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Zero measure spectrum
for multi-frequency Schrodinger operators

Jon Chaika, David Damanik, Jake Fillman, and Philipp Gohlke

Abstract. Building on works of Berthé—Steiner-Thuswaldner and Fogg—Nous, we show that on
the two-dimensional torus, Lebesgue almost every translation admits a natural coding such that
the associated subshift satisfies the Boshernitzan criterion. As a consequence, we show that for
these torus translations, every quasi-periodic potential can be approximated uniformly by one
for which the associated Schrodinger operator has Cantor spectrum of zero Lebesgue measure.
We also describe a framework that can allow this to be extended to higher-dimensional tori.

1. Introduction

This work addresses the persistent occurrence of Cantor spectrum of zero Lebesgue
measure in the class of discrete one-dimensional Schrodinger operators with gener-
alized quasi-periodic potentials, where the underlying torus has dimension strictly
greater than one.

To motivate this problem, let us describe the setting and recall some of the known
results. Fix a dimension d € N and consider o € T := R¢ / 74 that is such that the
translation Ry: T¢ — T¢, w — @ + « is minimal. If g: T¢ — R is bounded and
measurable, we can consider, for each w € Td , the discrete Schrodinger operator

[Hogo¥](n) =y(n+1)+¢(n—1)+ g(o+ na)y(n)

in £2(7Z). We call such an operator a generalized quasi-periodic Schrodinger operator.
Within this class of sampling functions, one distinguishes several standard regularity
classes and observes that the spectral properties of the operators in question depend
quite significantly on the chosen regularity class. Standard examples are given by
continuous g (this corresponds precisely to the class of quasi-periodic Schrodinger
operators), Holder continuous g, g that are differentiable a certain finite number of
times, smooth (i.e., infinitely differentiable) g, and analytic g.
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One is interested in the spectrum and the spectral type. By standard arguments
involving the ergodicity of Lebesgue measure with respect to Ry, there is a compact
set Xy, g such that, for Lebesgue almost every w € T4, the spectrum of Hy g0 is
equal to Xy g. Similarly, the spectral type of Hy g« is also Lebesgue-almost surely
independent of w. As we will focus on the spectrum in this paper, we will not go into
further details regarding the spectral type and refer the reader to the surveys [11,21]
for background and more information.

The almost sure spectrum X, o can have various topological and measure-the-
oretic properties. It can be a Cantor (i.e., perfect and nowhere dense) set, but it can
also be a finite union of non-degenerate compact intervals. The Cantor spectra that
occur can have both positive and zero Lebesgue measure. Among those that have
zero Lebesgue measure, examples are known with small, and even zero, Hausdorff
dimension.

Roughly speaking, when d = 1, it is well known how to produce examples with
zero Lebesgue measure [12, 13] and even zero Hausdorff dimension [20]. On the
other hand, when d > 1, examples are known where the spectrum is a finite union
of intervals, and it is (essentially)' open how to produce spectra of zero Lebesgue
measure. The present paper develops a way of producing many such examples. Indeed
they are “ample” in a way we will make precise.

Since we used zero Lebesgue measure and non-Cantor structure to distinguish
between the two cases d = 1 and d > 1 in the previous paragraph, let us point out
that proving the genericity of Cantor spectrum in C (T ?) for any fixed minimal trans-
lation R, (without supplying any information about the Lebesgue measure of the set)
has a proof that works simultaneously for all values of d € N; see [3,4]. On the other
hand, in the analytic category, Cantor spectrum is typical when d = 1 (the literature
is extensive; see, e.g., [14, 16,22], and the surveys [11,21] for a more complete list),
while it is not typical when d > 1 (at least in the large coupling regime [17]).

To summarize, the mechanisms leading to Cantor spectrum of zero Lebesgue
measure in the context of generalized quasi-periodic Schrodinger operators are quite
well understood in the one-frequency case (d = 1), but so far they are poorly under-
stood in the multi-frequency case (d > 1). We will discuss a mechanism here that
works in the multi-frequency case, which leads to a class of examples that is in some
ways as rich and “ample” as the existing work in the one-frequency case.

Definition 1.1. A function g: T¢ — R is called elementary if it is measurable and
takes finitely many values. The set of elementary functions g: T¢ — R is denoted

IThere is a way to recast some known results for primitive substitution subshifts in terms of
codings of torus translations; see, for example, [23] for the case of the Tribonacci substitution
and [1] for more examples.
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by &(T4). A subset of &(T¥) is called ample if its || - ||oo-closure in L®(T?) con-
tains C(T9).

Theorem 1.2. Let d = 2. Then, for Lebesgue almost every a € Td, the set

Zo = {g € 6(TY): Xq,¢ is a Cantor set of zero Lebesgue measure}

is ample.

Remark 1.3. (a) In the case d = 1, this is a result of Damanik and Lenz [12, 13].
Specifically, it follows by combining [12, Theorem 2] and [13, Theorem 10]. Actually,
in this case, the full measure set of @ € T is explicit: it is the set of all irrational
numbers. By contrast, the full measure set in Theorem 1.2 is not explicit.

(b) The fact that the result can be extended to a value of d that is greater than
one is not obvious, and indeed surprising, since the straightforward extension of [13,
Theorem 10] is known to fail, compare Remark 3.7 below.

(c) The proof of Theorem 1.2 also employs [12, Theorem 2], but replaces the
use of [13, Theorem 10] by a more sophisticated process to verify the assumption of
[12, Theorem 2].

(d) To the best of our knowledge, there is no known example of a quasi-periodic
multi-frequency potential (i.e., d > 1 and g € C(T%)) so that the associated Schro-
dinger operator has zero-measure spectrum. It is unclear whether such an example
exists. The fact that arbitrarily small || - ||oo perturbations of an arbitrary g € C(T¢)
can produce this effect is therefore interesting.

(e) We described the occurrence of zero-measure spectrum obtained via this route
as “persistent” above, so let us explain what we mean by that. The g € &(T?) we
obtain for which X, ¢ is a Cantor set of zero Lebesgue measure are actually such
that 3, ;. is a Cantor set of zero Lebesgue measure for every A € R with A # 0.
Thus, the phenomenon is persistent with respect to varying the coupling constant.
This should be contrasted with the fact that any known g € C(T) for which X,  has
been shown to have zero Lebesgue measure for suitable (irrational) @ € T is such
that X, 3, has positive Lebesgue measure for every A € R with |A| # 1. In other
words, the zero-measure property is highly unstable with respect to a variation of the
coupling constant in the quasi-periodic setting.

(f) We regard it as an interesting open problem to explore whether Theorem 1.2
can be extended to some larger values of d. Several components of our proof of The-
orem 1.2 indeed do extend to values of d greater than 2. In the final section of this
paper, we comment on why our result is limited to the case d = 2 and point out the
obstacles one needs to overcome if one wants to prove a result for some d > 2.



J. Chaika, D. Damanik, J. Fillman, and P. Gohlke 576

The remainder of the paper is organized in the following way. We collect some
necessary background in Section 2, including known results about multidimensional
continued fraction algorithms and S-adic subshifts. In Section 3, we prove a sufficient
criterion for an S-adic subshift to obey Boshernitzan’s criterion for unique ergodicity.
Building on [7], we apply this criterion in Section 4 to deduce that Boshernitzan’s
criterion holds for certain subshifts arising from suitable two-dimensional continued
fraction algorithms. We conclude the proof of Theorem 1.2 in Section 5. Finally, we
discuss the case d > 3 in Section 6, including the overall strategy that one should
implement as well as the obstacles that one must overcome in order to apply said
strategy.

2. Preliminaries

2.1. Multi-dimensional continued fraction algorithms

2.1.1. Motivation and notation. Continued fractions are a tool to understand the
Diophantine properties of numbers and the dynamical properties of rotations. The
theory has been best developed in dimension one, where the Euclidean algorithm and
its acceleration, the Gauss map, are incredibly useful. There are many generaliza-
tions of these algorithms to higher dimensions. For our purposes we will restrict our
attention to the Cassaigne—Selmer algorithm and the Brun algorithm (the latter in the
special case of four dimensions).

2.1.2. The Cassaigne—Selmer algorithm. Denote Ry = [0, co) and let
A=Az ={(x1,x2,x3) € Ri:xl + x2 +x3 =1},
The Cassaigne—Selmer algorithm is given by

TctA—> A,

(xl—x3 X3 X2

b b
X1+ X2 X1+ X2 X1+ X2
( X2 X1 X3 — X1

9 9
X2 + X3 X2+ X3 X2+ X3

) if x1 > x3,

T(x1,%2,x3) = 2.1)

) if)C3>X1.

This algorithm was studied in [9] for its connection to word combinatorics. There is
an ergodic T¢-invariant probability measure vc on A which is equivalent to Lebesgue
measure. Indeed, the Cassaigne—Selmer algorithm is conjugate to the Selmer algorithm
[9]. This algorithm is ergodic by [24, Section 7], whose argument presenting the proof
of ergodicity of the fully sorted Selmer algorithm generalizes to show that the semi-
sorted Selmer algorithm is ergodic.
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2.1.3. The Brun algorithm for d = 4. Let

A=Ay ={(x1,%x2,X3,X4) € Ri:xl +x2+x3+x4=1}
and, fori, j € {1,2,3,4}, let

A, j) = {(x1, X2, x3,x4):x; = x;j = xi forallk ¢ {i, j}}.

The Brun algorithm Tp: A — A is defined for (x1,...,x4) € A(i, j) as

Xk

ifk #1,

1—Xj

Tp(x1,...,X4)k = s
i j . .
—  ifk =i.

I—Xj

This map is well defined almost everywhere on A. The ergodicity of this algorithm
follows as in [24]. Hence, there exists an ergodic 7p-invariant probability measure vg
on A which is equivalent to Lebesgue measure.

2.2. S-adic subshifts

Given a finite set 4, give the full shift A% the product topology inherited from pla-
cing the discrete topology on each factor, and define the shift map S: AZ — AZ by
[Sx](n) = x(n 4+ 1). A subshift over 4 is a closed (hence compact) S-invariant subset
X C AZ.

The free monoid will be denoted by A* = | ;2 , 4" ; the unique element of A°
is denoted by ¢ and called the empty word; the length of u € A" is |u| = n. Write

HFu(V) = HJ Vi1V V) = UL (2.2)

for the number of times u occurs in v, u < v if #,(v) > 0, and L(u) for the set of all
subwords of u € A*, AN or AZ. For a subshift X, the language of X is

L(X):={u:u € L(x) for some x € X}.

When (X, ) is minimal, L(X) = L(x) for every x € X.
In [8], Boshernitzan showed that a minimal subshift is also uniquely ergodic if the
following property holds.

Definition 2.1. Let (X, S) be a minimal subshift. We say that (X, S) satisfies the
Boshernitzan criterion if there exist an S-invariant probability measure (i, a constant
C > 0, and a sequence ny,nz, ... — oo so that forallw = wy ... w,, € L(X),

C
wEx € Xeixp...xy, = w}h) > —.
i
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A substitution is an endomorphism 7: A* — A, which is uniquely defined by its
values on individual letters of 4. We shall also assume that all substitutions are non-
erasing in the sense that t(a) # ¢ for every a € A, and denote the set of non-erasing
substitutions on 4 by Sub(s). For each t € Sub(+A), one associates the substitution
matrix M = M, € End(Z*), with entries given by

M-[a,b] = #,(z(D)).

An S-adic system over 4 is defined by a choice of a directive sequence T =
(tn)y~, of substitutions on +. We will encounter products quite frequently, so, for
0 < m < n, we write

Tmp] = Tm - Tn,

with obvious conventions for open and half-open intervals. For a € A, write wy,(a) =
r[o,n](a). Similarly, for the substitution matrices, we write M7 = M, for an inter-
val I . Clearly, for I = [m, n], one has

My = My, M M,

T4l " " - "

The language associated to T is
L(t) :={w € A™: w <wy(a) for some a € A andn € Ny}.
We also call this the set of allowed words. It is easy to check that
X = X(1) := {x € AZ: L(x) € L(7)},
is a non-empty subshift, provided that

lim max |wy,(a)| = oc.
n—>00 geA

In this case, we call X(7) the S-adic subshift generated by .

2.3. S-adic subshifts related to multi-dimensional continued fractions
Both the Cassaigne—Selmer algorithm and the Brun algorithm are of the form

A(x) x

T:A—> A, x> ——2
IAGe)~ ey

for some locally constant matrix valued function A: A — GL(d, Z). Following [7],
we select for each x € A a substitution ¢(x) on the alphabet A = {1,...,d} such
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that A(x) coincides with the substitution matrix M(x). In the case of the Cassaigne—
Selmer algorithm this is achieved by

y1 ifx; > x3,
p(x) = {

y2  ifxz > xy,

with the Cassaigne—Selmer substitutions

11, 12,
Y14 2> 13, Y2:4 2> 13,
32 3+ 3.

For the Brun algorithm, we consider the class of substitutions
Bij:j—1ij, k—k forkeA\{j}.

fori, j € A ={1,2,3,4} and we set p(x) = fB;; forx € A(i, j).

Given a substitution selection ¢p: A — Sub(sA), the orbit of a point x € A under
the action of 7' defines an S-adic system, called a substitutive realization of (A, T, A),
given by the directive sequence

¢ (x) = (9(T"x));Zo-

The corresponding subshift is given by (X(¢(x)), S). On the other hand, we relate to
each point x in the d-dimensional simplex A a point on the torus Té-1 by the map
m: A — T?1 which denotes the projection to the first d — 1 coordinates. Note that
7 is not a surjective map but for

T = eTd a4 H1g-y < 1,

the map 7: A — T4~1, x > m(x) is a bijection, identifying T?~! = [0, 1)?~! in
the obvious fashion. Slightly abusing notation, we use the same symbol, 7, to denote
both maps.

2.4. Natural codings of torus translations

For the d-dimensional torus T¢ and o € T4, let R,: T4 — T4, Ry(w) =w + «
denote the torus translation associated to «.

We present in the following a weaker version of the term natural coding as defined
in [7]. This turns some of the results we cite from [7] into mere corollaries which are,
however, sufficient for our purposes. A collection F = {¥7,. .., ¥} is called a natural
measurable partition of T if Uf;l Fi = T4, F; N Fi has zero measure for each
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Jj # k, and each ¥; is measurable with dense interior and zero measure boundary.
Given the map R, the language associated with &, denoted by L(F), is the set of
finite words w = wyg ... w, € {1,..., h}* such that (;_, ng.’%wk # @, where A
denotes the interior of A.

Definition 2.2. A subshift (X, S) is called a natural coding of (T4, Ry) if its lan-
guage coincides with the language of a natural measurable partition {%7, ..., ¥}
and

-
M N Ra* T

neN k=0

consists of a single point for every x = (x)nez € X.

The following result concerning the Cassaigne—Selmer algorithm is essential for
our analysis.

Proposition 2.3 ([7, Theorem 6.2]). Let ¢ be the substitutive realization of the Cas-
saigne—Selmer algorithm. For vc -almost every x € A, the subshift (X(¢(x)),S) is a
natural coding of (T?, Ry(x))-

Note that [15, Theorems A and B] are closely related results, that would have also
been sufficient for our purposes.

Remark 2.4. If F = {¥},..., %3} is a natural measurable partition of T2 and M €
GL(2, Z), then the language generated by R, on F coincides with the language gen-
erated by Rpz, on the natural measurable partition MF = (M Fq, ..., MF}. In
particular, if (X, S) is a natural coding of (T2, Ry), then it is also a natural coding
of (T2, Ry). In the 2-dimensional case, we could simply take Mo := —a, to obtain
natural codings for (almost) all & € T2 from codings for a € Ti. For the more general
d-dimensional cases, we still obtain T4 from T ‘Ai via general linear transformations,
compare [7, Remark 3.5].

One would naturally like to obtain analogs of Proposition 2.3 for higher-dimen-
sional torus translations. For such translations, the Brun algorithm is a natural candid-
ate to use for the associated continued fraction algorithm. However, in that case, there
is a technical ingredient (namely negativity of the second Lyapunov exponent) which
is currently unclear. We discuss this in more detail in Section 6.

2.5. Zero-measure spectrum via the Boshernitzan criterion

Given a finite alphabet # and a subshift X € AZ, one can define Schrodinger operat-
ors in £2(Z) by generating potentials which are obtained through real-valued sampling
along the S-orbits of X. That is, if f: X — R is given, we associate with each x € X
the potential V: Z — R given by Vy(n) = f(S"x), n € Z. The Schrédinger operator
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H, in {*(Z) is then given by

[Hxy)(n) = Y (n+ 1) + ¥ (n —1) + Va(m) ¥ (n).

One typically restricts attention to locally constant functions f, that is, functions that
depend on only finitely many entries of the input sequence x. Such functions are of
course continuous, but in addition they preserve the finite-valuedness, which is crucial
to many arguments in the study of these operators.

If X is minimal and f is locally constant, then a simple strong approximation
argument shows that there is a compact set Xy s C R such that o(Hy) = Xy,  for
every x € X. Obviously, a minimal subshift X is finite if and only if every V is
periodic, and in this case Xy, r is well known to be a union of finitely many non-
degenerate compact intervals. Similarly, if f is constant, the same conclusions hold.
Ruling out these degenerate cases, it is an interesting question whether Xy r must
have zero Lebesgue measure. In fact, Simon conjectured that this must be the case in
complete generality, but this conjecture has been disproved in [5].

On the other hand, the Boshernitzan criterion turns out to be a sufficient condition
[12, Theorem 2]:

Theorem 2.5. [f the minimal subshift X satisfies the Boshernitzan criterion and f is
locally constant, then either all V. are periodic or the set Xy,  is a Cantor set of zero
Lebesgue measure.

3. S-Adic subshifts satisfying the Boshernitzan criterion

Let T = (tx)72, be a directive sequence generating an S-adic system, (X(7), S).
Refer to Section 2.2 for definitions and notation. Our key auxiliary result is a sufficient
criterion on 7 for (X (), S) to satisfy Boshernitzan’s criterion for unique ergodicity.

Definition 3.1. For a,b € A, we say that a precedes b at level n if there are m € N
and ¢ € A such that ab < 1,41 n4m)(c). For aninterval I = [n 4 1,n + £], we say
77 is a word builder at level n if, whenever a precedes b at level n, there is ¢ € #4 such
that ab < 77 (c).

Theorem 3.2. Suppose there exists a constant N > 0 so that, for infintely many ny,
there existng < nyp < n, < ns so that

a. Myy11,n,] and My, 41,45] are positive matrices,
b. Ty, +1,n,] is a word builder at level ny,

C. max{”M[n()-i-l,n]]”? ||M[n1+1,n2]||v ||M[n2+1,n3]||} = N.

Then (X (), S) satisfies Boshernitzan’s criterion.
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Lemma 3.3. If t,41(a) = by ...by, then wyy1(a) = wy(by) ... wy(by).
Proof. This follows immediately from the definition of wy,. ]

Corollary 3.4. Letn,k € N.If M|, ,k is a positive matrix, then, for all a, a e A,
one has o

|wn+k(a)| < max{ M[n,n-i—k][l’ ]] }

[wnsi (@)~ idii \ Mg ntiy i, ']
Proof. For each b € A, we apply Lemma 3.3 k times to write w, 1 (b) as a concat-
enation of wy, (a) for a € 4. For each i, j, j’ € #A, the ratio of occurrences of wy (i)
in such a decomposition of w, 1% (j) and wy,(j') is at most the right-hand side. =

Lemma 3.5. If 1,41 n+te) is a word builder at level n, then every allowed word of
length at most minge 4 |Wy (c)| is a subword of w,, +¢(c) for some ¢ € A.

Proof. Every word is a truncation of concatenations of w;(c) as ¢ varies in 4. So,
every word of length at most min.c4 |wy (c)| is formed by concatenating a (possibly
empty) suffix of w,(a) with a (possibly empty) prefix of w, (a’) where a precedes a’
at level n. All such combinations appear in wy,¢(c) for some ¢ € . ]

Lemma 3.6. If 1,11 n+te) is a word builder and M, 4 ¢4 1 n4¢+k] Is positive, then the
measure of the cylinder set associated with any word of length minge 4 |wy, (a)| is at
least

(max [wy 4 ¢4x(c))
ceA

Proof. Every allowed word of length at most min.ec 4 |wy,(a)| appears at least once
in every w,+¢+%(c). Indeed, every ¢ appears in t,4¢41 - .. Tnt+e+k (@) by the posit-
ivity of My 4041 ... Myyo4k. So, every w,¢(c) appears in every wy4¢+x(a). By
Lemma 3.5 this implies that every allowed word of length at most minge4 |Wy(a)|
appears at least once in every w;, +¢+x(c).

So, we have that the proportion of every allowed word in such blocks is at least
(Maxees |Wnaerk(c)])™L. As our language is a concatenation of w, ¢4 (c) as c
varies in 4 we have the claim. ]

Proof of Theorem 3.2. This follows from Lemma 3.6 and Corollary 3.4. Indeed,

max|wy, (¢)| < N2(max|wn, (c)]) < N3 (min[w, (c))).
cEA cEA CEA
So, we have that the measure of any cylinder of length mij‘ywn1 (c)| is at least
ce
(N minjw,, ()"
cEA

Consequently, there exist infinitely many r so that we satisfy the Boshernitzan cri-
terion with C = (N3r)~L. n
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Remark 3.7. It is easy to see that any subshift satisfying the Boshernitzan criterion
must have a complexity function that is linearly bounded on a subsequence. This
in turn shows that, for codings of higher-dimensional torus translations, care must
be taken if there is to be any hope to generate subshifts satisfying the Boshernitzan
criterion. Indeed, it is known that any coding of a minimal translation of Td ,d > 2,
relative to a partition of T< into sufficiently nice sets has a super-linear lower bound;
compare, for example, [10,27].

4. 2D toral translations

The substitution matrices associated to the Cassaigne—Selmer substitutions y; and y,
are given by

G = and C, =

S O =

1
0
1

S = O
S = O
—_—O =
- o O

respectively. Recall that vc denotes the T¢-ergodic measure on A which is equival-
ent to Lebesgue measure. For the remainder of this section, let T = T¢ and v = vc.
The pushforward of Lebesgue measure on A under 7 is equivalent to Lebesgue
measure (and therefore to v) on Ti. Hence, for almost all o € Ti, the subshift
(X(¢p(r~Y(@))), S) is a natural coding of (T2, Ry) due to Proposition 2.3.

Proposition 4.1. For Lebesgue a.e. o € T2, the subshift (X (¢ (7~ (@))), S) satisfies
Boshernitzan’s criterion. In particular, for almost every a € T2, the toral translation
(T2, Ry) admits a natural coding that satisfies Boshernitzan’s criterion.

Proof. 1t suffices to show that, for v-almost every x € A, the subshift (X(¢(x)), S)
satisfies Boshernitzan’s criterion. Note that t = y; o y; is a primitive substitution,
indeed M is positive.

Further, we claim that the substitution T/ = yZy,y1y;y1 is a word builder, irre-
spective of its position within a directive sequence (7,)72, € {¥1, y2:No_ To verify
this, we first observe that the set y7(+?) does not contain any of the words in {22, 23,
32,33} as a subword. Hence, whenever t’ = 1y, »+s] and a precedes b at level n, it
follows that ab € £, := {11, 12,13,21,31}. A direct calculation yields that t'(1) =
1213113 and so for all ab € £, we find that ab < t/(1). In particular, 7’ is a word
builder. The substitution 7* = 37/t is a composition of £ = 14 substitutions drawn
from {y1, y»}. Let

By, = {(Tn)neNo € {y1, VZ}NO: Tm O O Tpte—1 = T*}
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and B = limy;—00 Bim. By Theorem 3.2, for every T € B, the corresponding subshift
(X(7), S) satisfies Boshernitzan’s criterion. Hence, it is enough to show that yu =
v o ¢! assigns full measure to B. We consider the set

D =¢""(Bo) ={x € At A(x)... A(T" 'x) = M+}
Since the map ¢ conjugates 7" and S, we have that
¢~ (Bm) =9~ (ST"Bo) =T "¢~ (Bo) =T~"D

for all m € Ny. By Birkhoff’s ergodic theorem, we have for almost every x € A that

n—1 n—1
nli)ngo% D 1y, (x) = nli)ngo% > 1p(T™x) = v(D).
m=0 m=0
If v(D) > 0, we therefore conclude that almost-every x is contained in infinitely
many ¢~ !(B,,) and hence in ¢~ (B), implying v(¢ 1 (B)) = 1. It remains to show
that v(D) > 0.
Let A(1) = {x € A:x; > x3}and A(2) = {x € A:x3 > x1}, that s,

Ax) =C; <= x € A®@).

In the following, we identify sets that coincide up to a set of Lebesgue measure zero—
this applies in particular to the boundaries of the sets A, A(1), and A(2). Since
T(A(i)) = A and T acts on A(i) as the radial projection of C;”'(A(i)) to A, we
obtain that the radial projection of C;(A) to A coincides with A(i). Abusing nota-
tion slightly, we use C; to also denote the projective action of C; on A. With this
convention, it is straightforward to check that A(x) = C; if and only if x € C;(A)
(note that here we could also replace A with the positive cone). Similarly, one has
A(x)A(Tx) = C;Cj precisely if x € C;(A) and Tx € Cj(A), where T = C;~! in this
case. That is, we have equivalence to x € C;(A) and x € C;C;(A) C C;(A). Induct-
ively, we find that A(x) ... A(T*x) = G, ...C;, if and only if x € Cj, ... Ci, (A).
For our case at hand, we obtain that x € D if and only if x € M;+(A). Note that, as
M« is primitive, it acts as a projective contraction on the positive cone. Since each
of Cq, C; is invertible, so is M+ and the set M, (A) has positive Lebesgue meas-
ure. It follows that the Lebesgue measure (and hence the v-measure) of D is positive.
Finally, to go from « € Ti to more general @ € T2, we make use of Remark 2.4. m

5. Proof of Theorem 1.2

In this section we derive Theorem 1.2 from our work in the previous sections. Let us
begin with a discussion of elementary functions on T4 and how they relate to locally
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constant functions on (X, S), where (X, §S) is a natural coding of R, associated with

the natural measurable partition {7, ..., ;). We define n: X — T by n(x) = w,
where w is the unique point in

_
ﬂ ﬂ Rg"&z‘xk.

neN k=0
Let
h o
g = ﬂ R;k[U 3‘7}],
keZ j=1

which is a dense G set of full Lebesgue measure in T¢ (by definition of natural
coding). For w € §, we can invert this by mapping @ to x = (xz)kxez given by
Rkw € f%xk.

Givenw = wg ... w, € L(X), let

n
.?dw - m R;k-?dwk’
k=0

which is nonempty by the definition of L(X). Let y,, denote the characteristic func-
tion of ¥, and let A denote the algebra generated by {y: w € L(X)}.

Proposition 5.1. If (X, S) is a natural coding of Ry, then A is ample. In particular,
A \ {constants} is ample as well.

Proof. Given f € C(T%)ande > 0, find§ > 0so that | f(61) — f(65)| < & whenever
dist(6y, 62) < §. Choose n large enough that for any w € L(X) of length n, one has
diam(¥,,) < &, and define

g=Y auwiw

weL(X)
|lw|=n

where ay, = f(6) for some 6 € ¥,,. Clearly, g € Aand || f — g|loo < &. [

Proof of Theorem 1.2. We consider the full measure set of a’s in T2 that generate
a minimal translation R,: T? — T2 and belong to the full measure set determined
earlier; compare Proposition 4.1.

By these propositions, the minimal translation R, admits a natural coding that
satisfies the Boshernitzan criterion. As R¥ is minimal and for any f € A has that its
level sets have non-empty interior, the V) are all aperiodic. Thus, by Theorem 2.5,
every non-constant locally constant sampling function on this subshift generates a
potential so that the associated Schrodinger spectrum is a Cantor set of zero Lebesgue
measure.
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Since the coding is natural, each such locally constant function on the subshift
corresponds to an elementary function on the torus and the set of functions obtained
via this correspondence is ample by Proposition 5.1. This concludes the proof of the
theorem. ]

6. A discussion of possible extensions to higher dimensions

6.1. A road map to treating larger values of d

Proposition 2.3 is a significant new result that enabled this project and it is natural to
wonder how general it is. The plan for such a result is fairly general.

1. One finds a continued fraction algorithm and obtains S-adic systems from the
process applied to a.e. vector in the parameter space.

2. One shows that the resulting shift dynamical systems (a.s.) have purely discrete
spectrum, and in fact they are measurably isomorphic to a toral rotation and
moreover are natural codings thereof.

Step (2) requires
* an absolutely continuous ergodic invariant measure;

» the negativity of the second Lyapanov exponent (of the cocycle that gives the
S-adic system) with respect to the absolutely continuous invariant measure;

* a mild additional assumption on the continued fraction algorithm. For example,
either of the following two suffices.

— Asin [15, Theorem B] it has a seed point ([15, Definition 64]) and the second
Lyapanov exponent is simple (this is part of the Pisot condition [15, Defini-
tion 60] in this paper).

— Asin [7, Theorem 3.1]) it has a periodic Pisot point ([7, Definition 2.4]) with
positive range ([7, Definition 2.5]) so that the corresponding S-adic system
(which in this case is a substitution dynamical system) has discrete spectrum.

There are standard approaches to the ergodicity of these algorithms. For example,
one can relate the continued fraction algorithm to a flow that is known to be ergodic
(see, e.g., [2]) or one can show that it or an acceleration satisfies some well-known
conditions (see, e.g., [24, Theorem 8§]).

The negativity of the second Lyapanov exponent in dimension greater than two is
shown via computer assisted proof in Hardcastle [18]; see also Berthé, Steiner, and
Thuswaldner [6].

There is a general strategy [19], but the rigor of these implementations even in
dimension 3 is not always complete [18]. For the Cassaigne—Selmer algorithm, one
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can appeal to the 2-dimensional Selmer algorithm (which it is conjugate to) and
quote [26] (which appeals to [25] where the result is proven for the closely related
Baldwin algorithm) for a proof without computer assistance.

6.2. A brief discussion of the case d = 3

For translations on T 3, the 4-dimensional Brun algorithm is a natural candidate for the
strategy outlined above, and [7, Section 6.4] collects (most of) the necessary inputs.
An analogue of Proposition 2.3 for the Brun algorithm requires one to verify that
the second Lyapunov exponent related to the cocycle induced by 4 on A is negative.
The negativity of the second exponent is unclear to us. In particular, [18] experi-
mentally studies this question but is not entirely rigorous.” The other assumptions of
[7, Theorem 3.1] are verified in the paragraph before [7, Theorem 6.7]. The result in
[7, Theorem 6.7] states the following.

Proposition 6.1. Let ¢ be the substitutive realization of the Brun algorithm. For
vg-almost every x € A, the subshift (X(¢(x)), S) is a natural coding of (T3, Ryx))-

Given the indeterminate status of Proposition 6.1, we regard the following prob-
lem as an interesting question for future study.

Conjecture 6.2. For almost every a € T3, the toral translation (T3, Ry) admits a
natural coding that satisfies Boshernitzan’s criterion.

The idea of proof of Conjecture 6.2 relies on Proposition 6.1 and thereby on the
question whether the second Lyapunov exponent associated to the Brun algorithm is
indeed negative—compare the discussion in Section 6.1. Assuming Proposition 6.1,
we can prove Conjecture 6.2 following the same lines as for Proposition 4.1. Here
we make use of the observation that the substitution t = 15 0 B23 0 B34 0 B41 i
primitive, which can be seen from a direct calculation (indeed i < t2(j) for every i
and j); compare the discussion in [7] preceding Theorem 6.7. With x the right Perron
Frobenius eigenvector of M, we have ¢ (x) = t*°. A word builder can be constructed
as follows. If 7(;4+1,n+3] = B1a © B13 © B12, then a can precede b at level n only if
ab € {11,12,13,14,21,31,41}. From this, we can verify that 814 0 B13 0 B12 0 T2 is
a word builder, irrespective of its position in a sequence (7, )eNg-
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