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Abstract. We consider one-dimensional Schrödinger operators with almost

periodic potentials and δ-interactions supported on an almost periodic point
set and with almost periodic coefficients. For operators of this kind we intro-

duce a rotation number in the spirit of Johnson and Moser.

1. Introduction

In this paper, we consider the Schrödinger operator

(1.1) Hq,V,Γψ(x) := −ψ′′(x) +

(
q(x) +

∑
i∈Z

viδ(x− xi)

)
ψ(x), x ∈ R,

where δ(x−xi) is the Dirac δ-function at xi, q(x) is a Bohr almost periodic function,
V = {vi}i∈Z is an almost periodic sequence, and Γ = {xi}i∈Z is a discrete point set
in R. If the point set possesses some sort of recurrence, such as almost periodicity
in a sense to be defined in detail below, our goal is to introduce the rotation number
in the spirit of Johnson and Moser [8] for (1.1).

Let λ ∈ R. The equation Hq,V,Γψ = λψ can be written as the following system.

(1.2)


d

dx

(
ψ′

ψ

)
=

(
0 q(x)− λ
1 0

)(
ψ′

ψ

)
, x ∈ R \ Γ,(

ψ′(xi+)
ψ(xi+)

)
=

(
1 vi
0 1

)(
ψ′(xi−)
ψ(xi−)

)
, x = xi ∈ Γ.

The rotation number measures the average number of times the vector (ψ′, ψ)T

rotates around the origin per unit length. The existence of this limit and its uni-
formity properties are the main objective here. It is clear from (1.2) that the
δ-interactions cause jumps in ψ′ and hence one needs to exercise care in properly
defining the limit in question. Recently, Qi and Yuan studied piecewise continuous
almost periodic/automorphic solutions to (1.2) and related problems; see [15, 16].

The rotation number is a fundamental object in the study of one-dimensional
Schrödinger operators with almost periodic potentials (i.e., in the case vi ≡ 0); see
the foundational work [8]. The key connections to the spectral analysis of these
operators include a description of the spectrum as the set of points of non-constancy
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of the rotation number, as well as a canonical gap labeling by assigning the constant
value the rotation number takes in a gap of the spectrum and showing that these
gap labels must belong to the frequency module. The rotation number is intimately
connected to another fundamental object: the integrated density of states. For
example, one can see by means of oscillation theory that one is a constant multiple
of the other. We refer the reader to Avron-Simon [1] for a foundational discussion
of the integrated density of states associated with one-dimensional Schrödinger
operators with almost periodic potentials; see also [4]. Besides the rotation number
and the integrated density of states, the Lyapunov exponent is another fundamental
object in the study of these operators. The celebrated Thouless formula links the
integrated density of states and the Lyapunov exponent; see the survey by Damanik
[2] and references therein.

In this paper we will focus on the dynamical aspects of the definition of the
rotation number in our generalized setting and defer the discussion of the spectral
aspects to a future publication. The primary issues we need to address are the
discontinuity of the derivative of the solutions, which is resolved by the choice
of a suitable homotopy, and the validity of a unique ergodicity statement and a
corresponding ergodic theorem.

This paper is dedicated to the memory of Russell Johnson. Both of us have
been inspired by Johnson’s work, and in particular by the landmark paper [8],
which serves as the motivation and the starting point of this paper. Beyond his
important mathematical work, Johnson always shined bright through his kindness
and humility. He was such a pleasure to be around and to interact with. He is
being missed!

2. Almost Periodicity

In this section we use a unified approach to introduce almost periodic functions,
almost periodic sequences, and almost periodic point sets.

Let (Y, ‖ · ‖) be a complete space. We will denote by K either Z or R, depending
on the setting. We consider a K action on Y by shifts and denote for y ∈ Y and
τ ∈ K the corresponding shifted element in Y by y · τ .

This shift action satisfies the following two conditions:

• group structure:

(2.1) y · 0 = y, and y · (τ1 + τ2) = (y · τ1) · τ2, for all y ∈ Y, τ1, τ2 ∈ K,

• isometry:

(2.2) ‖y1 · τ − y2 · τ‖ = ‖y1 − y2‖, for all τ ∈ K, yi ∈ Y, i = 1, 2,

• uniform continuity: for any ε > 0, there exists δ = δε > 0 such that

(2.3) ‖y · τ − y‖ < ε, for all y ∈ Y, τ ∈ K with |τ | < δ.

Note that when K = Z, (2.3) is trivial. We say that Λ ⊂ K is relatively dense
(with window size `) if there exists ` ∈ K+ such that

Λ ∩ [a, a+ `] 6= ∅ ∀ a ∈ K.

Definition 2.1. We say that y ∈ Y is almost periodic if one of the following
conditions holds:

i): for any ε > 0, P(y, ε) := {τ ∈ K : ‖y · τ − y‖ < ε} is relatively dense in K;
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ii): the hull of y defined by

Ey := {y · τ : τ ∈ K}
(Y,‖·‖)

,

is compact;
iii): for any sequence {τ̃n}n∈N ⊂ K, one can extract a subsequence {τn} ⊂ {τ̃n}

such that {y · τn} is convergent in (Y, ‖ · ‖).

The equivalence of these different definitions is well known. For completeness,
we give a proof with the help of the following lemmas from real analysis.

Lemma 2.2. [5] In a metric space (X, d), the following properties are equivalent:

• (X, d) is complete and totally bounded;
• (X, d) is compact;
• any sequence in X has a convergent subsequence.

Lemma 2.3. [5] Let S be a subset of a metric space (X, d). The following properties
are equivalent:

• S is totally bounded;
• the closure of S, denoted by S, is totally bounded.

Theorem 2.4. The conditions i), ii) and iii) in Definition 2.1 are equivalent.

Proof. We will show that i) and ii) are equivalent, and that ii) and iii) are equivalent.

i) =⇒ ii) : By Lemma 2.2 it suffices to show that (Ey, ‖ · ‖) is complete and

totally bounded. Since Ey is closed in the complete space (Y, ‖ · ‖), (Ey, ‖ · ‖) is
complete as well. It follows that we need to prove that (Ey, ‖·‖) is totally bounded.
By Lemma 2.3 it suffices to show that {y · τ : τ ∈ K} is totally bounded. By
Definition 2.1: i), for any ε > 0, P(y, ε/2) is relatively dense in K. Thus, there
exists `ε ∈ K+ such that for any a ∈ K,

P(y, ε/2) ∩ [−a,−a+ `ε] 6= ∅.

Let −a + ba,ε ∈ P(y, ε/2) ∩ [−a,−a + `ε], where ba,ε ∈ [0, `ε] ∩ K depends on the
parameters a and ε. By (2.1) and (2.2), we have

(2.4) ‖y · ba,ε − y · a‖ = ‖y · (−a+ ba,ε)− y‖ < ε/2, ∀ a ∈ K.

By (2.3), for such ε, there exists δε/2 > 0 such that

(2.5) ‖y · τ − y‖ < ε/2, ∀ y ∈ Y, |τ | < δε/2, τ ∈ K.

Thus the interval [0, `ε] can be separated into the following sub-intervals:[
0,
δε/2

2

)
, · · · ,

[
i
δε/2

2
, (i+ 1)

δε/2

2

)
, · · · ,

[[
2`ε
δε/2

]
δε/2

2
, `ε

]
,

where [x] denotes the maximal integer less than x. We take one point from each
sub-interval, denoted by pi,ε ∈ K, if the sub-interval is not empty. Then we collect
these points and construct a finite set F ⊂ {y · τ : τ ∈ K} by

F :=

{
y · pi,ε : i = 0, 1, · · · ,

[
2`ε
δε/2

]}
.

By (2.4) and (2.5), it follows that {y · τ : τ ∈ K} is totally bounded.



4 D. DAMANIK AND Z. ZHOU

ii) =⇒ i) : Since Ey is compact, by Lemma 2.2 and Lemma 2.3, it follows that

{y · τ : τ ∈ K} is totally bounded. This means that for any ε > 0, there exists a
finite subset, denoted by Iε := {τi ∈ K : i = 1, 2, · · · , nε} such that

(2.6) ‖y − y · (−a+ τia)‖ = ‖y · a− y · τia‖ < ε, ∀ a ∈ K,

where τia ∈ Iε depends on the parameter a. Let us denote Lε := max1≤i≤nε |τi|.
Then

−a− Lε ≤ −a+ τia ≤ −a+ Lε, ∀ a ∈ K.
Combining this with (2.6), we have

P(y, ε) ∩ [−a− Lε,−a+ Lε] 6= ∅.
Thus P(y, ε) is relatively dense. Here, `ε = 2Lε.

ii) =⇒ iii) : This is obvious from Lemma 2.2.

iii) =⇒ ii) : Assume that {yn}n∈N ⊂ Ey. Then there exist τn ∈ K such that

(2.7) ‖yn − y · τn‖ < 1/n, ∀ n ∈ N.

For the sequence {y · τn}n∈N, it follows from Definition 2.1: iii) that there exists
a subsequence {nk}k∈N such that {y · τnk} is convergent as k → +∞. Combining
this with (2.7), we obtain that {ynk} ⊂ Ey is convergent as k → +∞. By Lemma
2.2, the assertion follows. �

When (Y, ‖ · ‖) is (Cu(R), ‖ · ‖∞), the space of all bounded and uniformly contin-
uous functions, and the shift is

f · τ := f(·+ τ),

where f ∈ Cu(R) and τ ∈ R, Definition 2.1 gives the characterization of almost
periodic functions. Note that Bohr originally introduced the notion of almost peri-
odic functions on the space of continuous functions. We know that a Bohr almost
periodic function is bounded and uniformly continuous [7]. The reason that we
work on the space Cu(R) is that it is convenient to take use of Definition 2.1. We
denote the space of all almost periodic functions by Cap(R). It is well known that
Cap(R) is a complete space [7].

Similarly, when (Y, ‖ · ‖) is (`∞(R), ‖ · ‖∞), the space of all bounded bi-infinite
sequences, and the shift is

V · τ := {vi+τ}i∈Z,
where V = {vi}i∈Z ∈ `∞(R) and τ ∈ Z, Definition 2.1 defines the almost periodic
sequences. Note that (2.3) is trivial because K = Z. Denote by `∞ap(R) the space
of all almost periodic sequences. It is a complete space as well. The relationship
between almost periodic functions and almost periodic sequences is described in
the following lemma:

Lemma 2.5. [7] If f = f(x) ∈ Cap(R), then {f(i) : i ∈ Z} ∈ `∞ap(R). Conversely,
if V = {vi}i∈Z ∈ `∞ap(R), then there exists f ∈ Cap(R) such that f(i) = vi for all
i ∈ Z.

For a generalization of Lemma 2.5, see [19] in which we can establish a similar
result on almost periodic point sets instead of periodic point sets such as Z. For
almost periodic objects, we may introduce the following important quantity:
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Lemma 2.6. Let f = f(x) ∈ Cap(R). Then the limit

M(f) := lim
x2−x1→+∞

1

x2 − x1

∫ x2

x1

f(x) dx

exists uniformly for all x1, x2 ∈ R. We call it the mean value of f .

Lemma 2.7. Let V = {vi}i∈Z ∈ `∞ap(R). Then the limit

M(V ) := lim
i2−i1→+∞

1

i2 − i1

i2∑
i=i1

vi

exists uniformly for all i1, i2 ∈ Z. We call it the mean value of V .

Now we consider point sets. In order to describe Delone dynamical systems,
Lenz and Stollmann [10] introduced the notion of almost periodic point sets in Rd.
For the general case defined on locally compact abelian groups, see [9, 11]. For the
one-dimensional case and our purpose, we give the following description, which is
somewhat different from what was done in the dissertation by Zhou [19]. Some
part of the dissertation was published in [18, 12].

From now on, we assume that a point set Γ = {xi}i∈Z is discrete in the real line
and satisfies the following requirement:

0 < inf
i∈Z

∆xi ≤ sup
i∈Z

∆xi <∞, ∆xi := xi − xi−1.

Two point sets Γ = {xi} and Γ̂ = {x̂i} are the same if there exists k ∈ Z such that
x̂i = xi+k for all i ∈ Z. Denote by L the space of all point sets in R. It can be
equipped with a metric as follows:

(2.8) dist(Γ1,Γ2) := max
{

˜dist(Γ1,Γ2), ˜dist(Γ2,Γ1)
}
,

where

˜dist(Γ1,Γ2) := sup
i∈Z

min
j∈Z
|x1
i − x2

j | for Γk = {xki }i∈Z ∈ L, k = 1, 2.

The metric dist(·, ·) may be regarded as the Hausdorff metric. Note that the space
(L, dist) is not complete. However, for any given 0 < m ≤M <∞, the set

(2.9) Lm,M :=
{

Γ = {xi}i∈Z : ∆xi ∈ [m,M ] ∀ i ∈ Z
}

is a closed subset in L and then (Lm,M , dist) is a complete space [19]. We have

• L =
⋃

0<m≤M<∞

Lm,M ;

• for Γ1, Γ2 ∈ Lm,M , dist(Γ1,Γ2) ≤M/2;
• when Γk = {xki } ∈ Lm,M , k = 1, 2 satisfy dist(Γ1,Γ2) < m/2, then there

exists i0 ∈ Z such that

(2.10) dist(Γ1,Γ2) = sup
i∈Z
|x1
i − x2

i+i0 |.

Due to the properties above, convergence in (Lm,M , dist) can be characterized
in the following way.

Lemma 2.8. [19] Let Γk = {xki }i∈Z ∈ Lm,M , k ∈ Z+. Then Γk → Γ0 in
(Lm,M , dist) if and only if there exists a sequence {ik} ⊂ Z such that

lim
k→∞

sup
i∈Z
|xki+ik − x

0
i | = 0.
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Let us consider the point sets that include zero and furthermore are such that
x0 = 0. Denote

L0
m,M := {Γ ∈ Lm,M : x0 = 0}.

Obviously, this space is complete as well. Introduce

L0 := {Γ ∈ L : x0 = 0}.

We have

L0 =
⋃

0<m≤M<∞

L0
m,M .

Now we define the shift on L0 in a way that is a little different from, but more
concise than, the way it was done in [19]. For Γ ∈ L0 and k ∈ Z, the shift of Γ is
defined by

(2.11) Γ · k := {x̂i}i∈Z ∈ L0, x̂i := xi+k − xk.

Since Γ ∈ L0, we have

(2.12) Γ · (k1 + k2) = (Γ · k1) · k2.

Then the family of shifts {Γ · k}k∈Z yields a dynamical system on L0, but we do
not have an isometry property like (2.2). In fact, we have the following:

Lemma 2.9. Let k ∈ Z and Γi = {xin}n∈Z ∈ L0, i = 1, 2. Then

(2.13) | dist(Γ1 · k,Γ2 · k)− dist(Γ1,Γ2)| ≤ |x1
k − x2

k|.

Proof. Since Γ1 · k = {x1
n+k − x1

k}n∈Z and Γ2 · k = {x2
h+k − x2

k}h∈Z, we have

|(x1
n+k − x1

k)− (x2
h+k − x2

k)| ≤ |x1
n+k − x2

h+k|+ |x1
k − x2

k|.

This implies that

min
h∈Z
|(x1

n+k − x1
k)− (x2

h+k − x2
k)|

≤ min
h∈Z
|x1
n+k − x2

h+k|+ |x1
k − x2

k|

= min
h∈Z
|x1
n+k − x2

h|+ |x1
k − x2

k|.

Furthermore, we have

˜dist(Γ1 · k,Γ2 · k)

= sup
n∈Z

min
h∈Z
|(x1

n+k − x1
k)− (x2

h+k − x2
k)|

≤ sup
n∈Z

min
h∈Z
|x1
n+k − x2

h|+ |x1
k − x2

k|

= ˜dist(Γ1,Γ2) + |x1
k − x2

k|.

Similarly, we have

˜dist(Γ2 · k,Γ1 · k) ≤ ˜dist(Γ2,Γ1) + |x1
k − x2

k|.

By (2.8), we have

(2.14) dist(Γ1 · k,Γ2 · k)− dist(Γ1,Γ2) ≤ |x1
k − x2

k|.

On the other hand, we have

|x1
n+k − x2

h+k| ≤ |(x1
n+k − x1

k)− (x2
h+k − x2

k)|+ |x1
k − x2

k|.
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By the argument above, we have

(2.15) dist(Γ1,Γ2)− dist(Γ1 · k,Γ2 · k) ≤ |x1
k − x2

k|.

It follows from (2.14) and (2.15) that we obtain the desired result (2.13). �

Let us derive, as a special case, the following statement:

Lemma 2.10. Let Γ ∈ L0 and i, j, k ∈ Z. Then

| dist(Γ · (i+ k),Γ · (j + k))− dist(Γ · i,Γ · j)|
≤ |(xi+k − xi)− (xj+k − xj)| = |(xi+k − xj+k)− (xi − xj)|.(2.16)

Proof. Denote Γ = {xn}n∈Z. Then we have Γ · i = {xi+n − xi}n∈Z and Γ · j =
{xj+h − xj}h∈Z. Applying Lemma 2.9 to Γ · i and Γ · j, we have the desired result
(2.16). �

For Γ ∈ L0, there exist m, M ∈ R+ such that Γ ∈ L0
m,M . We define almost

periodic point sets as follows:

Definition 2.11. We say that Γ ∈ L0
m,M is almost periodic if one of the following

conditions holds:

i): the hull of Γ, defined by

EΓ := {Γ · k : k ∈ Z}
(L0
m,M ,dist)

,

is a compact subset in L0
m,M ;

ii): for any sequence {ñk} ⊂ Z, one can extract a subsequence {nk} ⊂ {ñk}
such that {Γ · nk} is convergent in (L0

m,M , dist).

Theorem 2.12. The conditions i) and ii) in Definition 2.11 are equivalent.

Proof. This is obvious by Lemma 2.2. �

Denote by L0
m,M,ap the space of all almost periodic point sets in L0

m,M . Although

the shift of point sets does not have the isometry property like (2.2), we still have
a similar version as Definition 2.1: i) for almost periodic point sets because of the
following lemma.

Lemma 2.13. Let Γi = {xin}n∈Z ∈ L0
m,M , i = 1, 2, and dist(Γ1,Γ2) < m/2. Then

for all k ∈ Z, we have

dist(Γ1 · k,Γ2 · k) ≤ 2 dist(Γ1,Γ2).

Proof. By (2.10), we have

dist(Γ1,Γ2) = sup
n∈Z
|x1
n − x2

n| ≥ |x1
k − x2

k| for all k ∈ Z.

Combining this with (2.13), we obtain the desired result. �

Lemma 2.14. Γ ∈ L0
m,M,ap if and only if for any ε > 0,

P(Γ, ε) := {τ ∈ Z : dist(Γ · τ,Γ) < ε}

is relatively dense in Z.
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Proof. We use the argument of Part i) =⇒ ii) and Part ii) =⇒ i) in the proof of
Theorem 2.4, and address the difference stemming from the absence of the isometry
property for point sets. Without loss of generality we assume that ε < m in this
proof.

First we prove the implication ⇐= in the statement of the lemma. It suffices
to show that {Γ · τ : τ ∈ Z} is totally bounded. Since for any ε > 0, P(Γ, ε/2) is
relatively dense in Z, we obtain that there exists `ε ∈ Z+ such that for any a ∈ Z,

P(Γ, ε/2) ∩ [−a,−a+ `ε] 6= ∅.

Let −a + ba,ε ∈ P(Γ, ε/2) ∩ [−a,−a + `ε], where ba,ε ∈ [0, `ε] ∩ Z depends on the
parameters a and ε. By Lemma 2.13, we have

(2.17) dist(Γ · a,Γ · ba,ε) ≤ 2 dist(Γ · (−a+ ba,ε),Γ) < ε, ∀ a ∈ Z.

We construct a finite set F ⊂ {Γ · τ : τ ∈ Z} by

F := {Γ · i : i = 0, 1, · · · , `ε} .

By (2.17), it follows that {Γ · τ : τ ∈ Z} is totally bounded.

Now we prove the implication =⇒ in the statement of the lemma. We know that
{Γ · τ : τ ∈ Z} is totally bounded. This means that for any ε > 0, there exists a
finite subset, denoted by Iε := {τi ∈ Z : i = 1, 2, · · · , nε}, such that

dist(Γ · a,Γ · τia) < ε/2, ∀ a ∈ Z,

where τia ∈ Iε depends on the parameter a. By Lemma 2.13, we have

(2.18) dist(Γ,Γ · (−a+ τia)) ≤ 2 dist(Γ · a,Γ · τia) < ε.

Let us denote Lε := max1≤i≤nε |τi|. Then

−a− Lε ≤ −a+ τia ≤ −a+ Lε, ∀ a ∈ Z.

Combining this with (2.18), we find

P(Γ, ε) ∩ [−a− Lε,−a+ Lε] 6= ∅.

Thus P(Γ, ε) is relatively dense. Here, `ε = 2Lε. �

An example of an almost periodic point set is given by

Γa := {i+ a sin i}i∈Z,

where |a| < 1. In fact, by Lemma 2.5, we know that {sin i}i∈Z ∈ `∞ap(R). It follows
from Example 3.7 in [18] that Γa is almost periodic in the sense of the definition
given in [18]. Since directly compared with the two statements, the definition in
[18] is stronger than Definition 2.11 here, we obtain the desired assertion. In fact,
Definition 2.11 and the corresponding definition in [18] are equivalent.

By Lemma 2.8, we know that L0
m,M,ap is a complete metric space. In fact, ik in

Lemma 2.8 vanishes here when two point sets are very close, because the point sets
we consider include zero. The following lemmas are necessary in the proof of our
main result.

Lemma 2.15. Let Γ ∈ L0
m,M,ap. Then ∆Γ := {∆xi}i∈Z ∈ `∞ap(R).
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Proof. By Definition 2.1: iii) it suffices to show that for any sequence {ñk}k∈N ⊂ Z,
one can extract a subsequence {nk} ⊂ {ñk} such that

{∆Γ · nk = {∆xi+nk}i∈Z}k∈N
is convergent in (`∞(R), ‖ · ‖∞). Indeed, we have

xñk = xñk − x0 =

ñk∑
j=1

∆xj ,

and
Γ · ñk = {xi+ñk − xñk}i∈Z ∈ L0

m,M,ap.

It follows from Γ ∈ L0
m,M,ap that there exists a subsequence, denoted by {nk} ⊂

{ñk}, such that {Γ · nk} is convergent in (L0
m,M , dist). Note that

Γ · nk = {xi+nk − xnk}i∈Z.
By Lemma 2.8, we know that {xi+nk −xnk}k∈N is a Cauchy sequence uniformly for
all i ∈ Z. This implies that

{∆xi+nk = xi+nk − xnk − (xi−1+nk − xnk)}k∈N ⊂ R
is a Cauchy sequence uniformly for all i ∈ Z. Thus we obtain that {∆Γ · nk} is
convergent. �

Similar to the mean value of almost periodic objects, we may introduce the
following quantity for almost periodic point sets.

Lemma 2.16. Let Γ ∈ L0
m,M,ap. Then the limit

lim
x→+∞

1

x
#(Γ̃ ∩ [0, x)) =: [Γ] =

1

M(∆Γ)
∈
[

1

M
,

1

m

]
exists uniformly for all Γ̃ ∈ EΓ, where #(·) is the function counting the number of
elements in a set. We call it the density of Γ.

Proof. Denote Γ̃ = {x̃i}i∈Z. Then we have

lim
x→+∞

1

x
#(Γ̃ ∩ [0, x)) = lim

k→+∞

1

x̃k
#(Γ̃ ∩ [0, x̃k)) = lim

k→+∞

k∑k
i=1 ∆x̃i

,

if the limit exists. By Lemma 2.15 and Lemma 2.7, we obtain that the limit exists
and that we have the desired equality M(∆Γ)[Γ] = 1. �

Remark 2.17. We may define a new metric ˆdist on L0
m,M,ap by

ˆdist(Γ, Γ̂) := sup
j∈Z

dist(Γ · j, Γ̂ · j), Γ, Γ̂ ∈ L0
m,M,ap.

Then the shift under this metric yields an isometric dynamical system. When Γ
and Γ̂ are close, it follows from (2.10) that

ˆdist(Γ, Γ̂) = sup
j∈Z

sup
i∈Z
|(xi − xj)− (x̂i − x̂j)|.

One would then need to check whether (L0
m,M,ap,

ˆdist) is complete and then in-
troduce a compact hull under the new metric. We leave the consideration of these
issues to the reader and continue to use the metric dist(·, ·) by (2.8) in the remainder
of this paper.
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3. Joint Hull

To study the long-time behavior of solutions of (1.2), we need embed it in a
family of systems. The joint hull is introduced as follows. First, we equip the
product space Cap(R)× `∞ap(R)× L0

m,M,ap with a new metric as follows:

dist((q1, V 1,Γ1), (q2, V 2,Γ2))

:= max{‖q1 − q2‖∞, ‖V 1 − V 2‖∞, dist(Γ1,Γ2)},(3.1)

where (qi, V i,Γi) ∈ Cap(R) × `∞ap(R) × L0
m,M,ap, i = 1, 2. The shift on the whole

product space is introduced by

(3.2) (q, V,Γ) · k := (q · xk, V · k,Γ · k), (q, V,Γ) ∈ Cap(R)× `∞ap(R)×L0
m,M,ap.

By (2.12), the family of shifts {(q, V,Γ) · k}k∈Z is a dynamical system with no
isometry property on Cap(R) × `∞ap(R) × L0

m,M,ap; see Lemma 2.9. Note that the
shift is a skew-product that is different from the shift of each single element, because
q · xk depends on both q and Γ.

Let (q, V,Γ) ∈ Cap(R)× `∞ap(R)×L0
m,M,ap. Then the product space Eq×EV ×EΓ

is compact since each single space is compact. Denote the orbit of a triple (q, V,Γ)
by

Oq,V,Γ := {(q, V,Γ) · n : n ∈ Z}.
By (2.16) and uniform continuity of almost periodic functions, we have the follow-
ing:

Lemma 3.1. Let (q, V,Γ) ∈ Cap(R) × `∞ap(R) × L0
m,M,ap. The skew-product shifts

{(q, V,Γ) · k}k∈Z are equicontinuous homeomorphisms on Oq,V,Γ.

Proof. Let Γ = {xn}n∈Z and (qi, V i,Γi) ∈ Oq,V,Γ, i = 1, 2. Then there exist
ni ∈ Z, i = 1, 2 such that

(3.3) (qi, V i,Γi) = (q, V,Γ) · ni = (q · xni , V · ni,Γ · ni).
If we denote Γi = {xin}n∈Z, i = 1, 2, then it follows from (3.3) that

(3.4) xin = xn+ni − xni .
By the uniform continuity of q ∈ Cap(R), we have that for any ε > 0, there exists
δ1 > 0 such that

(3.5) ‖q · τ − q‖∞ < ε/2 ∀ |τ | < δ1.

For such ε > 0, denote

δ := min{ε/2,m/2, δ1}.
We will show that

(3.6) dist((q1, V 1,Γ1) · k, (q2, V 2,Γ2) · k) < ε,

uniformly for all k ∈ Z, provided that

(3.7) dist((q1, V 1,Γ1), (q2, V 2,Γ2)) < δ.

Indeed, by (3.1) and (3.7), we have

(3.8) dist(Γ · n1,Γ · n2) = dist(Γ1,Γ2) < δ < m/2.

It follows from (2.10) that for all n ∈ Z, we have

(3.9) |(xn+n1
− xn1

)− (xn+n2
− xn2

)| < δ < δ1.
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By (2.16), (3.8) and (3.9), we obtain

dist(Γ1 · k,Γ2 · k) = dist(Γ · (n1 + k),Γ · (n2 + k))

≤ dist(Γ · n1,Γ · n2) + |(xn1+k − xn1
)− (xn2+k − xn2

)| < 2δ < ε,(3.10)

uniformly for all k ∈ Z. It is obvious that

(3.11) ‖V 1 · k − V 2 · k‖∞ = ‖V 1 − V 2‖∞ < δ < ε,

uniformly for all k ∈ Z. Now we consider the distance between q1 · x1
k and q2 · x2

k.
Then uniformly for all k ∈ Z, we have

‖q1 · x1
k − q2 · x2

k‖∞
= ‖q · xn1

· x1
k − q · xn2

· x2
k‖∞

= ‖q · xn1+k − q · xn2+k‖∞
≤ ‖q · xn1+k − q · (xn1+k − xn1

+ xn2
)‖∞

+‖q · (xn1+k − xn1
+ xn2

)− q · xn2+k‖∞
= ‖q · xn1

− q · xn2
‖∞ + ‖q · ((xn1+k − xn1

)− (xn2+k − xn2
))− q‖∞

< 2δ < ε,(3.12)

where (3.4), (2.2), (3.5) and (3.9) are used. The desired result (3.6) is obtained
from (3.10), (3.11) and (3.12). �

Definition 3.2. The joint hull of a triple (q, V,Γ) is defined by

Eq,V,Γ := Oq,V,Γ
(Cap(R)×`∞ap(R)×L0

m,M,ap,dist)
.

Obviously, we have

Eq,V,Γ ⊂ Eq × EV × EΓ ⊂ Cap(R)× `∞ap(R)× L0
m,M,ap.

Moreover, Eq,V,Γ is compact in (Cap(R) × `∞ap(R) × L0
m,M,ap, dist). As before, we

may equip Eq,V,Γ with a group structure as

(3.13) (q1, V 1,Γ1) · (q2, V 2,Γ2) := lim
k→+∞

(q, V,Γ) · (n1
k + n2

k),

(3.14) (q1, V 1,Γ1)−1 := lim
k→+∞

(q, V,Γ) · (−n1
k),

where

(3.15) (qi, V i,Γi) = lim
k→+∞

(q, V,Γ) · nik ∈ Eq,V,Γ, i = 1, 2.

By Lemma 3.1, the operations of both multiplication and inverse are well defined,
that is, the limits in (3.13) and (3.14) do exist and are independent of the choice
of sequences {nik}k∈N in (3.15). We state the following result on unique ergodicity
due to [17], and then apply it to the compact metric group Eq,V,Γ.

Lemma 3.3. [17] Let T (g) = ag be a rotation on the compact metric group G.
Then T is uniquely ergodic if and only if T is minimal. In this case Haar measure
is the only invariant measure.

Lemma 3.4. Equipped with the operations of both multiplication and inverse above,
the hull (Eq,V,Γ, dist) is a compact abelian topological group. In particular, Eq,V,Γ
admits the Haar measure ν = νq,V,Γ that is invariant under {(q, V,Γ) · k}k∈Z.
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Proof. Let G := Eq,V,Γ and a := (q, V,Γ) · 1. By (3.13), we introduce

T k((q, V,Γ)) := (q, V,Γ) · k = ak · (q, V,Γ), k ∈ Z.
It is obvious that T is minimal. Thus we obtain the desired result. �

4. Arguments and Homotopy in the Space of Symplectic Matrices

We recall the symplectic matrix in this section [13]. Denote by M(k, k) the space
of all k × k real matrices. Let J2n be the standard symplectic matrix which is
represented by

J2n :=

(
0 −In
In 0

)
.

We say that D ∈ M(2n, 2n) is symplectic if and only if we have

DTJ2nD = J2n,

where DT is the transpose matrix of D. It is well known that the collection of all
2n×2n real symplectic matrices forms a group with respect to matrix multiplication.
Let us denote this group by Sp(2n,R). Then we have:

Lemma 4.1. [13] For any D ∈ Sp(2n,R), there exists a unique decomposition such
that D = AU , where A ∈ Sp(2n,R) is a positive-definite matrix and U ∈ Sp(2n,R)
is an orthogonal matrix.

For our purpose, we just consider the special case Sp(2,R). It is well known that

Sp(2,R) = SL2(R) = {D ∈ M(2, 2) : det(D) = 1} .
Without loss of generality we assume that Γ ∈ L0

m,M,ap in system (1.2) from now

on. For definiteness, the solution of (1.2) is understood to be right continuous
with respect to x ∈ R, that is, (ψ′(x+), ψ(x+))T ≡ (ψ′(x), ψ(x))T . In this sense,
ψ′(x) and ψ(x) are well defined on R. Suppose that Ψ(x) := Ψλ(x; q, V,Γ) is the
fundamental matrix solution of (1.2) with the initial value Ψ(0) = I2. Then we
have the following:

Lemma 4.2. For any x ∈ R, Ψ(x) ∈ Sp(2,R).

Proof. Consider the system (1.2) on [xn, xn+1). Then we have

d

dx
Ψ(x) =

(
0 q(x)− λ
1 0

)
Ψ(x).

It follows that
d

dx

(
Ψ(x)TJ2Ψ(x)

)
=

(
d

dx
Ψ(x)

)T
J2Ψ(x) + Ψ(x)TJ2

(
d

dx
Ψ(x)

)
= Ψ(x)T

(
0 1

q(x)− λ 0

)
J2Ψ(x) + Ψ(x)TJ2

(
0 q(x)− λ
1 0

)
Ψ(x)

≡ 0

Since Ψ(0)TJ2Ψ(0) = J2, we have

Ψ(x)TJ2Ψ(x) ≡ J2, x ∈ [0, x1).

By the group property of Sp(2,R), we obtain the desired result for any x ∈ R. �
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If (ψ′(x), ψ(x))T has the initial value (ψ′(0), ψ(0))T = (α, β)T , we have

(ψ′(x), ψ(x))T = Ψ(x)(α, β)T .

Introduce the so-called Prüfer transformation as

(4.1) ψ′ +
√
−1ψ = r e

√
−1 θ.

Then the argument θ = θ(x) may be denoted by

θ(x) := arg(ψ′(x) +
√
−1ψ(x)),

where (ψ′(x), ψ(x))T is any non-trivial solution of (1.2). Consider that the sys-
tem (1.2) is restricted on R \ Γ. We understand arg(·) as a continuous branch on
[xn, xn+1). It is easy to obtain that the differential equation for θ is found to be

θ′(x) = cos2 θ − (q(x)− λ) sin2 θ, x ∈ R \ Γ.

But it is important to deal with the jump of arguments on Γ via a reasonable
approach, because the vector field of (1.2) on Γ is singular. To overcome this
difficulty, we use homology as follows.

Let D ∈ Sp(2,R). The corresponding result of Lemma 4.1 for Sp(2,R) is stated
as

(4.2) D =

(
r z

z 1+z2

r

)(
cosϑ − sinϑ
sinϑ cosϑ

)
,

where (r, ϑ, z) ∈ R+×S1×R is uniquely determined by D, and S1 := R/(2πZ−π).
This implies the following:

Lemma 4.3. [13, Theorem 1, p.52] There exists a one-to-one correspondence from
Sp(2,R) to {(x, y, z) ∈ R3 \ {z-axis}} as

g : D 7→ (r cosϑ, r sinϑ, z),

where (r, ϑ, z) is defined above. Moreover, g is a homeomorphism.

Under the representation (4.2), the two eigenvalues of D are

λ± =
1

2r

{(
r2 + z2 + 1

)
cosϑ±

√
(1 + r2 + z2)

2
cos2 ϑ− 4r2

}
.

Then we have

Sp(2,R) = Sph(2,R) ∪ Spe(2,R) ∪ Spp(2,R),

where

Sph(2,R) :=
{

(r, ϑ, z) ∈ R+ × S1 × R :
(
1 + r2 + z2

)
cosϑ > 2r

}
,

Spe(2,R) :=
{

(r, ϑ, z) ∈ R+ × S1 × R :
(
1 + r2 + z2

)
cosϑ < 2r

}
,

Spp(2,R) :=
{

(r, ϑ, z) ∈ R+ × S1 × R :
(
1 + r2 + z2

)
cosϑ = 2r

}
.

Due to the expression of (1.2), we only consider the following group denoted by

Trig(2,R) :=

{
Rc :=

(
1 c
0 1

)
: c ∈ R

}
⊂ Sp(2,R).

For Rc ∈ Trig(2,R), the unique decomposition can be calculated as

Rc =

(
c2+2√
c2+4

c√
c2+4

c√
c2+4

2√
c2+4

)(
2√
c2+4

c√
c2+4

− c√
c2+4

2√
c2+4

)
.
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Figure 1. x(x2 + y2 + z2 + 1) = 2x2 + 2y2

Construct a continuous path Pc(·) : [0, 1]→ Sp(2,R) as

Pc(τ) =

 (τc)2+2√
(τc)2+4

τc√
(τc)2+4

τc√
(τc)2+4

2√
(τc)2+4

 2√
(τc)2+4

τc√
(τc)2+4

− τc√
(τc)2+4

2√
(τc)2+4

 =

(
1 τc
0 1

)
.

Pc(·) connects I2 and Rc, and lies on the hypersurface shown in Figure 1. Note
that Figure 1 shows the parabolic region of Sp(2,R) with eigenvalues λ± = 1. The
homotopy class of Pc(·) is denoted by [Pc]. Then the jump of arguments on Γ can
be well defined when the homotopy class is fixed as the construction [Pc].

In detail, denote by V(R2) the set of all vectors starting from the origin in R2.
The equivalence ∼ on V(R2) is defined by

~v1 ∼ ~v2 ⇐⇒ ~v1 = k~v2, for some k ∈ R+.

It is well known that
L(R) := V(R2)/ ∼

is an orientable compact manifold of dimension one, and may be regarded as a
two-covering of the real projective line RP1. Topologically, L(R) is homeomorphic
to S2π := R/2πZ.

Let Ξ ∈ R. Then we have

Pc(τ)(cos Ξ, sin Ξ)T = (cos Ξ + τc sin Ξ, sin Ξ)T .

Since the homotopy class of Pc(·) is fixed and arg(·) is understood as a continuous
branch, the argument function

F (c, τ,Ξ) = arg(cos Ξ + τc sin Ξ +
√
−1 sin Ξ)
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is continuous with respect to (c, τ,Ξ) ∈ R× [0, 1]×R. In particular, we may choose
one continuous branch of F (c, τ,Ξ) such that when τ = 0, we have

arg(cos Ξ +
√
−1 sin Ξ) = Ξ.

Then we define the jump of arguments by

J(c,Ξ) = F (c, 1,Ξ)− F (c, 0,Ξ)

= arg(cos Ξ + c sin Ξ +
√
−1 sin Ξ)− arg(cos Ξ +

√
−1 sin Ξ)

= arg(cos Ξ + c sin Ξ +
√
−1 sin Ξ)− Ξ.(4.3)

Lemma 4.4. J : R2 → R is continuous with respect to (c,Ξ) ∈ R2. Moreover,
J(c,Ξ + 2π) = J(c,Ξ).

Proof. This is obvious from the continuity of F (c, τ,Ξ) and (4.3). �

Remark 4.5. Instead of the special case Rc, we have an extended version of Lemma
4.4 for a general jump matrix A ∈ Sp(2,R) with the help of Lemma 4.3 and (4.2);
see [3]. The key point is to represent A as in (4.2) and construct a continuous path
PA(·) : [0, 1]→ Sp(2,R) between I2 and A as follows:

PA(τ) =

(
τr + 1− τ τz

τz 1+(τz)2

τr+1−τ

)(
cos τϑ − sin τϑ
sin τϑ cos τϑ

)
.

Then the homotopy class [PA] yields a transfer function on L(R).

5. Reduction to Skew-Product Dynamical Systems

Let us revisit the system (1.2). Let (q, V,Γ) ∈ Cap(R) × `∞ap(R) × L0
m,M,ap. We

need to embed it in a family of systems as follows:
d

dx

(
ψ′

ψ

)
=

(
0 q̃(x)− λ
1 0

)(
ψ′

ψ

)
, x ∈ R \ Γ̃,(

ψ′(x̃n+)
ψ(x̃n+)

)
=

(
1 ṽn
0 1

)(
ψ′(x̃n−)
ψ(x̃n−)

)
, x = x̃n ∈ Γ̃,

where (q̃, Ṽ , Γ̃) ∈ Eq,V,Γ. By the Prüfer transformation (4.1), the evolution of the
arguments is found to be

(5.1)

{
θ′(x) = cos2 θ(x)− (q̃(x)− λ) sin2 θ(x), x ∈ R \ Γ̃,

θ(x̃n+)− θ(x̃n−) = J(ṽn, θ(x̃n−)), x = x̃n ∈ Γ̃.

Denote by θ(x) = θλ(x+; (q̃, Ṽ , Γ̃),Ξ) the solution of (5.1) with the initial value
θ(0) = Ξ ∈ R. By the boundedness of both almost periodic objects and jump of
arguments, we obtain:

Lemma 5.1. We have the following relation:

lim
x→+∞

θλ(x; (q̃, Ṽ , Γ̃),Ξ)− Ξ

x
= lim
n→+∞

θλ(x̃n; (q̃, Ṽ , Γ̃),Ξ)− Ξ

x̃n
.

That is, if one of limits exists, then the other one exists as well and they are equal.
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Proof. For x ∈ R and Γ̃ = {x̃n}n∈Z ∈ L0
m,M,ap, there exists n0 ∈ Z such that

x ∈ [x̃n0 , x̃n0+1). Then by (5.1) and (2.9), we have

|θλ(x; (q̃, Ṽ , Γ̃),Ξ)− θλ(x̃n0
; (q̃, Ṽ , Γ̃),Ξ)|

=

∣∣∣∣∣
∫

[x̃n0 ,x]

(cos2 θ(τ)− (q̃(τ)− λ) sin2 θ(τ)) dτ

∣∣∣∣∣
≤
∫

[x̃n0 ,x̃n0+M ]

| cos2 θ(τ)− (q̃(τ)− λ) sin2 θ(τ)| dτ

≤ M(1 + |λ|+ ‖q̃‖∞) < +∞.

It follows that

lim
x→+∞

θλ(x; (q̃, Ṽ , Γ̃),Ξ)− Ξ

x

= lim
x→+∞

x̃n0

x

θλ(x; (q̃, Ṽ , Γ̃),Ξ)− θλ(x̃n0
; (q̃, Ṽ , Γ̃),Ξ) + θλ(x̃n0

; (q̃, Ṽ , Γ̃),Ξ)− Ξ

x̃n0

= lim
n→+∞

θλ(x̃n; (q̃, Ṽ , Γ̃),Ξ)− Ξ

x̃n
,

provided one of limits exists. �

Lemma 5.2. For k ∈ Z, we have

θλ(x; (q̃, Ṽ , Γ̃),Ξ + 2kπ)− (Ξ + 2kπ) = θλ(x; (q̃, Ṽ , Γ̃),Ξ)− Ξ.

Proof. By Lemma 4.4, we know that the vector field of (5.1) is 2π-periodic with re-

spect to θ. Then both θ̌1(x) := θλ(x; (q̃, Ṽ , Γ̃),Ξ+2kπ) and θ̌2(x) := θλ(x; (q̃, Ṽ , Γ̃),Ξ)+
2kπ satisfy (5.1) with the initial value θ̌i(0) = Ξ + 2kπ, i = 1, 2. By the uniqueness
of solutions of (5.1), we have

θλ(x; (q̃, Ṽ , Γ̃),Ξ + 2kπ) = θλ(x; (q̃, Ṽ , Γ̃),Ξ) + 2kπ,

finishing the proof. �

Lemma 5.3. For k1, k2 ∈ Z, we have

θλ(x̃k1+k2 ; (q̃, Ṽ , Γ̃),Ξ) = θλ(x̃k1+k2 − x̃k2 ; (q̃, Ṽ , Γ̃) · k2, θλ(x̃k2 ; (q̃, Ṽ , Γ̃),Ξ)),

where (q̃, Ṽ , Γ̃) · k2 is defined by (3.2).

Proof. Denote

θ̄1(x) := θλ(x; (q̃, Ṽ , Γ̃) · k2, θ(x̃k2 ; (q̃, Ṽ , Γ̃),Ξ)),

and

θ̄2(x) := θλ(x+ x̃k2 ; (q̃, Ṽ , Γ̃),Ξ).

Then θ̄1(x) satisfies the following equation,
(5.2)

θ′(x) = cos2 θ(x)− (q̃ · x̃k2(x)− λ) sin2 θ(x),

x ∈ R \ Γ̃ · k2,
θ((x̃n+k2 − x̃k2)+)− θ((x̃n+k2 − x̃k2)−) = J(ṽn+k2 , θ((x̃n+k2 − x̃k2)−)),

x ∈ Γ̃ · k2 = {x̃n+k2 − x̃k2}n∈Z,
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with the initial value θ̄1(0) = θ(x̃k2 ; (q̃, Ṽ , Γ̃),Ξ), and θ̄2(x) satisfies the following
equation,

(5.3)


θ′(x+ x̃k2) = cos2 θ(x+ x̃k2)− (q̃(x+ x̃k2)− λ) sin2 θ(x+ x̃k2),

x+ x̃k2 ∈ R \ Γ̃,
θ(x̃n+)− θ(x̃n−) = J(ṽn, θ(x̃n−)),

x+ x̃k2 ∈ Γ̃ = {x̃n}n∈Z,

with the initial value θ̄2(0) = θλ(x̃k2 ; (q̃, Ṽ , Γ̃),Ξ). It is easy to check that (5.2) is
equivalent to (5.3). Note that this is the reason that we choose the direction of the
translation of point sets as the reverse of that of functions and define it by (2.11).
Due to the uniqueness of solutions of ODEs, we conclude that θ̄1(x) = θ̄2(x) for all
x ∈ R. Taking x = x̃k1+k2 − x̃k2 , we have the desired result. �

By the continuity of solutions of ODEs with respect to parameters and initial
values and Lemma 4.4, we have the following:

Lemma 5.4. When k ∈ Z is fixed, θλ(x̃k; (q̃, Ṽ , Γ̃),Ξ) : Eq,V,Γ × R→ R is contin-
uous.

Proof. Without loss of generality we assume that k = 1. Let

θi(x) := θλ(x̃i1; (q̃i, Ṽ i, Γ̃i),Ξi), i = 1, 2,

where Γ̃i = {x̃in}n∈Z. Then we have{
θ′i(x) = cos2 θi(x)− (q̃i(x)− λ) sin2 θi(x), x ∈ (0, x̃i1),
θi(0) = Ξi.

This implies that

θ2(x̃2
1−)− θ1(x̃1

1−)(5.4)

= (Ξ2 − Ξ1) +

(∫ x̃1
1

0

+

∫ x̃2
1

x̃1
1

)
cos2 θ2(τ)− (q̃2(τ)− λ) sin2 θ2(τ) dτ

−
∫ x̃1

1

0

cos2 θ1(τ)− (q̃1(τ)− λ) sin2 θ1(τ) dτ

Denote

D1 :=

∫ x̃2
1

x̃1
1

cos2 θ2(τ)− (q̃2(τ)− λ) sin2 θ2(τ) dτ,

and

D2 :=

∫ x̃1
1

0

(cos2 θ2(τ)−(q̃2(τ)−λ) sin2 θ2(τ))−(cos2 θ1(τ)−(q̃1(τ)−λ) sin2 θ1(τ)) dτ.

Then by (5.4) we have

(5.5) θ2(x̃2
1−)− θ1(x̃1

1−) = (Ξ2 − Ξ1) +D1 +D2.

By the boundedness of q̃2 ∈ Cap(R), we know that there exists C1 > 0 such that

(5.6) |D1| ≤ C1|x̃2
1 − x̃1

1|.
Note that x̃1

1 = ∆x̃1
1 ≤M . By a similar argument as in [20, Lemma 3.2.], we know

that there exists C2 > 0 such that

(5.7) |D2| ≤ C2‖q̃2 − q̃1‖∞.
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It follows from (5.5), (5.6) and (5.7) that θ(x̃1−; (q̃, Ṽ , Γ̃),Ξ) : Eq,V,Γ × R → R is
Lipschitz continuous. Furthermore, we have

θ(x̃1) = θ(x̃1−) + J(ṽ1, θ(x̃1−)).

By Lemma 4.4, we know that θλ(x̃1; (q̃, Ṽ , Γ̃),Ξ) : Eq,V,Γ×R→ R is continuous. �

Lemma 5.5. When (q̃, Ṽ , Γ̃) ∈ Eq,V,Γ and k ∈ Z are fixed, θλ(x̃k; (q̃, Ṽ , Γ̃),Ξ) :
R→ R is a strictly increasing homeomorphism.

Proof. Due to the uniqueness of solutions of (5.1), we know that θλ(x̃k; (q̃, Ṽ , Γ̃),Ξ) :
R→ R is strictly increasing. By Lemma 5.3, we have

θλ(x̃k; (q̃, Ṽ , Γ̃), θλ(−x̃k; (q̃, Ṽ , Γ̃)·k,Ξ)) = Ξ = θλ(−x̃k; (q̃, Ṽ , Γ̃)·k, θλ(x̃k; (q̃, Ṽ , Γ̃),Ξ)).

This implies that the inverse of θλ(x̃k; (q̃, Ṽ , Γ̃),Ξ) is θλ(−x̃k; (q̃, Ṽ , Γ̃) · k,Ξ). By

Lemma 5.4, we obtain that θλ(x̃k; (q̃, Ṽ , Γ̃),Ξ) : R → R is a strictly increasing
homeomorphism. �

Let S2π := R/2πZ and Z := Eq,V,Γ × S2π. We introduce the distance on the
product space Z as

dist(((q̃1, Ṽ 1, Γ̃1), ϑ1), ((q̃2, Ṽ 2, Γ̃2), ϑ2))

:= max{dist((q̃1, Ṽ 1, Γ̃1), (q̃2, Ṽ 2, Γ̃2)), |ϑ1 − ϑ2|S2π}

where ((q̃i, Ṽ i, Γ̃i), ϑi) ∈ Z, i = 1, 2. We know that (Z, dist) is a compact metric
space.

For each k ∈ Z, the skew-product transformation Φk on Z is defined by

(5.8) Φkλ((q̃, Ṽ , Γ̃), ϑ) := ((q̃, Ṽ , Γ̃) · k, θλ(x̃k; (q̃, Ṽ , Γ̃),Ξ) mod 2π),

where ((q̃, Ṽ , Γ̃), ϑ) ∈ Z, and there exists Ξ ∈ R satisfying ϑ = Ξ mod 2π. By
Lemma 5.2, Φkλ is well defined for each k ∈ Z. Moreover, by Lemma 5.3 and
Lemma 5.5, we have:

Lemma 5.6. {Φkλ}k∈Z is a skew-product continuous dynamical system on the com-
pact space Z.

Proof. First, we show that {Φkλ}k∈Z is continuous. Indeed, we have

(q̃, Ṽ , Γ̃) · k := (q̃ · x̃k, Ṽ · k, Γ̃ · k), (q̃, Ṽ , Γ̃) ∈ Eq,V,Γ.

By Lemma 2.9, we know that Γ̃ · k is continuous on Eq,V,Γ. By (2.2), Ṽ · k is
continuous on Eq,V,Γ. Since

‖q̃1 · x̃1
k − q̃2 · x̃2

k‖ ≤ ‖q̃1 · x̃1
k − q̃2 · x̃1

k‖+ ‖q̃2 · x̃1
k − q̃2 · x̃2

k‖

It follows from Lemma 2.8, (2.2) and (2.3) that q̃ · x̃k is continuous on Eq,V,Γ.
Combining this with Lemma 5.4, we have the desired assertion.

Now we aim to prove that

Φk1+k2
λ = Φk1λ ◦ Φk2λ for k1, k2 ∈ Z.
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In fact, assume that ((q̃, Ṽ , Γ̃), ϑ) ∈ Z and there exists Ξ ∈ R satisfying ϑ = Ξ
mod 2π. By (5.8) and Lemma 5.3, we have

Φk1λ ◦ Φk2λ ((q̃, Ṽ , Γ̃), ϑ)

= Φk1λ ((q̃, Ṽ , Γ̃) · k2, θλ(x̃k2 ; (q̃, Ṽ , Γ̃),Ξ) mod 2π)

= ((q̃, Ṽ , Γ̃) · k2 · k1, θλ(x̃k1+k2 − x̃k2 ; (q̃, Ṽ , Γ̃) · k2, θλ(x̃k2 ; (q̃, Ṽ , Γ̃),Ξ)) mod 2π)

= Φk1+k2
λ ((q̃, Ṽ , Γ̃), ϑ).

The proof is complete. �

Introduce the observation Fλ from Z to R as

(5.9) Fλ((q̃, Ṽ , Γ̃), ϑ) := θλ(x̃1; (q̃, Ṽ , Γ̃),Ξ)− Ξ, ((q̃, Ṽ , Γ̃), ϑ) ∈ Z,

where Ξ ∈ R satisfies ϑ = Ξ mod 2π. By Lemma 5.2, Fλ((q̃, Ṽ , Γ̃), ϑ) is well
defined on Z. Furthermore, by Lemma 5.4, we have:

Lemma 5.7. Fλ((q̃, Ṽ , Γ̃), ϑ) is continuous on Z.

By (4.3), we have

Fλ((q̃, Ṽ , Γ̃), ϑ) = θλ(x̃1−; (q̃, Ṽ , Γ̃),Ξ)− Ξ + J(c̃1, θ(x̃1−)).

where Ξ ∈ R satisfies ϑ = Ξ mod 2π. By the construction above and Lemma 2.16,
we reduce the existence of rotation numbers to that of the following ergodic limit
with respect to the skew-product dynamical system {Φkλ}k∈Z.

Lemma 5.8. Assume that ((q̃, Ṽ , Γ̃), ϑ) ∈ Eq,V,Γ × S2π and Ξ ∈ R satisfies ϑ = Ξ
mod 2π. Then we have the following relation:

lim
n→+∞

θλ(x̃n; (q̃, Ṽ , Γ̃),Ξ)− Ξ

x̃n
= [Γ] lim

n→+∞

1

n

n−1∑
k=0

Fλ(Φkλ((q̃, Ṽ , Γ̃), ϑ)).

That is, if one of the limits exists, then the other one exists as well and they are
equal. When Γ = Z, then [Γ] = 1.

Proof. By Lemma 2.16, we have

lim
n→+∞

θλ(x̃n; (q̃, Ṽ , Γ̃),Ξ)− Ξ

x̃n
= [Γ] lim

n→+∞

θλ(x̃n; (q̃, Ṽ , Γ̃),Ξ)− Ξ

n
,

provided one of limits exists. Furthermore,

θλ(x̃n; (q̃, Ṽ , Γ̃),Ξ)− Ξ

=
n−1∑
k=0

(θλ(x̃k+1; (q̃, Ṽ , Γ̃),Ξ)− θλ(x̃k; (q̃, Ṽ , Γ̃),Ξ))

=
n−1∑
k=0

(θλ(x̃k+1 − x̃k; (q̃, Ṽ , Γ̃) · k, θλ(x̃k; (q̃, Ṽ , Γ̃),Ξ))− θλ(x̃k; (q̃, Ṽ , Γ̃),Ξ))

=
n−1∑
k=0

Fλ((q̃, Ṽ , Γ̃) · k, θλ(x̃k; (q̃, Ṽ , Γ̃),Ξ) mod 2π)

=
n−1∑
k=0

Fλ(Φkλ((q̃, Ṽ , Γ̃), ϑ)).

The proof is complete. �
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6. The Rotation Number

The following uniform ergodic theorem is due to Johnson and Moser [8].

Lemma 6.1. [8] Let {ϕk}k∈Z be a continuous discrete-time dynamical system on
a compact metric space X. Then, for any f ∈ C(X,R) satisfying∫

X

f dµ = 0

for all invariant Borel probability measures µ under {ϕk}, one has

lim
n→+∞

1

n

n−1∑
k=0

f(ϕk(x)) = 0

uniformly for all x ∈ X.

To show the existence of rotation numbers, inspired by Lemma 5.8, we introduce
the following notation.

F ∗λ ((q̃, Ṽ , Γ̃), ϑ) := lim
n→+∞

1

n

n−1∑
k=0

Fλ(Φkλ((q̃, Ṽ , Γ̃), ϑ)), (q̃, Ṽ , Γ̃), ϑ) ∈ Z,

whenever the limit exists. For (q̃, Ṽ , Γ̃) ∈ Eq,V,Γ and Ξ ∈ R, denote

(6.1) F �λ ((q̃, Ṽ , Γ̃),Ξ) := lim
n→+∞

θλ(x̃n; (q̃, Ṽ , Γ̃),Ξ)− Ξ

x̃n
,

provided the limit exists. By Lemma 5.2, we obtain the following:

Lemma 6.2. If F �λ ((q̃, Ṽ , Γ̃),Ξ0) exists for Ξ0 ∈ R, then F �λ ((q̃, Ṽ , Γ̃),Ξ) exists for
all Ξ ∈ R and is independent of the choice of Ξ ∈ R.

Proof. By Lemma 5.2, we know that F �λ ((q̃, Ṽ , Γ̃),Ξ0 + 2kπ) exists for all k ∈ Z.
Then for any Ξ ∈ R, there exists kΞ ∈ Z such that

Ξ0 + 2kΞπ ≤ Ξ < Ξ0 + 2(kΞ + 1)π.

By Lemma 5.2 and Lemma 5.5, for all n ∈ N, we have

θλ(x̃n; (q̃, Ṽ , Γ̃),Ξ0+2kΞπ) ≤ θλ(x̃n; (q̃, Ṽ , Γ̃),Ξ) < θλ(x̃n; (q̃, Ṽ , Γ̃),Ξ0+2kΞπ)+2π.

This implies that for all Ξ ∈ R, we have

F �λ ((q̃, Ṽ , Γ̃),Ξ) ≡ F �λ ((q̃, Ṽ , Γ̃),Ξ0).

The proof is complete. �

We obtain the main result as follows.

Theorem 6.3. For any Ξ ∈ R, the limit F �λ ((q̃, Ṽ , Γ̃),Ξ)) exists and is independent

of the choice of the Ξ ∈ R and (q̃, Ṽ , Γ̃) ∈ Eq,V,Γ. Thus we denote it by ρλ(q, V,Γ)
and call it the rotation number of (1.2).

Proof. By the Krylov-Bogoliubov theorem and Lemma 5.6, there exists an invariant
Borel probability measure under {Φkλ}, denoted by µ. Then by the Birkhoff ergodic
theorem, there exists a Borel set Zµ ⊂ Z, which depends on the measure µ, such
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that µ(Zµ) = 1 and F ∗λ ((q̃, Ṽ , Γ̃), ϑ)) exists for all (q̃, Ṽ , Γ̃), ϑ) ∈ Zµ. Furthermore,
F ∗ is integrable and satisfies

(6.2)

∫
Z

F ∗λ dµ =

∫
Z

Fλ dµ =: ρλ,µ.

Due to Lemma 6.2, Zµ can be written in the form Zµ = Eµ× S2π, where Eµ is a
Borel set in Eq,V,Γ. Let ν be the Haar measure on Eq,V,Γ. Then we have ν(Eµ) = 1.

By the unique ergodicity of the Haar measure, there exists a set Êµ ⊂ Eµ such that

ν(Êµ) = µ(Êµ × S2π) = 1 and F ∗λ ((q̃, Ṽ , Γ̃), ϑ)) is a constant function on Êµ × S2π.
It follows from (6.2) that the constant must be ρλ,µ.

By (6.1), we know that ρλ,µ in (6.2) is independent of the choice of the measure

µ. Set F̂λ := Fλ− ρλ. By Lemma 5.7, F̂λ is continuous on Z. By (6.2), F̂λ satisfies
the requirement of Theorem 6.1. Thus, as k ↗ +∞,
(6.3)

lim
n→+∞

1

n

n−1∑
k=0

F̂λ(Φkλ((q̃, Ṽ , Γ̃), ϑ)) = lim
n→+∞

1

n

n−1∑
k=0

F̂λ(Φkλ((q̃, Ṽ , Γ̃), ϑ))− ρλ → 0

uniformly for all (q̃, Ṽ , Γ̃), ϑ) ∈ Z.

At last, taking (q̃, Ṽ , Γ̃) = (q, V,Γ) in (6.3), then by Lemma 5.1 and Lemma 5.8,
we obtain the existence of the desired limit (6.1). �

Remark 6.4. As we said in the Introduction, the rotation number has key con-
nections to the spectral analysis of Hq,V,Γ. We numerically compute the rotation
number in three cases, in which the black plot is created when vi ≡ −1, the red one
when vi ≡ 0, and the blue one when vi ≡ 1. Numerical exploration in other models
can be founded in [14, 6]; see [14] for the discrete Schrödinger operator on `2(Z)
and [6] for the quasi-periodic Schrödinger operator on L2(R). For our model, two
things should be mentioned. One is that when vi increases, the rotation number
decreases. The other is that, it is evident that the rotation number takes a constant
value in a sub-interval in the λ-axis which is a gap of the spectrum of Hq,V,Γ. The
detail on the spectrum will be discussed in a future publication.
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