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ABSTRACT

We show that a generic quasi-periodic Schrödinger operator in L2(R) has

purely singular spectrum. That is, for any minimal translation flow on

a finite-dimensional torus, there is a residual set of continuous sampling

functions such that for each of these sampling functions, the Schrödinger

operator with the resulting potential has empty absolutely continuous

spectrum.
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1. Introduction

In this paper we consider Schrödinger operators

(1.1) [Hψ](x) = −ψ′′(x) + V (x)ψ(x)

in L2(R) with quasi-periodic potentials

(1.2) V (x) = f(ω + xα).

Here, ω, α ∈ T
d = R

d/Zd for some d ∈ Z+, f ∈ C(Td) real-valued, and x ∈ R.

The case where V is periodic is classical and well understood, and hence we will

primarily focus on the aperiodic case. This necessarily means that d ≥ 2 and

it also places some restrictions on α and f . We will assume that α is such that

the translation flow in question is minimal (i.e., all orbits are dense) to ensure

that the torus dimension d is chosen appropriately, and moreover f needs to be

non-constant to avoid periodicity.

The spectral properties of operator of the form (1.1) with potentials of the

form (1.2) have been studied intensively since the 1980’s, with many major ad-

vances occurring in the past two decades. Much of this work has been reviewed

in several recent survey papers, including [5, 6, 11, 12, 16]. We should point

out, however, that some of these survey papers discuss the discrete analogs of

these operators, which act in �2(Z) as

[H(d)ψ](n) = ψ(n+ 1) + ψ(n− 1) + V (d)(n)ψ(n)

with

V (d)(n) = f(ω + nα),

but many results exist in both settings.

There are, of course, some notable exceptions. One of the most important

exceptions is that Avila’s global theory for discrete one-frequency quasi-periodic

Schrödinger operators with analytic sampling functions [1] does not yet have a

continuum counterpart. In this paper we will address another result, which is

known in the discrete case, but whose continuum counterpart is desirable to have

because of recent progress on the Deift conjecture, which makes a connection

with continuum quasi-periodic Schrödinger operators.

The Deift conjecture [7, 8] states that the KdV equation with almost periodic

initial data admits global solutions that are almost periodic in (space and) time.

The conjecture has been proved under suitable assumptions [4, 9]. These results,

and really their proofs, need that the initial data, when considered as potentials,
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give rise to Schrödinger operators with absolutely continuous spectrum. It was

therefore pointed out in [4] that the assumptions will likely fail generically in a

suitable sense.

Concretely, the abstract sufficient conditions for the Deift conjecture to hold

have been verified for suitable classes of quasi-periodic functions of the form

(1.2); see [4]. On the other hand, for discrete quasi-periodic Schrödinger oper-

ators, it is known [2] that a generic quasi-periodic potential will give rise to a

Schrödinger operator with empty absolutely continuous spectrum. One should

therefore expect that also in the continuum case, which is the one relevant to the

study of the KdV equation and the Deift conjecture, the absolutely continuous

spectrum will be empty for a generic quasi-periodic potential.

The purpose of this paper is to prove this statement:

Theorem 1.1: Given d ≥ 2 and a minimal translation flow on Td,

R � x �→ ω + xα ∈ T
d, there is a dense Gδ-set S ⊆ C(Td) such that for every

f ∈ S, the Schrödinger operator in L2(R) with potential

V (x) = f(ω + xα)

has purely singular spectrum.

Remarks 1.2: (a) The minimality of the flow is a property of α ∈ Td, and the

result holds for any such fixed α. The set S will then depend on the choice of α.

(b) There is no quantifier on ω ∈ Td in the statement of the result, even

though the potential V depends on it. This is due to the constancy of the

absolutely continuous spectrum in ω, which is a result of Last and Simon [17,

Theorem 1.5].

(c) This result shows that there is a generic obstruction to an extension of

the BDGL approach [4] or the EVY approach [9] to the Deift conjecture [7, 8].

One can also consider one-parameter families of potentials and operators by

varying the coupling constant:

Theorem 1.3: Given d ≥ 2 and a minimal translation flow on Td,

R � x �→ ω + xα ∈ Td, there is a dense Gδ-set S ⊆ C(Td) such that for ev-

ery f ∈ S and Lebesgue almost every λ > 0, the Schrödinger operator in L2(R)

with potential

V (x) = λf(ω + xα)

has purely singular spectrum.
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2. Preliminaries

2.1. Discontinuous Periodic Functions Having Limit-Periodic Limits.

Recall that a bounded uniformly continuous function on R is called almost

periodic if for any ε > 0 the set of t ∈ R with ‖f − f(· − t)‖∞ < ε is relatively

dense. A bounded uniformly continuous function on R is called limit-periodic

if it is a uniform limit of continuous periodic functions. But what if we have

a uniformly convergent sequence of discontinuous periodic functions? Can the

limit be limit-periodic? Clearly, we need to assume at least the continuity of

the limit, but what else is needed?

The following statement is likely well known, but since it will play a role in

the proof of our main result, we include its short proof for the convenience of

the reader.

Proposition 2.1: Suppose f ∈ C(R) is uniformly continuous and, for n ≥ 1,

fn ∈ L∞(R) is periodic. If ‖fn − f‖∞ → 0 as n → ∞, then f is limit-periodic.

Proof. The issue is that the fn may be discontinuous and hence the remedy

will be to make them continuous via mollification and then to observe that

the continuous mollified functions still converge uniformly to f . Compare [10,

Section C.4] for the definitions and general results below.

Explicitly, define η ∈ C∞(R) by

η(x) =

⎧⎨
⎩C exp( 1

|x|2−1 ) if |x| < 1,

0 if |x| ≥ 1,

where C > 0 is chosen so that
∫
R
η(x) dx = 1. Then, for ε > 0, set

ηε(x) =
1

ε
η
(x
ε

)
and, for n ≥ 1, f ε

n = ηε ∗ f , that is,

fε
n(x) =

∫
R

ηε(x − y)fn(y) dy.

By the uniform continuity of f , Theorem 6 in [10, Section C.4] and its proof

(especially the proof of part (iii)) imply that for each n ≥ 1 and ε > 0, f ε
n is

smooth (and in particular continuous) and ‖fε
n−fn‖∞ → 0 as ε → 0. Thus, the

statement follows by diagonalization, that is, for a suitable sequence εn → 0, the

functions fεn
n are continuous, periodic (by construction) and converge uniformly

to f , showing that f is indeed limit-periodic.
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A function q on R is called eventually periodic if there exists a periodic

function p with p(x) = q(x) for all sufficiently large x ∈ R.

Corollary 2.2: Suppose f ∈ C(R) is almost periodic and, for n ≥ 1,

fn ∈ L∞(R) is eventually periodic. If ‖fn − f‖∞ → 0 as n → ∞, then f is

limit-periodic.

Proof. Let ε > 0 be arbitrary. By the preceding proposition it suffices to find a

periodic p ∈ L∞(R) with ‖f − p‖ < ε.

By assumption there exists an eventually periodic q ∈ L∞(R) (viz q = fm for

sufficiently large m) with

‖f − q‖ < ε.

As q is eventually periodic, there exists a periodic p ∈ L∞(R) with p(x) = q(x)

for all sufficiently large x. Let P > 0 with p(x) = p(x+ P ) for all x ∈ R.

As f is almost periodic, there exists a sequence (tn) in R with ‖ftn−f‖∞ → 0

as n → ∞. Here, we set gt := g(· − t). There exist then unique kn ∈ N and

0 ≤ sn < P with tn = knP + sn. Restricting attention to a subsequence if

necessary, we can then assume without loss of generality that sn → s. As f is

uniformly continuous, we can even assume without loss of generality sn = s for

all n. To simplify notation we will assume s = 0.

Hence, f − p is the pointwise limit of f − qtn for n → ∞. This gives

‖f − p‖∞ ≤ lim sup
n

‖f − qtn‖∞
≤ lim sup

n
(‖f − ftn‖∞ + ‖ftn − qtn‖∞)

= (lim
n

‖f − ftn‖∞) + lim sup
n

‖ftn − qtn‖∞
= ‖f − q‖∞ < ε.

Here, we used the invariance of ‖ · ‖∞ under translation in the penultimate

step.

2.2.Transfer Matrices, Lyapunov Exponents, and Weyl–Titchmarsh

Functions. This subsection recalls important and well-known concepts,

mainly to fix notation.

Fixing d ≥ 2 and a minimal translation flow on Td, R � x �→ ω + xα ∈ Td,

as well as a real-valued sampling function f ∈ C(Td), the transfer matrices are
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defined via

d

dx
Mf(x,E, ω) = Af (E,ω + xα)Mf (x,E, ω),

Mf(0, E, ω) = I,

for x ∈ R, E ∈ C, ω ∈ T
d, where

Af (E,ω) =

(
0 1

f(ω)− E 0

)
.

These transfer matrices are defined in such a way that u solves the differential

equation

(2.1) −u′′(x) + f(ω + xα)u(x) = Eu(x)

if and only if it solves (
u(x)

u′(x)

)
= Mf (x,E, ω)

(
u(0)

u′(0)

)
.

By the subadditive ergodic theorem, there is a number L(E) ≥ 0, called the

Lyapunov exponent, so that

Lf (E) = lim
|x|→∞

1

|x| log ‖Mf(x,E, ω)‖

for almost every ω ∈ T
d.

The map E �→ Lf (E) is real-symmetric and subharmonic. Moreover, we have

(see [15, Lemma 3.2 and (49)–(50)])

(2.2) Lf (E) = −
∫
Td

Rem+,f,ω(E) dω

for E ∈ C+, the upper half-plane, where m+,f,ω is the Weyl–Titchmarsh m-

function on the right half-line associated with the potential V (x) = f(ω+xα),

defined by

m+,f,ω(E) =
u′
+,f,ω(0)

u+,f,ω(0)
,

where u+,f,ω is a solution of (2.1) that is square-integrable at +∞.1

1 To see that such a solution exists, observe that E �∈ σ(H) by self-adjointness, and hence

ũ+,f,ω := (H − E)χ(−1,0) ∈ L2(R). But by definition ũ+,f,ω solves (2.1) on (0,∞).

Thus, keeping it unchanged on the right half-line and extending it to a solution on R by

solving (2.1), we obtain u+,f,ω.
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3. A semi-continuity result

In this section we discuss the continuum analog of the Avila–Damanik semi-

continuity result [2, Lemma 1]. The general structure of the proof will be the

same, and hence we will focus mostly on the aspects that are different between

the discrete case and the continuum case.

Set

MR(f) = Leb({E ∈ R ∩ [−R,R] : Lf(E) = 0}).
Remark 3.1: By the Ishii–Kotani–Pastur Theorem [15, Theorem 4.7] and the

Last–Simon Theorem [17, Theorem 1.5], we have that MR(f) = 0 if and only if

the Schrödinger operator in L2(R) with potential V (x) = f(ω+ xα) has purely

singular spectrum in the energy interval [−R,R] for every ω ∈ T
d.

Here is the continuum analog of [2, Lemma 1]:

Lemma 3.2: For all choices of r, R,Λ > 0, the maps

(Br(L
∞(Td)), ‖ · ‖1) → [0,∞), f �→ MR(f)(3.1)

and

(Br(L
∞(Td)), ‖ · ‖1) → [0,∞), f �→

∫ Λ

0

MR(λf) dλ(3.2)

are upper semi-continuous. Here, Br denotes the closed ball with radius r in

the essential-supremum norm.

Proof. It is enough to show that (3.1) is upper semi-continuous; the upper

semi-continuity of (3.2) then follows from that via Fatou’s lemma.

The proof of the upper semi-continuity of (3.1) proceeds in the same way as

in [2]. Assuming that the upper semi-continuity of (3.1) fails for some choice of

r, R,Λ > 0, there must be fn, f ∈ L∞(Td) such that

(i) fn → f in L1 and pointwise as n → ∞,

(ii) ‖fn‖∞ ≤ r for every n ≥ 1 and ‖f‖∞ ≤ r,

(iii) lim infMR(fn) ≥ MR(f) + ε for some ε > 0.

By (i) and (ii), we have pointwise convergence of the m-functions m+,f,ω

in C+ for almost every ω ∈ Td (this follows from a modification of the argument

given in [13]). Thus, by (2.2), (ii), and dominated convergence, the associated

Lyapunov exponents Lfn converge pointwise in C+ to Lf .
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Next, consider the region U in C+ bounded by the equilateral triangle T with

sides I, J,K, where I = [−R,R] ⊂ R. From here the proof proceeds verbatim

as in [2], using the Schwarz–Christoffel formula, as well as the fact that the

Lyapunov exponent is harmonic in C+ and subharmonic (and in particular

upper semi-continuous) globally, to derive a contradiction to (iii).

4. Small perturbations that destroy the absolutely continuous spec-

trum

In this section we discuss how arbitrarily small perturbations can destroy the

absolutely continuous spectrum. Here, we use results of [14].

We first recall some basic concepts from [14]. A piece is a pair (W, I) con-

sisting of an interval I ⊆ R with length |I| > 0 (with |I| = ∞ allowed) and a

locally bounded function W on R supported on I. We abbreviate pieces by W I .

Without restriction, we may assume that min I = 0. A finite piece is a piece

of finite length. The concatenation W I = W I1
1 | W I2

2 | · · · of a finite or

countable family (W
Ij
j )j∈N , with N = {1, 2, . . . , N} (for N finite) or N = N

(for N infinite), of finite pieces is defined by

I =

[
0,

∑
j∈N

|Ij |
]
,

W = W1 +
∑

j∈N, j≥2

Wj

(
· −

( j−1∑
k=1

|Ik|
))

.

In this case we say that W I is decomposed by (W
Ij
j )j∈N .

Let now V be a locally bounded function on R. We say that V has the finite

decomposition property if there exist a finite set P of finite pieces and x0 ∈ R

such that (1[x0,∞)V ) is a translate of a concatenation W I1
1 | W I2

2 | · · · with

W
Ij
j ∈ P for all j ∈ N. We say that V has the simple finite decomposition

property if it has the f.d.p. with a decomposition such that there is � > 0 with

the following property: Assume that the two pieces

W
I−m

−m | · · · | W I0
0 | W I1

1 | · · · | W Im1
m1 and W

I−m

−m | · · · | W I0
0 | UJ1

1 | · · · | UJm2
m2

occur in the decomposition of V with a common first part W
I−m

−m | · · · | W I0
0 of

length at least � and such that

1[0,�)(W
I1
1 | · · · | W Im1

m1 ) = 1[0,�)(U
J1
1 | · · · | UJm2

m2 ),
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whereW
Ij
j , UJk

k are pieces from the decomposition (in particular, all belong to P
and start at 0) and the latter two concatenations are of lengths at least �. Then

W I1
1 = UJ1

1 .

The relevance of the simple finite decomposition property comes from the

following result from [18] (see [14] as well).

Lemma 4.1 (Theorem 7.1 of [18]): Let W be a bounded measurable function

on R. Assume that both W and W (−·) have the simple finite decomposi-

tion property and are not eventually periodic. Then, the Schrödinger operator

HWψ = −ψ′′(x)+W (x)ψ(x) does not have any absolutely continuous spectrum.

Remark 4.2: The lemma provides an important step in our overall argument

as it connects the desired spectral property (absence of absolutely continuous

spectrum) with a combinatorial feature of the potential. This connection was

established in [18] as an application of Remling’s work on absolutely continuous

spectrum [19, 20]. Remling’s work shows that the presence of absolutely contin-

uous spectrum implies that (sufficiently large) pieces of the potential determine

extensions, say to the right, of fixed length up to a small error. For potentials

with the simple finite decomposition property, this error can be shown to vanish

altogether once it is small enough. This gives that (sufficiently long) pieces of

the potential actually completely determine their extensions to the right. This

yields eventual periodicity of potentials with the simple finite decomposition

property and absolutely continuous spectrum.

Here is the main result of this section.

Proposition 4.3: Given d ≥ 2, a minimal translation flow

R � x �→ ω + xα ∈ Td, f ∈ C(Td), and ε > 0, there exists f̃ ∈ L∞(Td) such

that ‖f − f̃‖∞ < ε and, for all ω ∈ Td, the potential Ṽ (x) = f̃(ω + xα) as well

as Ṽ (−·) have the simple finite decomposition property and are not eventually

periodic. In particular, the Schrödinger operator in L2(R) with potential Ṽ has

purely singular spectrum.

Proof. It suffices to show the first statement. The last statement then follows

from the preceding lemma.

Since the given flow is minimal, we can assume without loss of generality that

the function f yields aperiodic potentials V (x)=f(ω+xα) (otherwise use a frac-

tion of the given ε to perturb f within C(Td) in order to ensure this property).
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For the given ε > 0, let us now consider a sequence of partitions Pε,n of Td

into finitely many boxes (parallelepipeds) of the following form:

Bγ,� =

{
γ +

d−1∑
j=1

tjej + tdα : 0 ≤ tj < �j for 1 ≤ j ≤ d

}
,

where γ ∈ Td and � = (�1, . . . , �d) with 0 < �1, . . . , �d < 1. Here ej denotes the

vector that has a 1 as its j-th component and only 0’s otherwise.

We require two properties from these partitions. These two properties may

be satisfied since f is uniformly continuous and the translation flow is minimal.

First we ask that for every n and every box Bγ,� belonging to Pε,n, the variation

of f on Bγ,� is less than ε/2, that is,

(4.1) sup
ω∈Bγ,�

f(ω)− inf
ω∈Bγ,�

f(ω) <
ε

2
.

Second, letting δε,n denote the maximum of ‖�‖∞ taken over all boxes Bγ,� in

the partition Pε,n, we require that δε,n → 0 as n → ∞.

Note that once the translation flow enters such a box Bγ,�, then it spends

exactly �d time units in the box before it leaves it again. This is true for each

entry into the box, no matter where the entry happens.

Let us now define a function fε,n ∈ L∞(Td) as follows. On each box Bγ,�

belonging to Pε,n, fε,n takes values in the interval[
inf

ω∈Bγ,�

f(ω)−min
{ ε

8
,
1

n

}
, sup
ω∈Bγ,�

f(ω) + min
{ ε

8
,
1

n

}]
,

and moreover the value of fε,n at the point γ +
∑d−1

j=1 tjej + tdα depends only

on td and is independent of t1, . . . , td−1.
2 Finally we require the dependence

of fε,n on td to be continuous and non-constant.3 Such a selection is clearly

possible since the interval of allowed values is non-degenerate. Moreover, by

construction we have

(4.2) ‖f − fε,n‖∞ < ε.

Now we claim that there is an n so that the statement of the proposition

holds for f̃ := fε,n. Assume this fails, and we have that in fact for every n,

the potential Vε,n(x) = fε,n(ω + xα) or the potential Vε,n(−x) is eventually

2 This will imply the finite decomposition property below.
3 We can make it even more regular if needed, such as the function taking any value only

a finite number of times. This will then imply the simple finite decomposition property.
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periodic or does not have the simple finite decomposition property. Now, clearly,

these potentials have the finite decomposition property by construction, and the

simplicity of the finite decomposition property of the potential follows by [14,

Proposition 3.5] and the local non-constancy aspect of our construction. Thus,

for each n the potential Vε,n or Vε,n(−·) must be eventually periodic. Restricting

attention to a subsequence we can assume without loss of generality that Vε,n(x)

must be eventually periodic for every n. Note that the Vε,n are bounded and

measurable, but in general discontinuous. These eventually periodic functions

converge (by construction) uniformly to the function V (x) = f(ω+ xα), which

is clearly almost periodic, and hence must be limit-periodic due to Corollary 2.2.

But since it is manifestly quasi-periodic as well, it must therefore be periodic

by [3, Corollary A.1.4]; contradiction (by our initial step).

Remark 4.4: In the proposition above, once we know that the potential

Ṽ (x) = f̃(ω + xα) and Ṽ (−·) have the simple finite decomposition property

and are not eventually periodic, these properties are inherited by any non-zero

multiple of the potential. In particular it then also follows that, for every λ > 0,

the Schrödinger operator in L2(R) with potential λṼ has purely singular spec-

trum.

5. Closing the jumps

We saw in Proposition 4.3 that by approximating a given continuous sampling

function with a discontinuous sampling function, we can destroy the absolutely

continuous spectrum of the associated operator. The approximation is with

respect to the ‖ · ‖∞ norm. However, we wish to identify a continuous sampling

function that is close to the original one, for which the absolutely continuous

spectrum is empty. A second approximation is therefore necessary to close the

jumps.

Clearly, the discontinuous function (with the desired property) cannot be

approximated by a continuous function in the ‖·‖∞ norm. However, it is possible

to approximate it in the ‖ · ‖1 norm. This shows why the semi-continuity result

given by Lemma 3.2 is relevant. Moreover, since the limit function has a zero

value and the values are non-negative, the semi-continuity result becomes in

effect a continuity result in the setting relevant to this discussion.

The following lemma implements this two-step approximation:
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Lemma 5.1: For f ∈ C(Td) and 0 < ε, δ, R,Λ < ∞, there exists g ∈ C(Td)

such that ‖f − g‖∞ < ε, MR(g) < δ, and
∫ Λ

0 MR(λg) dλ < δ.

Proof. Given f ∈ C(Td) and 0 < ε, δ, R,Λ < ∞, Proposition 4.3 yields

an f̃ ∈ L∞(Td) with ‖f − f̃‖∞ < ε
2 and MR(f̃) = 0, as well as (cf. Remark 4.4)

M(λf̃) = 0 for every λ > 0.

Let us mollify f̃ (via the mollifiers used in the proof of Proposition 2.1) to

produce fn ∈ C(Td) with

lim
n→∞ ‖fn − f̃‖1 = 0

and

sup
n∈Z+

‖fn − f‖∞ < ε.

By the non-negativity of the quantities in question, the vanishing limits, and

the semi-continuity properties from Lemma 3.2, it follows that

lim
n→∞MR(fn) = 0

and

lim
n→∞

∫ Λ

0

MR(λfn) dλ = 0.

Thus, for n large enough, g = fn has the desired properties.

6. Proof of the main results

In this section we prove the main results, Theorems 1.1 and 1.3. The proofs are

analogous to the corresponding proofs in [2]. Since they are very short, we give

the details for the reader’s convenience.

Proof of Theorem 1.1. For 0 < δ,R < ∞, we define

MR,δ = {f ∈ C(Td) : MR(f) < δ}.

By Lemma 3.2, MR,δ is open, and by Lemma 5.1, MR,δ is dense. Thus,

{f ∈ C(Td) : Σac(f) = ∅} =
⋂

n∈Z+

Mn, 1
n

is a dense Gδ set, as claimed.
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Proof of Theorem 1.3. For 0 < δ,R,Λ < ∞, we define

MR,δ(Λ) =

{
f ∈ C(Td) :

∫ Λ

0

MR(λf) dλ < δ

}
.

By Lemma 3.2, MR,δ(Λ) is open, and by Lemma 5.1, MR,δ(Λ) is dense. Thus,

{f ∈ C(Td) : Σac(λf) = ∅ for a.e. λ > 0} =
⋂

n∈Z+

Mn, 1n
(n)

is a dense Gδ-set, as claimed.

References

[1] A. Avila, Global theory of one-frequency Schrödinger operators, Acta Mathematica 215

(2015), 1–54.

[2] A. Avila and D. Damanik, Generic singular spectrum for ergodic Schrödinger operators,

Duke Mathematical Journal 130 (2005), 393–400.

[3] J. Avron and B. Simon, Almost periodic Schrödinger operators. I. Limit periodic poten-

tials, Communications in Mathematical Physics 82 (1981), 101–120.

[4] I. Binder, D. Damanik, M. Goldstein and M. Lukic, Almost periodicity in time of solu-

tions of the KdV equation, Duke Mathematical Journal 167 (2018), 2633–2678.

[5] D. Damanik, Lyapunov exponents and spectral analysis of ergodic Schrödinger operators:

a survey of Kotani theory and its applications, in Spectral Theory and Mathematical

Physics: a Festschrift in Honor of Barry Simon’s 60th Birthday, Proceedings od Symposia

in Pure Mathematics, Vol. 76, American Mathematical Society, Providence, RI, 2007,

pp. 539–563.

[6] D. Damanik, Schrödinger operators with dynamically defined potentials, Ergodic Theory

and Dynamical Systems 37 (2017), 1681–1764.

[7] P. Deift, Some open problems in random matrix theory and the theory of integrable

systems, in Integrable Systems and Random Matrices, Contemporary Mathematics,

Vol. 458, American Mathematical Society, Providence, RI, 2008, pp. 419–430.

[8] P. Deift, Some open problems in random matrix theory and the theory of integrable

systems. II, SIGMA. Symmetry, Integrability and Geometry. Methods and Applications

13 (2017), Article no. 016.

[9] B. Eichinger, T. VandenBoom and P. Yuditskii, KdV hierarchy via Abelian coverings

and operator identities, Transactions of the American Mathematical Society 6 (2019),

1–44.

[10] L. Evans, Partial Differential Equations, Graduate Studies in Mathematics, Vol. 19,

American Mathematical Society, Providence, RI, 1998.

[11] S. Jitomirskaya, Ergodic Schrödinger operators (on one foot), in Spectral Theory and

Mathematical Physics: a Festschrift in Honor of Barry Simon’s 60th Birthday, Procedings

of Symposia in Pure Mathematics, Vol. 76, American Mathematical Society, Providence,

RI, 2007, pp. 613–647.

[12] S. Jitomirskaya and C. Marx, Dynamics and spectral theory of quasi-periodic Schrödinger

type operators, Ergodic Theory and Dynamical Systems 37 (2017), 2353–2393.



796 D. DAMANIK AND D. LENZ Isr. J. Math.

[13] R. Johnson and J. Moser, Erratum: “The rotation number for almost periodic potentials”

Communications in Mathematical Physics 90 (1983), 317–318.

[14] S. Klassert, D. Lenz and P. Stollmann, Delone measures of finite local complexity and

applications to spectral theory of one-dimensional continuum models of quasicrystals,

Discrete and Continuous Dynamical Systems 29 (2011), 1553–1571.

[15] S. Kotani, Generalized Floquet theory for stationary Schrödinger operators in one di-

mension, Chaos, Solitons &Fractals 8 (1997), 1817–1854.

[16] S. Kotani, Spectral problems of ergodic Schrödinger operators, Chinese Journal of Ap-

plied Probability and Statistics 31 (2015), 596–661.

[17] Y. Last and B. Simon, Eigenfunctions, transfer matrices, and absolutely continuous spec-

trum of one-dimensional Schrödinger operators, Inventiones Mathematicae 135 (1999),

329–367.

[18] D. Lenz, C. Seifert and P. Stollmann, Zero measure Cantor spectra for continuum one-

dimensional quasicrystals, Journal of Differential Equations 256 (2014), 1905–1926.

[19] C. Remling, The absolutely continuous spectrum of one-dimensional Schrödinger opera-

tors, Mathematical Physics, Analysis and Geometry 10 (2007), 359–373.

[20] C. Remling, The absolutely continuous spectrum of Jacobi matrices, Annals of Mathe-

matics 174 (2011), 125–171.


