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Abstract—Energy efficiency has emerged as a key concern for modern processor design, especially when it comes to embedded and
mobile devices. It is vital to accurately quantify the power consumption of different micro-architectural components in a CPU. Traditional
RTL or gate-level power estimation is too slow for early design-space exploration studies. By contrast, existing architecture-level power
models suffer from large inaccuracies. Recently, advanced machine learning techniques have been proposed for accurate power
modeling. However, existing approaches still require slow RTL simulations, have large training overheads or have only been
demonstrated for fixed-function accelerators and simple in-order cores with predictable behavior. In this work, we present a novel
machine learning-based approach for microarchitecture-level power modeling of complex CPUs. Our approach requires only high-level
activity traces obtained from microarchitecture simulations. We extract representative features and develop low-complexity learning
formulations for different types of CPU-internal structures. Cycle-accurate models at the sub-component level are trained from a small
number of gate-level simulations and hierarchically composed to build power models for complete CPUs. We apply our approach to both
in-order and out-of-order RISC-V cores. Cross-validation results show that our models predict cycle-by-cycle power consumption to within
3% of a gate-level power estimation on average. In addition, our power model for the Berkeley Out-of-Order (BOOM) core trained on
micro-benchmarks can predict the cycle-by-cycle power of real-world applications with less than 3.6% mean absolute error.

Index Terms—Machine learning, power modeling, micro-architecture simulation
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1 INTRODUCTION

W ITH the end of Dennard scaling, power consumption,
especially that of processors, is a first-order concern in

all modern chips. Accurately quantifying the power consumption
through power analysis in early design stages is crucial for power-
aware hardware and processor design. Power modeling has been
widely researched across abstraction levels in the past. Figure 1
aims to categorize existing power modeling works at different
levels of abstractions versus modeling effort, where shading is used
to indicate relative accuracy of different approaches.

The ultimate gold standard for accurate power signoff is gate-
level analysis, which comes at the cost of very long simulation
times and available only in very late phases of the design flow.
This has driven the need for power modeling at higher levels of
abstraction. At the register-transfer level (RTL), industry tools
such as PowerArtist [1] and PowerPro [2] can provide aggregate
power estimates sufficient to highlight coarse-grain RTL power
saving opportunities. Regression-based approaches [3], [4], [5], [6]
support building power models at a finer granularity, but at the
expense of similarly limited accuracy. More recently, advanced
machine learning (ML) approaches using deep neural networks
(DNNs) have demonstrated the capability for highly accurate
RTL power estimation [7]. However, deep learning requires
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a large amount of training data (in the range of millions of
samples) to be obtained from gate-level reference simulations.
If collecting training information is as expensive as running the
workload in question itself, the overheads can easily outweigh the
benefits. Furthermore, the need for slow RTL simulations limits the
usefulness and extent of design space exploration that is possible
with any RTL power estimation.

Early design-space exploration of CPUs is most commonly
performed at an abstract micro-architecture level. Traditionally,
generic spreadsheet-based, analytical models [8] are used to provide
power estimates at this level. However, such models have been
shown to be highly inaccurate [9]. Regression-based methods have
also been applied instead to either calibrate existing analytical
models [10], [11] or to model power at higher instruction and
micro-architecture levels [12], [13], but they similarly suffer from
large inaccuracies due to the challenge of modeling the non-linear
and data-dependent power characteristics of the underlying circuits
accurately at such high levels of abstraction. Data-dependent
activity, in particular, can have a significant impact on power even
when averaged across a larger number of samples, but especially
when aiming to model power variations at fine temporal and spatial
granularity. At the same time, models that can predict power
variations down to the sub-block level with cycle accuracy for
complete workloads are crucial for the estimation of peak power
consumption, power/thermal hot-spots, voltage noise, IR drops, etc.
Traditional CPU power models at a fast micro-architecture level
can not provide the necessary temporal and spatial information
with the required accuracy to support such use cases.

Advances in ML have made it possible to accurately capture
complex non-linear relationships with high accuracy and fast
prediction. At the same time, training and inference costs should
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not negate the speed benefits of working at a higher abstraction
level. This rules out expensive deep learning approaches. Instead,
dedicated learning formulations that can achieve high accuracy
with low complexity need to be developed.

Such approaches have recently been proposed for power modeling
of fixed-function accelerators [14]. In previous work, we have
developed an initial learning-based power modeling approach
for simple embedded in-order CPUs above RTL [15]. In this
paper, we extend our prior work to: (1) generalize our modeling
approach to a wider range of processor micro-architectures includ-
ing complex superscalar out-of-order (OoO) CPUs with deeply
pipelined internal structures, (2) introduce novel feature selection
and modeling concepts for advanced hardware aspects including
data and clock gating, (3) apply our approach to power modeling
of an industry-strength open-source OoO CPU, and (4) present
more comprehensive and detailed experimental results for both
in-order and out-of-order cores including validation on real-world
application test sets and additional sensitivity studies.

We present a comprehensive methodology to develop novel
machine learning-based micro-architecture level power models
for complex CPUs that can provide accurate power estimates at
fine temporal and spatial granularity. Using high-level activity
information available from micro-architecture simulations, we
extract features and develop learning formulations that can capture
correlations with minimal complexity. Our models are trained on
gate-level simulations of small micro-benchmarks. Trained models
can then provide highly accurate cycle-by-cycle power estimates
for arbitrary application workloads in a hierarchical fashion at
the complete core level and down to different micro-architecture
sub-blocks. Our specific contributions are:

• We present a generic and systematic methodology for
feature selection and feature engineering to model common
in-order and out-of-order CPU structures using activity
information available at the micro-architectural level.

• We explore advanced non-linear regressors for power
modeling of different micro-architectural blocks in CPUs
with low training overhead and high accuracy.

• We propose a hierarchical model composition approach
that supports power models at sub-block granularity while
accounting for glue logic in super-block power.

• We demonstrate our power modeling approach on RI5CY,
an in-order RISC-V core from the PULP platform, and
the Berkeley Out-of-Order Machine (BOOM), a super-
scalar Out-of-Order (OoO) RISC-V core. We identify
key representative features for modeling of common CPU
blocks with high predictability and low complexity. Our
hierarchically composed power models for RI5CY and
BOOM cores have an average error rate of 2.2% and 2.9%,
respectively, compared to final placed & routed gate-level
power estimation. We have released our setup including
pre-trained power models at [16].

The rest of the paper is organized as follows: after a review
of related work in Section 2, we provide an overview of our
modeling flow in Section 3. Details of our approach are provided in
Section 4. Section 5 presents experimental results. Finally, Section 6
concludes with a summary and outlook.
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Fig. 1. CPU power modeling landscape.

2 RELATED WORK

Figure 1 gives an overview of some of the key existing works and
categorizes them based on the level of abstraction and the approach
they use for modeling. In the following sections, we will further
review and contrast the works in each category.

Analytical and library-based models: The common industry
approach to get highly accurate power estimates for a design is to
use power-characterized standard cell libraries with commercial
tools such as Synopsys PrimeTime PX [17] by feeding in gate-level
netlist and simulation results. Even though they are very accurate
and can provide fine-grain power estimates, the requirement for a
netlist necessitates that such analysis occurs late in the design pro-
cess, where slow gate-level simulations hamper micro-architectural
exploration. Tools such as PowerArtist [1] and PowerPro [2]
have been developed to speed-up the process of providing power
feedback and can provide a course-grain power estimate at the
register transfer level (RTL). However, even RTL simulations are
typically too slow for early design space exploration of CPUs
at an abstract micro-architecture level. Analytical power models
[8], [18], [19] that are coupled either with analytical performance
models [20], [21] or with micro-architectural software simulators
such as gem5 [22] are generally used during this exploration phase.
Tools such as McPAT [8] analytically model the power at the
physical technology level, using physical parameters of the devices
and wires, and then map the sub-blocks to commonly used circuit
structures and underlying physical technology models.

Such approaches do not account for data dependencies and only
provide coarser-grain average power estimates based on overall
activity information. As such, they are inherently not able to
accurately estimate fine-grain cycle-by-cycle power variations, and
thus target a different (but complementary) goal and scope than our
work. Furthermore, they are generic, do not map well to specific
implementations, and suffer from large inaccuracies even when
carefully tuned to the evaluated processor. Prior studies [9], [23]
have repeatedly shown the inaccuracy of their basic versions, which
are based on technology assumptions that were valid when these
tools were developed in some cases over 10 years ago. It is possible
to calibrate analytical models against low-level measurements [10],
[11], [23], but they are fundamentally still limited by their coarser-
grain nature and the parameter fitting will limit interpretability at
the sub-block level. The work in [23], for example, showed less
than 6% error for the BOOM core when predicting average power
at whole benchmark granularity. By contrast, our work predicts
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average benchmark power with less than 1.5% error while also
being able to predict cycle-level power at up to 4% error. In general,
while coarse-grain approaches are often sufficient for high-level
explorations, fine-grain cycle-accurate models targeted in our work
can complement such approaches by allowing for estimation of
time-varying effects such as peak power, voltage droop, etc.

Statistical & regression-based models: In contrast to analytical
approaches, regression-based power modeling is an extensively
researched area at higher abstraction levels. Regression-based RTL
models [3], [4], [5], [6], [24] propose various approaches for select-
ing critical signals and registers strongly correlated with power and
training regression models from gate-level power analysis results.
These approaches typically deploy simple linear models, which
are fast but do not capture the non-linear relationship in complex
designs [7] and hence are limited in accuracy while requiring
slow RTL simulations. By contrast, regression-based approaches
at the architecture level rely on simulating an implementation,
sampling and fitting generic regression equations for modeling
CPU power at the pipeline or instruction level [12]. Methodologies
based on correlating performance counters to power are another
common power modeling approach at the architecture level [25],
[26], [27], [28]. Other works [13] combine analytical approaches
with regression equations formulated using pre-characterized power
data from existing designs. However, all of these models still
suffer from inaccuracies in modeling data-dependent, cycle-by-
cycle power of a processor at fine sub-block granularity.

Advanced machine-learning based models: Recently advanced
ML-based approaches for power modeling have been explored to
capture the non-linear power-feature correlation. GRANNITE [29]
use graph neural networks to relate RTL activity to gate-level
toggle rates, but it can only predict average power at coarse
temporal granularity (achieving around 5% error at a granularity
of 1000 cycles for a similar in-order RISC-V core as used in our
work). PRIMAL [7] uses a convolutional neural network (CNN)
for modeling cycle-by-cycle RTL power trained from gate-level
simulations using the combined activity of all registers in a design.
Such a CNN-based model is very accurate (5% cycle-by-cycle
error as reported in [7] for an in-order RISC-V core), but requires
a large number of training samples and training time compared
to simple regression models. The proposed model also relies on
details available only at RTL or lower levels of abstraction, and
thus is not ideal for early design space exploration. Recent work
[14] has shown the possibility of building ML-based power models
at the C++/SystemC source level of abstraction. The work proposes
several feature selection and model decomposition techniques to
enable highly accurate prediction using low-complexity non-linear
regressors. However, it has only been demonstrated for fixed-
function accelerator IPs with predictable behavior. Our proposed
approach is aimed at modeling programmable CPUs by adopting
similar supervised learning-based regression methods at the CPU
sub-block level, and then hierarchically composing such models.

3 OVERVIEW

Figure 2 shows an overview of our power modeling flow. The
flow follows a supervised learning methodology with a training
and prediction phase. The primary inputs are the gate-level netlist
(for training) and a cycle-accurate micro-architecture simulation
model of a processor (for training and prediction). Due to the lack
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Fig. 2. Power modeling flow.

of availability of cycle-accurate simulators for our chosen RISC-
V cores, in this work, we generate a cycle-accurate C++ model
from the RTL description of the processor using the Verilator
tool [30]. However, our approach only requires high-level activity
information, and the Verilator model can be easily replaced with a
high-level cycle-accurate, micro-architecture simulation model.

During the training phase, simulations are run at both gate and
cycle-accurate levels using the same micro-benchmarks. Cycle-
by-cycle per-block reference power traces are generated using
industry-standard power analysis tools from the gate-level simu-
lations, and activity traces are extracted from the cycle-accurate
model simulation. In the power model synthesis step, we extract
features for the different functional blocks and apply systematic
feature selection and decomposition techniques depending on the
functionality and attributes of the blocks. Using extracted features
and reference power values, an ML regressor is trained to learn
the correlation between the decomposed features per block and the
power consumed by that block across cycles. The per-block learned
models are then stored to be used during the prediction phase.

During prediction, the actual workload to analyze is simulated in
the cycle-accurate model. Feature extraction and decomposition are
applied to the extracted activity information only, and previously
trained models are used to predict cycle-by-cycle power per block
hierarchically up to the full core level. Our models are trained
specific to a processor and its implementation, but hierarchically
decomposed power models down to the sub-block level enable
micro-architecture design space exploration, where pre-trained
blocks can be arranged in different compositions, and only blocks
that are modified need to be re-trained or analytically scaled. Note
that to that increase flexibility, models can be parameterized to
capture different processor or sub-block configurations (such as
ROB sizes) in a single model without requiring re-training. This
requires training models on different configuration parameters
as additional features. There are typically only a limited set of
discrete configuration settings. Models can either be pre-trained
for all settings, or model can be setup to learn the interpolation
between a subset of trained configurations.

In this work, our models target the CPU core only. However, our
approach ultimately works by modeling power at a general RTL
sub-component level and could in concept also be applied to other
un-core components by selecting the right features following the
principles outlined in this paper. Modeling power of memories is
different as they are not based on normal RTL structures but regular
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memory arrays. For such structures, other existing approaches such
as CACTI [31] can provide accurate estimates.

In summary: Our models are aimed at predicting power at
cycle-by-cycle and sub-component level. At this fine granularity,
data-dependent effects play a significant role. As such, features
at equivalent fine granularity are required, where we present a
methodology for selection of features that only rely on abstracted
data at black-box component interfaces available from high-level
micro-architecture simulations. Our work is complementary to
approaches at this level that are aimed at only predicting averaged
power at coarser temporal granularity using coarse-grain average
activation numbers. While machine learning models adopted in
this work use standard machine learning toolboxes, unlike deep
learning approaches that are applied directly on raw data and
require a large amount of training data, we aim to develop learning
formulations that can predict power using only abstracted data
and requiring low training overhead. The success or failure of
such approaches depends to a large extend on developing an
appropriate modeling formulation and engineering appropriate
features. This is inherently problem-specific, but has only been
studied at lower levels of abstraction (RTL or below) so far. Our key
contribution is in providing a methodology for feature selection and
hierarchical model de-composition that supports power modeling
at the micro-architectural block level with high accuracy and low
training overhead. To the best of our knowledge, no such approach
has been presented at this level of abstraction before.

4 POWER MODEL SYNTHESIS

The effectiveness of supervised learning approaches depends on
the selection of features that are highly correlated with the values
to be predicted as well as appropriate learning models that can
capture underlying correlations with low overhead. In particular,
the power consumption of a circuit is sensitive to certain key
contributor signals [3], [4]. ML-based hierarchical power modeling
of CPUs thus involves the following steps: (i) identification of key
contributing activity information, (ii) mapping of key contributing
signals to features and feature engineering, (iii) model selection for
each block, and (iv) super-block power model composition. This
section presents our approach for feature engineering and model
selection for common categories of micro-architecture blocks,

advanced techniques to model common attributes and structures
found in typical CPU implementations as well as the handling of
super-blocks for power modeling.

Figure 3 details our power modeling methodology. We compose
power models hierarchically on a micro-architectural component
basis as defined by the block hierarchy in the processor’s RTL
description. We synthesize the RTL netlist and perform gate-level
simulations to extract per-block cycle-by-cycle power estimates. In
this work, we synthesize RTL descriptions such that the RTL block
hierarchy in the gate-level netlist is maintained. In case of flattening
during synthesis, power estimation must be extended with support
for attributing the power consumption of each cell to blocks. Per-
block reference estimates are combined with block-level features
to synthesize a power model for each block, where block-level
features are extracted from activity information collected during
micro-architecture simulations following our feature selection
approach described in the following sections. Finally, sub-block
power models are hierarchically composed into power models at
the super-block and whole-CPU levels.

We limit our feature selection to activity information that can be
extracted from cycle-accurate, micro-architectural performance
models, such as MARSS [32], SimpleScalar [33] or gem5 [22]
augmented to trace the data activity. We evaluate the following
linear as well as non-linear ML regressors to model the power
consumption of different blocks in the CPU: (i) least-squares linear
regression (LR), (ii) linear regression with l2-norm regularization
(LR-R), (iii) linear regression with L1 prior regularization (LR-L),
(iv) linear regression with l2 regularization and gamma distributions
as hyperparameter priors (LR-B), (v) a decision tree based regressor
(DT), (vi) a gradient boosting model of equivalent complexity
with a regression tree fitted on the negative gradient of the loss
function in each stage (GB), and (vii) a random-forest model
with the number of estimators fitted to match the decision tree
complexity (RF). We compare our ML-based models against a
model predicting average power across the training set (Avg). We
applied an additional decision tree-based feature sub-selection in all
cases. We have chosen these regressors because they are commonly
used approaches in higher-level power modeling. Traditionally,
linear regressors in various forms have been used. In addition,
decision trees were found to be a good fit for power modeling [14],
[34], [35], where gradient boosting and random forest extensions
of decisions trees were also evaluated. Other lower-level (RTL)
approaches used deep neural networks. However, such approaches
use raw signal data being as features and incur significant training
overhead that negates many benefits of higher-level modeling. In
this work, we target ML approaches that can work with limited
feature sets and low training overhead.

4.1 Feature Selection
The power consumption of any micro-architectural block can be
accurately modeled with a supervised machine learning model
by capturing the correlation of power to signal activities used as
features. We aim to model a block’s power using only high-level
activity of major micro-architecture signals connecting blocks. As
such, we develop black-box power models that only leverage the
activity of each block’s external inputs as features.

Figure 4 shows our feature selection approach for a generic micro-
architecture block. Available high-level signal information can be
broadly categorized into data signals and control signals based on
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the functionality they trigger and the path they traverse in the CPU
blocks. Consequently, feature selection and feature engineering are
performed based on a categorization of different input signals for
efficiently capturing the varying power behavior. The following
sub-sections describe our methodology for the common signal
categories and for signals with mixed characteristics.

4.1.1 Data signals
Data signals include all the multi-bit signals processed by different
datapath circuits, routed, buffered, and compared in different
pipeline stages of a CPU. Intuitively, the power consumption
strongly depends on the toggling activity of these multi-bit signals.
Hamming distance (HD) has been widely used as a feature to
capture such activity concisely. At the same time, HD of the
entire multi-bit data has weak correlation to power. This is
due to the difference in circuit components that each toggling
bit can effectively activate. For most of the commonly used
datapath components, bits far off spatially (LSBs vs. MSBs) differ
significantly. By contrast, those closer together (e.g. bits 0 and 1)
show similar power behavior as a function of toggling activity.

Based on this observation, multi-bit data can be decomposed into
smaller contiguous bit-groups. The HD of these bit-groups can be
separately captured to obtain features with a strong correlation to
the power consumed. As shown in Figure 4, signal vectors applied
to the data inputs of a block are decomposed into bit groups, and
Hamming distances HDi, j between bit vectors of group j in cycles
i and i+1 are computed and used as features for prediction.

Figure 5 shows the mean absolute prediction error (MAE) of
different decomposition for the ALU block of the BOOM core as
described in Section 5. We compare decompositions using hamming
distances at varying bit-widths ranging from 4-bit groups (HD 4) to
whole data words (HD 64) for the ALU operands across different
learning models. As results show, a finer granularity can improve
accuracy across models. At the same time, a too fine granularity
can lead to increased model complexity and overfitting. Optimal
granularity depends on the model, where non-linear models can
learn variations independently and benefit little from decomposition.
A decision tree has the best accuracy across models. In case of a
DT model, byte-wise hamming decomposition (HD 8) improves
accuracy by an additional 0.29%, while DT starts overfitting for
nibble-wise decomposition and becomes slightly worse. Based on
this analysis, we model data signals with byte-wise decomposition,
which provides good accuracy while still retaining the simplicity

Fig. 5. ALU feature and model selection.

of using the hamming distance of byte groups in place of single bit
switching traces as features and avoiding overfitting.

4.1.2 Control signals
Control signals include inputs that determine the mode of operation
of different CPU blocks. Each mode typically activates different
portions of the circuit and can consume a very different amount of
energy. Therefore, it is crucial to capture which specific portion of
the circuit is active or idle in each cycle to develop accurate power
models. Also, mode switches can cause significant power variances
at the cycle-by-cycle level. For example, a shift from normal read
to update mode of a branch predictor would cause significant power
deviation. As shown in Figure 4, for control signals, we propose to
use the current bit-wise values Vi,k and Hamming distances HDi,k
of the control input k in cycle i as features to model the absolute
power consumption and power variance, respectively.

4.1.3 Mixed data/control signals
Although most of the signals of the common CPU blocks can be
independently categorized as data or control signals, some block
inputs possess mixed characteristics and hence need special han-
dling. For example, for an instruction decoder, the instruction word
affects both the mode and the data that the decode stage processes
in each cycle. Rather than a generic byte-wise decomposition, the
instruction word is sliced based on the sub-field boundaries in the
instruction format to allow the model to learn the relation of each
sub-field with power, as shown in Figure 6. We thereby decompose
such mixed data/control signals into bit-fields that correspond
to the smallest granularity across all types of instruction words.
Figure 7 shows the error trend across different learning models with
different feature decomposition approaches. We compare using the
hamming distance of the entire instruction word (HD 32), of half-
words (HD 16), per byte (HD 16) and per bitfield (HD 16) with
using both the current value and the hamming distance per bitfield
(V+HD BF). In general, decoder power as a function of input
activity does not vary significantly across instruction fields, and
decomposition provides few benefits. However, using both values
and hamming distances to capture modal behavior can improve
results in some cases. Again, a decision tree model provides the
best accuracy, where feeding both the current value and hamming
distance per bit field into the model provides between 0.9% and
1.2% better accuracy than other decompositions.

Note that that our approach is based on modeling power at a sub-
component and cycle level. As such, it should be applicable to
any design that can be broken down into such micro-architectural
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sub-components. Specifically, while we evaluate our approach
on RISC designs in this paper, many CISC processors internally
break down complex instructions into micro-operations that are
executed on a RISC-like internal core. However, a CISC front-end
will have additional complexity and in particular, irregularity, e.g.
in instruction formats. This may require separating models and
performing feature decomposition specific to each instruction class.
If the instruction class is provided as additional feature, a decision
tree should be able to inherently learn such a decomposition.
Alternatively, one can learn different models for each instruction
class and apply the correct model at prediction time.

4.2 Advanced Features
In addition to normal data and control inputs, some blocks can have
behavior that requires special modeling. This section describes our
methodology for modeling advanced attributes and structures in a
typical CPU implementation.

4.2.1 Buffer modeling
One common attribute of CPU blocks is storing data, meta-data,
and control information such as micro-ops in buffers with possibly
multiple readers and writers. The majority of sequential component
clock power has very low variance at cycle-level granularity. It can
be easily modeled as a constant bias term in regression models.
The variance in power consumption in these blocks is dominated
by the switching of muxes and routing logic driven by the data
being written/read in the current cycle. Based on this rationale, the
read and write data and addresses are selected and treated as data
signals to model buffer properties, as shown in Figure 8.

Notably, such a buffering attribute is common in many superscalar
out-of-order CPU blocks, ranging from a branch target buffer to a re-
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order buffer. Even though the underlying sequential buffering logic
is similar (varying only in bit width and partition), these blocks have
widely different read and write characteristics—from indexed to
fully associative read/write and from partial data being processed on
read to full data being used. Also, the availability of corresponding
signal features in high-level simulations varies among blocks. For
instance, addresses to a physical register file that buffers the operand
data can differ between high-level model and implementation due
to equivalent but different renaming implementations. Although
an ideal approach is to use all the inputs (data and addresses)
as features, we limit ourselves to features available in a typical
high-level simulation.

4.2.2 Pipeline modeling
CPU blocks, such as functional units, can be internally pipelined,
where the number of pipeline stages is typically already decided
at the micro-architecture level for most blocks. Intuitively, the
power consumption of such pipelined structures depends not only
on the current input to a block but also on the partially processed
input stored in internal pipeline registers. However, a high-level
simulator will typically not accurately model the entire pipeline
of a sub-block. It may therefore not contain enough information
for developing a stage-by-stage power model for such internally
pipelined micro-architecture blocks.

To model internally pipelined structures, we instead store and use
the history of the last D inputs HDi, j,HDi−1, j, . . . ,HDi−D−1, j and,
in case of control inputs, Vi, j,Vi−1, j, . . . ,Vi−D−1, j as features [14],
where D is the internal pipeline depth. The activity of internal
pipeline registers and hence the power of internal stages will be
correlated to previous primary inputs of a block depending on the
depth of the pipeline. By giving the input history as features, the
pipeline behavior and the impact on power consumption can be
learned together. Note that our modeling of power at the micro-
architectural sub-block level inherently captures behavior and
activity of different concurrent execution units and superscalar
pipeline stages at the whole CPU level.

4.2.3 Data and clock gating
Data and clock gating are standard techniques to prevent sub-
circuits from unnecessary toggling when the output is not needed.
Although efficient as power-saving techniques, they present chal-
lenges and significantly affect the ability of high-level models to
capture underlying circuit behavior.
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In case of data gating, instead of muxing unneeded outputs, the
enable signals of input latches to combinational blocks are disabled
such that whole sub-block will not toggle. Common examples
include splitting the input paths of different execution units in
a multi-function ALU and gating specific paths based on the
incoming micro-op, as shown in Figure 9. The power consumption
of such a gated circuit is dependent on the toggling of the gated
or control-qualified signals rather than the primary inputs. We
use the history of data applied to a gated path and calculate
byte-wise hamming distance per path based on the stream of
actively applied control-qualified inputs. This provides improved
accuracy compared to a default approach that uses unqualified data
in combination with enable signals as control features.

Data gating can be implemented by gating the clock that feeds the
input data latches. However, clock gating [36] is a general low-
level circuit design technique that synthesis tools can automatically
apply to any buffer to save clock tree power. Different clock gaters
with complicated conditions, as shown in Figure 10, increase
the variance in power consumption and thus make it challenging
to model power at a high level. The degree of power variance
due to the clock being switched between gated and ungated
state depends on its load. We propose the following approach
to model combinational clock gating, commonly inserted during
logic synthesis, on heavily populated buffer blocks (blocks with
only a buffering attribute). These buffer blocks typically have
certain micro-architecturally visible conditions that determine the
usage of some segment or the whole of the buffer. For example, a
branch snapshot buffer might only be needed an incoming branch
is mapped to the specific branch tag. Such conditions can be
formulated as control signal features for modeling these clock gated
buffer units. We recognize the complexity in modeling generic
sequential clock gating circuits and leave this for future work.

4.3 Hierarchical Model Composition
We compose sub-block models into models at the super-block and
whole core level in a hierarchical fashion. In case of multi-core
processors, our approach can be applied to each sub-component

Glue Logic

Super Block

Block Block
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Control 
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Feature Selection

Fig. 11. Hierarchical power modeling.

in each core and then hierarchically composed at the core and
multi-core level. There are two possible approaches for hierarchical
composition: (i) synthesize a separate power model for the super-
block, or (ii) compose a power model for the super-block from the
component power models. Although the first approach can generate
accurate power models with the right set of features, the second
approach has the advantage of reduced power model synthesis time
and better architectural exploration support. However, the composi-
tion approach suffers from inaccuracies due to the additional glue
logic present in the super-block not being modeled.

Such glue logic can be a significant contributor to total super-block
power. From our gate-level analysis, glue logic at the core level
can consume about 5% of the average total power in a very simple
CPU and can contribute up to 10% on a cycle-by-cycle basis. Our
approach is to treat the glue logic as a virtual block and synthesize a
separate power model for it, as shown in Figure 11. This will allow
selecting a smaller set of features and simpler model for the glue
logic than what would be required to model the complete super-
block. Training the glue logic model is achieved by subtracting
the sum of component powers from the total super-block power
during training to obtain the reference power for the glue logic
block. During prediction, the glue logic block then forms a part
of the composed super-block power model. Super-block power
modeling and model composition with and without glue logic will
be evaluated in Section 5.

5 EXPERIMENTS

We evaluated our approach by modeling the power consumption of
two RISC-V processors, a simple in-order core and a superscalar
out-of-order core. Specifically, we model the open-source RI5CY
core that is part of the PULP platform [37] developed at ETH
Zurich and the University of Bologna, and the Berkeley Out-of-
Order Machine (BOOM), an open source RISC-V implementation
of an out-of-order processor [38] in its Medium configuration. Our
complete power modeling setup including pre-trained models for
both RISC-V cores are available in open-source form at [16].

The RI5CY RTL and Chisel-generated BOOM RTL were synthe-
sized with the Nangate 45nm PDK [39] using Synopsys Design
compiler (L-2016.03-SP5). Due to the lack of memory generators,
buffers in both cores were synthesized as flip-flop arrays. The
clock tree was synthesized and the gate-level netlist was placed,
routed and back-annotated with physical design information using
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TABLE 1
RI5CY training benchmarks.

Test Description Cycles
aes cbc Small code version of AES 77,332
conv2d 2D convolution 17,713
fdctfst From ffmpeg libavcodec/jfdctfst.c 4,863
fft Fast fourier transform 112,370
fir 10 Coefficient FIR filter 48,757
keccak Sha3 baseline implementation 607,795
matmul Matrix multiplication 660,901

TABLE 2
BOOM training benchmarks.

Test Description Cycles
dhrystone Synthetic embedded integer benchmark 242,630
mm Floating-point matrix multiply 289,521
multiply Software implementation of multiply 70,134
median 1D three-element median 36,735
vvadd Vector-vector add 21,794
towers Recursive Towers of Hanoi 22,094
spmv Sparse matrix-vector multiply 151,015
qsort Quick sort 450,577

Cadence Innovus (16.13-s045) for the BOOM core. Synopsys
VCS (M-2017.03-SP2) was used for running zero-delay gate-
level simulations at 25MHz and 333Mhz for the RI5CY and
BOOM cores, respectively. The golden reference traces of cycle-by-
cycle power used for training and validation were obtained using
PrimeTime PX running in time-based power mode. The Scikit-learn
[40] python package is used for model synthesis and prediction.

For both cores, we used the official test suites provided with
each core to train models. Seven benchmarks from the Pulpino
test suite [41] listed in Table 1 were chosen for training and
cross-validation of the RI5CY core models. The benchmarks are
compiled using the riscv-gnu-toolchain, and object code is used
for the simulations. For training and validating of the BOOM core
power models, we use 8 micro-benchmarks from the riscv-tests
suite [42] summarized in Table 2. In addition, we test our trained
model on one iteration of the CoreMark benchmark suite [43]
and the FFT benchmark taken from [44], summarized in Table 3.
In our experiments, we focus on running baremetal simulations
and treat the address translation related logic, such as the TLB,
as overhead power as there are no actual translations involved.
Note that CoreMark was designed to represent complex real-
world mobile workloads combining different functionalities and
application kernels into one benchmark. Since power models are
ultimately driven by activity information, as long as test cases cover
behavior that is representative of the diversity in cycle-by-cycle
activity, the accuracy evaluation and results should generalize to a
broad range of applications.

Table 4 and Table 5 summarize how modeling concepts are applied
to different blocks in each core. In our experiments, we model
the glue portion of the core, which is dominated by routing
structures, by selecting the data signals from the instruction and data
cache interfaces as features. Although our cycle-accurate model
is generated from RTL, we include only micro-architecturally
invariant signals as features. For example, we model the physical

TABLE 3
BOOM test benchmarks.

Test Description Cycles
CoreMark CPU benchmark by EEMBC 475,842
FFT Fast Fourier Transform 626,268

TABLE 4
Power modeling features of RI5CY blocks.

Block Data Control Gating Buffer Pipeline
Fetch stage ✓ ✓
Decode stage ✓ ✓ ✓
Execute stage ✓ ✓
LS unit ✓
CSR ✓
Pmp unit ✓
Glue logic ✓

TABLE 5
Power modeling features of BOOM blocks.

Block Data Control Gating Buffer Pipeline
Fetch controller (FC) ✓ ✓ ✓ ✓
Branch Targ. Buff. (BTB) ✓
Branch Predictor (BPD) ✓
Decode unit - 0 (DEC0) ✓ ✓
Decode unit - 1 (DEC1) ✓ ✓
Rename Maptable (RNM) ✓ ✓
Rename Freelist (RNF) ✓ ✓
FP Maptable (FP RNM) ✓ ✓
FP Freelist (FP RNF) ✓ ✓
Issue unit (ISS) ✓
Mem issue unit (M ISS) ✓
Iregister file (IRF) ✓
Iregister read (IRR) ✓
CSR ✓
ALU ✓ ✓ ✓
CSR Exe Unit (CSRX) ✓ ✓ ✓
FP Pipeline (FP) ✓ ✓ ✓ ✓
LSU ✓ ✓ ✓
ROB ✓ ✓
Glue logic ✓

register file with only the data signals as the rename tags can vary
between RTL and cycle-accurate micro-architectural models.

Table 6 and Table 7 lists the major features selected by the decision
tree for each core arranged in ascending order of importance, where
’X’ denotes the value of signal X in the current cycle, ’DEL(X)’
denotes the value of signal X in the previous cycle and ’HD(X)’
denotes the hamming distance between values in the current and
previous cycle of X . The normalized importance of each feature in
a decision tree based power model is shown in brackets next to the
feature. Such a feature ranking can convey additional information
about the power behavior to drive power optimizations. Further
details, including the full list of features selected for modeling of
different blocks as well as their importance ranking for different
learned models are available in [45]. In addition, graphical plots of
all decision trees are available in [16].

5.1 Model Selection and Cross-Validation
We evaluated the overall accuracy of our models using 10-fold
cross-validation on cumulative shuffled data samples collected from
the micro-benchmarks. We use mean absolute error (MAE) of aver-
age power values predicted by each model at different granularities
m compared to gate-level power estimation, normalized to mean
reference power of the block as our evaluation metric:

MAE[%] =
∑
⌈ n

m ⌉−1
i=0

∣∣∣ 1
m ∑

im+m−1
j=im P̂( j)− 1

m ∑
im+m−1
j=im P( j)

∣∣∣
⌈n/m⌉ · 1

n ∑
n−1
i=0 P(i)

, (1)

where n is the total number of samples in the trace, m is the sample
interval granularity used for prediction, P̂(i) is the predicted power
and P(i) is the reference power estimated by PrimeTime PX in
the ith sample. Unless otherwise noted, we report accuracy as
cycle-by-cycle MAE with m = 1 in the remainder of this paper.
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TABLE 6
Top decision tree features for different RI5CY blocks.

Block Features (Importances)
Fetch stage HD(instr addr) (0.32), instr rdata (0.27),instr addr (0.22), HD(instr rdata) (0.19)
Decode stage HD(instr[24:20]) (0.70), HD(alu a) (0.14), HD(instr[31:25]) (0.05), instr[11:7] (0.02), instr[24:20] (0.01), HD(instr[11:7]) (0.01),

HD(alu b) (0.01), instr[19:15] (0.01), instr[6:0] (0.01), instr[31:25] (0.01)
Execute stage HD(alu a[7:0]) (0.51), HD(alu a[23:16]) (0.19), HD(alu operator) (0.10), HD(mult a[7:0]) (0.07), HD(alu b[23:16]) (0.03),

HD(alu b[7:0]) (0.02), HD(alu a[15:8]) (0.02), HD(alu b[31:24]) (0.02), HD(alu a[31:24]) (0.02), HD(mult b[7:0]) (0.01)
LS unit HD(data rdata[15:8]) (0.52), HD(b[7:0]) (0.20), HD(b[31:24]) (0.07), HD(data rdata[7:0]) (0.04), HD(a[7:0]) (0.02), HD(a[15:8])

(0.02), HD(b[15:8]) (0.02), HD(a[23:16]) (0.01), HD(a[31:24]) (0.01), HD(data wdata[15:8]) (0.01)
CSR HD(csr wdata) (0.95), HD(pc if) (0.03), HD(branch i) (0.01)
Pmp unit HD(data addr) (0.95), HD(instr addr) (0.04)
Glue logic HD(pc if) (0.69), HD(data addr) (0.16), HD(instr rdata[31:25]) (0.04), HD(csr wdata) (0.02), instr rdata (0.01), HD(alu operator)

(0.01), HD(alu a) (0.01), instr addr (0.01), HD(data rdata[7:0]) (0.004), HD(instr addr) (0.004)

TABLE 7
Top decision tree features for different BOOM blocks.

Block Features (Importances)
FC HD(bchecker.io br targs 0[7:0]) (0.766), HD(fb.io enq bits exp insts 0[23:16]) (0.082), HD(BranchDecode 1.io inst[7:0]) (0.027),

HD(fb.io enq bits exp insts 0[15:8]) (0.026), HD(bchecker.io btb resp bits target[7:0]) (0.019)
BTB HD(btb.btb data array.RW0 addr[5:0]) (0.57), HD(bim.bim data array 1.RW0 addr[8:0]) (0.21), HD(bim.bim data array 0.RW0 addr[8:0])

(0.13), bim.bim data array 0.RW0 en (0.02), HD(btb.btb data array 1.RW0 wdata target[7:0]) (0.02)
BPD HD(counter table.d W0 data counter[1:0]) (0.87), HD(counter table.d W0 data cfi idx[1:0]) (0.13)
DEC0 HD(io enq uop inst[6:0]) (0.8), HD(io enq uop inst[31:25]) (0.18), HD(io enq uop inst[24:20]) (0.02)
DEC1 HD(io enq uop inst[6:0]) (0.8), HD(io enq uop inst[31:25]) (0.16), HD(io enq uop inst[24:20]) (0.02), HD(io enq uop inst[11:7]) (0.02)
RNM DEL(io ren br tags 0 valid) (0.41), io ren br tags 0 valid (0.4), DEL(io remap reqs0 valid) (0.08), DEL(io brinfo mispredict) (0.05)
RNF DEL(io reqs 0) (0.5), DEL(io reqs 1) (0.28), DEL(io ren br tags 0 valid) (0.16), DEL(io ren br tags 1 valid) (0.04)
FPM DEL(io ren br tags 0 valid) (0.43), io ren br tags 0 valid (0.37), DEL(io remap reqs 1 valid) (0.06), DEL(io ren br tags 1 valid) (0.05),

DEL(io brinfo mispredict) (0.04)
FPF DEL(io reqs 1) (0.41), DEL(io ren br tags 0 valid) (0.23), DEL(io ren br tags 1 valid) (0.23), DEL(io reqs 0) (0.12),

DEL(io dealloc pregs 1 valid) (0.02)
ISS HD(slots 15.slot uop uopc[8:0]) (0.24), HD(slots 15.state[1:0]) (0.19), HD(slots 10.state[1:0]) (0.12), HD(slots 7.state[1:0]) (0.06),

HD(slots 12.state[1:0]) (0.06), HD(slots 14.state[1:0]) (0.06)
M ISS HD(slots 12.state[1:0]) (0.25), HD(slots 15.state[1:0]) (0.17), HD(slots 11.state[1:0]) (0.12), HD(slots 7.state[1:0]) (0.07), HD(slots 3.state[1:0])

(0.06), HD(slots 13.state[1:0]) (0.06), HD(slots 14.state[1:0]) (0.05)
IRF HD(io write ports 0 bits data[47:40]) (0.78), HD(io write ports 0 bits data[63:56]) (0.11), HD(io write ports 0 bits data[23:16]) (0.03),

HD(io write ports 1 bits data[15:8]) (0.03)
IRR HD(io rf read ports 3 data[7:0]) (0.6), HD(io bypass data 0[7:0]) (0.12), HD(io rf read ports 1 data[7:0]) (0.05),

HD(io rf read ports 2 data[7:0]) (0.05), HD(io rf read ports 5 data[7:0]) (0.05)
CSR HD(io rw wdata[15:8]) (0.67), HD(io decode 0 csr[11:0]) (0.15), HD(io rw wdata[55:48]) (0.07), HD(io rw wdata[7:0]) (0.06),

HD(io decode 1 csr[11:0]) (0.04)
ALU HD(alu.io in1[7:0]) (0.72), HD(alu.io in2[7:0]) (0.08), HD(alu.io in1[31:24]) (0.07), HD(imul.inPipe bits in1[15:8]) (0.06)
CSRX HD(alu.io in2[7:0]) (0.75), HD(alu.io in2[63:56]) (0.14), HD(div.io req bits in1[7:0]) (0.04)
FP HD(fpu.dfma.fma.io c[15:8]) (0.83), HD(fregfile.io write ports 0 bits data[55:48]) (0.07), HD(fpu.dfma.fma.io a[47:40]) (0.03)
LSU HD(io exe resp bits addr[39:0]) (0.56), io memresp valid (0.1), io memresp bits is load (0.06), io dis ld vals 0 (0.05),

io exe resp bits uop is load (0.04), io dis st vals 0 (0.03), HD(io memreq wdata[7:0]) (0.03)
ROB io enq valids 0 (0.42), HD(io enq uops 1 uopc[8:0]) (0.26), HD(io commit uops 0 uopc[8:0]) (0.09), io enq valids 1 (0.04),

HD(io enq uops 0 uopc[8:0]) (0.04), io commit valids 0 (0.04), io wb resps 1 valid (0.03), io commit valids 1 (0.03)

Figures 12 and 13 summarize the average cycle-by-cycle MAE
across different folds and power models of different RI5CY and
BOOM blocks, respectively. In both cases, a model that just predicts
average power (Avg) performs poorly. All in all, a decision tree
(DT) based power model performs consistently better than linear
models as well gradient boosting and random forest based models
of equivalent complexity. As also observed in prior work [14],
decision tree-based data representations efficiently capture the
inherent non-linear but typically discrete power behavior of design
blocks. Furthermore, a deeper decision tree is capable of better
capturing the non-linear power characteristics of different micro-
architectural blocks in CPUs compared to a forest of shallower
(random) trees. Our DT-based power models for the complete
RI5CY and BOOM cores have an MAE of 2.15% and 2.86%,
respectively. This is an order of magnitude better than the 15.54%
and 21.83% MAE, respectively, for a model that just predicts
average core power.

Among the RI5CY blocks, blocks with low power variance such
as CSR can be modeled accurately. However, low power but high
variance blocks such as the LS unit (LSU) show poor accuracy

in modeling with the evaluated models. Accurately modeling the
power consumption of the blocks in this category requires further
study and is considered for future work. For this work, due to its
small contribution to the total power of the core, a model with
16.6% error rate for the LSU is sufficient for gaining high accuracy
for the core composed power model.

Among the BOOM core blocks, due to the limitation in modeling
the collapsing queue behaviour of issue units and not using the
physical tags as features, power models of ISS and M ISS blocks
have a higher MAE of 9.05% and 19%, respectively. By contrast,
by only modeling the data interface signals, our power model for
the register file can reach an accuracy of 95.16% (MAE of 4.84%).
Our analysis of a decision tree based power model for LSU without
data and address features shows degradation of accuracy by 11.5%
(MAE of 10.125% vs. 21.625% with and without accounting for
data dependencies), highlighting the significance of capturing data-
dependent power characteristics in cycle-accurate power models.

Figures 14 and 15 further detail the 10-fold cross-validation results
of DT-based models for the different sub-blocks of the RI5CY
and BOOM core, respectively. RI5CY results show some variation



10

24

34

44

Fetch_stage Decode_stage Regfile Execute_stage ALU Multiplier LS_unit CSR Pmp_unit Glue Core
Models

0
2
4
6
8

10
12
14
16
18
20

M
AE

 [
%

]
Avg LR LR_R LR_L LR_B GB DT

Fig. 12. Cross-validation accuracy of RI5CY block and whole core models.

30
40
50
60

FC BTB BPD RNM RNF FP_RNM FP_RNF ISS M_ISS IRF IRR CSR ALU CSRX FP LSU ROB Glue Core
Models

0
2
4
6
8

10
12
14
16
18
20
22
24
26

M
AE

 [
%

]

83.6 93.4 Avg LR_R GB RF DT

Fig. 13. Cross-validation accuracy of BOOM block and whole core models.

2 4 6 8 10
K-Fold iteration number

0

5

10

15

20

25

30

35

M
AE

 [
%

]

Fetch
Decode

Execute
LSU

CSR
PMP

Fig. 14. RI5CY 10-fold cross-validation results.

with and sensitivity to training data. By contrast, BOOM results
are stable across training folds. This is due to the overall faster
learning rate of the hierarchically composed BOOM power model
(see Section 5.3).

5.2 Testing Accuracy

We further validate our DT-based BOOM power models by training
them on the riscv-test micro-benchmarks and evaluating the trained
model on the CoreMark and FFT benchmark tests representing
real-world applications.

Table 8 summarizes accuracy for different micro-architectural
blocks and the whole core in terms of cycle-by-cycle MAE (m = 1)
as well as absolute error in predicting average power over the whole
trace (m = n). The table lists hierarchically composed core power
both with and without accounting for glue logic. Our hierarchically
composed core models can predict cycle-by-cycle and average
power with less than 3.6% and 1.2% error, respectively. By contrast,
a composed model without accounting for glue logic only achieves
a 14% MAE and 12% average error. Power models for the ALU
and CSRX blocks have degraded accuracy when evaluated on an

TABLE 8
Predicted BOOM power statistics.

Benchmark CoreMark FFT
Block Avg.

Power
[mW]

MAE
[%]

Avg.
Error
[%]

Avg.
Power
[mW]

MAE
[%]

Avg.
Error
[%]

Fetch controller 11.36 10.86 4.48 13.64 10.65 4.49
Branch Targ. Buff. 11.96 7.18 2.17 14.83 7.33 2.18
Branch Predictor 22.4 2.38 2.38 29.34 1.2 2.42
Decode unit - 0 0.51 8.27 0.21 0.54 8.65 0.24
Decode unit - 1 0.52 9.15 0.58 0.52 9.12 0.57
Rename Maptable 3.13 8.51 0.61 3.42 8.58 0.63
Rename Freelist 2.25 3.88 0.19 2.36 5.97 1.25
FP Maptable 2.55 11.44 1.48 2.73 11.31 1.37
FP Freelist 0.63 5.97 1.25 0.68 5.78 1.42
Issue unit 6.19 17.92 6.11 9.03 18.89 7.83
Mem issue unit 3.26 22.84 9.46 4.14 23.45 9.67
Iregister file 10.9 9.34 2.2 15.3 9.22 2.22
Iregister read 3.91 7.42 1.19 4.54 7.67 1.23
CSR 0.91 9.1 3.25 0.94 9.18 3.26
ALU 6.96 15.15 3.78 17.73 15.38 3.85
CSR Exe Unit 1.34 24.66 4.6 1.66 25 5
FP Pipeline 9.27 6.14 0.47 15.32 6.24 0.87
LSU 7.72 16.27 1.32 7.92 12.23 3.12
ROB 5.08 13.24 0.09 5.66 13.44 0.56
Core (composed) 117.05 14.14 12.14 163.18 14.98 13.38
Core (w/ Glue logic) 136.01 3.59 0.23 179.13 3.48 1.14

unseen workload, which we attribute to the training sets’ incomplete
coverage in the data input space. Preliminary results obtained by
selectively including around 50 cycles from the CoreMark test set
in the training set show an accuracy improvement of up to 2% for
these blocks. The study of optimal training sets for all the CPU
blocks with good coverage of the signal activity space is left for
future work.

Figure 16 further detail the histograms of cycle-by-cycle baseline
versus predicted power as well as absolute prediction errors of the
whole core when executing CoreMark and FFT benchmarks. . As
shown, the corresponding baseline and predicted power histograms
have similar distributions with small differences in the number of
occurrences. Error histograms further put that in context, showing
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Fig. 15. BOOM 10-fold cross-validation results.
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Fig. 16. BOOM core power and error histograms for (a)/(b)/(c) CoreMark and (d)/(e)/(f) FFT benchmarks.

that the majority of the error values are smaller than 5%.

Our models can be used to predict not only cycle-accurate but
also the average power of different micro-architectural blocks and
the whole core at larger temporal granularities. Average power at
coarser sampling rates is often sufficient for many applications
such as temperature or hotspot analysis, where accuracy of power
prediction is significantly higher when averaging. Figure 17 shows
the MAE of the predicted versus baseline average power of different
micro-architectural blocks and the whole core for the CoreMark
and FFT benchmarks using different averaging and prediction
granularities m. An interval size of m = 1 represents cycle-by-cycle
power estimation. As shown, MAE decreases exponentially with
increasing prediction granularity, where our models can efficiently
predict average power with a very small error of less than 1% MAE
on average already for a modest interval size of m = 200k cycles.

Finally, Figure 18 shows a comparison of gate-level baseline versus
predicted power traces of CoreMark and FFT benchmarks averaged
at a granularity of m = 100 cycles. Furthermore, the figures show
a zoomed-in view of cycle-by-cycle power for a region around
the cycle with peak power consumption. As shown, for both
benchmarks, predicted power tracks baseline power accurately.
Specifically, our model can predict the exact cycle and hence
instruction sequence that triggers peak power with a small error of
4% and 2% in predicting the peak power for the peak of CoreMark
and FFT, respectively. Cycle-accurate and peak power estimation
is critical for many processor design aspects such as voltage noise
or IR drop analysis. Such information has traditionally not been

available at higher abstraction levels with existing power models.

All in all, our hierarchically composed core-level power model can
predict the power of the evaluated segment of the CoreMark and the
FFT workload to within 3.6% cycle-by-cycle MAE of a gate-level
power estimate. In addition, our cycle-accurate power models can
give highly accurate power estimates (more than 99% accuracy)
when used to predict average power at coarser granularity or across
the complete workload segment.

5.3 Training and Prediction Overhead
The main learning overhead is the time required for reference gate-
level simulations and cycle-accurate power analysis. Figures 19
and 20 show the training curve and learning rate of the DT-based
power model for different blocks of the RI5CY and BOOM cores,
respectively. Our RI5CY models are able to learn power behavior
with less than 300K cycle-level samples and hence instructions
needing to be simulated. By contrast, the hierarchical breakdown
into smaller sub-block models each with simple behavioral and
feature complexity further improves learning rate of the BOOM
power models by a factor of 10x even though the BOOM core in
total is much larger than the RI5CY one. Note that the behavior
of the training curves depends on the diversity of samples in
the training set. The first 20k samples of the BOOM training
set represent setup and program loading code. They are nearly
identical and thus do not improve accuracy. In all the cases, the
BOOM models provide high accuracy power estimates once trained
with fewer than 30k cycle-level samples and instructions. These
are in contrast to the 2.2M samples and 20h of time required
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Fig. 17. BOOM block and whole core accuracy for different prediction granularities m.
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Fig. 18. Predicted and baseline BOOM core power traces for (a) CoreMark and (b) FFT.

to train the DNNs in [7] to provide comparable accuracy for an
in-order RISC-V core. Our hierarchical composition and feature
engineering methodology enables us to use simple models with
low overhead requiring only a small number of time-consuming
gate-level simulations for accurate training. In addition, in all cases,
decision tree models could be synthesized in less than 5 minutes on
an Intel Xeon 8160 workstation running at 2.1GHz. Furthermore, a
hierarchical decomposition of models will require only the models
of those blocks that are modified to be re-trained when performing
micro-architectural studies.

Model evaluations are fast, performing predictions at a rate of
4 Mcycles/s or 3 minutes per block on average, where block models
can be evaluated in parallel. As such, prediction is dominated

by simulation times to collect activity information. Our Verilator
simulations of CoreMark and FFT on the BOOM core require 7-9
hours running at 18 cycles/s, but when coupled with typical cycle-
accurate micro-architecture simulators, speeds in the kcycles/s
range can be expected. By comparison, a full-featured RTL
simulation of the BOOM core requires 13-17 hours running at
10 cycles/s, and an accurate gate-level reference power estimation
a total of 40-65 hours running at 2-3 cycles/s.

6 SUMMARY, CONCLUSIONS, AND FUTURE WORK

In this paper, we presented a hierarchical power modeling approach
that supports the development of simple, yet accurate power models
for CPUs and their internal components at micro-architecture levels
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of abstractions. We presented a methodology for feature selection
and feature engineering that enables using low complexity learning
formulations to accurately model common micro-architectural sub-
blocks in CPUs. Our core power model, synthesized by integrating
these sub-block models, provides cycle-accurate power estimates
at sub-block granularity with low training overhead using only
features that are extracted from micro-architecture simulations.
Results show that a decision tree-based hierarchically composed
model, built using our approach, can predict cycle-by-cycle power
consumption with less than 2.2% and 2.9% error rate for RI5CY
core and BOOM cores, respectively. Resultant BOOM core power
models trained on simple micro-benchmarks can further predict
cycle-by-cycle power consumption of unseen real-world workloads
to within 3.6% of a gate-level power estimate. In future work, we
plan to investigate extension to other system components such as
inter-connect and approaches for scaling of learnt models to predict
across changes in technology or synthesis parameters without
the need for re-training. In the future work, we plan to study
power models for more complex CISC and multi-core processors
including un-core components, models that are parametrized by
configuration settings (such as ROB sizes) to increase flexibility,
as well as models that only use averaged activity information to
predict power at coarser temporal granularity.
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