spent for a signal to settle within 0.02%
absolute error between the signal and the set-point
after a disturbance occurs.

IV. SUMMARY, CONCLUSIONS, AND FUTURE RESEARCH

This paper has synthesized the (nonlinear) reactivity control
system for a BWR plant by making use of an artificial
intelligence (AI)-based reinforcement learning (RL) algorithm,
called Deep Deterministic Policy Gradient (DDPG). Perfor-
mance of RL control has been compared with that of H∞
control in terms of the rise time, settling time, settling min-
imum, settling maximum, and percentage overshoot in both
nonlinear and linear regions of operation in the BWR model.
Robustness of RL control is demonstrated (by simulation); the
performance of the RL control system changes significantly
less than that of the H∞ control system under parameter
perturbations and exogenous disturbances, and the stability of
RL control is seen to be superior to that of H∞ control in all
cases. In general, it is observed that RL control outperforms
H∞ control in most of the (simulated) test cases.

It is noted that, in this paper, the stability of the BWR sys-
tem is not established by rigorous mathematics (e.g., Lyapunov

Fig. 5: Step response of 1% set-point change

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2022 12

Fig. 6: Step response of 5 cents reactivity insertion

Fig. 7: Comparison of RL and H∞ control systems for step
and ramp power maneuver with system perturbations

stability conditions). However, the empirical results, derived
from simulation, are encouraging, and these results should
draw attention of the nuclear engineering community to en-
hance the technology of reactor control by further research in
AI and RL. While there are many experimental and theoretical
areas for future research, the authors suggest following topics:

1) Optimal supervisory control: An example is to optimize
the plant performance by AI and RL. Another example
is optimal set-point generation for local PID controllers.

2) Tuning and sensitivity analysis of the hyperparameters:
The hyperparameters (i.e., those parameters in Table II
and Figure 2) should be tuned to enhance the training
performance (e.g., speed and stability of the training
convergence) for the individual reactor under control.

3) Stability analysis of RLC-based BWR systems: Tools
like Lyapunov second method (e.g., see [7], [15]) pro-
vide sufficient conditions for stability. While globally
exponential stability of RLC is desirable, such a con-
trol system may often severely compromise the system
performance. A possible choice of analysis could be
bounded input bounded output (BIBO) stability [7];
alternatively, a trade-off analysis between robust stability
and robust performance could be investigated, similar to
what is done in H∞ control.

4) Comparison of different integrated AI and RL concepts
for control system synthesis in nuclear reactors: Dif-
ferent types of RL algorithms and various AI methods
can be investigated, because a specific type of reactor
may need a certain type of AI and RL integration for
its optimal performance.

5) Experimental validation of different AI and RL control
concepts: A control policy trained by RL in a simula-
tor/model can be applied for its validation on a real-life
reactor. A laboratory-scale nuclear reactor could be an
ideal site for concept validation before its experimental
validation on a commercial-scale nuclear power plant.
Uncertainties in such an experimental work could be
modeled as a noise term so that statistical significance
could be assigned to the results for comparison with
other controllers.

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2022 13

ACKNOWLEDGEMENTS

The authors thank the anonymous reviewers and the journal
editors for providing valuable suggestions which have signif-
icantly improved the technical quality of the paper. The work
reported in this paper has been supported in part by the U.S.
Army Research Office (Grant No. W911NF-20-1-0226) and
U.S. National Science Foundation (Grant no. CNS-1932130).
Any opinions, findings, and conclusions in this paper are those
of the authors and do not necessarily reflect the views of the
sponsoring agencies.

REFERENCES

[1] T. Van der Hagen, A. Stekelenburg, and D. Van Bragt, “Reactor
experiments on type-i and type-ii bwr stability,” Nuclear Engineering
and design, vol. 200, no. 1-2, pp. 177–185, 2000.

[2] J. March-Leuba and J. Rey, “Coupled thermohydraulic-neutronic insta-
bilities in boiling water nuclear reactors: a review of the state of the
art,” Nuclear Engineering and Design, vol. 145, no. 1-2, pp. 97–111,
1993.

[3] K. Suzuki, J. Shimazaki, and Y. Shinohara, “Application of H-∞ control
theory to power control of a nonlinear reactor model,” Nuclear science
and engineering, vol. 115, no. 2, pp. 142–151, 1993.

[4] A. Arakawa, K. Sekimizu, and S. Sumida, “Fuzzy logic control appli-
cation for bwr recirculation flow control system,” Journal of Nuclear
Science and Technology, vol. 25, no. 3, pp. 263–273, 1988.

[5] C. Lin and S.-R. Chang, “Adaptive predictive control of a boiling water
reactor,” Nuclear science and engineering, vol. 107, no. 2, pp. 158–172,
1991.

[6] Y. P. Pane, S. P. Nageshrao, J. Kober, and R. Babuška, “Reinforcement
learning based compensation methods for robot manipulators,” Engi-
neering Applications of Artificial Intelligence, vol. 78, pp. 236–247,
2019.

[7] H. Khalil, Nonlinear Systems, 3rd ed. Prentice Hall, Upper Saddle
River, NJ, USA, 2002.

[8] R. Kamalapurkar, P. Walters, J. Rosenfeld, and W. Dixon, Reinforcement
learning for optimal feedback control. Springer, 2018, pp. 26-27.

[9] L. Buşoniu, T. de Bruin, D. Tolić, J. Kober, and I. Palunko, “Reinforce-
ment learning for control: Performance, stability, and deep approxima-
tors,” Annual Reviews in Control, vol. 46, pp. 8–28, 2018.

[10] D. P. Bertsekas, Reinforcement learning and optimal control. Athena
Scientific Belmont, MA, 2019, pp. 40-42.

[11] D. Lee, A. M. Arigi, and J. Kim, “Algorithm for autonomous power-
increase operation using deep reinforcement learning and a rule-based
system,” IEEE Access, vol. 8, pp. 196 727–196 746, 2020.

[12] J. Park, T. Kim, S. Seong, and S. Koo, “Control automation in the
heat-up mode of a nuclear power plant using reinforcement learning,”
Progress in Nuclear Energy, vol. 145, p. 104107, 2022.

[13] D. Lee and J. Kim, “Autonomous emergency operation of nuclear power
plant using deep reinforcement learning,” in International Conference on
Applied Human Factors and Ergonomics. Springer, 2021, pp. 522–531.

[14] W. Zhong, M. Wang, Q. Wei, and J. Lu, “A new neuro-optimal
nonlinear tracking control method via integral reinforcement learning
with applications to nuclear systems,” Neurocomputing, 2022.

[15] Z. Dong, X. Huang, Y. Dong, and Z. Zhang, “Multilayer perception
based reinforcement learning supervisory control of energy systems with
application to a nuclear steam supply system,” Applied Energy, vol. 259,
p. 114193, 2020.

[16] M. I. Radaideh, I. Wolverton, J. Joseph, J. J. Tusar, U. Otgonbaatar,
N. Roy, B. Forget, and K. Shirvan, “Physics-informed reinforcement
learning optimization of nuclear assembly design,” Nuclear Engineering
and Design, vol. 372, p. 110966, 2021.

[17] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015, date of access: 2022-
02-12. [Online]. Available: https://arxiv.org/abs/1509.02971

[18] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” in International conference
on machine learning. PMLR, 2014, pp. 387–395.

[19] J. March-Leuba, “Nonlinear dynamics and chaos in boiling water reac-
tors,” in Noise and Nonlinear Phenomena in Nuclear Systems. Springer,
1989, pp. 371–385.

[20] ——, “Dynamic behavior of boiling water reactors,” Ph.D. dissertation,
The University of Tennessee, 1984, p. 137.

[21] R. C. Hilborn et al., Chaos and nonlinear dynamics: an introduction for
scientists and engineers. Oxford University Press on Demand, 2000,
pp. 11-17.

[22] H.-O. Peitgen, H. Jürgens, D. Saupe, and M. J. Feigenbaum, Chaos and
fractals: new frontiers of science. Springer, 2004, vol. 106, pp. 560-604.

[23] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[24] M. v. Otterlo and M. Wiering, “Reinforcement learning and markov
decision processes,” in Reinforcement learning. Springer, 2012, pp.
3–42.

[25] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014, date of access: 2022-02-12.
[Online]. Available: https://arxiv.org/abs/1412.6980

[26] L. T. Dung, T. Komeda, and M. Takagi, “Reinforcement learning for
pomdp using state classification,” Applied Artificial Intelligence, vol. 22,
no. 7-8, pp. 761–779, 2008.

[27] J.-L. Kang, S. Mirzaei, and J.-A. Zhou, “Robust control and training
risk reduction for boiler level control using two-stage training deep de-
terministic policy gradient,” Journal of the Taiwan Institute of Chemical
Engineers, 2021.

[28] J. Shin, T. A. Badgwell, K.-H. Liu, and J. H. Lee, “Reinforcement
learning–overview of recent progress and implications for process con-
trol,” Computers & Chemical Engineering, vol. 127, pp. 282–294, 2019.

[29] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, 2019.

