
SPAMeR: Speculative Push for Anticipated Message Requests in
Multi-Core Systems

Qinzhe Wu
qw2699@utexas.edu

University of Texas at Austin
Austin, Texas, United States

Ashen Ekanayake
ashen.ekanayake@utexas.edu
University of Texas at Austin
Austin, Texas, United States

Ruihao Li
liruihao@utexas.edu

University of Texas at Austin
Austin, Texas, United States

Jonathan Beard
Jonathan.Beard@arm.com

Arm Inc.
Austin, Texas, United States

Lizy K. John
ljohn@ece.utexas.edu

University of Texas at Austin
Austin, Texas, United States

ABSTRACT

With increasing core counts and multiple levels of cache memo-

ries, scaling multi-threaded and task-level parallel workloads is

continuously becoming a challenge. A key challenge to scaling the

number of communicating tasks (or threads) is the rate at which

existing communication mechanisms scale (in terms of latency

and bandwidth). Architectures with hardware accelerated queuing

operations have the potential to reduce the latency and improve

scalability of moving data between processing elements, reducing

synchronization penalties, and thereby improving the performance

of task-level parallel workloads. While hardware queues reduce syn-

chronization penalties, they cannot fully hide load-to-use latency,

i.e., perfect pipelines often are not realized. There is the potential,

however, for better overlap. If the inter-processor communication

latency is equal to or less than the time spent processing a mes-

sage at the consumer, any and all latency may be overlapped while

the consumer is processing. We exploit this property to speedup

parallel applications above and beyond existing hardware queues.

In this paper, we present SPAMeR, a speculation mechanism built

on top of a state-of-the-art hardware-driven message queue archi-

tecture. SPAMeR has the capability to speculatively push messages

in anticipation of consumer message requests. Unlike pre-fetch

approaches which predict what addresses to fetch next, with a

queue we know exactly what data is needed next but not when

it is needed; SPAMeR adds algorithms that attempt to predict this.

We evaluate the effectiveness of SPAMeR with a set of diverse task-

parallel benchmarks utilizing the gem5 full system simulator, and

observe a 1.33× average speedup.

CCS CONCEPTS

· Computer systems organization → Multicore architec-

tures.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPP ’22, August 29-September 1, 2022, Bordeaux, France

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9733-9/22/08. . . $15.00
https://doi.org/10.1145/3545008.3545044

KEYWORDS

multi-core system, parallel computing, message queue, speculation

ACM Reference Format:

Qinzhe Wu, Ashen Ekanayake, Ruihao Li, Jonathan Beard, and Lizy K. John.

2022. SPAMeR: Speculative Push for Anticipated Message Requests in Multi-

Core Systems. In 51st International Conference on Parallel Processing (ICPP

’22), August 29-September 1, 2022, Bordeaux, France. ACM, New York, NY,

USA, 12 pages. https://doi.org/10.1145/3545008.3545044

1 INTRODUCTION

The scaling of cooperative threads is an attractiveway to increase

performance of parallel workloads. This is especially true as mod-

ern Chip Multiprocessors (CMP) have more processing elements

than ever before. Unfortunately, increasing cooperative threads

often leads to diminishing performance returns [14, 48]. Coherent

shared-memory multi-threaded applications particularly suffer due

to load-to-use latency and synchronization overhead [4, 25]. The

introduction of multi-core compute systems brought with it non-

uniform latency between processing elements. CMPs have cores

at the top of the hierarchy, where each core connects to a private

cache, then after a certain level (point of coherence) the cache is

often shared among a cluster of cores, and eventually all the cores

have the access to a consistent memory. For parallel programs to

execute correctly, these hierarchies implement a cache coherence

protocol which is mediated by snoop messages traveling back and

forth in the hierarchy (invalidating, updating, and checking-out

cache lines for data requests) to enable cross-core communication

between software agents at a coherence line granularity (e.g., snoop

and invalidation in aMOESI coherence protocol, Figure 1a). With in-

creasing core counts and communicating software, more messages

must be sent across this hierarchy (both data and coherence traffic),

increasing contention for data network resources (and shared data)

and thereby increasing the overall latency of many data access

operations [34].

To address cross-core communication overheads (i.e., latency

and synchronization), researchers have proposed adding hardware

queues that could directly transmit data from one Processing El-

ement (PE) to another using a dedicated network [20]; such ma-

chines often adopt a dataflow, streaming, communicating sequential

process, or systolic array-like computation patterns [21, 27]. Such

dataflow patterns are prevalent in machine learning [1, 29, 35], and

ICPP ’22, August 29-September 1, 2022, Bordeaux, France Wu et al.

(a) MOESI: acquire cacheline to update queue states

(b) Virtual-Link: no interference between endpoints w/ unique addresses

(c) SPAMeR: routing device speculatively pushes data

Figure 1: Cross-core message queue communication latency

(Lc) gets reduced from cache coherence-based queue to

Virtual-Link [48] hardware queue (Lv) and SPAMeR hard-

ware queue with speculative pushes (Ls).

many other high-performance computing tasks [13]. More recently,

researchers have proposed architectures that achieve a similar ef-

fect to hardware queues with dedicated networks, while reusing

components of the traditional hierarchical data coherence network.

For instance, both Wang et. al. [46] and Wu et. al. [48] propose

architectural message queue frameworks (with associated microar-

chitecture). Both approaches reduce the overall synchronization

overhead, a key bottleneck for some applications as demonstrated

by Virtual-Link (VL) [48]. In most, if not all, hardware queue imple-

mentations (e.g., VL) the data is served in an on-demand manner,

that is, data is fetched only when requested by a receiver (Figure 1b).

None of these approaches attempt to speculate when a message

request will arrive (e.g., a pop operation). SPAMeR places data ahead

to the receiver that needs it but have not requested yet (Figure 1c),

in order to further reduce the load-to-use latency.

Traditional speculative methods to reduce load-to-use latency

rely on prefetchingwhat data comes next based on a learned pattern,

however, when communicating between asynchronous threads, it

is unclear which data should be fetched next in the general case

(consider the case ofM:N communicating threads, which one should

receive the next message?). When a hardware queue is used, it

knows exactly what data is next (using the property of the queue). In

the case of a hardware queue, perhaps a better speculation approach

is to have the hardware queue guess when to push data to the

consumer, in anticipation of a request. This would remove the

added latency for the consumer data request, however, speculating

when to push data and not what data to fetch is a new problem

to solve, one to which we contribute a solution. Another problem,

which is different from a traditional prefetch algorithm, is that we

also must select which receiver (assume M:N) will need the next

message, something that we also contribute to.

As Virtual-Link is the state-of-the-art hardware message queue

architecture, we adopt VL as the underlying hardware queue, and

then improve upon it, noting that there are additional data network

transactions that could be removed if speculation (which we pro-

vide) was adopted. To our knowledge, there are no prior works that

speculatively push data within a message channel (such as created

by VL).

The primary contributions of this paper are:

(1) We design and implement a speculative message queue archi-

tecture that we call SPAMeR. This architecture can prepush

data amongst asynchronous communicating threads with

little coherence overhead, anticipating future consumer data

requests, therefore further reducing load-to-use (e.g., pop-to-

use) and enabling more communication to overlap.

(2) We evaluate the performance of SPAMeR comparing it to

state-of-the-art hardware queues and explore the benefits

of speculative message passing. The gem5-based full sys-

tem simulation demonstrates a speedup of 1.33× for 8 task-

parallel workloads over state-of-the-art.

The rest of the paper is organized as follows: first we present a

short overview of the state-of-the-art hardware queue mechanisms

in the background section (ğ 2). We then present the design of

SPAMeR (ğ 3), followed by evaluation of the SPAMeR implementa-

tion (ğ 4), related work (ğ 5), and lastly the conclusions(ğ 6).

2 BACKGROUND

This paper presents a speculative pre-push mechanism, SPAMeR,

for hardware queue architectures. We pick one of the state-of-the-

art hardware queue solutions, Virtual-Link (VL) [48] as the base to

build on, because VL has addressed the scalability issue caused by

coherence traffic on shared states and achieved good performance.

However, VL does not touch the problem that how to speculate

the message request and hide the load-to-use latency, which is

issue that SPAMeR targets on. We first present an overview of VL

in this section. Other prior works are described in Section 5, and

the techniques we develop on top of VL are likely apply to other

hardware queues.

VL is a light-weight communication mechanism with hardware

support to facilitateM:N lock-free data movement [48]. VL attaches

a routing device to the coherence network, as shown in Figure 2,

to facilitate transmission of data (cache lines) from producer to

consumer. The routing device enables VL to łlinkž unique producer

SPAMeR: Speculative Push for Anticipated Message Requests in Multi-Core Systems ICPP ’22, August 29-September 1, 2022, Bordeaux, France

specBuf.next field is used to update the specHead field in linkTab,

so that for the next prediction, it would be a different specBuf entry

that supplies specTgt. All the specBuf entry of a SQI form a loop

and are used in turn. The speculative push address generated by

specBuf is only taken as the target if there is no consumer request

for this SQI in consBuf , otherwise the non-zero consHead value

tells the multiplexer to pick consTgt. If the specTgt is selected,

then the producer data logically enters the speculative push queue

(Path (A) in Figure 5). After some delay, the SRD sends the data to

the target cacheline. The delay is key for efficient speculation as

we discuss further in ğ 3.5 and ğ 4.3.

3.3 Speculative Address Registration
Instruction

We need to update the specBuf in order to let the SRD know

the addresses of cachelines that could potentially accept a spec-

ulative push. This task is fundamentally the same as entering a

consumer request (SQI plus cacheline address) into consBuf . Two

VL instructions already exist for this purpose: vl_select translates

the virtual address of a consumer cacheline to the physical address

and writes back to a system register (only readable by vl_fetch,

vl_push instructions, the physical address is not user-space ac-

cessible) vl_fetch reads the physical address from the system

register then writes it to a device memory address which belongs

to the routing device. In SPAMeR, we allocate another range of

device memory address for specBuf . A vl_fetch instruction writ-

ing to specBuf is under the alias spamer_register. When the SRD

receives a spamer_register, the routing device updates specBuf

rather than consBuf .

3.4 Library Optimizations
To enable software to make use of SPAMeR’s speculative push

functionality, we first need to configure the SRD with the

spamer_register instruction introduced in Section 3.3. This is

configured in the same library function where VL creates con-

sumer endpoints (the consumer cachelines associated with each

endpoint are allocated in that function too). We revise the origi-

nal VL library code [43] to register consumer cachelines with the

spamer_register instruction before returning the endpoint to the

user application. These consumer endpoints are spec-push-enabled

and their cacheline addresses are recorded in specBuf after the

spamer_register instructions, at this point the SRD can specu-

latively push data into these endpoints when appropriate. As a

legacy option, user applications could request the library to pro-

vide non-speculative endpoints (i.e., when the spamer_register

instructions are skipped). As we show in Figure 3, consumer re-

quests (step 4) could be replaced by speculative pushes (step 6) for

spec-push-enabled endpoints, thus SPAMeR further optimizes the

dequeue library function by eliminating the part of the code issuing

vl_select and vl_fetch at compile time. We also make the most

frequently invoked queue functions as macros, so they are inlined

at the compiler preprocessing phase, potentially avoiding some

function calling overheads during execution.

3.5 Speculation Algorithms
Just like prefetching, speculative pushing could be history-

based[33], profiling-guided[30], heuristic-oriented[50], or

perceptron-style[8]. For SPAMeR, speculation consists of two

predictions: which cacheline and associated endpoint to specula-

tive push to (e.g., 1 of M endpoints subscribed to a SQI that are

speculation-enabled), and what is the perfect timing to push.

For the speculative push target selection, we let all valid specBuf

entries participate in the address mapping in turn (ğ 3.2), and rotate

the target cacheline addresses in each entry (via specBuf.offset).

This design collaborates with the library, which would use the

cachelines of an endpoint in a round-robin fashion. Across specBuf

entries, the strategy sounds like round-robin, while it is actually

weighted in two ways. First is that we can intentionally control

the number of targets in the entries, and effectively adjust the

speculative push rate for each target. For example, if we have one

entry with 2 targets α and β , while another entry of the same SQI

has only one target γ ; Assuming the two entries receive the equal

chance to be looked up during address mapping, the ratio between

the three targets for receiving speculative pushes is 1 : 1 : 2.

In other words, the number of speculative pushes on target γ is

doubled compared to target α , or β . Secondly, there is a throttling

mechanism that sets an łon_flyž bit per specBuf entry when there

exists a target from this entry in the speculative push queue. Until

the previous speculative push finishes, this specBuf entry stops

giving speculation target. Then the probability of selecting a target

is effectively influenced by the delay prediction algorithms.

We first introduce two simplest delay prediction algorithms of

the many we have evaluated. The first one is called 0-delay, which

does not add any additional delay, but lets the speculative push

go as soon as possible. The 0-delay algorithm can maximize the

performance, because as long as there are available producer data

in SRD, it keeps trying speculative pushes. This lets the 0-delay

algorithm never miss the earliest chance to push the data into a

consumer cacheline. The down side is that it could eat up bus/port

bandwidth and affect other workloads. The second delay prediction

algorithm adjusts the delay based on the speculative push results,

so we refer it as the adaptive delay algorithm. The adaptive delay

algorithm saves the delay values in registers (one per linkTab entry

or per specBuf entry), and reduces the delay by half (right shift

by 1-bit) upon a successful speculative push, otherwise double the

delay for a failed speculative push. The adaptive delay algorithm

helps the SRD to build a profile of the consumer data ingest rate

and pushes data according to their perceived ability to consume

it. However, the adaptive algorithm approach is too simple to fully

model the consumer behavior (as we will show in Section 4.3).

We come up with a tuned delay prediction algorithm tuned for

the benchmark which analysis suggests has the greatest poten-

tial (ğ 4). The intuition for the design of the tuned algorithm is

to take interval between the most recent two successful pushes

at the same endpoint as the reference to predict the delay for the

next push to this endpoint. Because the intervals could fluctuate

more or less, the tuned algorithm calculates the delay from the

reference in both multiplicative (i.e., shifting bits left or right), and

additive (i.e., adding a constant delta) ways, creating a set of de-

lays. This set of delays is then tried in chronological order. The

yellow blocks in Figure 6 are the additional information latched

in specBuf for the tuned algorithm to make its predictions. From

the top to the bottom: specBuf.nfills counts the number of suc-

cessful pushes; specBuf.last records the timestamp when the last

SPAMeR: Speculative Push for Anticipated Message Requests in Multi-Core Systems ICPP ’22, August 29-September 1, 2022, Bordeaux, France

secrets from leaking. 2) Content-based prefetcher might take the

secret (brought by transient instructions sometimes) as a hint of

prefetching address [3], while SPAMeR does not use content for pre-

diction. 3) Attacker could derive memory layout from prefetching

latency [18]. In contract, the destination of the speculative pushes

must be łpush-enabledž (registered, marked) by the target core,

effectively white-listing specific cache lines of an endpoint as being

amenable to a speculative push. Therefore, attacker cannot gather

any useful information from SPAMeR for the memory layout. Re-

gardless the style of side-channel attacks, it is also more difficult to

probe SPAMeR than prefetching, because the prefetching changes

cacheline coherence state [19], while speculative push does not.

Another security concern is that a malicious producer could

aggressively occupy many SRD and network resources for DoS, or

inject malicious data messages into the channels of other processes

(e.g., if this mechanism was used to push lambda threads, then an

attacker could potentially execute arbitrary code with privilege).

However, attackers would have to first bypass all existingmitigation

provided by the virtual memory system architecture. As in VL,

SPAMeR allocates or frees resources via system calls similar to

memory management (no new system calls are added by either

SPAMeR or VL), so DoS can be mitigated by setting limits (e.g.,

ulimit for soft limits, and AArch64 MPAM extension allows the

microarchitecture to enforce resource utilization like bandwidth

per partition-id).

Lastly, the speculative push feature of SPAMeR is enabled per

endpoint. If a program (or a thread) has a specific security concern

or higher confidentiality requirements, it could disable speculation

per-endpoint or totally per SQI . Based on the discussion above, we

believe SPAMeR design is vulnerability-free as for now.

4 EVALUATION

4.1 Methodology

Table 1: gem5 Simulator Hardware Configuration.

Cores 16×AArch64 OoO CPU @ 2GHz

Caches
32 KiB private 2-way L1D, 48 KiB private 3-way L1I

1MiB shared 16-way mostly-inclusive L2

DRAM 8GiB 2400MHz DDR4

SRD 64 entries per prodBuf , consBuf , linkTab, and specBuf

We evaluate the proposed SPAMeR architecture using full-system

simulation. The approach was to implement SPAMeR on top of the

gem5 [11] code base from Virtual-Link [48] repository [43], and

enhance it with the proposed SPAMeR Routing Device (SRD, ğ 3.2).

SPAMeR works as an extension to the AArch64 architecture. The

simulation settings used are shown in Table 1.

Table 2 lists the benchmarks we use in our evaluation. ping-pong,

halo, sweep, and incast are the common communication patterns

derived from the Ember benchmark suite [40]. pipeline, and firewall

represent the styles of many network packet processing work-

loads [46]. FIR exists in many Digital Signal Processing workloads,

and bitonic is a sorting algorithmwith plenty of parallelism for hard-

ware to exploit. The benchmarks cover different types of queues

(one-to-many, many-to-one, many-to-many etc.). Such queue in-

formation is marked as (M:N)×k at the end of each row, whereM

denotes the number of producers to the queue, N denotes the num-

ber of consumers of the queue, and k denotes the number of such

queue instances. For example, firewall has 4 message queues, three

of which are one-to-one queues, and there is another queue having

two producers and one consumer. This software structure design

is influenced by the work from Wang et.al. [46]. The benchmarks

show diversity on the number of threads too, ranging from 2 to 16.

Each thread is assigned to a core in order to reduce the migration

overhead in the experiments. All the benchmarks are compiled with

‘-O3’ level optimization using ‘gcc-8.2.0’.

Table 2: Benchmarks.

Benchmark Description, (#producer:#consumer) × #queue

ping-

pong [40]
data back and forth between two threads (1:1)×2

halo [40] exchange data with neighboring threads (1:1)×48

sweep [40]
data sweeps through a grid of threads corner to

corner (1:1)×48

incast [40] all threads sending data to the master thread (4:1)×1

pipeline [46]
4-stage pipeline with middle stages multi-threaded

(1:4)×1+(4:4)×1+(4:1)×1+ (1:1)×1

firewall [46] filter and dispatch packages (1:1)×3+(2:1)×1

FIR data streams through 10-stage FIR filter (1:1)×9

bitonic [5]
bitonic sort with varying number of threads

(1:N)×1+(M:1)×1

4.2 Message Queue Workload Tracing
In order to get a better sense of how SPAMeR would reduce the

cross-core communication latency, we trace a few key events of each

message queue transaction in incast (which can have the simplest

queue setting so it is relatively easy to reasoning), then visualize the

transactions for detailed analysis. Figure 7 presents an example trace

where we can observe a mix of different types of message queue

transactions. In order to make the example easy to follow, the trace

is from incast that is configured to have a single message queue, a

single consumer cacheline, and single producer thread. From the

overview chart at the top of Figure 7, we can see two phases: when

the consumer runs faster at the beginning, transactions happen

in a stable fashion, and the throughput is bounded by the slower

producer; after about 50 000 ns, the producer generates a burst of

data and the consumer becomes the bottleneck.

The bottom chart of Figure 7 zooms in to reveal more details at

the transition of these two phases. The markers joined by lines are

the different events in a transaction. For each marker, its x -axis

SPAMeR: Speculative Push for Anticipated Message Requests in Multi-Core Systems ICPP ’22, August 29-September 1, 2022, Bordeaux, France

specBuf entries, the operating system needs to manage the specBuf

as other limited resources (e.g., physical memory).

With 16FF and 0.86V supply voltage, the power of the baseline,

VL is estimated to be 9.33mW (dynamic) and 0.82mW (leakage).

As considering SRD pushes more frequently than VLRD does, we

multiply the dynamic power by the factor of push frequency. It

turns out the 0-delay algorithm would yield too much higher power

to be realistic, while the adaptive and the tuned algorithm are

bounded to be at most 2.45×, 5.03× more than VL, respectively.

That is 47.75mW for SRD power in total at most. The power of a 20

Cortex-A72 processor with 28MB cache is reported to be around

30W [47], so assuming a 16-core SoC system consumes about 21W

power, SRD would only contribute to about 0.23% of the total power.

Since the power ratio is at the same magnitude of its area share, so

SRD is unlikely to be the peak thermal component.

5 RELATED WORK

Software message queues range in implementation and complex-

ity from the very basic lock-free queues of Michael and Scott [31]

to more recent implementations of these structures such as [32]

and [23]. More recent software works focus on lock-free, applica-

tion specific data structures for increased performance and lower-

latency versus a more general queueing solution such as that pro-

posed by SPAMeR (e.g., Kite [17]). One thing many of these software

frameworks have in common is that they rely on demand data ac-

cess and generic prefetchers to place the data as close to the receiver

as possible. Some software works that attempt to pre-push data

include [44] and [16]. While these works address some variations

on pre-pushing, they still rely on atomic operations and coher-

ence structures which have scaling issues [14, 48], SPAMeR does

not. Dataflow, streaming, and event-based languages/runtimes al-

low programmers to write applications described as a graph, these

frameworks enable the compiler and runtime to place prefetch

ahead of time for indirect buffers pointed to by messages received,

examples include [6, 10, 15]. These techniques do nothing for the

synchronization points, however they do improve performance for

accessing the indirect buffers.

Moving beyond atomic operations to mitigate scaling issues seen

in modern coherent systems, computer architects and researchers

have attempted to provide hardware support for communicating

threads. These solutions range from instructions to facilitate direct

memory transfer (or register to register) to hardware-software so-

lutions. Domain specific solutions such as the TILE64 [7], digital

signal processors such as the IBMCell [12], the Freescale DPAA [36],

and others provide data movement operators to send data directly

from PE-to-PE, often in the form of direct memory access transfers

(i.e., DMA). More recent works such as HAQu [28], CAF [46], the

Intel DLB [22], the RISC-V based łmoving computež hardware chan-

nels model [14], and łVirtual-Linkž [48], which this work extends,

all provide hardware acceleration that reduce core-to-core message

latency and increase overall throughput. A key to almost all of

these frameworks is that they decouple the coherence coupling

between producer and consumer, reducing the ping-pong effect of

repeated shared-to-exclusive cache-line upgrades. None of these

works provide a means of speculatively injecting data to target

consumers.

The domain of software prefetch and pre-population of data

caches in general, is quite rich. Concepts such as run-ahead

threads [37] and customized data structures to allow easier soft-

ware prefetch [49] exist in the literature. None of these solutions

target communicating threads which would likely destroy these op-

timizations. Concepts such as decoupled access-execute [26] could

produce higher hit rates with communicating threads, at the cost

of much higher contention within the interconnect; such solutions

still have the same scalability bottlenecks as traditional coherent

systems, which SPAMeR specifically addresses. Special purpose

hardware that drives targeted prefetch has also been proposed [2].

More recent works have looked specifically at prefetching in the

face of communicating threads [24, 38]. While these works look to

understand and mitigate the impact of prefetch across synchroniza-

tion boundaries, SPAMeR pre-pushing removes the synchronization

boundary while simultaneously netting the benefit of placing the

data as close to the core as possible.

6 CONCLUSION

In this paper, we present a novel mechanism, SPAMeR, to reduce

the cross-core communication latency in multi-core systems. In

SPAMeR, there is a routing device that anticipates the incoming

requests, then speculatively pushes the data into a target consumer

cacheline. Our full system simulation using the gem5 infrastructure

illustrates that SPAMeR is able to obtain 1.33× speed up over a state-

of-the-art hardware message queue architecture on 8 task-parallel

benchmarks. We also use gem5 to study the benchmarks, and per-

form a detailed analysis on the message queue communication

overhead. We believe the proposed architecture would assist the

effectiveness of multi-core systems handling task-parallel dataflow

workloads.

ACKNOWLEDGMENTS

This research was supported in part by NSF grant numbers 1745813,

and 1763848, and funding from Arm. We also acknowledge the

computing servers donated fromAmpere Computing. Any opinions,

findings, conclusions or recommendations are those of the authors

and not of the National Science Foundation or other sponsors.

REFERENCES
[1] Martín Abadi, Michael Isard, and Derek G Murray. 2017. A computational

model for TensorFlow: an introduction. In Proceedings of the 1st ACM SIGPLAN
International Workshop on Machine Learning and Programming Languages. 1ś7.

[2] Sam Ainsworth and Timothy M Jones. 2016. Graph prefetching using data
structure knowledge. In Proceedings of the 2016 International Conference on Su-
percomputing.

[3] Sam Ainsworth and Timothy M. Jones. 2020. MuonTrap: Preventing Cross-
Domain Spectre-like Attacks by Capturing Speculative State. In Proceedings of the
ACM/IEEE 47th Annual International Symposium on Computer Architecture (Virtual
Event) (ISCA ’20). IEEE Press, 132ś144. https://doi.org/10.1109/ISCA45697.2020.
00022

[4] Mohammad Bakhshalipour, Seyedali Tabaeiaghdaei, Pejman Lotfi-Kamran, and
Hamid Sarbazi-Azad. 2019. Evaluation of hardware data prefetchers on server
processors. ACM Computing Surveys (CSUR) 52, 3 (2019), 1ś29.

[5] Kenneth E Batcher. 1968. Sorting networks and their applications. In Proceedings
of the April 30śMay 2, 1968, spring joint computer conference. 307ś314.

[6] Jonathan C Beard, Peng Li, and Roger D Chamberlain. 2017. Raftlib: A C++ tem-
plate library for high performance stream parallel processing. The International
Journal of High Performance Computing Applications 31, 5 (2017), 391ś404.

[7] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay, M. Reif,
L. Bao, J. Brown, M. Mattina, C. Miao, C. Ramey, D. Wentzlaff, W. Anderson,

ICPP ’22, August 29-September 1, 2022, Bordeaux, France Wu et al.

E. Berger, N. Fairbanks, D. Khan, F. Montenegro, J. Stickney, and J. Zook. 2008.
TILE64 - Processor: A 64-Core SoC with Mesh Interconnect. In 2008 IEEE In-
ternational Solid-State Circuits Conference - Digest of Technical Papers. 88ś598.
https://doi.org/10.1109/ISSCC.2008.4523070

[8] Eshan Bhatia, Gino Chacon, Seth Pugsley, Elvira Teran, Paul V. Gratz, and
Daniel A. Jiménez. 2019. Perceptron-Based Prefetch Filtering. In 2019 ACM/IEEE
46th Annual International Symposium on Computer Architecture (ISCA). 1ś13.

[9] Sarani Bhattacharya, Chester Rebeiro, and Debdeep Mukhopadhyay. 2016. A
Formal Security Analysis of Even-Odd Sequential Prefetching in Profiled Cache-
Timing Attacks. In Proceedings of the Hardware and Architectural Support for
Security and Privacy 2016 (Seoul, Republic of Korea) (HASP 2016). Association for
Computing Machinery, New York, NY, USA, Article 6, 8 pages. https://doi.org/
10.1145/2948618.2948624

[10] Tiwei Bie, Changchun Ouyang, and Heqing Zhu. 2020. Virtio. In Data Plane
Development Kit (DPDK). CRC Press, 229ś250.

[11] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The Gem5 Simulator. SIGARCH Comput. Archit.
News 39, 2 (Aug. 2011), 1ś7. https://doi.org/10.1145/2024716.2024718

[12] Thomas Chen, Ram Raghavan, Jason N Dale, and Eiji Iwata. 2007. Cell broadband
engine architecture and its first implementationÐa performance view. IBM
Journal of Research and Development 51, 5 (2007), 559ś572.

[13] Iacopo Colonnelli, Barbara Cantalupo, Roberto Esposito, Matteo Pennisi, Con-
cetto Spampinato, and Marco Aldinucci. 2021. HPC Application Cloudification:
The StreamFlow Toolkit. In 12th Workshop on Parallel Programming and Run-
Time Management Techniques for Many-core Architectures and 10th Workshop
on Design Tools and Architectures for Multicore Embedded Computing Platforms
(PARMA-DITAM 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

[14] Halit Dogan, Masab Ahmad, Brian Kahne, and Omer Khan. 2019. Accelerating
synchronization using moving compute to data model at 1,000-core multicore
scale. ACM Transactions on Architecture and Code Optimization 16, 1 (2019), 1ś27.

[15] Alan AA Donovan and Brian W Kernighan. 2015. The Go programming language.
Addison-Wesley Professional.

[16] Reza Fotohi, Mehdi Effatparvar, Fateme Sarkohaki, Shahram Behzad, et al. 2019.
An improvement over threads communications on multi-core processors. arXiv
preprint arXiv:1909.11644 (2019).

[17] Vasilis Gavrielatos, Antonios Katsarakis, Vijay Nagarajan, Boris Grot, and Arpit
Joshi. 2020. Kite: efficient and available release consistency for the datacenter. In
Proceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming. 1ś16.

[18] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and Stefan Man-
gard. 2016. Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communica-
tions Security (Vienna, Austria) (CCS ’16). Association for Computing Machinery,
New York, NY, USA, 368ś379. https://doi.org/10.1145/2976749.2978356

[19] Y. Guo, A. Zigerelli, Y. Zhang, and J. Yang. 2022. Adversarial Prefetch: New Cross-
Core Cache Side Channel Attacks. In 2022 2022 IEEE Symposium on Security and
Privacy (SP) (SP). IEEE Computer Society, Los Alamitos, CA, USA, 1550ś1550.
https://doi.org/10.1109/SP46214.2022.00121

[20] W Daniel Hillis. 1989. The connection machine. MIT press.
[21] Ali R Hurson and Krishna M Kavi. 2007. Dataflow computers: Their history and

future. Wiley Encyclopedia of Computer Science and Engineering (2007).
[22] Intel. 2020. Queue Management and Load Balancing on Intel® Architecture. Re-

trieved February 2022 from https://intel.ly/3hY0Zy8
[23] Giorgos Kappes and Stergios V Anastasiadis. 2021. A lock-free relaxed concur-

rent queue for fast work distribution. In Proceedings of the 26th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming. 454ś456.

[24] Engin Kayraklioglu, Michael P Ferguson, and Tarek El-Ghazawi. 2018. LAPPS:
Locality-aware productive prefetching support for PGAS. ACM Transactions on
Architecture and Code Optimization 15, 3 (2018), 1ś26.

[25] Andi Kleen. 2009. Linux multi-core scalability. In Proceedings of Linux Kongress.
[26] Konstantinos Koukos, Per Ekemark, Georgios Zacharopoulos, Vasileios Spiliopou-

los, Stefanos Kaxiras, and Alexandra Jimborean. 2016. Multiversioned Decoupled
Access-execute: The Key to Energy-efficient Compilation of General-purpose
Programs. In Proceedings of the 25th International Conference on Compiler Con-
struction (CC 2016). https://doi.org/10.1145/2892208.2892209

[27] Ben Lee and Ali R Hurson. 1993. Issues in dataflow computing. In Advances in
computers. Vol. 37. Elsevier, 285ś333.

[28] Sanghoon Lee, Devesh Tiwari, Yan Solihin, and James Tuck. 2011. HAQu:
Hardware-accelerated queueing for fine-grained threading on a chip multipro-
cessor. In 2011 IEEE 17th International Symposium on High Performance Computer

Architecture. IEEE, 99ś110.
[29] Thorben Louw and Simon McIntosh-Smith. 2021. Using the Graphcore IPU for

traditional HPC applications. Technical Report. EasyChair.
[30] Chi-Keung Luk, Robert Muth, Harish Patil, Richard Weiss, P. Geoffrey Lowney,

and Robert Cohn. 2002. Profile-Guided Post-Link Stride Prefetching. In Proceed-
ings of the 16th International Conference on Supercomputing (New York, New
York, USA) (ICS ’02). Association for Computing Machinery, New York, NY, USA,
167ś178. https://doi.org/10.1145/514191.514217

[31] Maged M Michael and Michael L Scott. 1996. Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms. In Proceedings of the fifteenth
annual ACM symposium on Principles of distributed computing. 267ś275.

[32] Gal Milman, Alex Kogan, Yossi Lev, Victor Luchangco, and Erez Petrank. 2018.
BQ: A lock-free queue with batching. In Proceedings of the 30th on Symposium on
Parallelism in Algorithms and Architectures. 99ś109.

[33] K.J. Nesbit and J.E. Smith. 2004. Data Cache Prefetching Using a Global His-
tory Buffer. In 10th International Symposium on High Performance Computer
Architecture (HPCA’04). 96ś96. https://doi.org/10.1109/HPCA.2004.10030

[34] Davide Pasetto, Massimiliano Meneghin, Hubertus Franke, Fabrizio Petrini, and
Jimi Xenidis. 2012. Performance evaluation of interthread communicationmech-
anisms on multicore/multithreaded architectures. In Proceedings of the 21st in-
ternational symposium on High-Performance Parallel and Distributed Computing.
131ś132.

[35] Raghu Prabhakar and Sumti Jairath. 2021. SambaNova SN10 RDU: Accelerating
Software 2.0 with Dataflow. In 2021 IEEE Hot Chips 33 Symposium. IEEE, 1ś37.

[36] DPAA QorIQ. 2012. Primer for Software Architecture. Technical Report. Technical
report, Freescale Semiconductor Inc.

[37] T. Ramírez, A. Pajuelo, O. J. Santana, O. Mutlu, and M. Valero. 2010. Efficient
Runahead Threads. In 2010 19th International Conference on Parallel Architectures
and Compilation Techniques (PACT).

[38] Isaac Sánchez Barrera, David Black-Schaffer, Marc Casas, Miquel Moretó, Anas-
tasiia Stupnikova, and Mihail Popov. 2020. Modeling and optimizing numa
effects and prefetching with machine learning. In Proceedings of the 34th ACM
International Conference on Supercomputing. 1ś13.

[39] Youngjoo Shin, Hyung Chan Kim, Dokeun Kwon, Ji Hoon Jeong, and Junbeom
Hur. 2018. Unveiling Hardware-Based Data Prefetcher, a Hidden Source of
Information Leakage. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security (Toronto, Canada) (CCS ’18). Association
for Computing Machinery, New York, NY, USA, 131ś145. https://doi.org/10.
1145/3243734.3243736

[40] sstsimulator. 2020. Ember Communication Pattern Library. Retrieved October
2020 from https://bit.ly/3k9egUV

[41] Aaron Stillmaker and Bevan Baas. 2017. Scaling equations for the accurate
prediction of CMOS device performance from 180nm to 7nm. Integration 58
(2017), 74 ś 81. https://doi.org/10.1016/j.vlsi.2017.02.002

[42] J. E. Stine, I. Castellanos, M. Wood, J. Henson, F. Love, W. R. Davis, P. D. Franzon,
M. Bucher, S. Basavarajaiah, J. Oh, and R. Jenkal. 2007. FreePDK: An Open-
Source Variation-Aware Design Kit. In 2007 IEEE International Conference on
Microelectronic Systems Education (MSE’07). 173ś174. https://doi.org/10.1109/
MSE.2007.44

[43] UT-LCA. 2021. GitHub Virtual-Link. Retrieved November 2021 from https:
//github.com/UT-LCA/near-data-sim

[44] Sevin Varoglu and Stephen Jenks. 2011. Architectural support for thread commu-
nications in multi-core processors. Parallel Comput. 37, 1 (2011), 26ś41.

[45] Haoyuan Wang and Zhiwei Luo. 2017. Data Cache Prefetching with Perceptron
Learning. arXiv:arXiv:1712.00905

[46] Yipeng Wang, Ren Wang, Andrew Herdrich, James Tsai, and Yan Solihin. 2016.
CAF: Core to core communication acceleration framework. In 2016 International
Conference on Parallel Architecture and Compilation Techniques. IEEE, 351ś362.

[47] Scoot Wasson. 2015. Inside ARM’s Cortex-A72 microarchitecture. Retrieved
February 2022 from https://bit.ly/3sf0a9h

[48] QinzheWu, Jonathan C. Beard, Ashen Ekanayake, Andreas Gerstlauer, and Lizy K.
John. 2021. Virtual-Link: A Scalable Multi-Producer Multi-Consumer Message
Queue Architecture for Cross-Core Communication. 2021 IEEE International
Parallel and Distributed Processing Symposium (2021), 182ś191.

[49] T. Yamada, S. Hirasawa, H. Takizawa, and H. Kobayashi. 2015. A Case Study
of User-Defined Code Transformations for Data Layout Optimizations. In 2015
Third International Symposium on Computing and Networking (CANDAR). https:
//doi.org/10.1109/CANDAR.2015.96

[50] Ke Zhou, Si Sun, Hua Wang, Ping Huang, Xubin He, Rui Lan, Wenyan Li, Wenjie
Liu, and Tianming Yang. 2019. Improving Cache Performance for Large-Scale
Photo Stores via Heuristic Prefetching Scheme. IEEE Transactions on Parallel and
Distributed Systems 30, 9 (2019), 2033ś2045. https://doi.org/10.1109/TPDS.2019.
2902392

	Abstract
	1 Introduction
	2 Background
	3 Design of SPAMeR
	3.1 How SPAMeR builds on the Virtual-Link Architecture
	3.2 specBuf
	3.3 Speculative Address Registration Instruction
	3.4 Library Optimizations
	3.5 Speculation Algorithms
	3.6 Potential Vulnerabilities and Mitigation

	4 Evaluation
	4.1 Methodology
	4.2 Message Queue Workload Tracing
	4.3 SPAMeR Performance
	4.4 Sensitivity Study
	4.5 Area and Power Estimation

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

