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ABSTRACT

The air–sea exchange of heat and carbon in the Southern Ocean (SO) plays an important role in mediating
the climate state. The dominant role the SO plays in storing anthropogenic heat and carbon is a direct con-
sequence of the unique and complex ocean circulation that exists there. Previous generations of climate
models have struggled to accurately represent key SO properties and processes that influence the large-scale
ocean circulation. This has resulted in low confidence ascribed to twenty-first-century projections of the state
of the SO from previous generations of models. This analysis provides a detailed assessment of the ability of
models contributed to the sixth phase of the Coupled Model Intercomparison Project (CMIP6) to represent
important observationally based SO properties. Additionally, a comprehensive overview of CMIP6 perfor-
mance relative to CMIP3 and CMIP5 is presented. CMIP6models show improved performance in the surface
wind stress forcing, simulating stronger and less equatorward-biased wind fields, translating into an improved
representation of the Ekman upwelling over the Drake Passage latitudes. An increased number of models
simulate an Antarctic Circumpolar Current (ACC) transport within observational uncertainty relative to
previous generations; however, several models exhibit extremely weak transports. Generally, the upper SO
remains biased warm and fresh relative to observations, and Antarctic sea ice extent remains poorly repre-
sented. While generational improvement is found in many metrics, persistent systematic biases are high-
lighted that should be a priority during model development. These biases need to be considered when
interpreting projected trends or biogeochemical properties in this region.

1. Introduction

The sequestration and ventilation of heat and car-
bon that occurs in the Southern Ocean (SO) plays a
key role in global climate change. Observational and
modeling studies over the last several decades con-
tinue to highlight the dominant role that the SO plays
in the oceanic uptake of heat and carbon in present-
day climate (Frölicher et al. 2015; Roemmich et al.
2015; Talley et al. 2016; Meredith et al. 2019). The
disproportionate role that this region plays in the

planetary heat and carbon budget is linked to the
unique and complex physical circulation that exists in
the SO. Coupled models that contributed to previous
generations of the Coupled Model Intercomparison
Project (CMIP) have shown large disagreements in
their ability to represent the large-scale circulation
and associated properties and processes in this region
(e.g., Russell et al. 2006a; Sen Gupta et al. 2009;
Kuhlbrodt et al. 2012; Meijers et al. 2012; Bracegirdle
et al. 2013; Heuzé et al. 2013; Sallée et al. 2013a,b;
Meijers 2014; Frölicher et al. 2015; Shu et al. 2015;
Ivanova et al. 2016; Hyder et al. 2018; Russell et al.
2018; Beadling et al. 2019). This has led to low confi-
dence ascribed to CMIP model-based projections of
future trends in the SO (Meredith et al. 2019). Given
the vital role that this region plays in moderating cli-
mate globally, such a large disagreement in model
performance is alarming and has implications for
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interpreting projected trends not just in the SO, but
globally.
The coordinated multimodel experiments forced by

observed changes in the Earth system from ;1850
through the early twenty-first century, the ‘‘twentieth-
century control’’ (20C3M) in CMIP3 and ‘‘historical’’
simulations in CMIP5 and CMIP6, allow climate and
Earth system models (ESMs) to be scrutinized for how
well they simulate key aspects of the climate system
relative to observable quantities over the instrumental
record. Through this process, a large number of sys-
tematic model biases pertaining to the simulation of the
SO have been identified and discussed at length in the
IPCCAR5 report (Flato et al. 2013) and summarized by
Meijers (2014). Given the persistence of particular biases
from one generation to the next, one of the three major
scientific questions in the design of CMIP6 was to ‘‘inves-
tigate the origins and consequences of systematic model
biases’’ with important and long-standing biases in the SO
simulation highlighted as an area that needs to be ad-
dressed (Stouffer et al. 2017). A review by Meijers (2014)
painted theCMIP5SOsimulation as a ‘‘betterCMIP3’’ but
lacking dramatic advancements that may have been ex-
pected given the larger ensemble and much more sophis-
ticated models that participated relative to CMIP3.
One well-known example of a persistent bias in the

Southern Hemisphere climate is the equatorward-biased
westerly jet position (Russell et al. 2006a; Sen Gupta et al.
2009;Bracegirdle et al. 2013; Beadling et al. 2019).Beadling
et al. (2019) showedhowdifferent combinations of biases in
the strength and position of the jet across the CMIP5 en-
semble result in very different patterns of integrated wind
stress curl (WSC) over the SO. This is important because
the pattern and strength of theWSC forcing exerts a strong
control on the resulting properties in the SO through its
influence on the SO meridional overturning circulation
(MOC),watermass structure, and the strength andposition
of theSouthernHemisphere subtropical and subpolar gyres
that provide the meridional boundaries of the Antarctic
Circumpolar Current (ACC). Additionally, energy
imparted to the oceanby thewindfield feeds the formation
of mesoscale eddies through baroclinic instability (Olbers
et al. 2004; Rintoul 2018). Thus, biases in the location and
intensity of the momentum forcing from the overlying
winds may lead to inaccuracies in ocean mixing. The
bias in westerly jet position has also been identified as
an emergent constraint, where models with weak and
more equatorward biased Southern Hemisphere west-
erly jets tend to exhibit the largest increase and pole-
ward shift under increased warming (Kidston andGerber
2010; Bracegirdle et al. 2013). Mean state representation
and warming-driven changes in midlatitude westerly
winds have important ramifications for the ventilation of

heat and carbon in the Southern Hemisphere (Russell
et al. 2006b; Waugh et al. 2019).
Coupled models have also consistently simulated upper-

ocean temperatures in the SO that are too warm relative to
modern observations (Russell et al. 2006a; Sen Gupta et al.
2009; Sallée et al. 2013a,b; Beadling et al. 2019; Hyder et al.
2018). This influences geostrophic ocean circulation, surface
heat fluxes and water mass transformations, surface carbon
fluxes, and the ability to accurately represent Antarctic sea
ice extent (SIE). The properties of the upper ocean are
influenced by a complex interplay between oceanic, atmo-
spheric, and ice processes. This makes the upper ocean
properties highly sensitive to biases in individual model
components (i.e., the atmosphere, ocean, or sea ice models
used in the coupled configuration). For example, Hyder
et al. (2018) provided strong evidence that sea surface
temperature (SST) biases in the region 408–608S across the
CMIP5 ensemble are primarily the result of net flux biases
in the stand-alone atmospheric model linked to poor rep-
resentation of clouds, cloud properties, and shortwave
radiation errors.
The historical representation of the properties and large-

scale circulation in the SOmay play a role in determining a
model’s projected response to increased radiative forcing.
Thus, a reduction in uncertainty of future trends in the SO
and globally may be achieved through improvement and
detailed understanding of mean state biases. Furthermore,
as arguments grow against the idea of considering the results
of all model projections equally viable (‘‘model democ-
racy’’), whereby uncertainties of the trajectories of the cli-
mate system are assessed from a simple multimodel-mean
approach (Knutti 2010; Knutti et al. 2017; Eyring et al.
2019), it is vital to assess and interpret projected trends
among models with knowledge of biases in their historical
simulations.
The evaluation presented here provides a robust and

comprehensive assessment of key observablemetrics of SO
properties and circulation in the historical simulations
across a large ensemble of CMIP6 models. Observable
metrics assessed include surface momentum forcing, ACC
transport, density, salinity, and temperature patterns and
gradients, and representation of Antarctic seasonal SIE.
The analysis has been done in a way that allows consistent
assessment acrossmodel generations fromCMIP3 (Russell
et al. 2006a; Sen Gupta et al. 2009) to CMIP5 (Beadling
et al. 2019), highlighting areas of model improvement and
areas where systematic biases persist. For cohesiveness, for
each results section we first provide a discussion of the
performance of that particular metric across model gener-
ations and then present the CMIP6 results. We bring all of
our results together in an overall evaluation of cross-
generational performance, and suggest next steps in the
conclusions and summary section. As the results from the
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twenty-first-century projections under various shared so-
cioeconomic pathways (SSPs) for the CMIP6 scenarios
have recently come online, it is urgently important to pro-
vide comprehensive documentation of model biases in this
climatically important region.

2. Methods

a. CMIP6 model output

Thirty-four CMIP6 models are included in this assess-
ment based on the availability of output provided for each
model’s ‘‘historical simulation’’ in the Earth SystemGrid
Federation (ESGF) CMIP6 data archive at the time of
publication. In CMIP6, the historical simulation spans
1850 to 2014 and is forced by observed anthropogenic and
natural sources of atmospheric composition changes and
time-evolving land cover (Eyring et al. 2016). The first
ensemble member for each model’s historical simulation
is analyzed. In some cases, the ‘‘r1i1p1f1’’ member was
not provided and another appropriate member was ana-
lyzed. Table 1 lists the models, ensemble members, and
additional details regarding their ocean component. The
analyses for all metrics presented here are performed on
the model’s native grid unless otherwise noted and follow
the same exact computational methods as that summa-
rized in the methods section of Beadling et al. (2019). All
metrics are computed as a time average of all monthly
data spanning January 1986–December 2005.

b. Observational metrics

Several observational metrics have been updated
fromBeadling et al. (2019). TheWorldOceanAtlas 2018
(WOA18) product (Locarnini et al. 2018; Zweng et al.
2018) is used to assess biases in the density, salinity, and
potential temperature differences across the ACC rel-
ative to those estimated from observations. For com-
parison to the 1986–2005 time period simulated in the
models, the 1985–94 and 1995–2004 decadal climatol-
ogies are averaged from the WOA18 product. For assess-
ment of the surfacemomentumexchange fromatmospheric
wind stress, the European Centre for Medium-Range
Weather Forecasts (ECMWF) ERA5 atmospheric re-
analysis product is used (https://cds.climate.copernicus.eu/).
The ERA5 product, with increased spatial and temporal
resolution and other improved features, is considered to be
an improvement to ERA-Interim, which ended production
in August 2019 (https://confluence.ecmwf.int/display/CKB/
ERA5%3A1data1documentation). ERA-Interim
was used in the assessment of SO surface momentum
forcing by Beadling et al. (2019) given its proven reli-
ability in representing wind fields over the SO relative to
other contemporary reanalysis products (Swart and Fyfe

2012; Bracegirdle and Marshall 2012; Bracegirdle et al.
2013). For the model analysis, monthly atmospheric or
oceanic zonal (tx) and meridional (ty) wind stress fields
are used. If the atmospheric wind stress fields are used,
values over land are masked out prior to computations.
For the assessment of Antarctic SIE, the monthly Sea

Ice Index version 3 data product (https://nsidc.org/data/
G02135/versions/3) provided by the National Snow and
Ice Data Center (NSIDC; Fetterer et al. 2017) is used.
The data are derived from satellite passive microwave
data and span the time period 1978 to the present day. In
our assessment, we present the time-averaged monthly
data from 1986 to 2005. To be consistent with the
NSIDC data product, we only consider grid cells with a
sea ice concentration greater than 15% since satellite
passive microwave instruments cannot accurately mea-
sure concentrations below this value. To be consistent
for comparison with Beadling et al. (2019), after mask-
ing out values below 15%, the sea ice concentration data
(siconc) are regridded to a standard 18 horizontal reso-
lution grid for models that have nonstandard curvilinear
horizontal grids. This was done in Beadling et al. (2019)
due to a lack of information about grid cell area to allow
computations on models with nonregular grids.
For the ACC transports, the net volume transport

through the Drake Passage (DP; closest grid cells to
;698W) is computed in each model from their reported
zonal velocity (uo) or mass transport (umo) output.
Velocities were only used if the mass transport output was
not provided. Mass transport is preferred over velocity
for a number of reasons discussed in detail in Beadling
et al. (2019) and ultimately provides for a better repre-
sentation of the true time-averaged flow. If mass transport
was used, the total transport was divided by a constant
density of 1035kgm23. For the observational benchmark,
we use the 173.3 6 10.7Sv (1Sv [ 106m3 s21) estimate
from the cDrake array experiment, which was carried out
from 2007 to 2011 (Chereskin et al. 2012; Chidichimo et al.
2014;Donohue et al. 2016). This value is the sumof the 127
6 5.9Sv baroclinic transport (Chidichimo et al. 2014) and
45.6 6 8.9Sv barotropic component computed from the
cDrake array observations (Donohue et al. 2016). Please
see the detailed discussion in section 2a of Beadling et al.
(2019) (titled ‘‘Transport of the ACC through the Drake
Passage’’) regarding observational DP estimates over the
last several decades. The larger transport computed from
the cDrake array relative to the canonical value of 134Sv
derived from hydrographic estimates (Whitworth et al.
1982; Whitworth 1983; Whitworth and Peterson 1985;
Cunningham et al. 2003) is purely attributable to the
higher spatial and temporal resolution observations that
allowed strong barotropic currents near the bottom of the
ocean to be resolved.
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TABLE 1. Details of the ocean model components in the CMIP6 models used in this study. Details of the ocean component, resolution,
and vertical levels were obtained from the header information in the netcdf files used for the analyses. Information regarding the eddy-
induced advection coefficient was obtained from ES-DOCs (https://search.es-doc.org/), through personal communication with the
modeling centers, or from model documentation literature, as noted by the superscript next to each entry. The term V corresponds to a
coefficient that is either 2D/3D/time-varying, and F corresponds to a fixed coefficient. If the required information could not be obtained or
confirmed at the time of publication, it is left blank (—). The ocean vertical coordinates are defined as follows: z, traditional depth
coordinates; s2, isopycnal vertical coordinates; z*, rescaled geopotential vertical coordinate for better representation of free-surface
variations (Adcroft and Campin 2004); sigma, terrain-following coordinates; hybrid s2–z*, isopycnal coordinates in the interior ocean and
a z* coordinate in the mixed layer (Adcroft et al. 2019); hybrid z–s2, isopycal coordinates in the interior ocean and z coordinates in the
mixed layer; hybrid z–s2–sigma, z coordinates in the mixed layer, isopycnal coordinates in the open stratified ocean, and sigma coordi-
nates in shallow coastal regions; hybrid z–sigma, sigma coordinates between the sea surface and a fixed geopotential depth (;50m) in the
upper ocean and z coordinates below this depth. The historical experiments span 1850–2014 and are forced by observed changes in
atmospheric composition due to anthropogenic and natural sources over the entire historical period. These forcings are updated from the
CMIP5 historical forcings (Taylor et al. 2012) and extended to 2014. Please refer to Eyring et al. (2016) and references therein for details of
the exact forcing datasets used for the historical simulations in CMIP6. The indices describing the ensemble member correspond to the
model realization number (r), initialization method (i), physics index (p), and forcing index (f) used in the experiment. Please see the
CMIP6 guidance for data users for more documentation on this (https://pcmdi.llnl.gov/CMIP6/Guide/).

CMIP6 model
Ensemble
member

Ocean
component

Nominal
ocean

resolution
(lon 3 lat)

Ocean vertical
coordinate
and levels

Eddy-induced
advection
coefficient
(m2 s21) Modeling center

1 ACCESS-CM2 r1i1p1f1 MOM5 1.0 3 1.0 z* (50) V; 100–1200a CSIRO-ARCCSS-
BoM

2 ACCESS-ESM1.5 r1i1p1f1 MOM5 1.0 3 1.0 z* (50) V; 50–600b CSIRO-ARCCSS-
BoM

3 BCC-CSM2-MR r1i1p1f1 MOM4-L40 1.0 3 1.0 z (40) — BCC-CMA
4 BCC-ESM1 r1i1p1f1 MOM4-L40 1.0 3 1.0 z (40) — BCC-CMA
5 CanESM5 r1i1p1f1 NEMO3.4.1 1.0 3 1.0 z (45) V; 100–2000c CCCma
6 CESM2 r1i1p1f1 POP2 1.0 3 1.0 z (60) V; 300–3000d NCAR
7 CESM2-WACCM r1i1p1f1 POP2 1.0 3 1.0 z (60) V; 300–3000d NCAR
8 CNRM-CM6.1 r1i1p1f2 NEMO3.6 1.0 3 1.0 z* (75) Ve CNRM-CERFACS
9 CNRM-CM6.1-

HR
r1i1p1f2 NEMO3.6 0.25 3 0.25 z* (75) Nonee CNRM-CERFACS

10 CNRM-ESM2.1 r1i1p1f2 NEMO3.6 1.0 3 1.0 z* (75) Ve CNRM-CERFACS
11 E3SM-1.0 r1i1p1f1 MPAS-Ocean 1.0 3 1.0 z* (60) F; 1800f E3SM-Project
12 EC-Earth3-Veg r1i1p1f1 NEMO3.6 1.0 3 1.0 z* (75) — EC-Earth-

Consortium
13 GFDL-CM4 r1i1p1f1 MOM6 0.25 3 0.25 Hybrid s2–z* (75) Noneg NOAA-GFDL
14 GFDL-ESM4 r1i1p1f1 MOM6 0.50 3 0.50 Hybrid s2–z* (75) V; ;0–2000h NOAA-GFDL
15 GISS-E2.1-G r1i1p1f1 GISS Ocean 1.25 3 1.0 z (40) — NASA-GISS
16 GISS-E2.1-G-CC r1i1p1f1 GISS Ocean 1.25 3 1.0 z (40) — NASA-GISS
17 GISS-E2.1-H r1i1p1f1 HYCOM 1.0 3 1.0 Hybrid z–s2–

sigma (32)
— NASA-GISS

18 HadGEM3-
GC31-LL

r1i1p1f3 NEMO-HadGEM3-
GO6.0

1.0 3 1.0 z* (75) V; # 1000i MOHC

19 HadGEM3-
GC31-MM

r1i1p1f3 NEMO-HadGEM3-
GO6.0

0.25 3 0.25 z* (75) Nonej MOHC

20 INM-CM4.8 r1i1p1f1 INM-OM5 1.0 3 1.0 Sigma (40) Nonek INM
21 INM-CM5.0 r1i1p1f1 INM-OM5 0.5 3 0.25 Sigma (40) Nonel INM
22 IPSL-CM6A-LR r1i1p1f1 NEMO3.6 1.0 3 1.0 z*(75) Vl IPSL
23 MCM-UA-1.0 r1i1p1f1 MOM1 plus 1.88 3 2.25 z (18) Nonel University ofArizona
24 MIROC6 r1i1p1f1 COCO4.9 1.0 3 1.0 Hybrid z–

sigma (62)
F; 300l JAMSTEC

25 MIROC-ES2L r1i1p1f2 COCO4.9 1.0 3 1.0 Hybrid z–
sigma (62)

F; 300m JAMSTEC

26 MPI-ESM-
1.2-HAM

r1i1p1f1 MPIOM1.6.3 1.5 3 1.5 z (40) F; ;94n HAMMOZ-
Consortium

27 MPI-ESM1.2-LR r1i1p1f1 MPIOM1.6.3 1.5 3 1.5 z (40) F; ;94n MPI-M
28 MRI-ESM2.0 r1i1p1f1 MRI.COM4.4 1.0 3 0.5 z* (60) V; 300–1500i MRI
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c. B-SOSE Iteration 133

Monthly ocean fields from the Iteration 133 solution
of the Biogeochemical Southern Ocean State Estimate
(B-SOSE) at 1/68 horizontal resolution spanning January
2013–December 2018 are also analyzed in this study
(http://sose.ucsd.edu/BSOSE6_iter133_solution.html).
This is an update from the 1/38 horizontal resolution
Iteration 105 B-SOSE solution spanning January 2008–
December 2012 used in Beadling et al. (2019). B-SOSE,
produced as part of the Southern Ocean Carbon Climate
ObservationalModeling (SOCCOM) project, assimilates
observations from shipboard data, profiling floats, un-
derway measurements, and satellites into a numerical
model to produce a state estimate for the SO. InB-SOSE,
the MIT general circulation model (MITgcm) is fully
coupled to the Nitrogen-version of the Biogeochemistry
with Light, Iron, Nutrients, andGases (N-BLING)model
[evolved from Galbraith et al. (2010)]. Given the nature
of B-SOSE, where the MITgcm is brought into consis-
tency with available observational data via an adjoint data
assimilation approach, we expect B-SOSE to perform well
in regions with a high density of observational measure-
ments such as in the upper ocean and along transects with
repeat ship-based observations. B-SOSE is constrained by
satellite measurements of sea surface height (SSH) and
mean dynamic topography, thus we expect B-SOSE to

capture surface currents and geostrophic flows consistent
with other independent observations. It is important to
note that none of the hydrographic and velocity observa-
tions from the cDrake array (Chereskin et al. 2012;
Chidichimo et al. 2014; Donohue et al. 2016) are assimi-
lated in B-SOSE, and thus the B-SOSE transport provides
an independent estimate. The momentum forcing at the
ocean surface in B-SOSE is derived from hourly ERA5
atmospheric winds, which are then adjusted throughout
the assimilation to achieve consistency with the ocean
state. Please refer to Verdy and Mazloff (2017) for addi-
tional details on B-SOSE and a complete list of observa-
tional constraints used.

3. Results

a. ACC transport

The ACC transport is influenced by a large number of
properties and processes in the SO, including momentum
input at the ocean surface from the overlying winds, the
meridional gradient in density across the current, inter-
actions with bottom topography, mesoscale eddies, the
position of the subtropical and subpolar gyres (Meijers
et al. 2012), internal mixing processes, and so on. Owing
to this complexity, achieving an accurate ACC strength
has proven to be a difficult task in coupledmodels (Russell

TABLE 1. (Continued)

CMIP6 model
Ensemble
member

Ocean
component

Nominal
ocean

resolution
(lon 3 lat)

Ocean vertical
coordinate
and levels

Eddy-induced
advection
coefficient
(m2 s21) Modeling center

29 NESM3 r1i1p1f1 NEMO3.4 1.0 3 1.0 z (46) — NUIST
30 NorCPM1 r1i1p1f1 MICOM1.1 1.0 3 1.0 Hybrid z–s2 (53) V; 100–1500p NCC
31 NorESM2-LM r1i1p1f1 MICOM 1.0 3 1.0 Hybrid z–s2 (53) V; 100–1500p NCC
32 NorESM2-MM r1i1p1f1 MICOM 1.0 3 1.0 Hybrid z–s2 (53) V; 100–1500p NCC
33 SAM0-UNICON r1i1p1f1 POP2 1.0 3 1.0 z (60) V; 300–3000l Seoul National

University
34 UKESM1.0-LL r1i1p1f2 NEMO-HadGEM3-

GO6.0
1.0 3 1.0 z* (75) V; # 1000i NERC

a Personal communication (D. Bi, 2020).
b Kiss et al. (2020).
c Personal communication (N. Swart, 2020).
d Danabasoglu et al. (2012, 2020).
e Personal communication (A. Voldoire, 2020).
f Golaz et al. (2019).
g Adcroft et al. (2019).
h Personal communication (J. Krasting, 2020).
i Kuhlbrodt et al. (2018), and personal communication (P. Hyder, 2020) for maximum value allowed.
j Personal communication (P. Hyder, 2020).
k Personal communication (A. Volodin, 2020).
l Obtained from ES-DOCS: https://search.es-doc.org/.
m Personal communication (H. Tatebe, 2020).
n Jungclaus et al. (2013) and personal communication (D. Neubauer and H. Haak, 2020).
o Yukimoto et al. (2019).
p Personal communication (M. Bentsen, 2020).
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et al. 2006a; Sen Gupta et al. 2009; Meijers et al. 2012;
Beadling et al. 2019). The CMIP3 generation of models
exhibited a very wide range of transports (Fig. 1; Table 2),
with an intermodel spread (1s) of 71–77Sv. Only three of
the CMIP3 models studied collectively by Russell et al.
(2006a) and SenGupta et al. (2009) havemean values that
fall within the observational uncertainty of the Donohue
et al. (2016) cDrake array ACC estimate (Fig. 1). From
CMIP3 toCMIP5 there is a large improvement in the range
of the transports, with the intermodel spread (1s) decreas-
ing by;36Sv. This improvement inACC strength was also
noted in the analysis by Meijers et al. (2012).
The spread in the ACC transport has increased in

CMIP6 relative to CMIP5, ranging from 38Sv simulated

by INM-CM4.8 to 197Sv simulated by GISS-E2.1-H.
While there are no longer models that have an ACC
transport that is much too strong, several models exhibit
an extremely weak transport (.7s outside of the observa-
tional uncertainty; E3SM-1.0, MIROC-ES2L, CNRM-CM6.
1-HR, HadGEM3-GC31-MM, INM-CM4.8), reducing the
multimodel mean (MMM) by ;10Sv from CMIP5. Four
models exhibit a transport weaker than any found in CMIP5.
Interestingly, two of the models with an exceptionally weak
ACC transport have 0.258 horizontal resolutions (CNRM-
CM6.1-HR, HadGEM3-GC31-MM), with their 18 resolution
versions (CNRM-CM6.1, HadGEM3-GC31-LL) simulating
transports on the order of 50–80Sv stronger. Similar, but not
as extreme, behavior is found when comparing the 0.258

FIG. 1. Volume transport of the ACC through theDrake Passage (Sv) as observed from the cDrake
experiment (Donohue et al. 2016) and as simulated acrossmultiple generations of climatemodels. Gray
shading corresponds to the observational uncertainty (2s) of the ACC transport reported in Donohue
et al. (2016). The B-SOSE transport is computed from the Iteration 133 solution at 1/68 resolution over
the January 2013–December 2018 time period. The CMIP6 model transports are calculated as the
January 1986–December 2005 time-averaged net transport through the Drake Passage. The CMIP5
values are taken from Beadling et al. (2019). The CMIP6 transports are computed identically to that of
Beadling et al. (2019), over the same time period in the historical simulations. Error bars correspond to
the2s standarddeviationof annual values about themean.TheCMIP3values are taken fromTable 1of
Russell et al. (2006a) andTable 3 of SenGupta et al. (2009). Russell et al. (2006a) compute flow through
the Drake Passage from the last 20 years of each model’s piControl integration, while Sen Gupta et al.
(2009) compute flow from the last 20 years of each model’s twentieth-century control run.
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GFDL-CM4(132Sv) simulationwith thatof the0.508GFDL-
ESM4 simulation (175Sv).
Despite the range in ACC transport across the model

ensemble increasing due to several models with extremely
weak magnitudes, CMIP6 is an overall improvement
fromCMIP5, with a larger fraction ofmodels fallingwithin
observational uncertainty [within 2s of theDonohue et al.
(2016) estimate]. Of the 31 CMIP5 models studied by
Beadling et al. (2019), 10 models (32%) fell within obser-
vational uncertainty. Of the 34 models studied here, 17
(50%) have transports within uncertainty. It is important
to note the caveat, as also discussed regarding the CMIP5
models in Beadling et al. (2019), that most of the CMIP6
models analyzed herewere developedbefore theDonohue
et al. (2016) ACC estimate was known. Thus, during
modeling development, transports at lower values were
likely deemed reasonable. While we consider the Donohue
et al. (2016) estimate as our benchmark for diagnosing
themodel simulations, the margin of uncertainty may be
slightly larger in reality than used here given uncertainty
associated with the fact that these observations were
only collected from 2007–11. An independent estimate
from assimilation using B-SOSE suggests a slightly lower
ACC value of 164Sv (Table 2; Fig. 1).
Given this caveat, we consider the five models that

fall just outside of the uncertainty bounds in Fig. 1 (and
marked with an asterisk in Table 2) to be simulating
reasonable transports given that they only differ from
the models above them in Table 2 by a few Sverdrups.
These models may fall within the lower bound of the
observational range if more than one ensemble member
were included in the analysis. The GFDL-CM4 simula-
tion is an example of another caveat that complicates
diagnosing the accuracy of the ACC strength in coupled
models, in that it exhibits significant centennial-scale
variability throughout the entire historical period, on
the order of 30 Sv (Table S1 in the online supplemental
material, Fig. S1). If another ensemble member were
used, GFDL-CM4 can have an ACC value within the
Donohue et al. (2016) uncertainty range (other ensem-
ble members not shown here). The BCC-CSM2-MR
model is another example that contains significant his-
torical ACC variability and, when multiple ensemble
members are used, it can have an ACC transport that
overlaps with the Donohue et al. (2016) range.
Several models exhibit significant decadal to multi-

decadal variability in the ACC strength throughout the
entire historical period, on the order of 10–30Sv (Table S1,
Fig. S1). Such variabilitymay be associatedwith unrealistic
quasiperiodic ‘‘superpolynya events’’ in the SOwhich alter
the density structure of the SO through intense open ocean
convection. This problem is documented in the GFDL-
CM4model (Held et al. 2019), where superpolynyas in the

Ross Sea drive large centennial-scale variability in the
Southern Hemisphere climate. The lack of observational
evidence of large polynya events in the SO, with the ex-
ception of the 1974–76 (Gordon 1978; Carsey 1980) and
2016–17 polynyas in the Weddell Sea (Campbell et al.
2019), and no similar events in the Ross Sea, suggests that
these frequent simulated ‘‘superpolynya events’’ are unre-
alistic and need to be improved upon in future model de-
velopment. In addition to the extreme rarity of these events
in the real world, the modeled convection, ventilation, and
climate change that occur during these simulated polynyas
bear no resemblance to observed polynya events (Gordon
1978; de Lavergne et al. 2014; Dufour et al. 2017; Campbell
et al. 2019). In the model, when these events occur, the
formation of dense water in the subpolar SO translates into
an increasedACC transport. If the simulation contains these
events, the ACC assessment is sensitive to the 20-yr period
in the historical simulation chosen for analysis (Fig. S1).
There is evidence of improvement at individual mod-

eling centers with two examples being the IPSL and
NASA-GISS models. In CMIP3 and CMIP5 the IPSL
models had some of the weakest ACC transports among
all models, with transports on the order of 34Sv inCMIP3
and 94–108Sv inCMIP5. In CMIP6, the IPSL-CM6A-LR
transport has increased dramatically to 1476 6.7Sv (2s),
falling just within 2s of the Donohue et al. (2016) esti-
mate. The GISS-R models were biased much too strong
in previous generations (266Sv in CMIP3; 246Sv in
CMIP5). TheGISS-E2-G andGISS-E2-G-CC (E2-G but
with interactive carbon cycle) models, which are an up-
dated and improved version of the GISS-E2-R model
used in CMIP5, now simulate ACC transports of 148 and
146Sv, respectively. The improvement of the ACC trans-
port in the IPSL and GISS-E2-R (now -G) families of
models appears to be directly due to improvement in all of
themetrics summarized inTable 2 of the present study and
Table 2 of Beadling et al. (2019).
In the real ocean, the ACC flow through the DP is

composed of strong and narrow eastward flowing jets that
extend from the surface to the bottom of the ocean.
Through the passage, strong bottom eastward velocities
that average 1.3 cms21 provide an additional 45.66 8.9Sv
barotropic flow to the 127 6 5.9Sv baroclinic transport
(Chidichimo et al. 2014; Donohue et al. 2016). The CMIP6
models and B-SOSE have very different zonal velocity
structures through the DP (Fig. 2; see also Fig. S2). The
eddy-permitting 1/68 B-SOSE and the 1/48 GFDL-CM4
simulations yield very similar structures, with finely spaced
jets that extend from the surface to the ocean bottom at
most latitudes and increase in strength northward within
the passage. These jets correspond to the dynamical ACC
fronts characteristic of the observed flow within the DP
(Lenn et al. 2007; Firing et al. 2011), with the majority of

1 AUGUST 2020 BEADL ING ET AL . 6561


2���/�2�0��������	3�213������������������ ��
�
��



T
A
B
L
E
2.
M
et
ri
cs

re
la
te
d
to

th
e
st
re
n
gt
h
o
f
th
e
A
C
C
.T

h
e
p
o
te
n
ti
al

d
en

si
ty

(r
ef
er
en

ce
d
to

th
e
su
rf
ac
e)

(D
r)
,s
al
in
it
y
(D

S
),
an

d
p
o
te
n
ti
al

te
m
p
er
at
u
re

(D
T
)
d
if
fe
re
n
ce
s
ar
e
th
e
zo
n
al
ly

an
d
fu
ll
-d
ep

th
-a
ve

ra
ge

d
d
if
fe
re
n
ce

b
et
w
ee
n
65

8
an

d
45
8S
.T

h
e
p
ro
p
er
ti
es

ar
e
fi
rs
t
zo
n
al
ly

an
d
d
ep

th
av

er
ag

ed
p
ri
o
r
to

co
m
p
u
ti
n
g
th
e
d
if
fe
re
n
ce

b
et
w
ee
n
65
8
an

d
45

8S
.T

h
e
o
b
se
rv
at
io
n
al

es
ti
m
at
es

ar
e
ca
lc
u
la
te
d
fr
o
m

th
e
W
O
A
18

p
ro
d
u
ct

(a
ve
ra
ge

d
19

85
–9

4
an

d
19

95
–2

00
4
d
ec
ad

al
cl
im

at
o
lo
gi
es
).
T
h
e
o
b
se
rv
at
io
n
al

es
ti
m
at
e
fo
r
th
e
su
rf
ac
e
w
in
d
st
re
ss

p
ar
am

et
er
s
is
th
e

E
R
A
5
m
o
n
th
ly
p
ro
d
u
ct
av

er
ag

ed
o
ve
r
th
e
Ja
n
u
ar
y
19

86
–D

ec
em

b
er

20
05

p
er
io
d
w
it
h
it
s
as
so
ci
at
ed

in
te
ra
n
n
u
al
va

ri
ab

il
it
y
(s
ta
n
d
ar
d
d
ev
ia
ti
o
n
o
f
th
e
an

n
u
al
m
ea

n
s
o
ve
r
th
e
20

-y
r
p
er
io
d
)

(1
s
).
T
h
e
o
b
se
rv
ed

A
C
C

es
ti
m
at
e
is
th
at

re
p
o
rt
ed

b
y
D
o
n
o
h
u
e
et

al
.
(2
01
6)

b
as
ed

o
n
m
ea

su
re
m
en

ts
fr
o
m

th
e
cD

ra
k
e
ar
ra
y
(C

h
er
es
k
in

et
al
.
20

12
)
o
ve

r
th
e
20

07
–1

1
p
er
io
d
w
it
h
it
s

re
p
o
rt
ed

u
n
ce
rt
ai
n
ty

(1
s
).
P
le
as
e
se
e
th
e
m
et
h
o
d
s
se
ct
io
n
an

d
ad

d
it
io
n
al

d
et
ai
ls
in

B
ea

d
li
n
g
et

al
.
(2
01

9)
o
n
h
o
w

th
is
es
ti
m
at
e
is
o
b
ta
in
ed

.
W

h
en

co
m
p
u
ti
n
g
m
et
ri
cs

o
ve

r
th
e
D
ra
k
e

P
as
sa
ge

(D
P
)
re
gi
o
n
,5
58
–6

48
S
is
u
se
d
as

th
e
la
ti
tu
d
in
al
b
o
u
n
d
s.
A
ll
m
o
d
el
va

lu
es

ar
e
th
e
ti
m
e-
av
er
ag
ed

o
u
tp
u
tf
ro
m

th
e
la
st
20

ye
ar
s
o
ft
h
e
h
is
to
ri
ca
ls
im

u
la
ti
o
n
(J
an

u
ar
y
19

86
–D

ec
em

b
er

20
05
).
B
-S
O
S
E
va

lu
es

ar
e
co
m
p
u
te
d
fr
o
m

th
e
ti
m
e-
av
er
ag
ed

o
u
tp
u
t
fr
o
m

Ja
n
u
ar
y
20

13
to

D
ec
em

b
er

20
18

fo
r
th
e
It
er
at
io
n
13

3
so
lu
ti
o
n
.G

iv
en

th
e
li
k
el
y
la
rg
e
u
n
ce
rt
ai
n
ty

fr
o
m

th
e
p
re
-

A
rg
o
er
a
an

d
th
e
o
u
tp
u
t
p
ro
vi
d
ed

at
o
n
ly

d
ec
ad

al
re
so
lu
ti
o
n
,w

e
d
o
n
o
t
at
te
m
p
t
to

p
ro
vi
d
e
an

u
n
ce
rt
ai
n
ty

fo
r
th
e
p
ro
p
er
ty

d
if
fe
re
n
ce
s
in

th
e
th
re
e
co
lu
m
n
s
o
f
th
e
ta
b
le

m
ar
k
ed

w
it
h
an

as
te
ri
sk

(*
).
F
o
r
B
-S
O
S
E
an

d
th
e
C
M
IP
6
m
o
d
el
s,
co
n
si
d
er
in
g
th
e
m
ea

n
6

2s
(s
ta
n
d
ar
d
d
ev
ia
ti
o
n
o
f
an

n
u
al

m
ea

n
s
fo
r
th
e
ti
m
e
p
er
io
d
co
n
si
d
er
ed

)
o
f
b
o
th

th
e
m
o
d
el

an
d
o
b
se
rv
at
io
n
al

es
ti
m
at
e,
va

lu
es

th
at

li
e
2s

o
u
ts
id
e
th
e
o
b
se
rv
at
io
n
al
es
ti
m
at
e
ar
e
in

b
o
ld

an
d
va

lu
es

th
at

li
e
2s

b
el
o
w
ar
e
b
o
ld

an
d
it
al
ic
iz
ed

.C
o
n
si
d
er
in
g
a
25

%
w
in
d
o
w
o
f
er
ro
r
fo
r
th
e
W
O
A
18

p
ro
d
u
ct
,

va
lu
es

ar
e
in

b
o
ld

if
th
e
m
ea

n
is
to
o
st
ro
n
g
an

d
b
o
ld

an
d
it
al
ic
iz
ed

if
th
e
d
if
fe
re
n
ce

is
to
o
w
ea

k
u
si
n
g
th
is
cr
it
er
io
n
.
F
o
r
th
e
sa
li
n
it
y
d
if
fe
re
n
ce
,
va

lu
es

th
at

h
av
e
an

as
te
ri
sk

(*
)
sh
o
w

a
gr
ad

ie
n
t
in

th
e
o
p
p
o
si
te

d
ir
ec
ti
o
n
th
an

W
O
A
18
.
T
h
e
m
u
lt
im

o
d
el

m
ea

n
(M

M
M
)
an

d
in
te
rm

o
d
el

sp
re
ad

(1
s
)
fo
r
th
e
C
M
IP
6
m
o
d
el
s
an

d
th
at

re
p
o
rt
ed

fr
o
m

th
e
an

al
ys
is
p
re
se
n
te
d
in

B
ea

d
li
n
g
et

al
.
(2
01
9)

(h
er
e
B
20

19
),
S
en

G
u
p
ta

et
al
.
(2
00
9)

(h
er
e
S
20
09

),
an

d
R
u
ss
el
l
et

al
.
(2
00

6a
)
(h
er
e
R
20

06
)
is
su
m
m
ar
iz
ed

at
th
e
b
o
tt
o
m

o
f
th
e
ta
b
le
.
P
le
as
e
se
e
se
ct
io
n
3a

fo
r

d
is
cu
ss
io
n
o
f
m
o
d
el
s
w
it
h
th
ei
r
A
C
C
va

lu
es

la
b
el
ed

w
it
h
an

as
te
ri
sk

(*
).

M
o
d
el

A
C
C
(S
v)

t(
x) m
ax

(N
m

2
2
)

L
at

o
f
t(

x) m
ax

(8
S
)

T
o
ta
l

w
es
te
rl
y

t(
x
)
(1
01

2
N
)

T
o
ta
l
t(

x
)

in
D
P

(1
01

2
N
)

T
o
ta
l

W
S
C
in

D
P

(1
06

N
m

2
1
)

M
in
.
zo
n
al
ly

in
te
gr
at
ed

W
S
C
(N

m
2
2
)

L
at

o
f

m
in

W
S
C

(8
S
)

D
r

(k
g
m

2
3
)*

D
S
*

D
T
(8
C
)*

O
b
se
rv
at
io
n
al

es
ti
m
at
e

17
3.
3
6

10
.7

0.
17
88

6
0.
01

52
.3
7
6

1.
02

10
6

0.
5

2.
4
6

0.
3

2
2.
57

6
0.
19

2
5.
32

6
0.
31

64
.1
4
6

0.
47

0.
25

0.
06

2
2.
5

B
-S
O
S
E

16
4

0.
15

17
53

.4
9

8
.2

2.
1

2
2.
20

2
4
.2
0

62
.8
4

0.
28

0.
06

2
2.
3

G
IS
S
-E

2–
1-
H

19
7

0.
17

60
52

.4
5

9.
7

2.
4

2
2.
38

2
5.
13

64
.6
3

0.
39

0.
20

2
2.
2

C
an

E
S
M
5

19
2

0.
20

49
50

.6
8

11
2.
4

2
3.
30

2
5.
03

6
2
.2
0

0.
35

0.
10

2
3.
1

A
C
C
E
S
S
-C

M
2

18
2

0.
19

44
50

.9
6

11
2.
2

2
2.
91

2
4.
56

61
.9
0

0.
39

0
.0
1

2
4.
0

M
IR

O
C
6

17
6

0.
15

37
50

.1
0

9.
0

1.
8

2
2.
26

2
4.
37

62
.9
1

0.
23

2
0.
08
*

2
3.
0

G
F
D
L
-E

S
M
4

17
5

0.
19

01
51

.0
9

11
2.
4

2
2.
69

2
4.
33

62
.3
5

0.
23

2
0.
00
1*

2
2.
8

IN
M
-C

M
5.
0

16
2

0.
20

46
51

.6
0

11
2.
6

2
3.
14

2
5.
01

63
.3
6

0.
38

0.
24

2
2.
1

U
K
E
S
M
1.
0-
L
L

15
6

0.
19

80
51

.7
8

11
2.
6

2
2.
91

2
4.
69

62
.4
6

0.
29

0.
05

2
2.
8

M
C
M
-U

A
-1
.0

15
5

0.
17

66
50

.3
5

9.
3

1.
7

2
2.
71

2
3
.3
4

5
9
.1
0

0.
23

2
0.
06
*

2
3.
3

M
P
I-
E
S
M
-1
.2
-H

A
M

15
5

0.
18

24
51

.0
5

10
2.
2

2
2.
66

2
3
.8
9

62
.0
6

0.
26

2
0.
11
*

2
3.
7

A
C
C
E
S
S
-E

S
M
1.
5

15
3

0.
20

04
51

.3
7

11
2.
3

2
3.
22

2
5.
00

62
.4
7

0.
34

2
0.
00
1*

2
3.
7

B
C
C
-E

S
M
1

15
3

0.
22

63
51

.8
6

12
2.
7

2
3.
63

2
4.
65

6
1
.2
2

0.
27

2
0.
08
*

2
3.
5

M
P
I-
E
S
M
1.
2-
L
R

15
2

0.
19

97
49

.1
6

12
2.
1

2
2.
88

2
4
.0
2

61
.5
6

0.
24

2
0.
11
*

2
3.
5

S
A
M
0-
U
N
IC

O
N

15
0

0.
19

10
53

.3
5

10
2.
7

2
2.
75

2
4.
54

62
.9
2

0.
32

0.
15

2
2.
3

N
o
rE

S
M
2-
M
M

15
0

0.
19

19
53

.8
1

10
2.
9

2
2.
58

2
5.
10

63
.8
1

0.
28

2
0.
03
*

2
3.
7

N
o
rE

S
M
2-
L
M

14
9

0.
19

14
53

.7
0

9.
9

2.
8

2
2.
68

2
4
.2
3

62
.7
7

0.
31

2
0.
00
5*

2
3.
6

G
IS
S
-E

2.
1-
G

14
8

0.
19

23
52

.2
0

11
2.
6

2
2.
70

2
5.
34

64
.6
3

0.
22

2
0.
04
*

2
2.
9

IP
S
L
-C

M
6A

-L
R

14
7

0.
17

85
50

.4
7

10
1.
9

2
2.
78

2
4
.0
9

61
.8
0

0.
26

0
.0
2

2
3.
0

B
C
C
-C

S
M
2-
M
R

14
6*

0.
22

60
52

.5
2

12
3.
1

2
3.
14

2
5.
31

62
.9
8

0.
27

2
0.
05
*

2
3.
3

C
E
S
M
2

14
6*

0.
20

41
53

.2
0

11
2.
9

2
3.
15

2
5.
52

63
.5
9

0.
32

0.
18

2
1.
9

G
IS
S
-E

2.
1-
G
-C

C
14

6*
0.
18

84
52

.2
4

10
2.
6

2
2.
71

2
5.
35

64
.5
1

0.
21

2
0.
06
*

2
2.
9

C
E
S
M
2-
W

A
C
C
M

14
3*

0.
20

50
53

.5
4

11
2.
9

2
3.
26

2
5.
58

63
.3
1

0.
32

0.
18

2
1.
9

M
R
I-
E
S
M
2.
0

14
3*

0.
19

48
49

.5
2

11
1.
9

2
3.
13

2
4.
96

62
.1
6

0.
19

2
0.
00
2*

2
2.
3

6562 JOURNAL OF CL IMATE VOLUME 33


2���/�2�0��������	3�213������������������ ��
�
��



the eastward flow concentrated in the Subantarctic Front
(SAF) along the northern boundary of the DP and the
Polar Front (PF) just to its south.
Interestingly, the GFDL-CM4, GFDL-ESM4, CNRM-

CM6.1-HR, HadGEM3-GC31-MM, and INM-CM5.0
models, which all have resolutions 1/28 or finer, exhibit
counterflowing westward velocities northward of 568S
at depth. This may be the result of recirculation in this
region that is resolved as horizontal resolution increases.
None of the coarser-resolution models have significant
westward flows at depth (Fig. 2; see also Fig. S2). There is
some observational evidence that suggests some mean
westward flow through theDP exists [evidencedwhere the
transport stops accumulating or dips in Fig. 10 of Firing
et al. (2011) and Fig. 3 ofDonohue et al. (2016)]. However,
these observed westward transports are relatively weak
and not close to the magnitude of those found in these
models. The measurements used to estimate the transport
through the DP from the cDrake array in Donohue et al.
(2016) and from shipboard acoustic Doppler current pro-
filer (ADCP) velocity data by Firing et al. (2011) are not
collected along a single meridional cross section (as the
CMIP models are analyzed at 698W) but generally span
the longitudes of ;668–608W. To assess the accuracy of
these large westward velocities found in the higher-
resolution models, the models need to be sampled in a
fashion that is more aligned with the manner in which the
measurements were collected.
In most models, the majority of the ACC flow is

concentrated in a single broad jet on the northern side of
the passage, rather than being distributed among several
finely resolved jets as observed in the real ocean. Many
of the CMIP6 models exhibit shallow flow, with strong
zonal jets that do not extend to the seafloor. The di-
versity in vertical extent of the flow may have important
implications for the varied ACC strength found across
models given the influence that interactions of the
mean flow with bottom topography have on the ACC
structure and strength through topographic steering, and
dynamics such as momentum dissipation via bottom fric-
tion, etc. The degree to which topography and surface
forcing impacts the mean flow likely differs markedly
across models. For example, models with shallow jets are
less likely to be influenced by interactions with bottom
topography; that is, less bottom drag will be exerted on the
large-scale flow than in models that have strong jets that
extend to the sea floor. It appears thatmany of the errors in
the ACC structure are related to the model’s horizontal
resolution since only the highest-resolution models begin
to capture the observed jets and vertical extent.
The ACC strength is influenced by the competition

between wind-driven surface divergence which acts to
steepen isopycnals across the DP channel and baroclinic
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FIG. 2. Zonal velocity (m s21) through the Drake Passage (;698W). Red values indicate eastward velocities, and blue values indicate
westward velocities. Velocities are contoured from 20.20 to 0.20m s21 at intervals of 0.05m s21. B-SOSE velocity is computed from the
Iteration 133 solution at 1/68 resolution over the January 2013–December 2018 time period. All CMIP6 model values are averaged from
January 1986 to December 2005. Additional models are shown in the online supplemental material.
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eddies which act to reduce the isopycnal slopes. The pa-
rameterized mixing schemes and coefficients employed in
model simulations exerts a strong control on the resulting
ACC strength and its vertical structure (Gent et al. 2001;
Ragen et al. 2020). The ;18 resolution CMIP6 models all
employ various subgrid-scalemixing schemeswith different
coefficients for parameterized eddy fluxes (Table 1), likely
explaining a large portion of the diversity found across the
CMIP6 models, as was the case in previous model gener-
ations (Kuhlbrodt et al. 2012). With the large diversity in
sophisticated mixing schemes and magnitudes of eddy-
induced advection coefficients employed across these
models (Table 1), we do not attempt to quantify the role of
subgrid-scale mixing on the model diversity in these sim-
ulations. We note that in the 0.258 resolution models
(GFDL-CM4, HadGEM3-GC31-MM, and CNRM-CM6.1-
HR), there are no parameterizations of mesoscale eddy
transports and mesoscale eddies are explicitly, yet in-
completely resolved at high latitudes (Table 1). We refer
readers to Adcroft et al. (2019) for a detailed discussion
on the effect of representing versus parameterizing me-
soscale eddies on theACC structure and other features of
the SO circulation in the GFDL-CM4 (explicitly resolves
mesoscale eddies) and GFDL-ESM4 (parameterized
mesoscale eddy transport) models.

b. Surface momentum forcing of the Southern Ocean
and near-surface properties

1) SURFACE MOMENTUM FORCING FROM WIND

STRESS

The surface momentum forcing from the overlying wind
stress provides a frictional force at the ocean surface in the
SO, ‘‘pushing’’ the ACC, while also ‘‘pulling’’ dense water
from the deep ocean to the surface through strong wind-
driven surface divergence determined by the WSC magni-
tude. Equatorward of the westerly wind stress maximum
t(x)max, buoyant surface waters are pushed northward in the
Ekman layer and subsequently dowelled into the interior
ocean as a result of strong positive WSC. These waters are
subducted northward into the Southern Hemisphere sub-
tropical gyres as Subantarctic Mode Water (SAMW) and
Antarctic IntermediateWater (AAIW) (Hanawa and Talley
2001). Poleward of t(x)max, the surface divergence results in
steeply sloped isopycnals that drive dense, deep water from
the interior ocean poleward and toward the sea surface
aroundAntarctica via Ekman upwelling. These dynamics set
up a strongmeridional density gradient across the latitudes of
theACC, providing the conditions to drive a strong eastward
geostrophic flow.
Previous generations of models have struggled with

achieving accurate wind stress forcing at the ocean surface,
with many models typically having relatively weak and

equatorward biased t(x)max values (Russell et al. 2006a; Sen
Gupta et al. 2009;Meijers et al. 2012; Bracegirdle et al. 2013;
Flato et al. 2013; Russell et al. 2018; Beadling et al. 2019)
(Table 2, Figs. 3c,e). In CMIP3, several models had t(x)max

values on the order of 0.10–0.11Nm22 (Russell et al.
2006a), relative to the ERA5 value of 0.1788Nm22 used
here as our observational benchmark. The CMIP5 genera-
tion showed improvement with a minimum t(x)max value on
the order of 0.14Nm22 and most models simulating values
within observational uncertainty (Beadling et al. 2019). This
improvement is noted in the shift fromaCMIP3MMM t(x)max

value from 0.1591 to 0.1829Nm22 in CMIP5 (Table 2),
fewermodels outside the lowerboundof theERA5 range in
Fig. 3c, and a better agreement in the pattern of the zonally
averaged wind stress over the SO [cf. Fig. 3a herein to Fig. 2
of Beadling et al. (2019)]. The CMIP6 ensemble tends to
exhibit stronger t(x)max than CMIP5, yielding a slightly in-
creased MMM value (Table 2). Considering the mean and
associated standard deviation (2s) over the 20-yr period,
only two models have t(x)max values that do not overlap with
the ERA5 range. The BCC-ESM1 and MIROC-ES2L
models exhibit too strong and too weak t(x)max values, re-
spectively. The BCC-CSM-MR and NESM3 models have
strong wind stress relative to ERA5, with the lower bound
of their standard deviations (2s) barely overlapping with
that of ERA5.
The latitudinal location of t(x)max (;528S) is anothermetric

that has been consistently analyzed across model genera-
tions and has improved. Yet, a systematic equatorward bias
has persisted. The CMIP3 ensembles studied by Russell
et al. (2006a) and Sen Gupta et al. (2009) had models with
t(x)max locations ranging from ;428 to 548S (Fig. 3e), with
63% (10 out of 16) to 78% (14 out of 18) of the models
having their mean t(x)max located north of 508S. The CMIP5
models showed a clear improvement, with only 36% (11
out of 31) of models studied exhibiting locations north of
508S and a narrowing intermodel spread (Fig. 3e). The
CMIP6 models show even more improvement, with only 5
out of 34 (15%) models having their t(x)max north of 508S.
MIROC-ES2L, with its t(x)max at 46.118S barely overlaps with
the ERA5mean and standard deviation (2s) and is a clear
outlier among the other CMIP6 models with respect to its
zonal wind structure across the SO (Figs. 3a,e). TheMMMs
across generations, summarized in Table 2, clearly indicate
an improvement in both the mean location of t(x)max and
in the intermodel spread, going from 47.578 6 2.808 to
51.298 6 1.688S from CMIP3 to CMIP6.
The poleward shift in the location of t(x)max fromCMIP5

to CMIP6 has resulted in an increase in the total wind
stress forcing (both from t(x) and WSC) over the open
DP latitudes (Table 2). The structure of the zonally in-
tegratedWSC over the SO has improved fromCMIP5 to
CMIP6 [cf. Fig. 3b herein to Fig. 2 of Beadling et al.
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FIG. 3. (a) Zonally averaged zonal wind stress (Nm22) and (b) zonally integrated annual mean wind stress curl (Nm22) from the ERA5
global atmospheric reanalysis product time-averaged from January 1986 to December 2005, from January 2013 to December 2018 for the
Iteration 133 B-SOSE solution, and from January 1986 to December 2005 for each CMIP6 model. The Drake Passage latitudinal band is
the dark gray shading in (a) and (b). The light gray shading about the ERA5 mean corresponds to the interannual variability (2s) of the
zonally averaged zonal wind stress or zonally integrated wind stress curl at each latitude. Also shown is the performance of models from
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(2019)]. The CMIP6 models are generally getting an
accurate magnitude of Ekman suction/pumping over
approximately the right locations, with the exception of
MIROC-ES2L. The region south of 558S yields the
largest disagreement in the magnitude of the zonally
integrated WSC among models, likely linked to di-
verging representation of the polar easterlies along the
Antarctic margin. Noting this disagreement, we con-
sidered two additional metrics in this analysis to char-
acterize the WSC field, the magnitude and location of
the minimum WSC in the SO, corresponding to the
magnitude and location of the maximum Ekman suc-
tion. Nine CMIP6 models yield a minimum zonally in-
tegrated WSC that is too weak, and five models have
their latitudinal location too far equatorward relative to
ERA5 (Table 2). Given that these WSCmetrics are tied
to the magnitude and location of where dense, carbon-
rich water from the deep ocean is being pumped to the
sea surface, the divergence in performance here may be
linked to divergence in the simulated SO carbon budget
in the CMIP6 ensemble. This is a topic of future study.
Given the fact that the magnitude and location of the

wind stress play an important role in setting the isopycnal
slopes across the ACC as discussed at the start of this
section, onemay expect t(x)max to be significantly correlated
with the strength of the ACC. However, a statistically
significant relationship between t(x)max andACC strength is
not found when considering the entiremodel ensemble in
CMIP3 or CMIP5 models (Kuhlbrodt et al. 2012; Meijers
et al. 2012; Beadling et al. 2019). A statistically insignifi-
cant relationship is also found between the latitudinal
location of t(x)max and ACC strength in CMIP5 (Beadling
et al. 2019). This lack of strong correlation between these
wind metrics and the ACC strength suggest that, while
the momentum forcing by the Southern Hemisphere
westerly winds is undoubtably amajor driver of theACC,
other factors are exerting a strong influence on ACC
strength. The buoyancy forcing across the current also
influences the meridional tilt of the isopycnals in this re-
gion. Thus, the temperature and salinity properties from
the surface to the interior ocean plays a major role in
setting the ACC strength. In CMIP5, several models sim-
ulated exceptionally strong (weak) ACC flow with weak
(strong) t(x)max. In some of these cases, errors in the buoy-
ancy structure of the SO compensated for the wind stress

forcing, allowing steep isopycnal slopes to bemaintained in
the absence of strong wind forcing or vice versa. Examples
fromCMIP5 included theGISS-E2-R-CC andHadGEM3
models with ACC transports in excess of 240Sv stemming
from excessive density gradients driven by large errors in
the SO temperature and salinity structure [see detailed
discussion in Beadling et al. (2019)].
The CMIP6 ensemble exhibits a stronger relationship

(yet still not statistically significant; p5 0.15) relative to
previous model generations between the ACC and t(x)max

(Fig. 4a). No statistically significant relationships are
found between ACC strength and the other wind stress
metrics in Table 2 (not shown). TheMIROC6model has
one of the weakest t(x)max magnitudes with a position that
is slightly equatorward shifted relative to ERA5, yet one
of the strongest ACCs out of the ensemble. The E3SM-
1.0, HadGEM-GC31-MM, INM-CM4.8, and CNRM-
CM6.1-HR models all have reasonable representation
of both the position and strength of t(x)max, yet yield ex-
tremely weak ACC transports.
In addition to the buoyancy structure, explicitly re-

solved (in the case of HadGEM3-GC31-MM, GFDL-
CM4, and CNRM-CM6.1-HR) or parameterized mixing
associated with mesoscale eddies also plays a role in
explaining the lack of a linear correlation between wind
stress forcing and the ACC strength in the CMIP6models.
Stronger wind forcing acts to enhance the meridional iso-
pycnal tilt across the ACC. However, in a regime of eddy
saturation (Munday et al. 2013), this isopycnal tilt can be
counterbalanced by the production of eddies, which then
act to minimize the meridional density gradient. Given
that many of the CMIP3 models employed fixed eddy-
induced advection coefficients, Kuhlbrodt et al. (2012)
showed that the sensitivity of the ACC transport to the
magnitude of the eddy-induced advection coefficient was
larger than to the zonal wind stress maximum in CMIP3
models. As discussed in the previous section, the im-
plementation of parameterized subgrid-scale mixing as-
sociated with eddy fluxes differs widely across the CMIP6
models (Table 1), likely contributing to the lack of a strong
relationship between the wind stressmetrics and theACC.

2) NEAR-SURFACE BIASES

The near-surface (0–100m) thermal structure of the
SO is characterized by a large meridional gradient in

 
CMIP3 through CMIP6 in their representation of (c) the maximum zonally averaged zonal wind stress, (d) the integrated wind stress curl
over the Drake Passage latitudes, and (e) position of the peak wind stress, relative to ERA5. The CMIP3 values are those reported by
Russell et al. (2006a) and Sen Gupta et al. (2009), and the CMIP5 values are reported from Beadling et al. (2019). The CMIP6 transports
are computed identically to that of Beadling et al. (2019), over the same time period in the historical simulations. Gray shading in (c) and
(d) corresponds to the interannual variability (2s) about the ERA5 mean over the 20-yr time period.
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temperature ranging from less than 218C near the
Antarctic coast to ;208C in the subtropical gyres at 308S
(Figs. 5a and 6a ). Achieving accuracy in representing
the near-surface temperature structure in the SO, partic-
ularly south of 408S, has proven to be a significant challenge
for the climate modeling community, with significant warm
biases persisting across model generations. Generally,
above 200m, the MMM CMIP3 and CMIP5 tempera-
tures were biased slightly cold in the global ocean with
the exception of the SO, where the upper ocean has been
characterized by consistent excessive warm biases (Flato
et al. 2013). When considering the zonal-mean upper
ocean temperature distribution, CMIP3 and CMIP5
models generally represented the structure well (Russell
et al. 2006a; Sen Gupta et al. 2009; Beadling et al. 2019)
with biases generally within ;18C of that observed at a
given latitude. However as noted by Sen Gupta et al.
(2009), zonal-averaging obscures regional biases in upper
ocean temperature that in some cases exceed 58C. In
CMIP3, major biases in the upper ocean were found
south of ;458S in the region of the ACC and along the
eastern boundaries of the basins, and were attributed to
poor representation of eastern boundary currents (Sen
Gupta et al. 2009). Across the CMIP5 ensemble, exces-
sive surface temperatures translated into consistent warm
biases found in ventilated layers of the SO including
surface subtropical, mode, and intermediate waters (Sallée
et al. 2013b).
Excessive SO surface temperatures in CMIP5 origi-

nated to some extent from excessive downward short-
wave radiation related to poor representation of clouds
and cloud properties, with a strong correlation found
between shortwave cloud forcing and the modeled
spread in SO surface air temperatures (Ceppi et al. 2012;
Schneider and Reusch 2016). Work by Hyder et al.
(2018) on the CMIP5 ensemble showed that these biases
in cloud-related shortwave radiation were mostly due to
errors in the stand-alone atmospheric model compo-
nents used. Additionally, inaccuracies in the represen-
tation of the large-scale ocean circulation in the SO
including the location of the ACC, strength and location
of subtropical gyre boundary currents, and wind-driven
upwelling and associatedmixing of interior oceanwaters
with the sea surface, as well as eddy-induced transports
and their parameterizations, all play a role in explaining
regional temperature biases. Propagation of deep ocean
warming to the sea surface related to climate model drift
present in some model simulations also contributes to
the near-surface temperature biases. An example of this
from the CMIP3 and CMIP5 ensemble was the GFDL
CM3 simulation with excessively warm biases in the
abyssal ocean that impacted the SO surface climate in
the historical simulations (Griffies et al. 2011).

Noting that large local errors can be obscured by only
assessing models according to their zonal-mean prop-
erties, we present the upper 100-m temperature and
salinity biases (Fig. 6) for the entire SO. For comparison
to previous studies (Russell et al. 2006a; Sen Gupta et al.
2009; Beadling et al. 2019), we also provide the zonally
averaged structure (Fig. 5). With the exception of four
models (MIROC6, MIROC-ES2L, GISS-E2.1-H, and
EC-Earth3-Veg), the CMIP6 zonal-mean temperature
structure shows improved agreement across all latitudes
relative to the spread found acrossmodels in CMIP3 and
CMIP5 [Fig. 4c in Beadling et al. (2019) and Fig. 4a in
Russell et al. (2006a)]. Model agreement tightens up
north of 508S. The MIROC6, MIROC-ES2L, GISS-
E2.1-H, INM-CM4.8, and EC-Earth3-Veg models stand
out in Fig. 6a and Fig. S3 with excessive warm biases that
dominate the entire circumpolar SO south of 408S.Many
other models exhibit regions with biases in excess of 38C
that are mostly concentrated within or just north of the
ACC region, with the warmest biases appearing mostly
in the South Atlantic and Indian basins. All CMIP6
models tend to exhibit some degree of temperature bias
along the southern margin of the subtropical gyres or
along the boundary current regions such as the Brazil–
Malvinas confluence zone and Agulhas retroflection.
Regional temperature biases along the ACCmargin and
in the boundary current regions are likely related to
discrepancies in model representation of the pathways
of these large-scale currents as was the case in CMIP3
(Sen Gupta et al. 2009). The B-SOSE and GFDL-CM4
simulations are very similar, with the exception of more
intense cold biases in the subtropical regions in GFDL
CM4. These patterns and magnitudes of biases in near-
surface temperatures have implications for the accurate
representation of surface heat fluxes, SO ventilation of
heat and carbon, water mass characteristics, and the
ability to accurately represent the Antarctic SIE.
The near-surface SO salinity structure is characterized

by relatively fresh water in the latitude band of the ACC
where buoyancy is gained at the ocean surface via pre-
cipitation and sea ice meltwater is entrained into the
Ekman drift (Figs. 5b and 6b). The upper ocean is
slightly more saline south of theACC, particularly in the
Weddell and Ross Seas and along the Antarctic coast.
North of the ACC, high-salinity subtropical waters
dominate the upper ocean. In CMIP3 and CMIP5,
models showed very wide discrepancies in the repre-
sentation of upper ocean salinity, even in the zonal mean
(Russell et al. 2006a; Sen Gupta et al. 2009; Beadling
et al. 2019). On average, both the CMIP3 and CMIP5
ensembles yielded fresh biases throughout the entire
SO (Sen Gupta et al. 2009; Beadling et al. 2019), with
the largest fresh biases in the upper ocean north of
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508S. CMIP5 models generally agreed with one an-
other (but with a significant fresh bias) north of;508S
where precipitation minus evaporation dominates the
freshwater budget. Much larger intermodel spread

was found in the zonal-mean upper ocean salinity in
the seasonal sea ice zone (Beadling et al. 2019). In
CMIP5, the fresh biases in combination with the warm
biases discussed above resulted in water masses that

FIG. 4. ACC transport vs (a) zonally averaged maximum westerly wind stress and ACC transport vs full-depth-
averaged, zonally averaged (b) meridional potential density, (c) potential temperature, and (d) salinity difference
between 658 and 458S. (e) Full-depth-averaged meridional potential density difference between 658 and 458S vs
minimumAntarctic sea ice extent (SIE). Mean observed and modeled values correspond to the values reported in
Tables 2 and 3. The linear regression considering only the CMIP6 models and the corresponding correlation co-
efficient and p value (n 2 2 degrees of freedom) are displayed on each panel.
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were too light in the ventilated layers of the SO (Sallée
et al. 2013b).
In CMIP6, the near-surface zonal-mean salinity structure

(Fig. 5b) shows improvement in the intermodel spread
across all latitudes relative to previous generations [Fig. 4d
inBeadling et al. (2019) andFig. 4b inRussell et al. (2006a)].
However, the systematic bias of models generally being too
fresh in the upper ocean persists into CMIP6.Manymodels
exhibit intense fresh biases exceeding 0.50, concentrated
mostly north of 458S in the subtropical zones (Fig. 6b; see
also Fig S4), however several models have fresh biases of
these magnitudes along the Antarctic coast. Several models
exhibit large saline biases along the Antarctic margin or
within the ACC region. The circumpolar nature of many of
these saline biases suggest they may be linked to the up-
welling of saline North Atlantic Deep Water (NADW)
within the ACC. These near-surface salinity biases com-
bined with those of near-surface temperature (Fig. 6)

suggest that the water mass characteristics in the ventilated
layers of the SOmay differ widely amongmodels, similar to
CMIP5 (Sallée et al. 2013b). Given that the formation and
properties of SO water masses are intimately tied to global
ocean heat and carbon uptake, the substantial biases in the
near-surface properties in CMIP6 are potentially worrying
from a global climate modeling perspective.

c. Interior ocean properties and gradients across the
ACC region

The strength and structure of the ACC is largely de-
termined by the meridional density gradient according
to thermal wind balance. Thus, the ACC simulation is
highly sensitive to biases in the interior ocean properties
from the surface to the abyssal ocean. In coupledmodels
the ACC generally spans the latitudes ;658–458S and
the meridional difference in properties across these
latitudes has been used as a metric to assess model

FIG. 5. The zonally averaged and time-averaged near-surface (a) potential temperature (8C;
0–100m average) and (b) salinity (0–100-m average). The CMIP6 model output are time-
averaged from January 1986 toDecember 2005. The January 2013–December 2018 time period
is averaged for the B-SOSE Iteration 133 solution. TheWOA18 values are computed from the
average of the 1985–94 and 1995–2004 decadal climatologies.
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performance (Russell et al. 2006a; Farneti et al. 2015;
Beadling et al. 2019). We note that this is a crude sim-
plification given that the meridional boundaries of the
ACC are highly dependent on longitude and differ
across models (Sen Gupta et al. 2009; Meijers et al.
2012). While not a precise computation according to
thermal wind, where meridional gradients in density
are vertically integrated to solve for baroclinic ve-
locities, the zonally averaged and depth-averaged
density contrast from 658 to 458S used as a model
metric serves as a proxy for the intensity of the iso-
pycnal slopes across the current, which generally re-
flect the strength of the ACC.
Russell et al. (2006a) considered the zonally averaged

and depth-averaged (0–1500m; above the sill depth of the
DP) difference in meridional potential density (Dr) from
658 to 458S for the 18 CMIP3 models studied. Relative to
the WOA 2001 value of 0.58kgm23 (this value remains
the same when calculated from the WOA18 product)
used as the observational benchmark, a range from 0.18
to 0.97kgm23 was found across models. Considering a

window of error of 25% on either side of the WOA
2001 value, 39% of the models simulated a Dr within
the observational range, 50% had a weak Dr, and 11%
had excessively strong Dr across the ACC. The
UKMO-HadCM3 model, which yielded the most ex-
cessive Dr at 0.97 kgm23, did so as the result of a very
large meridional difference in salinity (DS). The GISS-
E2 model was an example of a model that yielded an
excessive Dr due to a large meridional difference in
temperature (DT) and a weak and opposite sign DS.
Beadling et al. (2019) considered the zonally averaged
and full-depth averaged Dr (referenced to the surface)
across 658–458S in 31 CMIP5 models, yielding a
range from 0.13 kgm23 (BNU-ESM) to 0.47 kgm23

(HadCM3) relative to the 0.25 kgm23 value from the
WOA13 product. Considering this metric in CMIP5,
55% of the models fell within the WOA13 25% error
margin, 23% were too weak, and 23% were too strong.
Similar to CMIP3, the IPSL models produced some of
the weakest Dr, while the HadCM3 and GISS models
produced some of the strongest, with these biases

FIG. 6. (a) Upper-ocean potential temperature (8C) (0–100-m average) in the Southern Ocean from theWOA18 climatological mean (large
panel at top left; computed from the average of the 1985–94 and 1995–2004 decadal climatologies). The difference between the simulated and
observed temperature (8C) for the B-SOSE Iteration 133 solution (time-averaged from January 2013 to December 2018) and for each CMIP6
model (time averaged from January 1986 to December 2005). Positive (from yellow to red) values indicate the model is warmer than observed.
Negative (blue) values indicate themodel is colder than observed. Additional models are shown in the supplemental material. (b) As in (a), but
for salinity in the upper ocean (0–100-m average). Positive (from yellow to red) values indicate themodel ismore saline than observed. Negative
(blue) values indicate the model is fresher than observed. Additional models are shown in the supplemental material.
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driving errors in ACC strength, despite accuracy in the
wind stress forcing at the ocean surface (Beadling
et al. 2019).
Following Beadling et al. (2019), the full-depth averaged,

zonally averaged Dr (referenced to the surface), DT, and DS
across 658–458S are computed for the CMIP6 models. The
ensemble exhibits a slightly smaller spread in simulated Dr
relative toCMIP5, ranging from0.13kgm23 (MIROC-ES2L)
to0.39kgm23 (GISS-E2.1-H,ACCESS-CM2).Consideringa
25% error margin relative to the WOA18 Dr, 71% of the
models simulate a Dr within error, 23% are too strong, and
6% are too weak (Table 2). Comparing the percentage of
models that simulate a Dr within the 25% WOA18 error
margin, there is a clear improvement fromCMIP5 toCMIP6,
with models converging toward theWOA18 value.
Similar to previous model generations, the strength

of the ACC generally scales with the magnitude of
Dr across 658–458S (Fig. 4b). Upon breaking down the
density difference into the contributing differences in DT
and DS, a wider spread in model performance is found
(Table 2; Figs. 4c,d). Of themodels that exhibit an excessive
Dr, five are the result of having a much too large DS
(GISS-E2.1-H, INM-CM5.0, SAM0-UNICON, CESM2,
CESM2-WACCM), two are the result of too large DT
(ACCESS-CM2, ACCESS-ESM1.5), and one exhibits
large biases in both DS and DT (CanESM5).
Three of the five models that fall into the category of

yielding an excessive Dr due to large biases in DS share
the Parallel Ocean Program version 2 (POP2) ocean
model component (Table 1) coupled with a different at-
mospheric model (CESM2:CAM6; CESM2-WACCM:
WACCM6; SAM0-UNICON:CAM5.3 with UNICON).
The models with the POP2 ocean all appear to have ex-
cessively saline water seemingly originating in the deep
Atlantic that penetrates the upper ocean south of the
ACC region, and a thick fresh bias at the surface layer,
penetrating through the upper few thousandmeters in the
subtropical regions in all basins (Fig. 7b). The INM-
CM5.0 model with excessive Dr due to large biases in DS
shows a very similar pattern to the POP2 biases described
above, but with more pronounced saline biases in the
deep ocean and in the upper ocean south of the ACC
(Fig. 7b). TheGISS-E2.1-Hmodel appears to only have a
too strong DS due to thick fresh biases throughout the
water column north of;458S (Fig. 7b). The twoACCESS
models that fall into the category of excessive Dr due to
large biases in DT, which share the MOM5 ocean com-
ponent, yield large cold biases in the upper ocean south of
theACC and thick layers of warm biases in the upper few
thousand meters of the ocean in the subtropical regions
(Fig. 7a; see also Fig. S5). Similar to the POP2models, the
ACCESS models appear to have biases that originate in
the region where NADW enters the SO.

Several models simulate aDS in the opposite direction
from WOA18, with fresh biases in the water column on
the southern edge of the ACC often accompanied by
saline biases in the water column on the northern edge,
concentrated in the upper 1500m in the subtropical gyre
regions or NADW regions (Fig. 7b). In many cases,
biases inDT andDS compensate for one another yielding
an accurate Dr. Many of the model biases in the tem-
perature and salinity structure of the SO appear to be
concentrated in the recently ventilated layers or in the
deep Atlantic, suggesting most stem from inaccuracies in
the surface climate (reflected in the biases in Fig. 6,
Fig. S3, and Fig. S4) or inaccuracies in the simulation of
NADW.An interesting relationship found in this analysis
is a strong correlation between Dr and the minimum
Antarctic SIE (Fig. 4e), suggesting that the representa-
tion of the Antarctic SIE is important for achieving an
accurate SOdensity structure likely through its influence on
upper ocean salinity and water mass transformation pro-
cesses. However, the mechanisms behind this deserve a
detailed follow-up study.

d. Antarctic sea ice extent

Antarctic sea ice exerts a strong influence on the SO
through its impacts on air–sea heat exchange, local
surface albedo, and the upper ocean freshwater budget.
Recent work using numerical models and observations
have highlighted that freshwater fluxes associated with
buoyancy loss during sea ice formation and freshwater
gain in the upper ocean from sea ice melt are dominant
components in the transformation of water masses in
the SO (Abernathey et al. 2016; Pellichero et al. 2018).
Wind-driven sea ice export and subsequent delivery
of freshwater have played a role in determining the
observed mean salinity distribution in the upper SO
(Haumann et al. 2016; Cerove!cki et al. 2019). The rep-
resentation ofAntarctic SIE inmodels is complicated by
the fact that sea ice is highly sensitive to both atmo-
spheric and ocean forcing. Errors in the representation
of Antarctic SIE can result in or be the result of errors in
biases in SO temperature and salinity structure, patterns
of surface wind stress forcing, water mass properties and
location of deep ocean upwelling, and geostrophic ocean
circulation such as the strength and pathway of the
ACC. Furthermore, the representation of Antarctic sea
ice in historical simulations of coupled models has been
shown to be linked to projected changes in the Southern
Hemisphere westerly jet, where models with larger
Antarctic sea ice area in their historical simulations ex-
hibit more sea ice retreat and less strengthening of the
jet under increased radiative forcing throughout the twenty-
first century (Flato 2004; Bracegirdle et al. 2015; Bracegirdle
et al. 2018). Biases in Antarctic sea ice representation can
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translate into errors in air–sea gas exchange and
simulated heat and carbon storage through its impact
on water mass transformation and through its complex
coupling between surface air temperature, net precip-
itation, and the strength of the Southern Hemisphere
westerly jet.
Accurate representation of mean-state Antarctic sea ice

extent, area, and distribution has been an existing challenge
in the climate modeling community, with Antarctic SIE
generally poorly represented (Parkinson et al. 2006; Flato
et al. 2013; Shu et al. 2015). Across generations, improve-
ment in Antarctic SIE has been marginal relative to Arctic
(Mahlstein et al. 2013). CMIP3 and CMIP5 models have
shown errors in representing the overall Antarctic SIE and
regional distributions, the seasonal cycle, and observed
trends (Parkinson et al. 2006; Connolley and Bracegirdle
2007; Sen Gupta et al. 2009; Turner et al. 2013; Flato et al.
2013; Mahlstein et al. 2013; Shu et al. 2015; Ivanova et al.
2016; Roach et al. 2018).When the ensemble average of SIE

is used as a metric, it appears that models perform well and
that significant improvements have beenmade fromCMIP3
to CMIP5 (SenGupta et al. 2009; Flato et al. 2013; Shu et al.
2015). However, this averaging is severely misleading; large
biases are seen among individual models. In many cases,
even when the magnitude of SIE is numerically well repre-
sented, the spatial patterns are often completely unrealistic
(Connolley and Bracegirdle 2007). Using an ensemble
average of SIE as a metric is also misleading due to the
differing degrees of strong model internal variability in
this region across models (Mahlstein et al. 2013; Deser
et al. 2010).
It is difficult to make a direct ‘‘cross-generational’’ per-

formance conclusion of the representation of Antarctic SIE
due to differing choices in sea ice metrics used in previous
analysis on the CMIP3 and CMIP5 ensemble (sea ice area,
thickness, volume, and differing representative time pe-
riods: annual SIE, maximum or minimum SIE, September
or February values, or summer/winter seasonal averages).

FIG. 7. (a) Potential temperature (8C) in the Southern Ocean from theWOA18 climatological mean (large panel at top left; computed from the
average of the 1985–94 and 1995–2004 decadal climatologies) in the Atlantic (308W), Indian (908E), and Pacific Ocean (1508W) and the difference
between the simulated and observed temperature for theB-SOSE Iteration 133 solution (time averaged from January 2013 toDecember 2018), and
for eachCMIP6model (time-averaged fromJanuary 1986 toDecember 2005). Positive (fromyellow to red) values indicate themodel iswarmer than
observed.Negative (blue) values indicate themodel is colder thanobserved.Additionalmodels are shown in the supplementalmaterial. (b)As in (a),
but for salinity in the Southern Ocean. Positive (from yellow to red) values indicate the model is more saline than observed. Negative (blue) values
indicate the model is fresher than observed. Additional models are shown in the supplemental material.
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The analysis by Mahlstein et al. (2013) concludes that
‘‘the representations of Antarctic sea ice in CMIP5 models
have not improved compared to CMIP3 and show an un-
realistic spread in the mean state that may influence future
sea ice behavior’’ (p. 5105).However, the IPCCAR5 report
notes that ‘‘the CMIP5 multi-model ensemble exhibits im-
provements over CMIP3 in simulation of sea ice extent in
both hemispheres’’ (Flato et al. 2013, p. 788).
In our analysis of theAntarctic SIE in CMIP6models, we

perform the same computations across the same metrics as
in the CMIP5 analysis by Beadling et al. (2019). Similar
to previous model generations, the CMIP6 models have
an accurate seasonal cycle with a minimum occurring in
February and a maximum in September (Table 3; Fig. 8a).
The CNRM-CM6.1-HR andCNRM-CM6.1models are the
onlymodels that simulate amaximumSIE inOctober rather
than September. The annual SIE simulated across models
ranges from 1.70 millionkm2 (MIROC-ES2L) to 13.29 mil-
lionkm2 (NorCPM1). Considering the observed and mod-
eled annualmeanand standard deviation (2s) over the 20-yr
period, one model (NorCPM1) simulates a too great SIE
while 25models simulate a too small annual SIE.Relative to
CMIP5, the CMIP6 ensemble has fewermodels with annual
Antarctic SIE values that are excessive relative to observed,
evidenced by fewer models falling outside of the gray
shading on the right-hand side of Fig. 8b. However, fewer
CMIP6 models fall within the observational range than
CMIP5, and the overwhelming majority of the models are
still simulating much too limited annual SIE.
There are some clear outliers among the models,

including MIROC6, MIROC-ES2L, EC-Earth3-Veg, MPI-
ESM-1.2-HAM, MPI-ESM1.2-LR, HadGEM3-GC31-
MM, and INM-CM4.8, that simulate extremely low
maximum SIE values (Table 3; Fig. 8a). The MIROC-
ES2L and MIROC6 models have lower annual SIE
values than any CMIP5 model (Fig. 8b) skewing the
CMIP6 MMM toward lower values. Models with excep-
tionally low annual SIE values tend to have very large
upper and interior ocean temperature biases (.38C;
Figs. 6a and 7a; see also Figs. S3 and S5), likely explaining
the lack of seasonal sea ice.
The magnitude of the standard deviation (2s) of the an-

nualmeans over the 20-yr period differ widely acrossmodels
and in most cases are often much larger than observed
(Fig. 8b), suggesting that the internal variability differs
markedly across models and is different from that observed.
For example, compare the large variability in GISS-E2.1H,
U.K.-ESM1.0-LL, HadGEM3-GC31-LL, IPSL-CM6A-LR,
and BCC-ESM1 to that of NorESM2-LM, MIROC-ES2L,
and MIROC6. This brings up the question of the represen-
tativeness of the time period chosen when making assess-
ments of a model’s performance across Antarctic sea ice
metrics since there seems to be a significant contribution of

the model’s internal variability to the performance, as was
the case in previous generations (Mahlstein et al. 2013;Deser
et al. 2010). Additionally, the presence of any large open-
ocean polynyas (see discussion in section 3a) in a model’s
simulation would significantly impact the overall sea ice
representation. The CMIP5 and CMIP6 intermodel spread
for all SIE metrics in Table 3 is much larger than the ob-
served interannual variability over this time period. Overall,
it appears that the representation of Antarctic SIE still
remains a systematic bias from CMIP5 to CMIP6.

4. Summary and conclusions

The SO is a dynamically complex region where the
global ocean water masses converge and the world’s
strongest current, the ACC, exchanges properties be-
tween basins. Strong wind-driven surface divergence
drives deep waters to the ocean surface on the southern
side of the ACC, resulting in strongly sloped isopycnals
that act as a vehicle for the exchange of deep ocean
properties with that of the upper ocean and overlying
atmosphere. A portion of the Circumpolar Deep Water
(CDW) that is upwelled along these steeply sloped iso-
pycnals is transformed into denser Antarctic Bottom
Water (AABW) and exported northward, filling the
abyssal ocean. Buoyancy gained at the ocean surface
through the incorporation of precipitation, glacial runoff,
and sea ice melt transforms the remaining upwelled
CDW into lighter intermediate and mode waters that are
exported northward in the upper ocean subtropical gyres.
The ACC and intense water mass transformations that
characterize the SO are intimately coupled together, and
these complicated dynamics are directly tied to the ex-
change of heat and carbon with the atmosphere and the
export of nutrients to the rest of the global ocean.
Lack of historical observations coupled with complex

and not fully understood interconnected processes tied
to the ocean eddy field, surface wind stress forcing, air–
sea heat and freshwater fluxes impacted by both the
ocean circulation and overlying atmospheric properties,
properties of upwelled water, and the destruction and
transformation of seasonal sea ice make the SO very
difficult to accurately represent in climate models. Since
these dynamics are highly coupled, a well-represented SO
requires accuracy to be achieved in the atmosphere, ocean,
and sea ice model subcomponents and their exchanges
since errors in any of these regimes can propagate into the
other. An important example discussed here is that in
previous model generations, errors in representation of
Southern Hemisphere clouds and cloud properties in the
atmosphericmodel led to significant errors in the SOupper
ocean thermal structure. Given that the surface tempera-
ture gradient is tightly coupled to the position and strength
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of the surface wind stress forcing, this can propagate
into surface forcing biases. Additionally, as was shown
here, near-surface property biases directly impact the
ability to accurately represent Antarctic SIE, where
models with an exceptionally warm SO simulated ex-
tremely low SIE. The upper ocean properties can also
be impacted internally by poorly represented water

mass properties, such as too warm NADW or abyssal
warming due to climate drift.
Despite these challenges, the analyses presented here,

in conjunction with those performed on ensembles of
CMIP3 and CMIP5 models, show some consistent im-
provements across generations. We have focused on
observable metrics that have been analyzed in previous

TABLE 3. Metrics related to the representation of Antarctic sea ice extent (SIE) (million km2) for the models considered in this study.
The observed SIEmetrics and their associated standard deviation (1s) of annual means for the January 1986–December 2005 time period
are from themonthly sea ice extent dataset (https://nsidc.org/data/g02135) from theNational Snow and IceData Center Sea Ice Index. All
CMIP6 values are time averaged from January 1986 toDecember 2005. B-SOSEvalues are computed from the time-averaged output from
January 2013 to December 2018 for the Iteration 133 B-SOSE solution. In all calculations, only grid cells that had a sea ice concentration
greater than 15% were included. Considering the standard deviations of the annual means over the time period of analysis for both the
observational data and model output, values that lie 2s outside the mean of the observational metric are in bold and values that lie
2s below are bold and italicized. The B2019 CMIP5multimodel mean (MMM) and intermodel spread (1s) is from the analysis presented
in Table S1 of Beadling et al. (2019). For the maximum and minimum SIE, the month when this occurs is also listed. Note that the MCM-
UA-1.0 model, which has missing values marked with asterisks (*), only provides ice thickness and the concentration is either 1 or 0,
preventing accurate assessment of monthly SIE.

Model
Annual SIE
million km2

Maximum SIE
million km2

Minimum SIE
million km2

Max 2 Min
million km2

Observational estimate 11.58 6 0.26 18.42 6 0.34, Sep 3.09 6 0.35, Feb 15.32 6 0.52

B-SOSE 10.68 18.79, Sep 1.24, Feb 17.55
GISS-E2.1-H 11.21 18.91, Sep 2.86, Feb 16.06
CanESM5 12.10 18.23, Sep 4.12, Feb 14.11
ACCESS-CM2 7.97 14.30, Sep 0.60, Feb 13.70
MIROC6 1.91 4.09, Sep 0.04, Feb 4.05
GFDL-ESM4 9.00 16.66, Sep 0.82, Feb 15.84
INM-CM5.0 6.22 11.90, Sep 0.88, Feb 11.02
UKESM1.0-LL 9.99 15.47, Sep 2.68, Feb 12.79
MCM-UA-1.0 —* —* —* —*
MPI-ESM-1.2-HAM 3.78 8.04, Sep 0.23, Feb 7.81
ACCESS-ESM1.5 8.83 14.73, Sep 2.48, Feb 12.25
BCC-ESM1 8.14 13.34, Sep 0.92, Feb 12.42
MPI-ESM1.2-LR 4.89 10.73, Sep 0.39, Feb 10.34
SAM0-UNICON 12.68 18.42, Sep 4.04, Feb 14.38
NorESM2-MM 6.85 12.12, Sep 1.80, Feb 10.32
NorESM2-LM 6.76 11.93, Sep 1.83, Feb 10.10
GISS-E2.1-G 8.19 15.02, Sep 0.64, Feb 14.38
IPSL-CM6A-LR 11.13 19.48, Sep 1.79, Feb 17.69
BCC-CSM2-MR 7.11 12.89, Sep 0.30, Feb 12.59
CESM2 9.79 15.35, Sep 1.81, Feb 13.54
GISS-E2.1-G-CC 7.88 14.68, Sep 0.64, Feb 14.04
CESM2-WACCM 10.38 15.91, Sep 2.27, Feb 13.64
MRI-ESM2.0 13.26 21.33, Sep 3.15, Feb 18.18
GFDL CM4 10.33 19.00, Sep 0.68, Feb 18.32
HadGEM3-GC31-LL 8.82 14.33, Sep 1.80, Feb 12.53
NESM3 8.65 15.39, Sep 0.46, Feb 14.93
NorCPM1 13.29 19.70, Sep 4.38, Feb 15.32
EC-Earth3-Veg 4.97 10.63, Sep 0.29, Feb 10.34
CNRM-CM6.1 9.71 18.22, Oct 0.98, Feb 17.24
CNRM-ESM2.1 7.70 15.25, Sep 0.40, Feb 14.85
E3SM-1.0 8.92 15.97, Sep 1.04, Feb 14.93
MIROC-ES2L 1.70 4.11, Sep 0.04, Feb 4.07
CNRM-CM6.1-HR 8.76 16.87, Oct 0.48, Feb 16.39
HadGEM3-GC31-MM 6.40 10.36, Sep 1.62, Feb 8.74
INM-CM4.8 4.47 9.07, Sep 0.27, Feb 8.80
B2019 CMIP5 MMM 9.44 6 3.35 16.28 6 4.19 2.17 6 1.97 14.11 6 3.14
CMIP6 MMM 8.24 6 2.88 14.32 6 4.10 1.42 6 1.22 12.90 6 3.50
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model ensembles as well as included additional metrics
pertaining to characterizing the wind stress forcing.
The results suggest the following regarding model
performance:

1) The simulation of the strength of the ACC has
improved from CMIP3 to CMIP6, with modeled
ACC strength converging toward the magnitude
of observed net flow through the Drake Passage as

FIG. 8. (a) Seasonal climatology of Antarctic sea ice extent (SIE; million km2) observed by satellite and reported by
the National Snow and Ice Data Center Sea Ice (NSIDC) and as simulated in each CMIP6 model. The light gray
shading about the NSIDC mean is the standard deviation (2s) of the SIE for that month over the 20-yr period. Data
fromobservations andmodel output are time-averaged from January 1986 toDecember 2005.Only grid cells that have
a sea ice concentration greater than 15% are included in the computation of SIE. (b) Annual Antarctic SIE simulated
across model generations: CMIP5 through CMIP6. The CMIP5 values are taken from Beadling et al. (2019). The
CMIP6 values are computed identically to that of Beadling et al. (2019), over the same time period in the historical
simulations.
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estimated by the cDrake array. While there are no
CMIP6 models that exhibit unrealistically strong
transports like previous generations, there are still
several models producing exceptionally weak trans-
ports (.7s outside of the observational uncertainty).
An area identified as a need for improvement is
in the unrealistic multidecadal variability observed
in the ACC transport for a number of the CMIP6
models. This behavior may be linked to the pres-
ence of unrealistic ‘‘superpolynya events’’ in the
preindustrial control simulations associated with
quasiperiodic episodes of intense open-ocean con-
vection, which impact the interior ocean density
structure and thus the ACC. The underlying mecha-
nisms causing these events need to be further studied to
improve the simulations. The coarse-resolution models
(;18 or coarser) all employ various parameterization
schemes and coefficient magnitudes for subgrid-scale
ocean mixing and this likely plays a role in explaining
such diversity in the vertical and horizontal structure of
the ACC found across models. This resolution and
parameterization choice dependence needs to be ex-
plored in detail across models of varying resolution.

2) All metrics pertaining to the surface wind stress forcing
have improved.Notable improvements are found in the
strength and position of the zonally averaged westerly
wind stress maximum t(x)max relative to the ERA5 re-
analysis product. The persistent systematic bias of
equatorward winds in previous model generations has
improved. These improvements have yielded a much
more realistic pattern of wind stress curl over the SO
and a narrowing of spread across the model ensemble.
Noting that the magnitude and location of where wind-
driven surface divergence pulls deep carbon-rich water
to the surface is potentially important for the SO carbon
budget, we have further characterized the wind stress
forcing in the CMIP6 models by computing the mag-
nitude and location of minimum wind stress curl over
the SO (magnitude of maximum Ekman upwelling).
These two metrics show the largest intermodel spread
relative to the other wind stress metrics considered; a
follow up study will identify if this plays a role in ex-
plaining model spread in biogeochemical performance
here. Relative to CMIP3 and CMIP5, a stronger cor-
relation, although still not statistically significant, is
found for the relationship between ACC strength and
t(x)max. Previous generations had many models that ex-
hibited extreme biases in their temperature and salinity
gradients across the ACC that allowed for compensa-
tion for errors in the surface wind stress forcing. These
errors are not as prevalent in the CMIP6 ensemble.

3) The upper ocean remains biased too fresh and too
warm relative to observed. There has not been a clear

improvement in ensemble performance relative to
CMIP3 and CMIP5. There are still several models
with exceptionally warm upper SOs with errors that
translate into very poor representations of Antarctic
SIE. All CMIP6models are generally too fresh in the
upper ocean. These errors likely translate into biases
in the ventilated layers of the SO; a detailed water
mass analysis similar to that of Sallée et al. (2013b)
should be performed to identify these biases and
compare them to that of previous generations and to
understand how they impact heat and carbon fluxes
and storage.

4) The representation of the difference in density across
the latitudes of the ACC has improved in CMIP6.
Considering the simulated zonally averaged, full-
depth averaged difference in potential density refer-
enced to the surface (Dr) across the ACC, CMIP6
models have improved in performance relative to that
observed. The majority of models (71%) simulate a
Dr within a 25% error margin of the WOA18 value.
Two models yield a Dr that is too weak and eight
models yield a Dr much greater than the WOA18
value. It still remains fairly common for models to
achieve an accurate Dr as a result of compensating
errors in the temperature and salinity structure.

5) Antarctic sea ice extent (SIE) representation remains a
systematic bias from CMIP5 to CMIP6.A few models
appear to be performing worse than their CMIP5
predecessors, while others have improved. While SIE
is well observed relative to othermetrics related to the
sea ice simulation such as sea ice volume, it might not
be the best metric for overall model performance.
Thus, a detailed analysis of the regional distribution
and other sea ice characteristics should be performed
to truly assess model performance. The correlation
found between the density gradient across the ACC
and the minimum Antarctic SIE, highlights the need
for investigating how the sea ice simulation impacts
the density structure and climatically relevant prop-
erties in the SO such as carbon and heat storage.
Additionally, there may be important links in CMIP6
between Antarctic sea ice representation in historical
simulations and twenty-first-century projected change
in surface temperature, precipitation, and westerly
jet position as was the case in previous generations
(Flato 2004; Bracegirdle et al. 2015, 2018). If these
emergent constraint relationships still exist, a general
lack of improvement from CMIP5 to CMIP6 and
wide intermodel spread in simulated SIE suggests
this source of projection uncertainty may be a large
contributor to the model spread in the trajectory of
Southern Hemisphere climate under twenty-first-
century forcing.
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The analysis presented here provides critical information
on improved and existing biases in observable properties in
the SO for the climate models that will provide projections
of the climate system for the Intergovernmental Panel on
Climate Change’s Sixth Assessment Report (IPCC AR6).
Given the dominant role that the SO plays relative to other
ocean basins in the oceanic storage of heat and carbon, it is
important for climate models to represent this region well
in order to provide meaningful simulations of transient
climate change. While models have generally improved
across many metrics, the remaining biases associated with
the temperature and salinity structure of the SO and sea ice
representation may have serious implications for climate
projections. The impacts of these biases on simulated ocean
heat and carbon storage requires a detailed assessment.
In the conclusions outlined above, we have high-

lighted several paths forward for additional analysis of
the simulations here including extending such analysis to
the higher-resolution simulations, determining the de-
pendence of the representation of surface momentum
forcing on the heat and carbon budget, carrying out a
detailed water mass analysis, and performing a detailed
evaluation of the role that sea ice representation plays in
determining the SO density structure and in water mass
transformations. Additionally, while we examine a 20-yr
average period to be consistent with the time period
evaluated in the CMIP3 and CMIP5 studies, studies
should be performed to assess whether these models
capture observed historical trends such as observed
changes in the midlatitude westerlies over the SO. We
are currently working to extend this assessment to the
results of the twenty-first-century SSP experiments to
investigate how these properties change under contin-
ued warming and if robust model agreement is found. In
future analyses, the performance across the metrics
presented here can potentially be used to developmodel
weighting schemes to provide a constraint on the un-
certainty of global climate projections.
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