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ABSTRACT
We show that a generic quasi-periodic Schrédinger operator in L2 (R) has
purely singular spectrum. That is, for any minimal translation flow on
a finite-dimensional torus, there is a residual set of continuous sampling
functions such that for each of these sampling functions, the Schrédinger
operator with the resulting potential has empty absolutely continuous
spectrum.
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1. Introduction

In this paper we consider Schrodinger operators

(1.1) [Hy)(z) = —¢"(z) + V(2)y(2)
in L?(R) with quasi-periodic potentials
(1.2) V(z) = f(w+ za).

Here, w,a € T? = R?/Z for some d € Z,, f € C(T?) real-valued, and = € R.
The case where V' is periodic is classical and well understood, and hence we will
primarily focus on the aperiodic case. This necessarily means that d > 2 and
it also places some restrictions on « and f. We will assume that « is such that
the translation flow in question is minimal (i.e., all orbits are dense) to ensure
that the torus dimension d is chosen appropriately, and moreover f needs to be
non-constant to avoid periodicity.

The spectral properties of operator of the form (1.1) with potentials of the
form (1.2) have been studied intensively since the 1980’s, with many major ad-
vances occurring in the past two decades. Much of this work has been reviewed
in several recent survey papers, including [5, 6, 11, 12, 16]. We should point
out, however, that some of these survey papers discuss the discrete analogs of
these operators, which act in /2(Z) as

[HDy)(n) = (n+1) + ¥(n — 1) + VO (n)g(n)
with
V@(n) = f(w+na),
but many results exist in both settings.

There are, of course, some notable exceptions. One of the most important
exceptions is that Avila’s global theory for discrete one-frequency quasi-periodic
Schrodinger operators with analytic sampling functions [1] does not yet have a
continuum counterpart. In this paper we will address another result, which is
known in the discrete case, but whose continuum counterpart is desirable to have
because of recent progress on the Deift conjecture, which makes a connection
with continuum quasi-periodic Schrodinger operators.

The Deift conjecture [7, 8] states that the KdV equation with almost periodic
initial data admits global solutions that are almost periodic in (space and) time.
The conjecture has been proved under suitable assumptions [4, 9]. These results,
and really their proofs, need that the initial data, when considered as potentials,
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give rise to Schrodinger operators with absolutely continuous spectrum. It was
therefore pointed out in [4] that the assumptions will likely fail generically in a
suitable sense.

Concretely, the abstract sufficient conditions for the Deift conjecture to hold
have been verified for suitable classes of quasi-periodic functions of the form
(1.2); see [4]. On the other hand, for discrete quasi-periodic Schrédinger oper-
ators, it is known [2] that a generic quasi-periodic potential will give rise to a
Schrédinger operator with empty absolutely continuous spectrum. One should
therefore expect that also in the continuum case, which is the one relevant to the
study of the KdV equation and the Deift conjecture, the absolutely continuous
spectrum will be empty for a generic quasi-periodic potential.

The purpose of this paper is to prove this statement:

THEOREM 1.1: Given d > 2 and a minimal translation fow on T¢,
R >z w+ xa € T, there is a dense Gs-set S C CO(T?) such that for every
f € 8, the Schrédinger operator in L?(R) with potential

V(@) = flw+a)
has purely singular spectrum.

Remarks 1.2: (a) The minimality of the flow is a property of a € T¢, and the
result holds for any such fixed a.. The set S will then depend on the choice of .

(b) There is no quantifier on w € T¢ in the statement of the result, even
though the potential V' depends on it. This is due to the constancy of the
absolutely continuous spectrum in w, which is a result of Last and Simon [17,
Theorem 1.5].

(¢) This result shows that there is a generic obstruction to an extension of
the BDGL approach [4] or the EVY approach [9] to the Deift conjecture [7, 8.

One can also consider one-parameter families of potentials and operators by
varying the coupling constant:

THEOREM 1.3: Given d > 2 and a minimal translation flow on T¢,
R >z w+xa € T there is a dense Gs-set S C C(T?) such that for ev-
ery f € S and Lebesgue almost every A > 0, the Schridinger operator in L*(R)
with potential

V(z) = Af(w+ za)

has purely singular spectrum.
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2. Preliminaries

2.1. DiscoNTINUOUS PERIODIC FUNCTIONS HAVING LIMIT-PERIODIC LIMITS.
Recall that a bounded uniformly continuous function on R is called almost
periodic if for any € > 0 the set of ¢t € R with || f — f(- — )| < € is relatively
dense. A bounded uniformly continuous function on R is called limit-periodic
if it is a uniform limit of continuous periodic functions. But what if we have
a uniformly convergent sequence of discontinuous periodic functions? Can the
limit be limit-periodic? Clearly, we need to assume at least the continuity of
the limit, but what else is needed?

The following statement is likely well known, but since it will play a role in
the proof of our main result, we include its short proof for the convenience of
the reader.

PROPOSITION 2.1: Suppose f € C(R) is uniformly continuous and, for n > 1,
fn € L®(R) is periodic. If || fn — flleoc = 0 as n — oo, then f is limit-periodic.

Proof. The issue is that the f, may be discontinuous and hence the remedy
will be to make them continuous via mollification and then to observe that
the continuous mollified functions still converge uniformly to f. Compare [10,
Section C.4] for the definitions and general results below.

Explicitly, define n € C*°(R) by

Cexp(‘x‘zlil) if |z| < 1,

n(z) =
0 if |2] > 1,

where C' > 0 is chosen so that f]R n(xz)dz = 1. Then, for € > 0, set

and, for n > 1, f° =n. x f, that is,

f2(x) = /}R ne(@ — 4) fuly) dy.

By the uniform continuity of f, Theorem 6 in [10, Section C.4] and its proof
(especially the proof of part (iii)) imply that for each n > 1 and ¢ > 0, f is
smooth (and in particular continuous) and || f£ — f|lec — 0 as € — 0. Thus, the
statement follows by diagonalization, that is, for a suitable sequence €,, — 0, the
functions fE» are continuous, periodic (by construction) and converge uniformly
to f, showing that f is indeed limit-periodic.
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A function g on R is called eventually periodic if there exists a periodic
function p with p(x) = ¢(z) for all sufficiently large z € R.

COROLLARY 2.2: Suppose f € C(R) is almost periodic and, for n > 1,
fn € L®(R) is eventually periodic. If || fn — fllco — 0 as n — oo, then f is
limit-periodic.

Proof. Let € > 0 be arbitrary. By the preceding proposition it suffices to find a
periodic p € L*®(R) with [|f — p|| < e.

By assumption there exists an eventually periodic ¢ € L*°(R) (viz ¢ = f,, for
sufficiently large m) with

If —all <e.

As ¢ is eventually periodic, there exists a periodic p € L*°(R) with p(x) = ¢(x)
for all sufficiently large x. Let P > 0 with p(z) = p(z + P) for all x € R.

As f is almost periodic, there exists a sequence (t,) in R with || ft, — f|lcc = 0
as n — oo. Here, we set g; := g(- — t). There exist then unique k, € N and
0 <s, < P with t, = k,P + s,. Restricting attention to a subsequence if
necessary, we can then assume without loss of generality that s, — s. As f is
uniformly continuous, we can even assume without loss of generality s,, = s for
all n. To simplify notation we will assume s = 0.

Hence, f — p is the pointwise limit of f — ¢, for n — oco. This gives

1f = plles < limn sup 1f =t lloo
< limsup(lf = feo lloo + [lfe = a2 llo0)
= (Um | f = fe, lloc) + limsup lfe, = ge.[loc
=|f—dllo <e.

Here, we used the invariance of || - ||o under translation in the penultimate
step.

2.2. TRANSFER MATRICES, LYAPUNOV EXPONENTS, AND WEYL—TITCHMARSH
FunctTions. This subsection recalls important and well-known concepts,
mainly to fix notation.

Fixing d > 2 and a minimal translation flow on T, R 3 z — w + za € TY,
as well as a real-valued sampling function f € C(T4), the transfer matrices are
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defined via
d

p Ms(x,E,w) = Af(E,w+ za)M(z, E,w),
x

M0, B,w) =1,

forz € R, E € C, w € T, where

Af(Byw) = <f(w)0_ . é) .

These transfer matrices are defined in such a way that u solves the differential
equation

(2.1) —u"(z) + f(w+ za)u(z) = Eu(z)

W@\ _ o o (a0
<u’(:c)> = My (=, B,w) <u’(0)> '

By the subadditive ergodic theorem, there is a number L(E) > 0, called the
Lyapunov exponent, so that

if and only if it solves

1
Ly(E) = lim log || My (z, E,w)l|

for almost every w € T<.
The map E — L;(E) is real-symmetric and subharmonic. Moreover, we have
(see [15, Lemma 3.2 and (49)—(50)])

(2.2) Li(E) = _/w Remy. o (E) dow

for £ € C4, the upper half-plane, where my ., is the Weyl-Titchmarsh m-
function on the right half-line associated with the potential V (z) = f(w+za),
defined by
vy 7..(0)
My fo(E)= 7%
+.f ( ) UJr,f,w(O)

where u ¢, is a solution of (2.1) that is square-integrable at +oo.!

)

L To see that such a solution exists, observe that E ¢ o(H) by self-adjointness, and hence
Uy fw = (H— E)x(-1,0) € L%(R). But by definition @, solves (2.1) on (0, o0).
Thus, keeping it unchanged on the right half-line and extending it to a solution on R by
solving (2.1), we obtain u .
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3. A semi-continuity result

In this section we discuss the continuum analog of the Avila-Damanik semi-
continuity result [2, Lemma 1]. The general structure of the proof will be the
same, and hence we will focus mostly on the aspects that are different between
the discrete case and the continuum case.

Set

Mg(f) = Leb({E € RN [~R, R : L;(E) = 0}).

Remark 3.1: By the Ishii-Kotani-Pastur Theorem [15, Theorem 4.7] and the
Last—Simon Theorem [17, Theorem 1.5], we have that Mg (f) = 0 if and only if
the Schrodinger operator in L?(R) with potential V(z) = f(w + xa) has purely
singular spectrum in the energy interval [~ R, R] for every w € T¢.

Here is the continuum analog of [2, Lemma 1]:

LEMMA 3.2: For all choices of 7, R, A > 0, the maps

(31)  (Bu(L=(TY),[ - 1) = [0, 00), f o Ma(f)
and

A
(32)  (BALXTY), |- 1) = [0, 00), fes / Mp(Af) dA

are upper semi-continuous. Here, B, denotes the closed ball with radius r in

the essential-supremum norm.

Proof. Tt is enough to show that (3.1) is upper semi-continuous; the upper
semi-continuity of (3.2) then follows from that via Fatou’s lemma.

The proof of the upper semi-continuity of (3.1) proceeds in the same way as
in [2]. Assuming that the upper semi-continuity of (3.1) fails for some choice of
r, R, A > 0, there must be f,, f € L>=(T%) such that

(i) fn — fin L' and pointwise as n — oo,
(i) [fnlloo < r for every n > 1 and || flleo <7,
(iii) liminf Mgr(f,) > Mg(f) + € for some € > 0.

By (i) and (ii), we have pointwise convergence of the m-functions my j.,
in C for almost every w € T¢ (this follows from a modification of the argument
given in [13]). Thus, by (2.2), (ii), and dominated convergence, the associated
Lyapunov exponents Ly, converge pointwise in Cy to Ly.
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Next, consider the region U in C, bounded by the equilateral triangle T" with
sides I, J, K, where I = [—R, R] C R. From here the proof proceeds verbatim
as in [2], using the Schwarz—Christoffel formula, as well as the fact that the
Lyapunov exponent is harmonic in C; and subharmonic (and in particular
upper semi-continuous) globally, to derive a contradiction to (iii).

4. Small perturbations that destroy the absolutely continuous spec-
trum

In this section we discuss how arbitrarily small perturbations can destroy the
absolutely continuous spectrum. Here, we use results of [14].

We first recall some basic concepts from [14]. A piece is a pair (W, ) con-
sisting of an interval I C R with length |I]| > 0 (with |I| = oo allowed) and a
locally bounded function W on R supported on I. We abbreviate pieces by WZ.
Without restriction, we may assume that min I = 0. A finite piece is a piece
of finite length. The concatenation W! = W/* | W,> | --- of a finite or
countable family (Wj[j )jen, with N = {1,2,..., N} (for N finite) or N = N
(for N infinite), of finite pieces is defined by

r=|o. X1

JEN

W=wi+ > Wj<.<§|fk|>).

JEN, j>2

In this case we say that W/ is decomposed by (Wj[j )jen-

Let now V be a locally bounded function on R. We say that V' has the finite
decomposition property if there exist a finite set P of finite pieces and zy € R
such that (1;,,0)V) is a translate of a concatenation Wl | Wiz | - with
lej € P for all j € N. We say that V has the simple finite decomposition
property if it has the f.d.p. with a decomposition such that there is £ > 0 with

the following property: Assume that the two pieces

W L TG LW e [ W amd W | WG [ O [ | U
occur in the decomposition of V' with a common first part Wf;nm | W of

length at least ¢ and such that

1 I 1 Jm
Loy (Wit |- [ Wail™) = Lo,y (U | -+ | Uni®),



Vol. 247, 2022 QUASI-PERIODIC SCHRODINGER OPERATORS 791

where Wj[j , UkJ * are pieces from the decomposition (in particular, all belong to P
and start at 0) and the latter two concatenations are of lengths at least £. Then

wi =ui.
The relevance of the simple finite decomposition property comes from the
following result from [18] (see [14] as well).

LEMMA 4.1 (Theorem 7.1 of [18]): Let W be a bounded measurable function
on R. Assume that both W and W (—-) have the simple finite decomposi-
tion property and are not eventually periodic. Then, the Schrédinger operator
Hyp = =" (x)+ W (2)y(x) does not have any absolutely continuous spectrum.

Remark 4.2: The lemma provides an important step in our overall argument
as it connects the desired spectral property (absence of absolutely continuous
spectrum) with a combinatorial feature of the potential. This connection was
established in [18] as an application of Remling’s work on absolutely continuous
spectrum [19, 20]. Remling’s work shows that the presence of absolutely contin-
uous spectrum implies that (sufficiently large) pieces of the potential determine
extensions, say to the right, of fixed length up to a small error. For potentials
with the simple finite decomposition property, this error can be shown to vanish
altogether once it is small enough. This gives that (sufficiently long) pieces of
the potential actually completely determine their extensions to the right. This
yields eventual periodicity of potentials with the simple finite decomposition
property and absolutely continuous spectrum.

Here is the main result of this section.

ProrosiTION 4.3: Given d > 2, a minimal translation flow
Ro>2z+—w+racTd fe C(T?), and ¢ > 0, there exists fe L>(T%) such
that || f — fllee < € and, for all w € TY, the potential V() = f(w + za) as well
as f/(,) have the simple finite decomposition property and are not eventually
periodic. In particular, the Schrédinger operator in L?(R) with potential V has
purely singular spectrum.

Proof. Tt suffices to show the first statement. The last statement then follows
from the preceding lemma.

Since the given flow is minimal, we can assume without loss of generality that
the function f yields aperiodic potentials V(z) = f(w+za) (otherwise use a frac-
tion of the given ¢ to perturb f within C(T?) in order to ensure this property).
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For the given ¢ > 0, let us now consider a sequence of partitions P. , of T¢
into finitely many boxes (parallelepipeds) of the following form:

d—1
By = {7+thej+tdoz 0<tj<ljfor1<j< d},
j=1
where v € T? and £ = ({1, ...,0q) with 0 < f1,...,¢;3 < 1. Here e; denotes the
vector that has a 1 as its j-th component and only 0’s otherwise.

We require two properties from these partitions. These two properties may
be satisfied since f is uniformly continuous and the translation flow is minimal.
First we ask that for every n and every box B, ¢ belonging to P ,,, the variation
of f on B, is less than /2, that is,

€

(4.1) S flw) = oo flw) <,

Second, letting d. , denote the maximum of |||~ taken over all boxes B, ¢ in
the partition P; ,,, we require that 6., — 0 as n — oo.

Note that once the translation flow enters such a box B, ¢, then it spends
exactly ¢4 time units in the box before it leaves it again. This is true for each
entry into the box, no matter where the entry happens.

Let us now define a function f., € L>(T?) as follows. On each box B,
belonging to P: j,, fen takes values in the interval

. e 1 (e 1
L pe) —min{l b s f)4min{l )},
and moreover the value of f., at the point v + Zj;ll t;e; + tqar depends only
on tg and is independent of ¢1,...,t4_1.2 Finally we require the dependence
of f.n, on ty to be continuous and non-constant.®> Such a selection is clearly
possible since the interval of allowed values is non-degenerate. Moreover, by

construction we have

(4.2) 1f = femllos <e.

Now we claim that there is an n so that the statement of the proposition
holds for f = fen. Assume this fails, and we have that in fact for every n,
the potential V; ,,(x) = f-n(w + za) or the potential V; ,(—x) is eventually

2 This will imply the finite decomposition property below.
3 We can make it even more regular if needed, such as the function taking any value only
a finite number of times. This will then imply the simple finite decomposition property.
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periodic or does not have the simple finite decomposition property. Now, clearly,
these potentials have the finite decomposition property by construction, and the
simplicity of the finite decomposition property of the potential follows by [14,
Proposition 3.5] and the local non-constancy aspect of our construction. Thus,
for each n the potential V. ,, or V, ,,(—-) must be eventually periodic. Restricting
attention to a subsequence we can assume without loss of generality that V ,,(z)
must be eventually periodic for every n. Note that the V., are bounded and
measurable, but in general discontinuous. These eventually periodic functions
converge (by construction) uniformly to the function V(z) = f(w + z«), which
is clearly almost periodic, and hence must be limit-periodic due to Corollary 2.2.
But since it is manifestly quasi-periodic as well, it must therefore be periodic
by [3, Corollary A.1.4]; contradiction (by our initial step).

Remark 4.4: In the proposition above, once we know that the potential
V(z) = f(w+za) and V(—-) have the simple finite decomposition property
and are not eventually periodic, these properties are inherited by any non-zero
multiple of the potential. In particular it then also follows that, for every A > 0,
the Schrodinger operator in L2(R) with potential AV has purely singular spec-

trum.

5. Closing the jumps

We saw in Proposition 4.3 that by approximating a given continuous sampling
function with a discontinuous sampling function, we can destroy the absolutely
continuous spectrum of the associated operator. The approximation is with
respect to the || - || norm. However, we wish to identify a continuous sampling
function that is close to the original one, for which the absolutely continuous
spectrum is empty. A second approximation is therefore necessary to close the
jumps.

Clearly, the discontinuous function (with the desired property) cannot be
approximated by a continuous function in the |||

o norm. However, it is possible
to approximate it in the || - [[; norm. This shows why the semi-continuity result
given by Lemma 3.2 is relevant. Moreover, since the limit function has a zero
value and the values are non-negative, the semi-continuity result becomes in
effect a continuity result in the setting relevant to this discussion.

The following lemma implements this two-step approximation:
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LEMMA 5.1: For f € C(T?) and 0 < ¢,0, R, A < oo, there exists g € C(T?)
such that ||f — g|lec <€, Mgr(g) <4, and fOA Mpr(Ag)dX < 6.

Proof. Given f € C(T%) and 0 < ¢,5,R,A < oo, Proposition 4.3 yields

an f € L®(T?) with ||f — fleo < 5 and Mg(f) =0, as well as (cf. Remark 4.4)

M(Af) =0 for every A > 0.
Let us mollify f (via the mollifiers used in the proof of Proposition 2.1) to
produce f, € C(T%) with

lim ||f, — f]1 =0
n—oo
and

sup || fn — flloo < &
nEZ+

By the non-negativity of the quantities in question, the vanishing limits, and
the semi-continuity properties from Lemma 3.2, it follows that

lim Mg(f,) =0

n—r00

and
A

lim [ Mg(\f,)d\ = 0.

n—oo 0

Thus, for n large enough, g = f, has the desired properties.

6. Proof of the main results

In this section we prove the main results, Theorems 1.1 and 1.3. The proofs are
analogous to the corresponding proofs in [2]. Since they are very short, we give
the details for the reader’s convenience.

Proof of Theorem 1.1. For 0 < §, R < 0o, we define
Mps = {f € C(T% : Mg(f) < 5}
By Lemma 3.2, Mp s is open, and by Lemma 5.1, Mg 5 is dense. Thus,

(€O : Sulf) =0} = () M,

nely

is a dense Gy set, as claimed.
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Proof of Theorem 1.3. For 0 < §, R, A < 0o, we define

Mg s(A) = {f e C(T?) : /OA Mp(\f)d\ < 5}.

By Lemma 3.2, Mg 5(A) is open, and by Lemma 5.1, Mg 5(A) is dense. Thus,

{f € C(T) : Tac(\f) = 0 for ae. A>0} = (] M, 1 (n)

neZy

is a dense Ggs-set, as claimed.
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