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ABSTRACT
Generative Adversarial Networks (GANs) have shown remarkable success in various generative design

tasks, from topology optimization to material design, and shape parametrization. However, most generative
design approaches based on GANs lack evaluation mechanisms to ensure the generation of diverse samples.
In addition, no GAN-based generative design model incorporates user sentiments in the loss function
to generate samples with high desirability from the aggregate perspectives of users. Motivated by these
knowledge gaps, this paper builds and validates a novel GAN-based generative design model with an offline
design evaluation function to generate samples that are not only realistic, but also diverse and desirable.
A multimodal Data-driven Design Evaluation (DDE) model is developed to guide the generative process
by automatically predicting user sentiments for the generated samples based on large-scale user reviews
of previous designs. This paper incorporates DDE into the StyleGAN structure, a state-of-the-art GAN
model, to enable data-driven generative processes that are innovative and user-centered. The results of
experiments conducted on a large dataset of footwear products demonstrate the effectiveness of the proposed
DDE-GAN in generating high-quality, diverse, and desirable concepts.

Keywords: generative design, generative adversarial networks, design evaluation, desirability, design diversity,
user-centered design

1 Introduction
The generation of innovative, diverse, and user-centered design concepts is an essential phase in the early

stages of the product development process and is known to have a significant impact on the quality and success
of the design [1–4]. Creating a wide range of solutions that differ significantly from each other can benefit the
ideation process of designers and therefore increase the possibility of creating high-quality concepts [5–8]. Various
approaches in the literature focus on automatically developing diverse and innovative concepts. The argument
is that a large set of concepts promote creativity and logically allows the selection of better ideas from the
set [5, 9]. However, it is difficult for designers to manually generate a large set of samples with great diversity
and novelty because designers naturally tend to fixate on specific design specifications [10–12]. Moreover, most
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existing design problem-solving practices rely heavily on the designers’ experiences and preferences. They lack
advanced computing methods to help navigate larger solution spaces by generating more diverse, unexpected, and
viable solutions [5, 11,13,14].

Developing methods to assess and improve creativity has historically been challenging due to its intangible and
subjective nature. Significant research in engineering design is currently focused on studying methods and tools to
improve the effectiveness and efficiency of creative tasks, such as concept development [4,15–17]. Creativity is an
essential and central part of the ideation process [18]. In human-led design practices, ideation is often an iterative
and exploratory process [19], where designers share, modify, and use various stimuli to generate new ideas and
concepts [20]. Humans approach this process through various cognitive processes, which research has classified
into types and has been shown to affect the effectiveness of ideation [21]. Over the past 25 years, research on
computers and Artificial Intelligence (AI) has increasingly focused on how these systems can be used to enhance
the creative ideation process [22,23]. With its ability to synthesize data and make predictions at great speed, the
potential for AI to be a generator of new and creative design ideas and concepts has garnered substantial attention
from both academia and industry [16,19].

The methods and frameworks used to apply AI and machine learning in design and engineering are numerous.
Deep learning and generative modeling have recently attracted researchers’ attention for their potential impact.
Recent advances in AI research have made remarkable progress in the machine’s ability to generate design ideas [24].
AI can be an inspiration tool in the creative process and a generative tool to assist designers in developing design
concepts. AI-powered generative design tools can potentially augment designers’ ability to create concepts faster
and more efficiently due to their increased speed and efficiency. The power of AI lies in the speed with which it
can analyze large amounts of data and suggest design adjustments. The designer can then choose and approve
adjustments based on these data.

An emerging research area on using AI to generate novel and realistic design concepts is the use of Generative
Adversarial Networks, or GANs [25]. A typical GAN architecture comprises two neural network architectures: a
generator and a discriminator. The generator neural network is trained to generate samples (e.g., images) almost
identical to real samples. On the other hand, the discriminator neural network learns to differentiate between them.
GANs have made significant progress in synthesizing and generating “realistic” images as their central objective.
Several successful GAN architectures have recently been proposed, mainly for synthesizing and generating facial
images. Examples include CycleGAN [26], StyleGAN [27], PixelRNN [28], Text2Image [29], and DiscoGAN [30].
These powerful image synthesis models can generate a large number of high-resolution images that are often
difficult to distinguish from authentic images without close inspection. Nevertheless, the question remains on
leveraging these models in early-stage product design to generate realistic but also novel and diverse concepts.
Several technical limitations restrict the ability of GANs to generate diverse and novel designs. These include
network architectures, training issues, and a lack of reward mechanisms to generate outputs that satisfy metrics
other than realism, such as diversity, novelty, or desirability. Taken together, these represent an impediment to
design, where novelty and diversity are critical factors in producing beneficial outcomes [31].

This paper presents a data-driven generative design model that integrates a Data-driven Design Evaluator
(DDE) [23] into GANs, called the DDE-GAN model, to improve the performance of GANs through large-scale
user feedback on previous designs for diverse and desirable generative design. The main contributions of this paper
are as follows:

1. This paper empirically evaluates the potentials and limitations of GANs for generative design. The observations
point to the fact that state-of-the-art GAN models and architectures such as StyleGAN [27] are not capable
of undertaking generative design tasks due to the lack of mechanisms to ensure diversity and desirability.
Empirical evaluation of StyleGAN on a large-scale dataset of footwear products reveals that although the
model can generate realistic samples, the generated samples are remarkably similar to authentic products in
the training dataset. The results may not benefit designers or promote their creativity, as the samples are
neither novel nor aligned with user needs.

2. This paper proposes a novel neural network architecture that integrates a GAN-based model with a multimodal
data-driven design evaluation model, or the DDE model for brevity, which was previously developed by the
authors [23]. The proposed DDE-GAN model tackles the challenging problem that existing GAN-based
generative design solutions lack efficient mechanisms to guide the generator toward generating samples that
are not only realistic but also diverse and desirable (i.e., have high expected sentiment scores, both overall and
attribute-level) by devising a novel DDE-GAN model enhanced with DDE as a new loss function for automated
design evaluation. The DDE-GAN model can predict user sentiments for each attribute of generated samples
and generates design concepts with high quality, desirability, and diversity.

3. This paper conducts extensive experiments on a large dataset, scraped from a major online store for apparel
and footwear, to demonstrate the effectiveness of the proposed DDE-GAN model in improving the diversity
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of generated design samples, as well as their desirability based on predicted user sentiments by comparing it
with the StyleGAN model [27] as a baseline. The model is applicable to any other domain, as long as both
user data (e.g., reviews, comments) and product data (e.g., images, technical descriptions) are available.

As the majority of cutting-edge generative models are built to create visual designs with great efficacy and
success, creating a design concept with descriptive phrases that can automatically convey a novel design concept
remains a challenge. This work merely deploys the pre-trained ResNet network of the DDE model [23] to examine
and evaluate the visual samples generated. The DDE model, which excludes inputs from the product description,
was incorporated into the architecture of the DDE-GAN model presented in Section 3. Future research should
focus on building a multimodal DDE-GAN model that couples images and descriptions for automated generation
and evaluation of design concepts.

The remainder of this paper is organized as follows. Section 2 provides a detailed overview of related work and
topics in traditional and GAN-based generative design. Section 3 provides the details of the proposed DDE-GAN
model. Section 4 presents the experimental results, analyses, and performance evaluation. Section 5 provides
concluding remarks and directions for future research.

2 Related Work
This section provides an introductory overview of GANs and their advantages and limitations for generative

design, followed by a review of five main traditional generative design approaches and their comparison with GANs.

2.1 GANs for Generative Design: Advantages and Limitations
Deep generative modeling is one of the most promising areas of modern AI studied within the engineering

design community to enhance diversity and performance. One way of design exploration is through generative
design, which involves programming that alters design geometry parametrically and evaluates the performance
of design output versus configurable constraints. The generative model is an architecture that, given a training
dataset, can learn its probability distribution and generate new samples with the same statistics as the training
data. Among the generative models, GANs [25], offer excellent capabilities and success in generating realistic design
images and continue to attract growing interest in the deep learning community. GANs are generative models that
involve a minimax game of two players between two models: a discriminative network D and a generative network
G. The generator aims to learn a generative density function from the training data to produce realistic samples.
In contrast, the discriminator attempts to discern whether an input sample is part of the original training set or a
synthetic one generated by the generator in such a way as to distinguish fake samples from real ones. GANs have
been applied to various domains such as computer vision [32, 33], natural language processing [34], and semantic
segmentation [35]. Specifically, GANs have shown significant recent success in the field of computer vision in a
variety of tasks such as image generation [36], image-to-image translation [37], and image super-resolution [38].

GANs have been applied to the generation of engineering design, such as the generation of 3D aircraft models
in native format for complex simulation [39], numerous wheel design options optimized for engineering perfor-
mance [40], realistic samples from the distribution of paired fashion clothing and the provision of real samples to
pair with arbitrary fashion units for style recommendation [41], and new outfits with precise regions that conform
to a description of a language while maintaining the structure of the wearer’s body [42]. Most of these models
are usually built with quality to ensure high quality and usefulness; however, their intrinsic diversity is limited.
The rationale behind the lack of diversity is that, during the training process, the GAN generator is encouraged
to generate samples close to the training data distribution to fool the discriminator in a minimax game. GANs
illustrate this proposition, as it prompts the generator G to map an arbitrary noise distribution to realistic sam-
ples. On the contrary, the discriminator D tries to distinguish the generated samples from the real ones, inevitably
resulting in limited diversity and creativity. However, due to the property that the generator attempts to learn to
mimic the data, GANs are “emulative” [43, 44] and have inspired researchers to investigate areas where diversity
and creativity can be promoted in GANs [43].

Extensive research has been conducted to enhance the diversity of GAN-generated image styles [45, 46]. The
model can produce diverse outputs by injecting noise vectors, such as the style variation sampled from a normal
distribution, into the generator and sampling different style codes [46]. Some studies introduce modes as an
additional input to transform conditional input into the target distribution [47]. The predetermined label is fed to
the generator. It helps the model produce deterministic outputs that can map different visual domains and styles,
which has successfully generated diverse outputs from a given source domain image. It is also observed that the
generators are most likely to generate samples from certain major modes/styles in the data but ignore the other
modes, for example, the modes that take a small count of distributions. This problem is known as the “mode
collapse” and is a primary factor in the lack of diversity in GAN-generated samples. To address this problem,
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some researchers propose a regularization term to maximize the distance between the generated outputs and the
generated samples with latent codes injected [48]. DivAugGAN [49] further prevents mode collapse and improves
the diversity of generated images by using three randomly sampled latent codes and two relative offsets. The model
exerts a constraint on the generator to ensure that the changing scale of the generated samples is consistent with
the various vectors injected into the latent space. Some researchers [50,51] believe that introducing a regularizer to
GAN can address the model collapse problem and thus improve the diversity and quality of generated samples. If
GANs are pushed too far from the data distribution for design generation, the quality and realism of the generated
samples will be negatively affected. Elgammal [44] proposes modifications to the GAN objective to allow it to
generate creative art by maximizing the deviation from established styles while minimizing the deviation from
the art distribution. Some researchers [32, 52] suggest that only improving diversity will cause GANs to deviate
slightly from the original distribution. With this motivation, this paper develops a new GAN architecture that
can guarantee high quality and also improve the diversity and desirability of the generated samples.

2.2 Traditional Generative Design Methods versus GANs
Various generative design methods have been developed to assist designers in the creative ideation process.

Generative design is one of the design exploration methods that can enable simultaneous exploration, validation,
and comparison of thousands of design alternatives to support designers and/or automate parts of the design
process. There are five commonly used generative design methods, including cellular automata [53], L-systems [54],
shape grammars [55], genetic algorithms [56], and swarm intelligence [57]. As a popular generative strategy, Cellular
automata, are characterized by the simplicity of its mechanisms on the one hand and the potential complexity of its
outcomes on the other. Cellular automata can modify the design specifications according to predefined rules and
produce unexpected design concepts [58]. Cellular automata, as a popular generative strategy, are characterized
by the simplicity of its mechanisms on the one hand and the potential complexity of its outcomes on the other.
Cellular automata can modify design specifications according to predefined rules and produce unexpected design
concepts [59]. Shape grammars are geometry-based generative systems that describe how complex shapes are built
from simple entities and how a complex shape can be decomposed into simpler sub-shapes. Unlike conventional
generative design methods that designers often communicate initially, shape grammars involve designers more in
making decisions throughout the generative process stage [58]. Genetic algorithms, the most widely used method
in generative design exploration, are applied as a generative and search procedure to look for optimized design
solutions and has the ability to modify the sequence of the rules of design generation process to assist the designer
in generating specific parts of a solution [60, 61]. Swarm intelligence is inspired by natural phenomena in which
flying or swimming animals move together in packs and allows the system to interact locally with autonomous
computational agents to achieve heterogeneous phenomena in generative processes [62]. Despite these generative
design methods’ significant progress and success, several critical knowledge gaps remain. Most importantly, product
forms in these quantitative design methods are typically expressed with a mathematical representation such as
vectors, trees, graphs, and grammars, therefore, are limited by the trade-off between flexibility and realism [63].

Deep generative models have recently been proposed in the literature to enable more effective and diverse
concept generation as an alternative solution for generative design. Specifically, generative adversarial networks
(GAN) [25] have shown tremendous success in a variety of generative design tasks, such as topology optimiza-
tion [40], material design [64], and shape parametrization [39, 63].GANs are composed of a generator trained to
generate new samples and a discriminator trained to detect whether the generated samples are real. To bet-
ter understand how GANs work for generative design purposes, a brief comparison between GANs and the five
conventional generative design methods is conducted as follows.

GANs versus cellular automata. In conventional cellular automata, generative rules are predefined, usually
following much more basic transformations. GANs are composed of many convolutional layers, and cellular
automata can be represented using a convolutional neural network with a network-in-network architecture.
Therefore, it is noticed that a sufficiently complex neural network architecture, such as GAN, can be used to
approximate each rule that fully comprises the cellular automata function. Moreover, the states of neurons in
a neural network are continuous, whereas cells in cellular automata have discrete states. In addition, neural
networks are primarily concerned with the output and not with the states of individual neurons, whereas the
output of cellular automata is a collection of its states.
GANs versus L-systems. L-systems is a programmable rewriting paradigm for producing samples. It is
challenging to predict the final rendering from the expression of the L-system alone since it is particularly
sensitive to changes in expression. The deterministic L-system does not solve the lack of variability for
more realistic outputs [65]. However, GANs automatically discover and learn production rules by reading a
large dataset. Beyond deterministic restrictions, GANs investigate alternative rules and relationships between
characteristics. Because of the powerful processing power of GANs, they are smart enough to comprehensively
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learn the distribution of the training samples and reconstruct them. Consequently, GANs can guarantee the
quality and realism of the results generated.
GANs versus shape grammars. Shape grammars allow for the addition and subtraction of shapes that are
eventually perceived as shape modifications. If the shape on the left side matches a shape on a drawing, then
the rule can be applied, and the matching shape changes to match the right side of the rule. The generator and
discriminator of a GAN model are similar to the left- and right-hand sides of a shape grammar, respectively.
The generator sample (equivalent to the left side of a shape grammar) is validated as real by the discriminator
(equivalent to the right side of a shape grammar). The generating rule (latent representation learned by GAN)
can then be reinforced in the next iteration of the training process, similar to shape grammars.
GANs versus genetic algorithms. Genetic algorithms are evolutionary algorithms widely used to explore and
optimize the generative design. The adversarial training procedure of GAN can be regarded as an evolutionary
process. That is, a discriminator acts as the environment (i.e., provides adaptive loss functions), and a
population of generators evolves in response to the feedback from that environment. Genetic algorithms use
a form of sampling to measure the relationship between a change in a parameter and a change in the fitness
(loss). In contrast, neural networks give a means to directly calculate that relationship without sampling.
Therefore, the speedup you experience when training a neural network is the result of not needing to gather
as many samples as the number of parameters you wish to tune.
GANs versus swarm intelligence. Swarm intelligence involves a collective study of how individuals act in their
surrounding environment and interact with each other. It has shown benefits in simplicity, ease of implemen-
tation, lack of need for gradient information, and low parameter requirements [66]. Swarm intelligence is the
approach that most closely resembles GANs out of the five methods. Although GANs are highly dependent
on various parameters and the backpropagation process to alter each layer to affect the loss function, mode
collapse is a frequent issue. To prevent mode collapse, swarm intelligence can be employed to improve the
generator’s performance in GAN and minimize iterations differently from conventional methods [67].

Despite the significant impact and progress made in the literature on GANs, existing work [52,68] is observed to
lack sufficient evaluation mechanisms for desirability and diversity that would make GANs suitable for generative
conceptual design. The ability of a model to generate concepts with iterative updating from evaluation and feedback
has the potential to lead to more creative and valuable design outcomes. The rationale is that the generative process
must continually evaluate the generated samples concerning not only realism but also desirability and diversity;
otherwise, the number of generated samples with lower desirability or diversity will continue to grow without
improvement, making it impossible for designers to consider them meaningfully and accordingly. Some studies
in the literature have built GAN-based generative models with such evaluation processes [39, 40, 69]; however,
their proposed evaluation tools are exclusively based on physics-based virtual simulation environments that do not
necessarily reflect user feedback. To bridge this gap, a user-guided evaluation DDE-GAN model is proposed to
enhance the generated design’s quality, diversity, and desirability by incorporating synthetic user feedback from
an evaluation process for its generated intermediate samples.

Fig. 1. Architecture of the integrated Automated Design Evaluator-Generative Adversarial Network (DDE-GAN) model. WGAN-GP: Wasser-
stein GAN + Gradient Penalty [70]; DDE: Data-driven Design Evaluation [23].
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3 Methodology
This section presents the architecture and formulation of the proposed DDE-GAN model. A schematic of the

model architecture is shown in Figure 1. A brief overview of the GAN formulation and StyleGAN is presented
first (Section 3.1), followed by the proposed loss function based on the DDE model (Section 3.2). StyleGAN [71]
is applied as a baseline in this work, and the novel loss function of the DDE-GAN model is improved over the loss
function of StyleGAN. The proposed DDE-GAN is described, followed by details of the DDE model, previously
developed by the authors [23], which is used as a newly added loss function in the developed model. The DDE
model [23] accurately predicts the overall and attribute-level desirability of a new concept based on large-scale
user sentiments and feedback on past designs. This work applies a well-trained DDE model as an augmented
discriminator to promote user-centered image generation using the StyleGAN model, to generate realistic, diverse,
and desirable samples.

3.1 GAN Formulation
GANs [25] can generate images from random noise and do not require detailed information or labels from

existing samples to start the generative process. The standard GAN structure consists of two neural networks: a
generator G and a discriminator D. The generator G takes random noise z ∼ P (z) sampled from a uniform or
normal distribution as input and maps the noise variable z ∼ P (z) to the data space x = G(z). The discriminator
D distinguishes whether an image is real or fake (i.e., made by the generator). The output D(x) is the probability
that the input x is real. If the input is a fake image, D(x) would be zero. Through this process, the discriminator
D is trained to maximize the probability of assigning the correct label to both real samples and fake samples.
Generator G is encouraged simultaneously to fit the true data distribution. The adversarial training processes
that update the parameters of both networks through backpropagation are formulated as the following learning
objective:

min
G

max
D

E
x∼Pr

[log(D(x))]+ E
x̃∼Pg

[log(1−D(x̃))], (1)

where Pr is the distribution of the real image x and Pg is the model distribution implicitly defined by x̃ ∼ G(z),
z ∼ P (z). The generator’s input, z, is sampled from a simple noise distribution P , such as the uniform distribution
or a spherical Gaussian distribution.

GAN models come in various forms, StyleGAN [27, 71] being one of them. The StyleGAN extension to the
GAN architecture proposes a major modification to the generator model, which uses (1) a mapping network to
transfer latent space points to an intermediate latent space, (2) an intermediate latent space to regulate style
at each point in the generator model, and (3) an addition of noise as a source of variation at each point in the
generator model. It features a brand-new style-based generator architecture that creates high-resolution images
with cutting-edge visual quality. In addition to generating stunningly realistic high-quality images, the model also
provides control over the style of the generated image at various degrees of detail by adjusting the style vectors and
noise. Moreover, most GAN-variants are generally sensitive to the problem domain. They perform exceptionally
well in processing generative tasks using large popular datasets such as human faces and animals, where the
novelty, diversity, or desirability of the generated samples are not important. However, their limitation becomes
evident in generative design tasks where the quality, diversity, and desirability of samples must be optimized
simultaneously [41]. Inspired by the success and popularity of StyleGAN, this paper develops a novel GAN model
based on StyleGAN’s architecture, enhanced with the DDE model [23]. The loss function utilized in StyleGAN
is WGAN-GP [70], which is the most widely used loss function. WGAN-GP is constructed with the Wasserstein
GAN [72] formulation along with a gradient norm penalty to achieve Lipschitz continuity. The Wasserstein loss
formulation applies the Wasserstein-l distance using a value function based on Kantorovich-Rubinstein duality [73].
The loss function (1) is then modified as follows:

min
G

max
D∈D

E
x∼Pr

[D(x)]− E
x̃∼Pg

[D(x̃) ], (2)

where D is the set of 1-Lipschitz functions and Pg is the distribution of the model implicitly defined by x̃ = G(z),z ∼
p(z). The Wasserstein loss is approximated given a set of k-Lipschitz, and the weights of the discriminator are
clipped to some range. By adding the Wasserstein loss with gradient penalty, WGAN-GP enforces a soft restriction
on the gradient norm of the discriminator’s output with respect to its input rather than clipping network weights
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as in [72], to guarantee the Lipschitz requirement. The objective function of StyleGAN is then formulated as
follows:

L = E
x̃∼Pg

[D(x̃)]− E
x∼Pr

[D(x)]+λGP E
x̂∼Px̂

[
(∥∇x̂D(x̂)∥2 −1)2 ], (3)

where x̂ is a random sample, Px̂ is defined as samples along straight lines between pairs of points that come from
the true data distribution and the generator distribution, and λGP is a weighing factor.

3.2 Data-driven Design Evaluator Loss
The preliminary experiments conducted by the authors to generate images of footwear products using Style-

GAN revealed that although the model is capable of generating realistic samples, the generated samples are
remarkably similar to the real products in the training dataset. These similarities can even be detected by simple
visual inspections (see Figure 2). With a sufficiently trained generator, even the discriminator would be unable to
distinguish between the generated samples and the real ones. The second finding is that, although the generated
images are realistic, they may not benefit designers or promote their creativity as the samples are not necessarily
novel or aligned with user needs. Although the model training procedure considers algorithmic quality, it does not
consider how users will receive and react to these computer-generated designs. This paper argues that this problem
comes from the sole objective of existing generator-discriminator architectures to maximize “realism”. That is,
there is an absence of a loss function that can incorporate other critical metrics in addition to realism, such as the
alignment of the generated samples with the perspectives and needs of users, which could cause the discriminator
to fail when updating the generator in terms of learning and producing features that maximize the usefulness of a
design. To convey the measurement of the design performance score back to the generator for subsequent iteration
improvements, the authors believe that new loss functions are needed to force the discriminator to identify and

Fig. 2. Examples of sneaker images generated using StyleGAN.
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Fig. 3. The multimodal Data-driven Design Evaluation (DDE) model (adapted from [23]).

locate other metrics, such as novelty or desirability. This observation inspired the authors to investigate when
to incorporate the user-guided assessment mechanism into the discriminator, as described below, if the similarity
between the produced and real images is effectively reduced.

This paper applies DDE [23] as a user-centered design evaluation model to evaluate the generated samples
with respect to the expected quality and performance of the generated designs. DDE is a multimodal deep
regression model that uses an attribute-level sentiment analyzer [74] to predict user-generated product ratings
based on online reviews. It was created to automate design evaluation and improve decision-making by domain
experts. Based on extensive user evaluations of existing designs, the DDE model offers designers a precise and
scalable means to forecast new concepts’ overall and attribute-level desirability. DDE is an end-to-end design
assessment system that can interpret visuals, plain language, and structured data. As shown in Figure 3, the
DDE system uses a ResNet-50 model [75] to evaluate and interpret images of a product. ResNet-50 can represent
complex functionality and learn features at many different levels of abstraction to understand the connections
between orthographic representations of design concepts (inputs) and user sentiment intensity values (outputs).
The Bidirectional Encoder Representation from Transformers (BERT) model, a different model in the DDE system,
extracts and analyzes product descriptions written in natural language [76]. The BERT model can determine the
connection between a product’s technical description and the user’s emotional sentiment level. The DDE system
then integrates the various meaningful data collected from the Internet platform and models the relationships
between images, text, and statistics. The DDE model synthesizes different modes of data using a novel fusion
mechanism to develop a more accurate context about the product and the associated user feedback [23]. The
DDE model was trained on a large-scale dataset that was scraped from a major online footwear store. In the
dataset, each product has four types of information: six orthographic images, one numerical rating score, a list of
textual product descriptions, and real textual customer reviews from an e-commerce platform, where images and
feature descriptions are the inputs to the DDE model and the numerical rating score and sentiment intensity values
from customer reviews are the outputs. The dataset is constituted of a total number of 8,706 images and 113,391
reviews for 1,452 identified shoes. Numerical experiments on this large dataset indicated promising performance
by the DDE model with 0.001 MSE loss and over 99.1% accuracy.

The DDE model can accurately predict user sentiments for a new design concept based only on its orthographic
images and descriptions and provide numerical design performance values associated with each attribute of the
generated concept. This paper builds a novel loss function based on the DDE model, called the DDE loss, into
the GAN’s discriminator to enable an accurate and scalable prediction of the new concepts’ overall desirability.
By integrating the DDE loss into the StyleGAN’s discriminator, the DDE-GAN model is created (Figure 1). The
DDE loss integrated into the discriminator can measure the intermediate samples generated by the generator in
each iteration and convey the loss back to the generator for a new set of parameters. The DDE loss evaluates
the results of each round in the iterative training process, which is then used to backpropagate and optimize the
generator and the discriminator. The DDE-GAN architecture is expected to result in better designs from the
user’s point of view and simultaneously maintain excellent image quality.

The objective function of the DDE-GAN model is therefore formulated as follows:
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L = E
x̃∼Pg

[D(x̃)]− E
x∼Pr

[D(x)]+λGP E
x̂∼Px̂

[
(∥∇x̂D(x̂)∥2 −1)2

]
+λDE E

x̃∼Pg

[LDE(x̃)] (4)

LDE(x) = 1
N

N∑
i=1

(fi(x)− ŷi)2 , (5)

where λDE is a constant that defines the loss weight, LDE is the DDE loss function to evaluate the feature of the
generated samples in the characteristic of performance, fi(x) is the prediction for all design x generated by the
DDE model, and ŷi is the desired design evaluation score and is set as 1 for each attribute, indicating that the
models are trained to generate samples with the highest possible expectation. The StyleGAN loss terms regulate
the high quality of the produced pictures and the DDE loss guarantees that the produced samples have high user
sentiment scores. Combining the two elements allows the proposed DDE-GAN model to simultaneously create
high-quality images and high user sentiment ratings. This new set of loss functions provides a more accurate and
evaluation-guided generator and discriminator in DDE-GAN compared to previous work and can be easily tuned.
Information on the constants and other implementation details is provided in Section 4.

4 Experiments and Results
In this section, the dataset and implementation details of the proposed DDE-GAN model are first described,

followed by the introduction of metrics established to investigate the effectiveness of the developed DDE-GAN
model in generating realistic samples with high desirability and diversity. The results of the experimental analyses
are presented next, comparing the outcomes generated by the developed DDE-GAN model and the state-of-the-art
StyleGAN model as a baseline.

4.1 Dataset and Implementation Details
To test and validate the performance of StyleGAN in generating realistic and diverse images, a large-scale

dataset was scraped from a major online footwear store to perform numerical experiments. The collected large-
scale dataset contains a total of 7,642 images with a size of 256×256×3. Several brands of footwear are included
in the dataset to avoid mode collapse and increase the diversity of the dataset, including Adidas, ASICS, Converse,
Crocs, Champion, FILA, PUMA, Lacoste, New Balance, Nike, and Reebok.

The DDE model is pre-trained and serves as an offline network added to the new StyleGAN loss. The
implementation of the pre-trained DDE model is discussed in this section. The experiments were carried out with
k fold, with k = 10, to randomly split the dataset into train, validate, and test sets with a 7 : 1 : 2 ratio. All
experimental results were conducted five times and reported as mean ± std to alleviate the randomness effect.
All neural networks were trained on PyTorch [77]. Adam [78] optimizer with β = (0.9,0.999) and the learning
rate of = 0.01 were used to train the model parameters for 50 epochs and save the model with the best loss in
the validation dataset. To avoid overfitting, a dropout layer was added to the self-attention fusion model with
a dropout rate of Pdrop = 0.1. The DDE model was trained over 40 epochs. The training time cost per epoch
was 5-7 minutes, which added up to 3-4 hours. All training and testing experiments were conducted on a single
NVIDIA RTX 3090 GPU (24GB GRAM), an AMD Ryzen 9 5950X CPU, and 64GB memory.

The weight of StyleGAN, λGP, was precisely calibrated by the original paper with the best performance
achieved [27]. Therefore, this paper follows the exact same value of 0.8192 as suggested in the original StyleGAN
paper. The weight of DDE loss, λDE, is defined by binary search from 0.1 to 2 in general, and finally is set as 0.5
to meet the trade-off between high image quality (FID) and predicted sentiment scores. Adam [78] was used as an
optimizer with a learning rate of 0.0025 to optimize the model and set β as (0.9,0.999), representing the coefficients
used for computing running averages of gradient and its square. Beyond that, data augmentation methods such
as random flip, rotation, scale, brightness, and contrast were applied to improve data diversity. The model was
trained 20,000 times for each experimental setting, and the average performance statistics were reported.

4.2 Evaluation Metrics
Frechet Inception Distance FID [79] is used to assess the quality of the images created by a generative model.
FID evaluates the statistics for both the target and output images simultaneously. It compares the distribution
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of the generated images with the distribution of real photos used to train the generator. FID can also identify
intraclass mode dropping and quantify the variety and quality of produced samples, making it a valuable tool for
assessing the quality and diversity of synthetic images. A lower FID score intuitively indicates a closer distribution
between the objectives and the results, which corresponds to a better performance of the generative model. The
proposed DDE-GAN model is compared with the state-of-the-art GAN architecture, StyleGAN, in terms of FID,
using the following equation [79]:

FID = ∥µr −µg∥2 +Tr
(

Σr +Σg −2(ΣrΣg)1/2
)

, (6)

where Tr refers to the trace linear algebra operation, (µr,Σr) and (µg,Σg) refer to the mean and covariance
matrices in the feature order of the embeddings obtained in real and generated images, respectively.

Diversity Assessment To quantitatively measure whether the DDE-GAN model has guided the generator
to synthesize new designs with greater variety, a kernel-based statistical test method called Maximum Mean
Discrepancy (MMD) is used to determine the similarity between two distributions [80,81]. MMD is defined by the
idea of representing the distances between the distributions as the distances between the mean embeddings of the
features. Given two sets of data X and Y , the MMD is calculated as the distance between the feature means of
X and Y . The expression is formulated as follows:

MMD2(P,Q) = EP [k(X,X)]−2EP,Q[k(X,Y )]+EQ[k(Y,Y )], (7)

where k is the kernel function, P is the distribution over a set of input data X, and Q is the distribution over a
set of generated data Y . This paper uses two different kernel functions: a linear kernel and a polynomial kernel.
The linear kernel is defined as:

k(x,y) = x⊤y, (8)

and the polynomial kernel is defined as:

k(x,y) =
(

γx⊤y + c0
)d

, (9)

where x and y are the input vectors, d is the degree of the kernel, γ is the weight, and c0 is a constant. In the
experiments, the polynomial kernel γ is set to 1, the kernel degree d is set to 0.5 and the coefficient c0 is set to 0.
Details of the results are discussed in the following sections.

4.3 Results and Analyses
To test and validate the performance of the proposed DDE-GAN model for design generation with improved

desirability and diversity, a set of experiments was performed on a real dataset of footwear products with StyleGAN
as the baseline model. This section first presents the visual design samples generated by the DDE-GAN models.
The performance of the proposed model is then compared with the baseline using the FID score, followed by
an MMD analysis to examine the similarity between the generated images and the real images. Lastly, DDE
is applied to test the images generated by the DDE-GAN and StyleGAN models to evaluate their desirability
prediction scores.

Visual Results As shown in Figure 4, the DDE-GAN generated samples deliver the expected high quality
and realism, which are also observed in the StyleGAN generated samples (Figure 2). The overall images are
realistic, vibrant, clear, and have an aesthetic understandable to the human mind. Although Figure 4 reveals
some differences, the uniqueness and diversity of the images are discovered in some samples. Some images contain
features that might sound novel or even strange. However, this paper defines these characteristics as novelty and
diversity. The authors noticed that most of the generative model samples generated in the current GAN-based
design literature emphasize quality, while the images are somehow similar to existing products. Yet, that may
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hinder innovation in the generative process, because a conventional GAN discriminator may easily label a “novel”
sample that could potentially be an interesting sample from the design perspective as “fake”, simply because
it does not look like any real item within that category and contains unknown features. This, in turn, would
discourage the conventional GAN generator from generating more of these potentially novel samples. The DDE-
GAN model proposed in this paper introduces an additional loss to encourage the generator to produce more novel
and distinctive images. Therefore, the authors define attributes such as “strange” or “never seen before” as one
of the diversity criteria. Among the large size of the generated samples, 16 distinct images are manually selected
and presented in Figure 5, as they are identified as designs with novelty and diversity. It is clearly seen that these
sneakers are far from “similar” to existing sneakers, compared to the other samples shown in Figure 4. They look
distinguishable with more novelty and diversity. To further validate the effects of the DDE-GAN model on novelty

Fig. 4. Examples of novel designs generated by the proposed DDE-GAN model.

Fig. 5. Examples of novel designs with high diversity observed.
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Table 1. Comparison of the average FID score of the best generators in StyleGAN and DDE-GAN.

Algorithm FID Score

StyleGAN 6.22 ± 0.17

DDE-GAN 6.45 ± 0.21

and diversity, a quantitative analysis of FID and MMD is conducted next.

Quality Test Table 1 shows the FID scores of the best samples for each generation when training models with
the collected dataset. The FID scores are the mean values for ten different training results. As shown in Table 1,
the StyleGAN model produces a lower FID score than the DDE-GAN model. A lower FID score means that the
model is more stable and correlates better with higher-quality images. However, the FID score of the DDE-GAN
model and its standard deviation are close to StyleGAN with only a small change (a 0.23 decrease), and it is
empirically concluded that an FID score below 10 is sufficient to demonstrate the effectiveness of a generative
model [82, 83]. In addition, the difference between DDE-GAN (mean = 6.45) and StyleGAN (mean = 6.22) is
verified with t-test, P = 0.0026. Therefore, the DDE-GAN model performs well in achieving high-quality results.
FID can also be explained as a similarity metric, because it calculates the distance between the feature vectors
calculated for the real and generated images. Lower scores indicate the two groups of images are more similar, or
have more similar statistics, with a perfect score being 0.0 indicating that the two groups of images are identical.
Therefore, from the perspective of similarity, Style-GAN with lower FID represents that the generated samples
are more similar to real images compared with the DDE-GAN with a higher FID score. DDE-GAN with higher
FID reveals that the generated samples are distinct from existing images, which is further validated next.

Diversity Test The primary rationale behind the proposed DDE-GAN model is to promote the diversity of
images generated by GAN. The similarity between the produced samples and the original input is calculated
using the MMD metric to estimate the diversity of novel samples. A higher similarity value indicates that the
generated samples contain less diversity, and vice versa. The MMD (Maximum Mean Discrepancy) values are
calculated based on the results of the proposed model and the baseline model, using linear and polynomial kernels,
as shown in Figure 6. The proposed DDE-GAN model is observed to produce higher MMD scores than the
baseline StyleGAN model, indicating a significantly lower similarity between the real training dataset and the
samples generated by the DDE-GAN model. For the linear kernel, StyleGAN receives a mean of 124.77 and
a standard deviation of 3.74, and DDE-GAN obtains a lower mean of 110.15 with a lower standard deviation
of 5.02. The mean and variance of the polynomial kernel are (0.145, 0.003) and (0.164, 0.002) for DDE-GAN
and StyleGAN, respectively. A statistical test was employed to examine the difference between the performances
of the two models. Results of assessments using linear kernel MMD show that the DDE-GAN model (mean =
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Fig. 6. The MMD linear kernel (a) and MMD polynomial kernel (b) results for StyleGAN and DDE-GAN.
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110.15; t test P = 3e − 08) significantly outperforms StyleGAN (mean = 124.77) in generating samples with high
diversity. Likewise, StyleGAN, assessed using polynomial kernel MMD, is shown to perform worse in generating
diverse samples (mean = 0.144) compared to DDE-GAN (mean = 0.163; t test P = 4e−14). Overall, DDE-GAN
performs well in generating images with less similarity to the original dataset and more diversity.

Desirability Test In addition to enhancing the diversity and novelty of the generated images, another objective
of this paper is to build a user-guided automated generative design model that can produce designs that meet
the desirability requirements. The DDE model was trained on a large dataset of 1,452 design images labeled
with user sentiments to learn and capture the relationship between images and attribute performance. The DDE
model creates a collection of rating scores representing the performance of relative attributes when images of testing
products are imported into the model. The number of products with an absolute value of the desired values and the
predicted values below a threshold was counted using the Prediction Accuracy Rate (PAR) metric. The percentage
of the counted number to the overall testing number serves as the accuracy metric. The well-trained DDE model
was verified to predict user sentiments for a new design concept based only on its orthographic images and provides
the numerical values of the design performance associated with each product attribute with a prediction accuracy
of 76.54% [23]. To test whether the new designs produced by DDE-GAN perform better than the designs created
by StyleGAN, all 480 images were selected from the output of two models and tested using a well-trained DDE
model to predict their overall and attribute-level desirability based on large-scale user reviews on existing products.
The average numerical values of user sentiments in 10 attributes and the overall performance of the designs are
shown in Table 2 in which the sentiment intensity of users ranges from [−1,1], with −1 and 1 representing
extremely negative and extremely positive sentiment, respectively. DDE-GAN is observed to generate designs
with higher expected user sentiment values for most individual attributes and overall performance. In general,
the predicted sentiment values of individual attributes of the samples created by DDE-GAN obtained increases
of 9%-56% compared to StyleGAN, except for the attribute “Fit”. To further explore the differences between the
two models, the predicted sentiment values of the two models are analyzed by two-tailed independent samples
t-tests, tested for significance at P < .05. As shown in Table 2, there is a significant improvement associated with
the attributes “Traction”, “Shape”, “Heel”, “Cushion”, “Color”, “Impact absorption”, “Permeability”, “Stability”
and the “Overal” rating of which p-values are much less than 0.05. However, The prediction performance of the
two models was not significantly different for the attributes “Fit” and “Durability” ( p-value 0.0803 and 0.0334,
respectively). The potential reason is that these two features are not easy to be captured by generative models
which is more capable of learning the latent representation among visual features. This is an interesting and open
issue for generative design tasks and authors are inspired to tackle the problem in future work. The statistical

Table 2. Results of the DDE test [23] regarding “predicted sentiment values” on 480 randomly selected samples generated by StyleGAN
and DDE-GAN.

Predicted Sentiment Value

Attributes
Model

Change(%) P-value
StyleGAN DDE-GAN

Traction 0.1652 ± 0.018 0.2064 ± 0.018 25% 0.0035

Shape 0.2831 ± 0.016 0.3097 ± 0.024 9% 0.0074

Heel 0.3736 ± 0.020 0.5142 ± 0.015 38% <0.0001

Cushion 0.1924 ± 0.019 0.3005 ± 0.031 56% <0.0001

Color 0.2783 ± 0.021 0.4179 ± 0.019 50% <0.0001

Fit 0.2350 ± 0.015 0.2168 ± 0.012 -8% 0.0803

Impact absorption 0.2303 ± 0.027 0.3211 ± 0.016 39% <0.0001

Durability 0.2409 ± 0.039 0.2714 ± 0.034 13% 0.0334

Permeability 0.1471 ± 0.020 0.1916 ± 0.017 30% <0.0001

Stability 0.1892 ± 0.031 0.2073 ± 0.025 10% <0.0001

Overall 4.536 ± 0.0754 4.735 ± 0.0718 4% 0.0002
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test strongly verifies that the additional loss function in conjunction with the discriminator successfully improves
the generator to learn features corresponding to user sentiments and design desirability. The evaluation results
indicate that DDE-GAN-generated design samples will lead to greater user satisfaction compared to StyleGAN-
generated samples that focus only on the “realism” of the generated samples. The proposed DDE-GAN model is
optimized to serve effectively as a user-centered generative design framework.

5 Conclusions and Future Research Directions

This paper takes a different approach to promote diversity and desirability in GAN-based generative design
models. The lack of these critical design metrics in the samples generated by existing GANs is caused by the limi-
tation of adversarial training between the generator and the discriminator to generate only ”realistic” samples. To
address this problem, a multimodal data-driven design evaluation model, DDE, is introduced in the discriminator
to encourage the generator to get creative and generate more ”unfamiliar” and potentially novel samples. Another
problem this paper addresses is devising a user-centered generative model that can generate real products with
high usefulness and attractiveness from the user’s perspective. To bridge this gap, the DDE model is applied to
predict the performance of the generator samples in each iteration. The predicted values are integrated with other
loss functions and transmitted to the models for backpropagation. The generator is updated and optimized for
integrated DDE loss and finally is enforced with the capability to generate well-performed designs. To investigate
the effectiveness of the developed DDE-GAN model in generating images with high quality, high diversity, and de-
sirability, the FID metric, the MMD, and the DDE testing tool are deployed to conduct the DDE-GAN experiment
analysis with the baseline StyleGAN model. Visual output and quantitative analysis validate the improvement of
DDE-GAN. Specifically, the generated images contain novel features and characteristics from human observation
and further quantitative analysis. Average FID scores confirmed the stability of the newly devised DDE-GAN
and stated the sufficient ability of DDE-GAN to generate high-quality images. Lower MMD values again indicate
that the DDE-GAN enhances the generator’s ability to create more diverse samples. The DDE offline model
was applied to test the two sets of novel images of DDE-GAN and StyleGAN, and DDE-GAN has demonstrated
the ability to design samples with improved desirability and popularity. The developed DDE-GAN model was
successfully tested in a sneaker design case study, but is flexible enough to be readily expanded to other product
categories and can serve as an intelligent tool to produce photorealistic renderings of new concepts in other design
applications.

This work starts the journey of generative models integrated with user data to build the foundation for data-
driven, user-centered design. Potential AI-augmented design tools can range from user-centered design evaluation,
design generation, design selection, to design recommendation. In future iterations, because DDE-GAN integrates
user sentiment, the influence of extreme users on design novelty will be explored. Integrating extreme user
behaviors, needs, and sentiment has been shown to increase design creativity and novelty [84]. What’s more,
the DDE-GAN model is developed to aggregate user feedback in the loss function to generate samples with high
desirability from the perspective of users, which is a limitation that the produced sample conveys most of the user
feedback. Therefore, future work can build a model that can generate design concepts based on the individual user.
Furthermore, another potential for enhanced user-guided GANs would be the ability to simultaneously generate
images and textual languages. The DDE model was devised to extract visual and textual features and identify the
dependency among various data types, such as image, text, and structure data. This work only partially used the
image evaluation tools in DDE to inspire the generator to create enhanced and guided samples. Therefore, in the
next step, the authors will continue to develop a multimodal GAN that can generate a visual image and natural
language as a detailed description of design samples. Additionally, the DDE model will be efficiently used to assess
samples with images and text information for a more accurate generative model. There is the potential to broaden
model’s usefulness to other facets of the innovation process, including design, marketing and product management.
Moreover, future research will explore the increasing inclusion and reduction of bias in the model, as this represents
a significant issue in many AI applications [85]. Lastly, future research should conduct semi-structured interviews
and post-evaluation activities involving design experts to evaluate the results of generative design, both objectively
and subjectively. Further qualitative validation can evaluate how many ideas designers can generate, the novelty
of ideas in terms of how innovative and unexpected they are, how well the design space is explored (variety), and
how feasible they are when comparing them with design specifications (quality). The relevant attributes of the
product in each dimension must be identified and evaluated according to the recommendations and considerations
of Shah [31] and Nelson [86].
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