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ABSTRACT

With increasing core counts and multiple levels of cache memo-
ries, scaling multi-threaded and task-level parallel workloads is
continuously becoming a challenge. A key challenge to scaling the
number of communicating tasks (or threads) is the rate at which
existing communication mechanisms scale (in terms of latency
and bandwidth). Architectures with hardware accelerated queuing
operations have the potential to reduce the latency and improve
scalability of moving data between processing elements, reducing
synchronization penalties, and thereby improving the performance
of task-level parallel workloads. While hardware queues reduce syn-
chronization penalties, they cannot fully hide load-to-use latency,
i.e., perfect pipelines often are not realized. There is the potential,
however, for better overlap. If the inter-processor communication
latency is equal to or less than the time spent processing a mes-
sage at the consumer, any and all latency may be overlapped while
the consumer is processing. We exploit this property to speedup
parallel applications above and beyond existing hardware queues.

In this paper, we present SPAMeR, a speculation mechanism built
on top of a state-of-the-art hardware-driven message queue archi-
tecture. SPAMeR has the capability to speculatively push messages
in anticipation of consumer message requests. Unlike pre-fetch
approaches which predict what addresses to fetch next, with a
queue we know exactly what data is needed next but not when
it is needed; SPAMeR adds algorithms that attempt to predict this.
We evaluate the effectiveness of SPAMeR with a set of diverse task-
parallel benchmarks utilizing the gem5 full system simulator, and
observe a 1.33X average speedup.
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1 INTRODUCTION

The scaling of cooperative threads is an attractive way to increase
performance of parallel workloads. This is especially true as mod-
ern Chip Multiprocessors (CMP) have more processing elements
than ever before. Unfortunately, increasing cooperative threads
often leads to diminishing performance returns [14, 48]. Coherent
shared-memory multi-threaded applications particularly suffer due
to load-to-use latency and synchronization overhead [4, 25]. The
introduction of multi-core compute systems brought with it non-
uniform latency between processing elements. CMPs have cores
at the top of the hierarchy, where each core connects to a private
cache, then after a certain level (point of coherence) the cache is
often shared among a cluster of cores, and eventually all the cores
have the access to a consistent memory. For parallel programs to
execute correctly, these hierarchies implement a cache coherence
protocol which is mediated by snoop messages traveling back and
forth in the hierarchy (invalidating, updating, and checking-out
cache lines for data requests) to enable cross-core communication
between software agents at a coherence line granularity (e.g., snoop
and invalidation in a MOESI coherence protocol, Figure 1a). With in-
creasing core counts and communicating software, more messages
must be sent across this hierarchy (both data and coherence traffic),
increasing contention for data network resources (and shared data)
and thereby increasing the overall latency of many data access
operations [34].

To address cross-core communication overheads (i.e., latency
and synchronization), researchers have proposed adding hardware
queues that could directly transmit data from one Processing El-
ement (PE) to another using a dedicated network [20]; such ma-
chines often adopt a dataflow, streaming, communicating sequential
process, or systolic array-like computation patterns [21, 27]. Such
dataflow patterns are prevalent in machine learning [1, 29, 35], and
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Figure 1: Cross-core message queue communication latency
(Lc) gets reduced from cache coherence-based queue to
Virtual-Link [48] hardware queue (Lv) and SPAMeR hard-
ware queue with speculative pushes (Ls).

many other high-performance computing tasks [13]. More recently,
researchers have proposed architectures that achieve a similar ef-
fect to hardware queues with dedicated networks, while reusing
components of the traditional hierarchical data coherence network.
For instance, both Wang et. al. [46] and Wu et. al. [48] propose
architectural message queue frameworks (with associated microar-
chitecture). Both approaches reduce the overall synchronization
overhead, a key bottleneck for some applications as demonstrated
by Virtual-Link (VL) [48]. In most, if not all, hardware queue imple-
mentations (e.g., VL) the data is served in an on-demand manner,
that is, data is fetched only when requested by a receiver (Figure 1b).
None of these approaches attempt to speculate when a message
request will arrive (e.g., a pop operation). SPAMeR places data ahead
to the receiver that needs it but have not requested yet (Figure 1c),
in order to further reduce the load-to-use latency.

Traditional speculative methods to reduce load-to-use latency
rely on prefetching what data comes next based on a learned pattern,
however, when communicating between asynchronous threads, it
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is unclear which data should be fetched next in the general case
(consider the case of M:N communicating threads, which one should
receive the next message?). When a hardware queue is used, it
knows exactly what data is next (using the property of the queue). In
the case of a hardware queue, perhaps a better speculation approach
is to have the hardware queue guess when to push data to the
consumetr, in anticipation of a request. This would remove the
added latency for the consumer data request, however, speculating
when to push data and not what data to fetch is a new problem
to solve, one to which we contribute a solution. Another problem,
which is different from a traditional prefetch algorithm, is that we
also must select which receiver (assume M:N) will need the next
message, something that we also contribute to.

As Virtual-Link is the state-of-the-art hardware message queue
architecture, we adopt VL as the underlying hardware queue, and
then improve upon it, noting that there are additional data network
transactions that could be removed if speculation (which we pro-
vide) was adopted. To our knowledge, there are no prior works that
speculatively push data within a message channel (such as created
by VL).

The primary contributions of this paper are:

(1) We design and implement a speculative message queue archi-
tecture that we call SPAMeR. This architecture can prepush
data amongst asynchronous communicating threads with
little coherence overhead, anticipating future consumer data
requests, therefore further reducing load-to-use (e.g., pop-to-
use) and enabling more communication to overlap.

(2) We evaluate the performance of SPAMeR comparing it to
state-of-the-art hardware queues and explore the benefits
of speculative message passing. The gem5-based full sys-
tem simulation demonstrates a speedup of 1.33x for 8 task-
parallel workloads over state-of-the-art.

The rest of the paper is organized as follows: first we present a
short overview of the state-of-the-art hardware queue mechanisms
in the background section (§ 2). We then present the design of
SPAMeR (§ 3), followed by evaluation of the SPAMeR implementa-
tion (§ 4), related work (§ 5), and lastly the conclusions(§ 6).

2 BACKGROUND

This paper presents a speculative pre-push mechanism, SPAMeR,
for hardware queue architectures. We pick one of the state-of-the-
art hardware queue solutions, Virtual-Link (VL) [48] as the base to
build on, because VL has addressed the scalability issue caused by
coherence traffic on shared states and achieved good performance.
However, VL does not touch the problem that how to speculate
the message request and hide the load-to-use latency, which is
issue that SPAMeR targets on. We first present an overview of VL
in this section. Other prior works are described in Section 5, and
the techniques we develop on top of VL are likely apply to other
hardware queues.

VL is a light-weight communication mechanism with hardware
support to facilitate M:N lock-free data movement [48]. VL attaches
a routing device to the coherence network, as shown in Figure 2,
to facilitate transmission of data (cache lines) from producer to
consumer. The routing device enables VL to “link” unique producer
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Figure 2: The Virtual-Link hardware queue [48]

and consumer “endpoints” together via a Shared Queue Identifier
(SQI). Endpoints subscribe to a SQI to form a M:N message channel;
each SQI can be thought of as a single queue “object”. Messages
are sent from each producer non-coherently and they are copied
over to a unique target memory location at the consumer. In doing
so, the producer gives the illusion of a shared memory message
passing connection, but with no true sharing. Figure 2 illustrates a
complete flow for VL. At (1) a cache line moves from the producer, at
its own unique address location, to an indirection layer in hardware
at (2) that is addressed based on the SQI. That indirection layer,
the Routing Device, matches the SQI at (3) to a consumer based
on consumer endpoint demand, which is registered by (4). The
Routing Device forwards data to the target consumer buffer on a
totally different memory address at (5). From (4) and (5), we can
see VL delivers data in an on-demand manner, that wait until the
consumer requests then push the data to where it is needed.

VL reduces the amount of coherent shared state, a bottleneck for
many approaches, to zero. VL provides further latency benefits by
keeping data on the fast path (i.e., within the on chip interconnect).
VL enables directed cache-injection (stashing) between PEs on the
coherence bus, reducing the latency for core-to-core communica-
tion. VL is particularly effective for fine-grain tasks on streaming
data. This paper strives for more improvement over VL through
reduced load-to-use latency and enhanced message pipelining.

3 DESIGN OF SPAMER

The SPAMeR design is an extension of the Virtual-Link [48] ar-
chitecture. We first describe how the prior Virtual-Link mechanism
is extended to give the functionality of SPAMeR (§ 3.1). We then
describe our specific micro-architecture (§ 3.2), ISA (§ 3.3), and
library (§ 3.4) contributions. We explore the design space in terms
of speculation algorithms (§ 3.5); we also discuss potential security
vulnerabilities and their mitigation (§ 3.6).

3.1 How SPAMeR builds on the Virtual-Link
Architecture

Figure 3 provides an overview of the SPAMeR design, highlight-
ing the changes from Virtual-Link architecture (VL), in red. As
mentioned before, there is a routing device (VLRD) attached to the
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Figure 3: Overview of SPAMeR architecture. The specBuf
added by SPAMeR in the routing device enables (6), specula-
tive pushes. Speculative pushes can replace (4) and (5) in the
baseline design and deliver the data with reduced latency.

coherence network in order to move data from core to core. The
routing device is treated like a slice of system cache or a tightly-
coupled accelerator (as such a system could have more than one
router) and could fit in any topology arrangement (the impact of
topology and of multiple routers are not the focus of this paper).
Each “endpoint”, either producer or consumer, is a distinct address
whose offsets serve as buffering points for data (e.g., a producer
may have a 4KiB page, the consumer a completely different page).
With VL there is no shared coherent state despite giving the illusion
of a shared memory connection, only a shared resource, the VLRD.
Multiple endpoints from different cores can be associated with the
same Shared Queue Identifier (SQI) and serve as one M:N queue.
When a producer gets some data ready to push into the queue ((1) in
Figure 3), the producer first selects the cacheline with the data using
the vl_select instruction introduced in VL, then uses a v1_push
instruction (2"? new instruction from VL) to copy the content of
the selected cacheline to the routing device ((2) in Figure 3). The
v1_push instruction makes use of the existing cache data bus and
is similar to cacheline flush or writeback. The differences lie in that
v1_push does not change the coherence state of the cacheline, and
the destination is a device memory address assigned to the rout-
ing device, rather than the memory controller. Once the routing
device accepts the v1_push packet ((3) in Figure 3), the ownership
of the data is transferred to the routing device, while the producer
could start writing new data into the cacheline, which stays in the
writable (e.g., exclusive) state before and after the vl_push. On
the other side, the consumer issues a request for empty consumer
endpoint via the vl_fetch instruction (at (4) in Figure 3, but could
happen in any order with respect to (1, 2, 3)). The routing device
matches the incoming producer data with a consumer request on
the same SQI then copies the data over to the consumer cacheline
at (5) via a stash operation.

The SPAMeR Routing Device (SRD) as shown in Figure 4 is analo-
gous to the VLRD of [48] with several exceptions highlighted in red
part (will be explained in Section 3.2). The SRD has a prodBuf to
buffer the data copied from the producer endpoints, and consBuf to
buffer the requests from the consumer endpoints. Each data/request
takes up one entry. As the SRD serves multiple queues and consBuf
entries are shared dynamically (e.g., the top prodBuf entry in Fig-
ure 4 is given to the blue SQI, but once the blue data gone, the entry
could be filled with data for another SQI, say green). In addition
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Figure 4: SPAMeR Routing Device (SRD) includes the VLRD
components from Virtual-Link Routing Device design (with
the grey background), which we shrink for brevity, and some
newly-added structures (highlighted in red) to enable spec-
ulative push. Cell filling colors indicate different SQI occu-
pancy. Numbers in circle mark the three stages of the ad-
dress mapping process.

to prodBuf and consBuf, the SRD has a linkTab, which stores the
SQI-related metadata (i.e., head, tail to track consumer requests of
each SQI) for all the queues, one per row. The aforementioned SRD
action to pair producer data with corresponding consumer request
is called address mapping. As labeled in Figure 4, the SRD builds
a three-stage pipeline for address mapping: Stage 1 takes the SQI
from prodBuf to lookup linkTab, getting consHead; consHead is
used in Stage 2 to index consBuf and get the consumer cacheline
address, consTgt; last stage is the only stage that writes back ad-
dress mapping results and updates prodBuf and linkTab. It worth
mentioning that when a prodBuf entry enters the address mapping
pipeline, there may or may not be a consumer request for the same
SQI available, so a multiplexer in Stage 3 takes consHead (0 for no
consumer request) as the select signal to pick between consTgt or

NULL.
cachelines specTgt
consTgt

hit invalidates prodBuf entry
POTRPQHR
consTgt

miss reenters prodBuf entry

PITR PIHR
55 address mapping
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buffering
linkTab[1].prodTail &
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Figure 5: There are three different possible outcomes from
the address mapping pipeline (marked with letter A, B, C in
circles), and the consumer cachelines give hit/miss response
signals for every push (on-demand or speculative). Path and
structures related to speculative push are highlighted in red,
while the blue, green and orange colors indicate the affinity

with different SQI. Please note that the multiple queues here
are logical, physically each packet sticks to a prodBuf entry.

Figure 5 (except the red parts) shows what happens after address
mapping in the original Virtual-Link architecture (the same process
is used in the SRD). There are two possible outcomes: the data finds
a target and gets into the sending queue (Path (C) of Figure 5);
or it is temporarily buffered into a queue of the corresponding
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SQI (e.g., orange packets go into the orange queue as shown in
(B) of Figure 5). Please note that the queues shown in Figure 5 are
all logical queues, and the producer packet never left the prodBuf
entry initially allocated to it. The logical queues are managed by
the SRD via several pairs of head and tail pointers. For example,
PIHR and PITR in Figure 5 stand for Producer Input Head and Tail
Register respectively, holding the indices to the first and the last
prodBuf entry that is going to enter the address mapping pipeline.
After the address mapping, the prodBuf entry might be appended
to a buffering queue (due to no consumer request on the same SQI).
The corresponding head and tail pointers of the buffering queue
are updated and stored in prodHead and prodTail fields of linkTab
(e.g., the head, tail pointers for the orange buffering queue is in the
first row of linkTab). When a producer packet reaches the front of
the sending queue, the SRD sends the data through the coherence
network to the consumer cacheline, then it receives the response
signal from the targeted cache controller. If the data fills in the
cacheline successfully, the SRD frees the prodBuf entry; otherwise
in the case when the target cacheline happens to be evicted or still
holding valid data that cannot be overwritten, then the SRD would
append the prodBuf entry after PITR, so that it would go through
the address mapping pipeline again. These steps of the routing and
mapping process are identical in both the VLRD of [48] and our
SRD. What makes our SRD different is described next.

3.2 specBuf

SPAMeR adds an additional speculative push path ((6) in Fig-
ure 3), which routes from the SRD to the consumer endpoint. The
speculative push does not wait for the consumer request to arrive
at the SRD, instead the SRD attempts to anticipate the request, spec-
ulatively sending the data to a consumer endpoint. In order to push
speculatively, SPAMeR introduces a new data path in the routing
device (the red part in Figure 4) that enables searching for a specu-
lation target in parallel with the basic address mapping path. The
buffer storage, specBuf, holds the target memory addresses and as-
sociated cachelines where the SRD could speculatively push data to.
The specBuf is set by the application as we will explain in Section 3.3.
The linkTabSpec extends linkTab with the field specHead in order
to store the index to a specBuf entry for the corresponding SQI.
Therefore, from the linkTab lookup in Stage 1, we additionally get
an index, specHead, to lookup specBuf in Stage 2 at the same time
of looking up consBuf. Every valid entry in the specBuf represents
a segment of memory (specBuf.base + specBuf.len X cacheline
size) that SRD can speculatively push data to. The specBuf.offset
field works like a counter for successful pushes: incrementing every
time data is pushed to a consumer cacheline successfully, advancing
by one till it reaches the limit (specBuf . 1en), at which point it is set
to zero. We use specBuf . of fset to derive target addresses for spec-
ulative pushes (i.e., specTgt = specBuf.base + specBuf.offset
X cacheline size). This way, all consumer cachelines registered at
that entry have a chance to receive data from speculative pushes.
As mentioned before, more than one consumer endpoint could be
associated with the same SQI (e.g., 4 endpoints of blue SQI takes up
4 entries in specBuf). To link them up, there is a specBuf . next field
per specBuf entry, which has the index to the next entry of the same
SQI. When the address mapping result is written back in Stage 3, the
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specBuf . next field is used to update the specHead field in linkTab,
so that for the next prediction, it would be a different specBuf entry
that supplies specTgt. All the specBuf entry of a SQI form a loop
and are used in turn. The speculative push address generated by
specBuf is only taken as the target if there is no consumer request
for this SQI in consBuf, otherwise the non-zero consHead value
tells the multiplexer to pick consTgt. If the specTgt is selected,
then the producer data logically enters the speculative push queue
(Path (A) in Figure 5). After some delay, the SRD sends the data to
the target cacheline. The delay is key for efficient speculation as
we discuss further in § 3.5 and § 4.3.

3.3 Speculative Address Registration

Instruction

We need to update the specBuf in order to let the SRD know
the addresses of cachelines that could potentially accept a spec-
ulative push. This task is fundamentally the same as entering a
consumer request (SQI plus cacheline address) into consBuf. Two
VL instructions already exist for this purpose: vl_select translates
the virtual address of a consumer cacheline to the physical address
and writes back to a system register (only readable by v1_fetch,
v1_push instructions, the physical address is not user-space ac-
cessible) vl_fetch reads the physical address from the system
register then writes it to a device memory address which belongs
to the routing device. In SPAMeR, we allocate another range of
device memory address for specBuf. A vl_fetch instruction writ-
ing to specBuf is under the alias spamer_register. When the SRD
receives a spamer_register, the routing device updates specBuf
rather than consBuf.

3.4 Library Optimizations

To enable software to make use of SPAMeR’s speculative push
functionality, we first need to configure the SRD with the
spamer_register instruction introduced in Section 3.3. This is
configured in the same library function where VL creates con-
sumer endpoints (the consumer cachelines associated with each
endpoint are allocated in that function too). We revise the origi-
nal VL library code [43] to register consumer cachelines with the
spamer_register instruction before returning the endpoint to the
user application. These consumer endpoints are spec-push-enabled
and their cacheline addresses are recorded in specBuf after the
spamer_register instructions, at this point the SRD can specu-
latively push data into these endpoints when appropriate. As a
legacy option, user applications could request the library to pro-
vide non-speculative endpoints (i.e., when the spamer_register
instructions are skipped). As we show in Figure 3, consumer re-
quests (step 4) could be replaced by speculative pushes (step 6) for
spec-push-enabled endpoints, thus SPAMeR further optimizes the
dequeue library function by eliminating the part of the code issuing
vl_select and vl_fetch at compile time. We also make the most
frequently invoked queue functions as macros, so they are inlined
at the compiler preprocessing phase, potentially avoiding some
function calling overheads during execution.

3.5 Speculation Algorithms
Just like prefetching, speculative pushing could be history-
based[33], profiling-guided[30], heuristic-oriented[50], or
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perceptron-style[8]. For SPAMeR, speculation consists of two
predictions: which cacheline and associated endpoint to specula-
tive push to (e.g., 1 of M endpoints subscribed to a SQI that are
speculation-enabled), and what is the perfect timing to push.

For the speculative push target selection, we let all valid specBuf
entries participate in the address mapping in turn (§ 3.2), and rotate
the target cacheline addresses in each entry (via specBuf.offset).
This design collaborates with the library, which would use the
cachelines of an endpoint in a round-robin fashion. Across specBuf
entries, the strategy sounds like round-robin, while it is actually
weighted in two ways. First is that we can intentionally control
the number of targets in the entries, and effectively adjust the
speculative push rate for each target. For example, if we have one
entry with 2 targets « and f, while another entry of the same SQI
has only one target y; Assuming the two entries receive the equal
chance to be looked up during address mapping, the ratio between
the three targets for receiving speculative pushes is 1 : 1 : 2.
In other words, the number of speculative pushes on target y is
doubled compared to target a, or ff. Secondly, there is a throttling
mechanism that sets an “on_{ly” bit per specBuf entry when there
exists a target from this entry in the speculative push queue. Until
the previous speculative push finishes, this specBuf entry stops
giving speculation target. Then the probability of selecting a target
is effectively influenced by the delay prediction algorithms.

We first introduce two simplest delay prediction algorithms of
the many we have evaluated. The first one is called 0-delay, which
does not add any additional delay, but lets the speculative push
go as soon as possible. The 0-delay algorithm can maximize the
performance, because as long as there are available producer data
in SRD, it keeps trying speculative pushes. This lets the 0-delay
algorithm never miss the earliest chance to push the data into a
consumer cacheline. The down side is that it could eat up bus/port
bandwidth and affect other workloads. The second delay prediction
algorithm adjusts the delay based on the speculative push results,
so we refer it as the adaptive delay algorithm. The adaptive delay
algorithm saves the delay values in registers (one per linkTab entry
or per specBuf entry), and reduces the delay by half (right shift
by 1-bit) upon a successful speculative push, otherwise double the
delay for a failed speculative push. The adaptive delay algorithm
helps the SRD to build a profile of the consumer data ingest rate
and pushes data according to their perceived ability to consume
it. However, the adaptive algorithm approach is too simple to fully
model the consumer behavior (as we will show in Section 4.3).

We come up with a tuned delay prediction algorithm tuned for
the benchmark which analysis suggests has the greatest poten-
tial (§ 4). The intuition for the design of the tuned algorithm is
to take interval between the most recent two successful pushes
at the same endpoint as the reference to predict the delay for the
next push to this endpoint. Because the intervals could fluctuate
more or less, the tuned algorithm calculates the delay from the
reference in both multiplicative (i.e., shifting bits left or right), and
additive (i.e., adding a constant delta) ways, creating a set of de-
lays. This set of delays is then tried in chronological order. The
yellow blocks in Figure 6 are the additional information latched
in specBuf for the tuned algorithm to make its predictions. From
the top to the bottom: specBuf.nfills counts the number of suc-
cessful pushes; specBuf . last records the timestamp when the last
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lookupSpecTab(link_id) {

spec_entry = specTab[link_id];

halved = spec_entry.delay >> bithash(spec_entry.delay, tsc);

elapse = tsc - spec_entry.last;

if (is_init(spec_entry.nfills)) {

// initializing phase
return tsc + spec_entry.failed 7 delta : 0;

} else if (elapse < halved) {
// early enough to try halved delay
return spec_entry.last + halved;
else if (elapse < spec_entry.delay) {
// early enough for planned delay
return spec_entry.last + spec_entry.delay;
} else if (!spec_entry.failed) {
// data available later than planned and have not tried yet
return tsc;
else if (elapse < spec_entry.ddl) {
// planned delay falls behind, but not cross deadline yet
return tsc + delta;
} else {

return tsc + spec_entry.delay;

[

w

updateResponse (1ink_id, is_hit) {

spec_entry = specTab[link_id];
if (is_hit) {
// use the interval of the most recent hit responses as the
// reference, [ref-r, ref+(] is the scanning range
spec_entry.delay = tsc - tau - spec_entry.last;
spec_entry.ddl = tsc + zeta - spec_entry.last;
spec_entry.nfills++;
spec_entry.last = tsc;
} else {
elapse = tsc - spec_entry.last;
stepped = spec_entry.delay + delta;
doubled = spec_entry.delay << alpha;
if (spec_entry.delay < spec_entry.ddl) {
// before deadline, retry after o
spec_entry.delay = stepped;
} else {
// passed deadline, left shift o bits
spec_entry.delay = doubled;
}
}
spec_entry.failed = !is_hit;

}

Listing 1: Tuned delay prediction algorithm.

push succeeds; specBuf.ddl sets the threshold (deadline) for the
delay to multiplicatively increase once the deadline is exceeded;
specBuf.failed is a one-bit flag indicating if the last push was
successful; specBuf . delay holds the delay to be used in the current
prediction. On the right of Listing 1, the function updateResponse
shows how the values of each field get updated upon receiving a
push response, and the corresponding logic circuit is shown on the
right side of Figure 6. Function lookupSpecTab on the left side of
Listing 1, along with the left part of Figure 6, elaborates how the
algorithm generates the delay time to send data. The orange Greek
letters in Figure 6 are the parameters of the algorithm. Parameters
¢ and 7 outline a range around the interval reference (i.e., the dura-
tion between the 2 most recent successful pushes), and in the range,
delay is increased by J. Therefore, larger { and 7 mean a wider
range and more tolerance to the interval variation, and a smaller
& means denser steps, higher probability to deliver the data at the
first moment. However, larger ¢, 7 and smaller § would contribute
to more failures (we can see the trade-off in § 4.4). Parameter «
decides how fast the delay would be increased after the deadline.
Parameter f§ controls the phase of initialization phase (when delay
is always increased by step §). After tuning the parameters on a
hard-to-predict benchmark, we pick a set of values ({ = 256, 7 = 96,
d =64, a = 1, f = 2), then as a cross-validation, apply the parame-
terized algorithm to all the benchmarks in the evaluation. As future
work, we could search to find a more optimal set of parameters for
each benchmark and reconfigure those parameters dynamically.

3.6 Potential Vulnerabilities and Mitigation

It may be thought that speculative pushes could be like prefetch-
ing that is vulnerable to side-channel attacks. However, a few dif-
ferences between SPAMeR and cache prefetchers make SPAMeR
more secure. The 3 most popular ways to attack prefetching via
side-channel would not work on SPAMeR: 1) HW-prefetcher meta-
data, such as stride, leaks secrets [9, 39]. The latency counters in
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Figure 6: The example hardware logic implementation of
the tuned delay prediction algorithm. All “timer” label in
the diagram refer to the time stamp counter (tsc), while
“timer+{” and “timer-7” input ports on the right could be
from two other time stamp counters configured to have con-
stant offsets (i.e., {, —7) from tsc.

SPAMeR might also have the secrets but there are isolation (coun-
ters are per-endpoint, and each endpoint is assigned uniquely to a
thread) and obfuscation (augmented by random chance) to prevent
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secrets from leaking. 2) Content-based prefetcher might take the
secret (brought by transient instructions sometimes) as a hint of
prefetching address [3], while SPAMeR does not use content for pre-
diction. 3) Attacker could derive memory layout from prefetching
latency [18]. In contract, the destination of the speculative pushes
must be “push-enabled” (registered, marked) by the target core,
effectively white-listing specific cache lines of an endpoint as being
amenable to a speculative push. Therefore, attacker cannot gather
any useful information from SPAMeR for the memory layout. Re-
gardless the style of side-channel attacks, it is also more difficult to
probe SPAMeR than prefetching, because the prefetching changes
cacheline coherence state [19], while speculative push does not.

Another security concern is that a malicious producer could
aggressively occupy many SRD and network resources for DoS, or
inject malicious data messages into the channels of other processes
(e.g., if this mechanism was used to push lambda threads, then an
attacker could potentially execute arbitrary code with privilege).
However, attackers would have to first bypass all existing mitigation
provided by the virtual memory system architecture. As in VL,
SPAMeR allocates or frees resources via system calls similar to
memory management (no new system calls are added by either
SPAMeR or VL), so DoS can be mitigated by setting limits (e.g.,
ulimit for soft limits, and AArch64 MPAM extension allows the
microarchitecture to enforce resource utilization like bandwidth
per partition-id).

Lastly, the speculative push feature of SPAMeR is enabled per
endpoint. If a program (or a thread) has a specific security concern
or higher confidentiality requirements, it could disable speculation
per-endpoint or totally per SQI. Based on the discussion above, we
believe SPAMeR design is vulnerability-free as for now.

4 EVALUATION

4.1 Methodology

Table 1: gem5 Simulator Hardware Configuration.

Cores 16xAArch64 Oo0O CPU @ 2 GHz
32KiB private 2-way L1D, 48 KiB private 3-way L1I
Caches
1 MiB shared 16-way mostly-inclusive L2
DRAM | 8 GiB 2400 MHz DDR4
SRD 64 entries per prodBuf, consBuf, linkTab, and specBuf

We evaluate the proposed SPAMeR architecture using full-system
simulation. The approach was to implement SPAMeR on top of the
gemb5 [11] code base from Virtual-Link [48] repository [43], and
enhance it with the proposed SPAMeR Routing Device (SRD, § 3.2).
SPAMeR works as an extension to the AArch64 architecture. The
simulation settings used are shown in Table 1.

Table 2 lists the benchmarks we use in our evaluation. ping-pong,
halo, sweep, and incast are the common communication patterns
derived from the Ember benchmark suite [40]. pipeline, and firewall
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represent the styles of many network packet processing work-
loads [46]. FIR exists in many Digital Signal Processing workloads,
and bitonic is a sorting algorithm with plenty of parallelism for hard-
ware to exploit. The benchmarks cover different types of queues
(one-to-many, many-to-one, many-to-many etc.). Such queue in-
formation is marked as (M:N)xk at the end of each row, where M
denotes the number of producers to the queue, N denotes the num-
ber of consumers of the queue, and k denotes the number of such
queue instances. For example, firewall has 4 message queues, three
of which are one-to-one queues, and there is another queue having
two producers and one consumer. This software structure design
is influenced by the work from Wang et.al. [46]. The benchmarks
show diversity on the number of threads too, ranging from 2 to 16.
Each thread is assigned to a core in order to reduce the migration
overhead in the experiments. All the benchmarks are compiled with
¢-03’ level optimization using ‘gcc-8.2.0°.

Table 2: Benchmarks.

Benchmark Description, (#producer:#consumer) X #queue
ping- data back and forth between two threads (1:1)x2
pong [40]

halo [40] exchange data with neighboring threads (1:1)x48
sweep [40] data sweeps through a grid of threads corner to

corner (1:1)x48

incast [40] all threads sending data to the master thread (4:1)x1

4-stage pipeline with middle stages multi-threaded

pipeline [46] (1:4)x1+(4:4)x1+(4:1)x 1+ (1:1)x1

firewall [46] filter and dispatch packages (1:1)x3+(2:1)x1

FIR data streams through 10-stage FIR filter (1:1)x9

bitonic sort with varying number of threads

bitonic [5] (1:N)x1+(M:1)x1

4.2 Message Queue Workload Tracing
In order to get a better sense of how SPAMeR would reduce the
cross-core communication latency, we trace a few key events of each
message queue transaction in incast (which can have the simplest
queue setting so it is relatively easy to reasoning), then visualize the
transactions for detailed analysis. Figure 7 presents an example trace
where we can observe a mix of different types of message queue
transactions. In order to make the example easy to follow, the trace
is from incast that is configured to have a single message queue, a
single consumer cacheline, and single producer thread. From the
overview chart at the top of Figure 7, we can see two phases: when
the consumer runs faster at the beginning, transactions happen
in a stable fashion, and the throughput is bounded by the slower
producer; after about 50 000 ns, the producer generates a burst of
data and the consumer becomes the bottleneck.

The bottom chart of Figure 7 zooms in to reveal more details at
the transition of these two phases. The markers joined by lines are
the different events in a transaction. For each marker, its x -axis
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Figure 7: One of the simplest traces showing different message queue transactions in incast benchmark (single SQI) with single
consumer cacheline, single producer thread. For each marker, its x axis value is the timestamp, and it is vertically located
according to the event type. Red dashed lines indicate speculative pushes (no request arrival), while solid lines are on-demand
pushes to fulfill consumer requests. Darker lines are those transactions that could have shorter latency with speculation.

value is the timestamp, and it is vertically located according to the
event type as indicated on the y -axis. From the bottom to the top,
the diamond marker at the lowest row indicates data arrival from
the producer to the SRD, and the dot marker on the second lowest
row is for the request arrival from the consumer to the SRD. The
square marker above that indicates when the consumer cacheline
is ready to receive new data, and the marker on the second top row
is for when the producer data fill into the consumer cache target,
followed by the topmost marker (X) for the consumer’s first use
of the data. For on-demand pushes (solid lines in the chart), data
arrival, request arrival, and cacheline vacation must precede the
cacheline fill, while speculative pushes (red dashed lines) have no
request arrival event associated to the transaction. We highlight
some of the on-demand push transactions in dark black, because
in these transactions, filling the consumer cacheline with data is
hindered by the request arrival, the latest one among the three
events that an on-demand transaction requires. If a speculative
push was triggered, the delivery of the data could have gone earlier
as soon as both data arrival and cacheline vacate events happen.
The potential speculative push saving in those transactions are
calculated as the difference between the cacheline fill timestamp
and the latest of data arrival or cacheline vacation.

We also notice a “prerequest” behavior in the trace that a trans-
action (e.g., leftmost in the zoom-in section) has the request arrival
earlier than the cacheline actually becomes empty. It is because
when the consumer is looping to pop a queue, it is highly likely a
vl_fetch instruction is going through the cache hierarchy when
data is filled into cache. That leads to the “prerequest” phenomena.
The “prerequest” is not guided, and we observe its random impact
on the performance of VL (§ 4.3). SPAMeR replaces such “prerequest”
with educated speculation.

4.3 SPAMeR Performance

As mentioned in Section 3.4, we optimize the library by applying
function inlining and fetch skipping. Experiments reveals the inline
function has limited improvement (1.02X speedup on average).
Nevertheless, in the following evaluation, we apply the function
inlining optimization to the baseline Virtual-Link setting as well,
in order to show the benefits brought purely by speculation.

Figure 8 compares the performance of SPAMeR against the base-
line, Virtual-Link. As we can see, with the aggressive 0-delay algo-
rithm, SPAMeR is able to achieve more than 1.24x speedup over the
baseline on 5 of the benchmarks. The highest speedup, 2.59% occurs
on FIR, where the filtering stage workers stay on the fast path all the
time with the shorter latency. There is almost no performance gain
on ping-pong and sweep, because the consumers in those bench-
marks are always ready ahead while the data production is on the
critical path. Without available producer data, SPAMeR is not able
to try speculative push for the first place. The two queues in bitonic
are biased, and the starvation of producer data also happens to
the (1:N) queue. For all the benchmarks except FIR, the adaptive
delay algorithm obtains performance improvement fairly close to
the 0-delay algorithm. This is because the FIR worker threads could
switch between fast path and slow path, and the adaptive algorithm
adjusts the delay too dramatically, then easily it learns the period
of slow path instead of the fast path. In contrast, because the tuned
algorithm would carefully increase the delay additively to approach
the fast path period, it is able to lock the worker threads on the fast
path for the most of time. On average across all the benchmarks
(geometric mean), SPAMeR with 0-delay algorithm, the adaptive
and the tuned delay algorithm get 1.45x%, 1.25X and 1.33x speedup,
respectively.
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Figure 8: Performance improvement SPAMeR gains over
Virtual-Link (prior work), the higher the more performant.
Execution time normalized to the baseline (labeled on the
left of the black solid bar in millisecond).
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Figure 9: Execution time breakdown: the top of the bars
stands for average consumer cacheline empty cycles, and the
bottom of the bars is for non-empty.

Figure 9 breaks down the execution time into two: when the con-
sumer cacheline is empty and the rest. This provides the insight of
where does SPAMeR saves time. For VL, the cycles when a consumer
cacheline is empty could include the time spent on requesting data
and waiting for the data to arrive. As Figure 9 indicates that on
most benchmarks, SPAMeR cuts off some empty cycles to reduce the
total execution time; while SPAMeR might also transfer some empty
cycles into non-empty once hit peak consumer throughput, for
example, bitonic and 0-delay on pipeline. This observation validates
the philosophy of SPAMeR design that speculation could get the
data into consumer cachelines earlier and take chances to reduce
load-to-use latency. There are 32 consumer cachelines in incast, and
0-delay might quickly fill up all 32 cachelines then blocked on one
(round-robin as designed in § 3.5), until the consumer thread uses
up all data in other cachelines. This pattern causes half of the cycles
in incast with 0-delay algorithm are empty cycles. For FIR, with
data ready earlier, SPAMeR reduces the number of times for the FIR
threads going through the slow path, where the consumer cache-
lines are likely filled when half way through. Therefore, SPAMeR is
able to reduce the non-empty cycles in FIR considerably as well by
avoiding the slow path.

On the other side, the 0-delay algorithm costs more bus utiliza-
tion and energy than other delay algorithms due to its higher failure
rates. In Figure 10a, we compare how many pushes (counting both
on-demand pushes and speculative ones) fail out of total across four
different settings. VL has 0% failure rate on almost all the bench-
marks. One apparent exception is halo, where multiple threads in
the grid might frequently request data again and over again from
their neighboring threads, leading to higher chance for the unin-
tended “prefetches”. Also a single thread in halo might need to
handle 2 to 4 queues, so a data in the consumer cacheline is not
guaranteed to be taken timely, then some of the “prefetches” would
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Figure 10: The push failure rates and bus utilization of
Virtual-Link, and SPAMeR with different delay algorithms.
The higher the less efficient.

fail. However, due to the plenty speculation opportunities exist in
halo, SPAMeR gets 1.33x speedup on halo, and such “prefetches” is
also overall beneficial to the the performance of the VL baseline
(without “prefetches” VL would be 0.94% slower on halo). SPAMeR
with 0-delay algorithm shows super high failure rates on most of
the benchmarks as expected. ping-pong and sweep share a pattern in
common that the data packets go back and forth between two ends
periodically and by the the time the data packet is back visiting a
node again, the consumer cacheline of the node is probably ready
ahead. Therefore, ping-pong and sweep are the only two 0-delay
algorithm which does not make many failures. The adaptive delay
algorithm manages to lower the failure rate under 50% on all the
benchmarks. Because SPAMeR changes the two-way traffic (request
and data push) in VL to one-way, 50% failure rate means SPAMeR
would have equal or fewer packets going through the bus (verified
in Figure 10b). The failure rate for the tuned algorithm is slightly
higher than the adaptive algorithm. Achieving near-zero specu-
lative push failure rate for arbitrary workload is no easier than
improving the prefetching accuracy to almost 100%, however, the
most common prefetchers (stride prefetcher and Markov prefetcher)
can only get accuracy on around 50% [45].

The higher the push failure rate, the more wasted traffic on the
bus. Figure 10b reports the bus utilization, which is the percentage
of cycles that have at least one packet (request or data) reaches the
bus. As we can see, SPAMeR with 0-delay algorithm consumes much
more bandwidth than others on most of the benchmarks. SPAMeR
with the adaptive or the tuned algorithm has comparable or even
lower bus utilization than the baseline. The reason is that for each
successful on-demand push in VL, there must be a consumer request
going through the bus before, so the total number of transactions
is twice as the number of successful pushes. Since the adaptive
delay algorithm is able to bring the failure rate under 50% for most
benchmarks, there are chances for it to spare more bus cycles than
the baseline.
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Figure 11: Execution time v.s. the dynamic part of energy consumed by SRD pushes. Both axis are normalized to VL baseline.
Other combinations of the tuned algorithm parameters are included to show how is the algorithm sensitive to the parameters.

4.4 Sensitivity Study

There are several parameters (i.e., {, 7, §, @, f) in the tuned
algorithm design, so we explore the sensitivity to the parameter
combinations as shown in Figure 11. Every marker represents a
speculation algorithm (or tuned algorithm with different param-
eters). Their x-axis and y-axis values are benchmark end-to-end
execution time (denoted as delay) and the dynamic energy con-
sumed by SRD pushes (denoted as energy), respectively. Different
benchmarks have different communication patterns therefore react
differently to the varying parameters. In order to sense the parame-
ter sensitivity consistently across benchmarks, we keep the scale
the same for all benchmarks after normalizing both delay and en-
ergy to the baseline (the black dot). Apparently, the closer to the
origin point, the better an algorithm is (meaning running faster
with less energy cost). As Figure 11a reveals, FIR is hard-to-predict
as the adaptive algorithm (the triangle marker) only wastes energy
on improperly-timed pushes and cannot reduce the execution time;
the 0-delay algorithm (the star marker) gets good speedup on FIR at
the cost of too much higher energy to be realistic. The parameters
of the tuned algorithm allow us to balance the trade-off in between
as those small blue dots in Figure 11a illustrate. Because the set
of parameters ({ = 256, 7 = 96,5 = 64, @ = 1, f = 2, the cross
marker) we choose is based on the tuning on FIR, it is one of the
settings that are on the side closer to the origin point. As Figure 11b
to Figure 11h show, the chosen parameter setting might be sub-
optimal on other benchmarks, for example, there are parameter

combinations run slightly faster on firewall, or cost marginally less
energy on incast. Nevertheless, the tuned algorithm parameters
have very limited impact if not none on the performance of other
benchmarks. With this validation, we believe if only one fixed set
of parameters must be hardened for the tuned algorithm, we can
tune it for the hard-to-predict workloads and it should work well
with other insensitive applications.

4.5 Area and Power Estimation

The Virtual-Link [48] work estimated the area cost of the VLRD by
developing RTL code and scaled the synthesis result on the FreePDK
45 nm library [42] to 16 nm technology node [41]. Given the fact
that SRD shares its major structures and data paths with VLRD,
we follow the same methodology as Virtual-Link to estimate the
area cost. RTL synthesis and scaling shows that with the additional
specBuf, SRD uses 0.156 mm? for all the buffers, and the overall
area is 0.170 mm? (within 15% increase from the area of VLRD). As
a single Arm A-72 core at 16FF is reported to be ~1.15 mm? [47],
the 16-core Arm A-72 configuration we simulate should be at least
18.4mm? (excluding L2 caches and wire overhead), making SRD
cost less than 1% of the overall SoC area. This estimation is based
on the basic setting with 64 specBuf entries using the 0-delay algo-
rithm. Different delay prediction algorithms (e.g., adaptive delay
algorithm) might require additional storage and control logic. 64
specBuf entries are more than the benchmarks need (at most 438),
while if there is a situation where the workloads register more
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specBuf entries, the operating system needs to manage the specBuf
as other limited resources (e.g., physical memory).

With 16FF and 0.86 V supply voltage, the power of the baseline,
VL is estimated to be 9.33 mW (dynamic) and 0.82 mW (leakage).
As considering SRD pushes more frequently than VLRD does, we
multiply the dynamic power by the factor of push frequency. It
turns out the 0-delay algorithm would yield too much higher power
to be realistic, while the adaptive and the tuned algorithm are
bounded to be at most 2.45%, 5.03X more than VL, respectively.
That is 47.75 mW for SRD power in total at most. The power of a 20
Cortex-A72 processor with 28 MB cache is reported to be around
30 W [47], so assuming a 16-core SoC system consumes about 21 W
power, SRD would only contribute to about 0.23% of the total power.
Since the power ratio is at the same magnitude of its area share, so
SRD is unlikely to be the peak thermal component.

5 RELATED WORK

Software message queues range in implementation and complex-
ity from the very basic lock-free queues of Michael and Scott [31]
to more recent implementations of these structures such as [32]
and [23]. More recent software works focus on lock-free, applica-
tion specific data structures for increased performance and lower-
latency versus a more general queueing solution such as that pro-
posed by SPAMeR (e.g., Kite [17]). One thing many of these software
frameworks have in common is that they rely on demand data ac-
cess and generic prefetchers to place the data as close to the receiver
as possible. Some software works that attempt to pre-push data
include [44] and [16]. While these works address some variations
on pre-pushing, they still rely on atomic operations and coher-
ence structures which have scaling issues [14, 48], SPAMeR does
not. Dataflow, streaming, and event-based languages/runtimes al-
low programmers to write applications described as a graph, these
frameworks enable the compiler and runtime to place prefetch
ahead of time for indirect buffers pointed to by messages received,
examples include [6, 10, 15]. These techniques do nothing for the
synchronization points, however they do improve performance for
accessing the indirect buffers.

Moving beyond atomic operations to mitigate scaling issues seen
in modern coherent systems, computer architects and researchers
have attempted to provide hardware support for communicating
threads. These solutions range from instructions to facilitate direct
memory transfer (or register to register) to hardware-software so-
lutions. Domain specific solutions such as the TILE64 [7], digital
signal processors such as the IBM Cell [12], the Freescale DPAA [36],
and others provide data movement operators to send data directly
from PE-to-PE, often in the form of direct memory access transfers
(i.e., DMA). More recent works such as HAQu [28], CAF [46], the
Intel DLB [22], the RISC-V based “moving compute” hardware chan-
nels model [14], and “Virtual-Link” [48], which this work extends,
all provide hardware acceleration that reduce core-to-core message
latency and increase overall throughput. A key to almost all of
these frameworks is that they decouple the coherence coupling
between producer and consumer, reducing the ping-pong effect of
repeated shared-to-exclusive cache-line upgrades. None of these
works provide a means of speculatively injecting data to target
consumers.
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The domain of software prefetch and pre-population of data
caches in general, is quite rich. Concepts such as run-ahead
threads [37] and customized data structures to allow easier soft-
ware prefetch [49] exist in the literature. None of these solutions
target communicating threads which would likely destroy these op-
timizations. Concepts such as decoupled access-execute [26] could
produce higher hit rates with communicating threads, at the cost
of much higher contention within the interconnect; such solutions
still have the same scalability bottlenecks as traditional coherent
systems, which SPAMeR specifically addresses. Special purpose
hardware that drives targeted prefetch has also been proposed [2].
More recent works have looked specifically at prefetching in the
face of communicating threads [24, 38]. While these works look to
understand and mitigate the impact of prefetch across synchroniza-
tion boundaries, SPAMeR pre-pushing removes the synchronization
boundary while simultaneously netting the benefit of placing the
data as close to the core as possible.

6 CONCLUSION

In this paper, we present a novel mechanism, SPAMeR, to reduce
the cross-core communication latency in multi-core systems. In
SPAMeR, there is a routing device that anticipates the incoming
requests, then speculatively pushes the data into a target consumer
cacheline. Our full system simulation using the gem5 infrastructure
illustrates that SPAMeR is able to obtain 1.33X speed up over a state-
of-the-art hardware message queue architecture on 8 task-parallel
benchmarks. We also use gem5 to study the benchmarks, and per-
form a detailed analysis on the message queue communication
overhead. We believe the proposed architecture would assist the
effectiveness of multi-core systems handling task-parallel dataflow
workloads.
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