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ABSTRACT. We consider one-dimensional Schrédinger operators with almost
periodic potentials and d-interactions supported on an almost periodic point
set and with almost periodic coefficients. For operators of this kind we intro-
duce a rotation number in the spirit of Johnson and Moser.

1. INTRODUCTION

In this paper, we consider the Schrédinger operator

(1.1) HMWM@FD%W@+(ﬂ@+§)w@—%0¢@% reR
i€z
where 0(z—x;) is the Dirac é-function at x;, ¢(x) is a Bohr almost periodic function,
V = {w; }iez is an almost periodic sequence, and I' = {x;};cz is a discrete point set
in R. If the point set possesses some sort of recurrence, such as almost periodicity
in a sense to be defined in detail below, our goal is to introduce the rotation number
in the spirit of Johnson and Moser [8] for (1.1).
Let A € R. The equation H, v, r¢ = A can be written as the following system.

d [ 0 gqlx) =AY\ (¥
| F( )= ) (6) eemr
(1.2) ( ﬁ/((izi)) > _ ( é Uf > < 12’((;;_—)) > 7 x=uz; €l

The rotation number measures the average number of times the vector (v',)T
rotates around the origin per unit length. The existence of this limit and its uni-
formity properties are the main objective here. It is clear from (1.2) that the
d-interactions cause jumps in 1)’ and hence one needs to exercise care in properly
defining the limit in question. Recently, Qi and Yuan studied piecewise continuous
almost periodic/automorphic solutions to (1.2) and related problems; see [15, 16].

The rotation number is a fundamental object in the study of one-dimensional
Schrodinger operators with almost periodic potentials (i.e., in the case v; = 0); see
the foundational work [8]. The key connections to the spectral analysis of these
operators include a description of the spectrum as the set of points of non-constancy
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of the rotation number, as well as a canonical gap labeling by assigning the constant
value the rotation number takes in a gap of the spectrum and showing that these
gap labels must belong to the frequency module. The rotation number is intimately
connected to another fundamental object: the integrated density of states. For
example, one can see by means of oscillation theory that one is a constant multiple
of the other. We refer the reader to Avron-Simon [1] for a foundational discussion
of the integrated density of states associated with one-dimensional Schrodinger
operators with almost periodic potentials; see also [4]. Besides the rotation number
and the integrated density of states, the Lyapunov exponent is another fundamental
object in the study of these operators. The celebrated Thouless formula links the
integrated density of states and the Lyapunov exponent; see the survey by Damanik
[2] and references therein.

In this paper we will focus on the dynamical aspects of the definition of the
rotation number in our generalized setting and defer the discussion of the spectral
aspects to a future publication. The primary issues we need to address are the
discontinuity of the derivative of the solutions, which is resolved by the choice
of a suitable homotopy, and the validity of a unique ergodicity statement and a
corresponding ergodic theorem.

This paper is dedicated to the memory of Russell Johnson. Both of us have
been inspired by Johnson’s work, and in particular by the landmark paper [§],
which serves as the motivation and the starting point of this paper. Beyond his
important mathematical work, Johnson always shined bright through his kindness
and humility. He was such a pleasure to be around and to interact with. He is
being missed!

2. ALMOST PERIODICITY

In this section we use a unified approach to introduce almost periodic functions,
almost periodic sequences, and almost periodic point sets.

Let (Y, |- ||) be a complete space. We will denote by K either Z or R, depending
on the setting. We consider a K action on Y by shifts and denote for y € Y and
7 € K the corresponding shifted element in Y by y - 7.

This shift action satisfies the following two conditions:

e group structure:
(2.1) y- 0=y, andy- (1 +7)=(y 1) T2, forally €Y, r, m» €K,
e isometry:
(2.2) lyr -7 —y2 - 7l = lly1 — w2l forall T €K, y; €Y, i=1,2,
e uniform continuity: for any € > 0, there exists § = d. > 0 such that
(2.3) ly-7—yl <e, forall y € Y, 7 € K with |7] < 4.

Note that when K = Z, (2.3) is trivial. We say that A C K is relatively dense
(with window size ¢) if there exists £ € KT such that

ANfa,a+00#0 Vaeck

Definition 2.1. We say that y € Y is almost periodic if one of the following
conditions holds:

i): for anye >0, P(y,e):={r € K: ||y -7 —y|| < e} is relatively dense in K;
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ii): the hull of y defined by

E—CT
E, :={y~T:T€K}( | ”),

18 compact;
iil): for any sequence {7, }nen C K, one can extract a subsequence {r,} C {7}
such that {y - 1, } is convergent in (Y,| - ||)-

The equivalence of these different definitions is well known. For completeness,
we give a proof with the help of the following lemmas from real analysis.
Lemma 2.2. [5] In a metric space (X,d), the following properties are equivalent:

e (X,d) is complete and totally bounded;
e (X,d) is compact;
e any sequence in X has a convergent subsequence.

Lemma 2.3. [5] Let S be a subset of a metric space (X, d). The following properties
are equivalent:

e S is totally bounded; -

e the closure of S, denoted by S, is totally bounded.

Theorem 2.4. The conditions 1), ii) and iii) in Definition 2.1 are equivalent.

Proof. We will show that i) and ii) are equivalent, and that ii) and iii) are equivalent.

H By Lemma 2.2 it suffices to show that (E,, | - ||) is complete and

totally bounded. Since E, is closed in the complete space (Y, || - ||), (Ey, | - ) is
complete as well. It follows that we need to prove that (E,, || -||) is totally bounded.
By Lemma 2.3 it suffices to show that {y -7 : 7 € K} is totally bounded. By
Definition 2.1: i), for any € > 0, P(y,e/2) is relatively dense in K. Thus, there
exists £. € KT such that for any a € K,

P(y,e/2) N [—a,—a + L] # 0.

Let —a + by € P(y,e/2) N [—a, —a + £], where b, . € [0,¢:] N K depends on the
parameters a and €. By (2.1) and (2.2), we have

(2.4) ly-bae—y-all=ly- (—a+bs:)—yl <e/2, VaeK.
By (2.3), for such ¢, there exists 6./o > 0 such that
(2.5) ly-m7—yll<e/2, VyeY, |r|<dy e, T€K

Thus the interval [0, /-] can be separated into the following sub-intervals:

65/2 .65/2 . 66/2 20, 65/2
... 1 ...
[O’ 2 ) b ) [Z 2 7(2 + ) 2 ) ) 58/2 2 7£€ )

where [z] denotes the maximal integer less than x. We take one point from each
sub-interval, denoted by p; . € K, if the sub-interval is not empty. Then we collect
these points and construct a finite set F C {y-7: 7 € K} by

2L
F::{y-pi)szizo,l,n-,{ ¢ ]}
55/2

By (2.4) and (2.5), it follows that {y -7 : 7 € K} is totally bounded.
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: Since E, is compact, by Lemma 2.2 and Lemma 2.3, it follows that

{y -7 : 7 € K} is totally bounded. This means that for any ¢ > 0, there exists a
finite subset, denoted by I := {r; € K:i=1,2,--- ,n.} such that

(2.6) ly—y (ma+m)ll=lly-a-y -7l <e  Vaek,
where 7;, € I. depends on the parameter a. Let us denote L. := maxi<i<p_ ||
Then
—a—L.<—-a+7, <—a+ L., VaekK.
Combining this with (2.6), we have
P(y,e)N[—a — Le, —a + L] # 0.
Thus P(y, ¢) is relatively dense. Here, £, = 2L..

ii) = iii) | This is obvious from Lemma 2.2.

: Assume that {y, }nen C E,. Then there exist 7, € K such that
(2.7) lyn —y - Tnll < 1/n, VneN

For the sequence {y - 7, }nen, it follows from Definition 2.1: iii) that there exists
a subsequence {ng}ren such that {y - 7,,} is convergent as k — +o0c0. Combining
this with (2.7), we obtain that {y,,} C E, is convergent as k — +00. By Lemma
2.2, the assertion follows. O

When (Y, -]]) is (C.(R), || - |loc), the space of all bounded and uniformly contin-
uous functions, and the shift is

fori= f('+7—)7

where f € C,(R) and 7 € R, Definition 2.1 gives the characterization of almost
periodic functions. Note that Bohr originally introduced the notion of almost peri-
odic functions on the space of continuous functions. We know that a Bohr almost
periodic function is bounded and uniformly continuous [7]. The reason that we
work on the space C,(R) is that it is convenient to take use of Definition 2.1. We
denote the space of all almost periodic functions by Cgp(R). It is well known that
Cqp(R) is a complete space [7].

Similarly, when (Y, - ||) is (¢>°(R),]| - [|s), the space of all bounded bi-infinite
sequences, and the shift is

Vo= {visr biez,

where V' = {v;}iez € £°(R) and 7 € Z, Definition 2.1 defines the almost periodic
sequences. Note that (2.3) is trivial because K = Z. Denote by £39(R) the space
of all almost periodic sequences. It is a complete space as well. The relationship
between almost periodic functions and almost periodic sequences is described in
the following lemma:

Lemma 2.5. [7] If f = f(x) € Cqp(R), then {f(i) : i € Z} € £35(R). Conversely,
if V.= {vi}icz € (5;(R), then there exists f € Cap(R) such that f(i) = v; for all
1€ Z.

For a generalization of Lemma 2.5, see [19] in which we can establish a similar
result on almost periodic point sets instead of periodic point sets such as Z. For
almost periodic objects, we may introduce the following important quantity:
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Lemma 2.6. Let f = f(z) € Cqp(R). Then the limit

M(f):= lim ! /I2 f(z)dz

To—x1—+00 Tog — T1

exists uniformly for all x1, xo € R. We call it the mean value of f.

Lemma 2.7. Let V = {v;}icz € £55(R). Then the limit

M(V) = 1 3
( ) ig— 11113-1-007,2—2121}

exists uniformly for all iy, io € Z. We call it the mean value of V.

Now we consider point sets. In order to describe Delone dynamical systems,
Lenz and Stollmann [10] introduced the notion of almost periodic point sets in R<.
For the general case defined on locally compact abelian groups, see [9, 11]. For the
one-dimensional case and our purpose, we give the following description, which is
somewhat different from what was done in the dissertation by Zhou [19]. Some
part of the dissertation was published in [18, 12].

From now on, we assume that a point set I' = {x;};¢z is discrete in the real line
and satisfies the following requirement:

0< mf Azx; <supAz; < 0o, Az = x; — T;—1.
1€Z
Two point sets I' = {x;} and I = {Z;} are the same if there exists k € Z such that
ZT; = x4 for all i € Z. Denote by L the space of all point sets in R. It can be
equipped with a metric as follows:

(2.8) dist(I'L, I'2) := max {dlst(F1 r2), dfst(ﬁ,rl)},
where

dist(I'*, ') := sup min |z} — xQ\ for TF = {a¥}icr € £, k=1,2.
icz JEL

The metric dist(-, -) may be regarded as the Hausdorff metric. Note that the space
(L, dist) is not complete. However, for any given 0 < m < M < oo, the set

(2.9) Lonar = {r = {2i}tiez : Az; € [m, M] Vi € Z}
is a closed subset in £ and then (L, ar,dist) is a complete space [19]. We have
o= | Lnwm
0<m<M<oco

o for 'Y, T2 € L, ar, dist(T'1,T?) < M/2;
e when I'* = {z¥} € £,, v,k = 1,2 satisfy dist(T'!,T?) < m/2, then there
exists ig € Z such that

(2.10) dist(I'", T%) = sup |z — 27, |-
iz
Due to the properties above, convergence in (L, ar,dist) can be characterized
in the following way.

Lemma 2.8. [19] Let T* = {a¥};cz € Lo, k € Zt. Then TF — TO in
(Lo, a1, dist) if and only if there exists a sequence {iy} C Z such that

lim sup |zf,; — 9| =0.
k—o0 €T
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Let us consider the point sets that include zero and furthermore are such that
xo = 0. Denote

£9n,M = {F S Acm’M txo = O}
Obviously, this space is complete as well. Introduce
L0:={T€L:xy=0}.

We have
= U Lo
0<m<M <oco
Now we define the shift on £° in a way that is a little different from, but more
concise than, the way it was done in [19]. For I' € £° and k € Z, the shift of T is
defined by

(2.11) I k:= {i‘i}iez S £O7 Tj 1= Titk — Tk-
Since I € £°, we have
(2.12) T (ky+ ko) = (T k1) - ko.

Then the family of shifts {I' - k}cz yields a dynamical system on £°, but we do
not have an isometry property like (2.2). In fact, we have the following:

Lemma 2.9. Let k € Z and I'" = {2% },,ez € L, i =1,2. Then
(2.13) |dist(T'! - k, T2 - k) — dist(T', T?)| < |af — 23]

. 1 1 1 2 2 2
Proof. Since I'' - k = {x,,_;, — 2} }nez and I'* - k = {x} , — 27 }nez, we have

(@ — 3k) — @y — 22)| < @by — 27 il + |z — 2.

This implies that

min (e} — 2}) = (2 — 3)]

IN

min [}, = 7}y + |2} -}
— pin o}~ + o} - .

Furthermore, we have

dist(T'* - k£, T2 - k)
_ . 1Ay 22
= i‘élz) Ii?enzl |(xn+k T}) ($h+k )|

N

: 1.2 1.2
SUD Wi |14 = Th| + 2k — 22l

dist(T'%, T?) + |z} — 22|

Similarly, we have

dist(T2 - k, Tt - k) < dist(D2, TY) + |of — 22|
By (2.8), we have
(2.14) dist(I! - &, T2 - k) — dist(T, T?) < |zt — 23]
On the other hand, we have

[hn — Thgnl < @hyr — 2h) — (@hop — 20)| + |z — 2.
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By the argument above, we have
(2.15) dist(I', T?) — dist(T* - k, T2 - k) < |o}, — 7]
It follows from (2.14) and (2.15) that we obtain the desired result (2.13). O

Let us derive, as a special case, the following statement:
Lemma 2.10. LetT € £° and i, j, k € Z. Then
|dist(I'- (¢ + k), - (j + k) — dist(I" - ¢,T" - 7))
(2.16) S N(@ivr — i) = @ — 25)| = (@i — 2540) — (25 — 25)]-

Proof. Denote I' = {p,}nez. Then we have I' -4 = {&;4y, — Titnez and T' - j =
{zj+n — z;}nez. Applying Lemma 2.9 to I'- ¢ and I" - j, we have the desired result
(2.16). O

For T' € L% there exist m, M € RT such that T' € L), ,,. We define almost
periodic point sets as follows:

Definition 2.11. We say that T’ € EUMVM is almost periodic if one of the following
conditions holds:

i): the hull of T, defined by

aodist)
)

0
Er =T k:keZ} ™

s a compact subset in E?n)M;
ii): for any sequence {n,} C Z, one can extract a subsequence {ni} C {fy}
such that {T' - ny} is convergent in (E?mM, dist).

Theorem 2.12. The conditions i) and ii) in Definition 2.11 are equivalent.

Proof. This is obvious by Lemma 2.2. O
Denote by E?m M,ap the space of all almost periodic point sets in LY, - Although

the shift of point sets does not have the isometry property like (2.2), we still have
a similar version as Definition 2.1: i) for almost periodic point sets because of the
following lemma.

Lemma 2.13. Let " = {2} }nez € L9, 5, i = 1,2, and dist(T"',T?) < m/2. Then
for all k € Z, we have

dist(I'" - &, T2 - k) < 2dist(T*, T?).
Proof. By (2.10), we have

dist(I'',T?) = sup |z} — 22| > |x}, — z} for all k € Z.
ne’
Combining this with (2.13), we obtain the desired result. O

Lemma 2.14. I' € E?mM’aP if and only if for any e > 0,
P(T,e) :={r € Z:dist(T-7,T") < ¢}

is relatively dense in Z.
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Proof. We use the argument of Part i) = ii) and Part ii) = i) in the proof of
Theorem 2.4, and address the difference stemming from the absence of the isometry
property for point sets. Without loss of generality we assume that € < m in this
proof.

First we prove the implication <= in the statement of the lemma. It suffices
to show that {I"- 7 : 7 € Z} is totally bounded. Since for any € > 0, P(T,¢/2) is
relatively dense in Z, we obtain that there exists £, € Z* such that for any a € Z,

P(T,e/2) N[—a,—a+ L] # 0.

Let —a + by € P(T',e/2) N [—a, —a + £.], where b, . € [0,¢:] N Z depends on the
parameters a and €. By Lemma 2.13, we have

(2.17) dist(T'- a,T" - bae) < 2dist(T - (—a+bq), ) < e, VacZ.

We construct a finite set F' C {I'-7: 7 € Z} by
F={T-i:i=0,1,---,¢.}.

By (2.17), it follows that {I"- 7 : 7 € Z} is totally bounded.

Now we prove the implication = in the statement of the lemma. We know that
{T'-7: 7 € Z} is totally bounded. This means that for any £ > 0, there exists a
finite subset, denoted by I, :={r; € Z:i=1,2,--- ,n.}, such that

dist(T' - a,T-75,) < e/2, Vac€Z,
where 7;, € I. depends on the parameter a. By Lemma 2.13, we have
(2.18) dist(I, T - (—a+1;,)) < 2dist(T" - a, T - 7;,) < €.
Let us denote L. := maxj<i<p_ |[7|. Then
—a—L. <—-a+71, <—a+ L., YV a€Z.
Combining this with (2.18), we find
P(Ie)N[—a— L., —a+ L] # 0.
Thus P(T, ¢) is relatively dense. Here, ¢, = 2L.. O

An example of an almost periodic point set is given by
[y :={i+asini}iez,

where |a| < 1. In fact, by Lemma 2.5, we know that {sini};cz € £55(R). It follows
from Example 3.7 in [18] that I', is almost periodic in the sense of the definition
given in [18]. Since directly compared with the two statements, the definition in
[18] is stronger than Definition 2.11 here, we obtain the desired assertion. In fact,
Definition 2.11 and the corresponding definition in [18] are equivalent.

By Lemma 2.8, we know that £?H7M7ap is a complete metric space. In fact, ¢ in
Lemma 2.8 vanishes here when two point sets are very close, because the point sets
we consider include zero. The following lemmas are necessary in the proof of our

main result.

Lemma 2.15. Let ' € L), ;.. Then AT == {Az;}icz € £55(R).
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Proof. By Definition 2.1: iii) it suffices to show that for any sequence {7t }ren C Z,
one can extract a subsequence {ny} C {fx} such that

{AT - np = {Aziyn, ficzren
is convergent in (¢*°(R), || - ||co). Indeed, we have

Nk

Ty, = Tiy, — Lo = E Az,
i=1

and
[ fig = {Tivn, — T, bicz € ‘C?n,M,ap‘
It follows from ' € £0 M,qp that there exists a subsequence, denoted by {ni} C

{n1}, such that {T"-ny} is convergent in (L, 5/, dist). Note that

T ng ={Titn, — Tn, ticz-
By Lemma 2.8, we know that {z;n, —=n, }ren is a Cauchy sequence uniformly for
all ¢ € Z. This implies that
{Azi+mc = Ti4ny, — Tny, — (zi—1+nk - «'Enk)}keN CR

is a Cauchy sequence uniformly for all ¢ € Z. Thus we obtain that {AT - ng} is
convergent. U

Similar to the mean value of almost periodic objects, we may introduce the
following quantity for almost periodic point sets.

Lemma 2.16. Let I € LY, /... Then the limit
1 = 1 1 1
1. - F m 0 = F = —_
Jm Z#T00.2) =T = FrRgy < [M’m}

ezists uniformly for all T € Er, where #(-) is the function counting the number of
elements in a set. We call it the density of I.

Proof. Denote I = {Z;}icz- Then we have

1 = 1 -
lim —#(T = lim —#(T 7r)) = lim ——
i S#IN[0,2) = lm —#(TN[0,3)) = Tim S An
if the limit exists. By Lemma 2.15 and Lemma 2.7, we obtain that the limit exists
and that we have the desired equality M(AT)[T] = 1. O

Remark 2.17. We may define a new metric dist on LY Aap DY

dist([, T') := sup dist(T" - ,T - 5), Ile LY A ap-
jez ’
Then the shift under this metric yields an isometric dynamical system. When I’
and T are close, it follows from (2.10) that
dist(T, T) = supsup |(z; — ;) — (& — &;)].
JEL i€l

One would then need to check whether (L9, Mﬂp,dfst) is complete and then in-
troduce a compact hull under the new metric. We leave the consideration of these
issues to the reader and continue to use the metric dist(-, -) by (2.8) in the remainder
of this paper.
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3. JoiNT HULL

To study the long-time behavior of solutions of (1.2), we need embed it in a
family of systems. The joint hull is introduced as follows. First, we equip the
product space Cqp(R) X £39(R) x LY with a new metric as follows:

m,M,ap
(3.1) = max{]l¢" — ¢*[loo, [V' = Voo, dist (I, T2)},

where (¢', V', T") € Cap(R) x £35(R) x LI i = 1,2. The shift on the whole

m,M,ap>’
product space is introduced by
(3:2) (¢, VD) k= (g z,V -k, T-k), (¢, V.T) € Cap(R) X L5 (R) X L33, 11,0
By (2.12), the family of shifts {(q,V,T') - k}xez is a dynamical system with no

isometry property on Cup(R) x £30(R) x £?n,M,ap§ see Lemma 2.9. Note that the

shift is a skew-product that is different from the shift of each single element, because
q - rx depends on both ¢ and T'.

Let (¢, V,T) € Cap(R) x L35 (R) X L), 11 ., Then the product space Eq x Ey x Er

is compact since each single space is compact. Denote the orbit of a triple (¢, V,T")
by

Ogvr:={(¢,V.T') - n:neZ}.
By (2.16) and uniform continuity of almost periodic functions, we have the follow-
ing:

Lemma 3.1. Let (¢,V,T) € Cap(R) x £39(R) x L) s .- The skew-product shifts

{(¢,V.T) - k}rez are equicontinuous homeomorphisms on Og vy r.

Proof. Let T' = {z,}nez and (¢',V',T%) € Oyvr, i = 1,2. Then there exist
n; € Z, 1 = 1,2 such that

(3.3) (¢",ViT) = (g, V1) - ny = (g @n,, V-1, T o my).

If we denote I'" = {z¢ },,cz, i = 1,2, then it follows from (3.3) that

(3.4) Th = Tpin, — Tp,

By the uniform continuity of ¢ € C,p(R), we have that for any ¢ > 0, there exists
61 > 0 such that

(3.5) lg-7—qlloo <e/2 V|| <d1.
For such € > 0, denote

d :=min{e/2,m/2,6;}.
We will show that
(3.6) dist((¢", V', T") - k, (¢, V2, I?) - k) <,
uniformly for all k& € Z, provided that
(3.7) dist((¢', V', T, (¢%, V2, I?)) < 6.
Indeed, by (3.1) and (3.7), we have
(3.8) dist(T - ny, T - ng) = dist(T*, T?) < § < m/2.
It follows from (2.10) that for all n € Z, we have

(3.9) |(Tntny = Tny) = (Tngng — Tny)| <0 <61
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By (2.16), (3.8) and (3.9), we obtain
dist(T! - &, T2 - k) = dist(T" - (ny + k), T - (no + k)
(3.10) < dist(T' - n1, T - na) + [(Tny 4k — Tny) — @nptk — Tny)| < 26 < &,
uniformly for all £ € Z. It is obvious that
(3.11) VEk—V2 ko =V =V <6 <e,

uniformly for all k € Z. Now we consider the distance between ¢! - x}f and g2 - Ty
Then uniformly for all k¥ € Z, we have

g -2 — - 23w

=g zn, ~:E,1€7q~xn2 xiHoo
= ¢ - Tn 4k — ¢ Tnorlloo
< otk — a- (Tny 1k — Tny + Tny ) [loo
g - (@ny+k — Tny + Tny) — 4 Toptkllo
=g @n, — ¢ Tnslloo + 10+ (@ny4k = Tny) = (Tnotk — Tny)) — dlloo
(3.12) <26 <e¢,

where (3.4), (2.2), (3.5) and (3.9) are used. The desired result (3.6) is obtained
from (3.10), (3.11) and (3.12). O

Definition 3.2. The joint hull of a triple (q,V,T) is defined by

(Cap(R)x L35 (R)X LY dist)

m,M,ap>

Eqvir :==0gvr
Obviously, we have
Eqv,r CEq x Ey x Ep C Cop(R) X £39(R) X LY, 1/ 0

Moreover, Eg y,r is compact in (Cop(R) x £ (R) x L9

m.M.ap» 4ist). As before, we
may equip E, v,r with a group structure as

(3.13) (¢". V') (¢% V2. I%) = lim (g, V.T)- (n} +n}).
(3.14) (¢", virH=t .= Jim (¢, V,T) - (—=n}),
—+o0
where
(3.15) (¢, Vi,T") = lim (q,V,T) -n} € E,vr, i=1,2.
k— o0

By Lemma 3.1, the operations of both multiplication and inverse are well defined,
that is, the limits in (3.13) and (3.14) do exist and are independent of the choice
of sequences {ni }ren in (3.15). We state the following result on unique ergodicity
due to [17], and then apply it to the compact metric group Eq v r.

Lemma 3.3. [17] Let T'(g) = ag be a rotation on the compact metric group G.
Then T is uniquely ergodic if and only if T is minimal. In this case Haar measure
is the only invariant measure.

Lemma 3.4. Fquipped with the operations of both multiplication and inverse abouve,
the hull (Eq v,r,dist) is a compact abelian topological group. In particular, Eq v
admits the Haar measure v = vy v that is invariant under {(q, V,T) - k}rez.
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Proof. Let G :=E, v and a := (¢, V,T) - 1. By (3.13), we introduce
(g, V.1)) = (¢.V.T) -k =d"- (¢, V.T), kel

It is obvious that 7" is minimal. Thus we obtain the desired result. O

4. ARGUMENTS AND HOMOTOPY IN THE SPACE OF SYMPLECTIC MATRICES

We recall the symplectic matrix in this section [13]. Denote by M(k, k) the space
of all k x k real matrices. Let Jy, be the standard symplectic matrix which is

represented by
Jop = < ]E) _OI” )

We say that D € M(2n, 2n) is symplectic if and only if we have
DTJQnD = J2na

where DT is the transpose matrix of D. It is well known that the collection of all
2n % 2n real symplectic matrices forms a group with respect to matrix multiplication.
Let us denote this group by Sp(2n,R). Then we have:

Lemma 4.1. [13] For any D € Sp(2n,R), there ezists a unique decomposition such
that D = AU, where A € Sp(2n,R) is a positive-definite matriz and U € Sp(2n, R)
is an orthogonal matrix.

For our purpose, we just consider the special case Sp(2,R). It is well known that

Sp(2,R) = SLa(R) = {D € M(2,2) : det(D) = 1}.

Without loss of generality we assume that T' € £ ,, . in system (1.2) from now

on. For definiteness, the solution of (1.2) is understood to be right continuous
with respect to z € R, that is, (¢'(z+),¢(x+))T = (¥'(x),%(z))T. In this sense,
Y'(z) and ¥ (z) are well defined on R. Suppose that U(z) := Uy(z;q,V,T) is the
fundamental matrix solution of (1.2) with the initial value ¥(0) = I5. Then we
have the following:

Lemma 4.2. For any x € R, ¥(z) € Sp(2,R).

Proof. Consider the system (1.2) on [z, Zy+1). Then we have

d (0 g(x)—A
—dxlll(x) = < 1 0 U(z).
It follows that

(@) ()
_ (;x\p(x)y T () + W ()T Ty (iﬂx))

— u()T ( q(x)o_ e > ToU(z) + U ()T Iy < ! q(””)o‘ A ) W (x)
0

Since ¥(0)T JoW(0) = J3, we have
U(z)T Ty (z) = Js, x € [0,27).
By the group property of Sp(2,R), we obtain the desired result for any z € R. O
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If (¢'(x),%(x))T has the initial value (¢’(0),(0))” = (a, 8)T, we have
(¥ (2),9(2)" = ¥(z)(a, B)".

Introduce the so-called Priifer transformation as
(4.1) W V=1 =r eV 1
Then the argument § = (x) may be denoted by

0(z) := arg(¢/(z) + vV=19(x)),
where (¢/(z),v(x))T is any non-trivial solution of (1.2). Consider that the sys-
tem (1.2) is restricted on R\ I'. We understand arg(:) as a continuous branch on
[©n, Tny1). Tt is easy to obtain that the differential equation for 6 is found to be

0'(z) = cos? 0 — (q(z) — \)sin? 0, xr e R\T.

But it is important to deal with the jump of arguments on I' via a reasonable
approach, because the vector field of (1.2) on T is singular. To overcome this
difficulty, we use homology as follows.

Let D € Sp(2,R). The corresponding result of Lemma 4.1 for Sp(2,R) is stated
as

r z cost¥ —sind
(4.2) D:(Z 1+;2><sim9 cosd )
where (7,9, z) € RT x S! x R is uniquely determined by D, and S! := R/(27Z — ).

This implies the following:

Lemma 4.3. [13, Theorem 1, p.52] There exists a one-to-one correspondence from
Sp(2,R) to {(x,y,2) € R*\ {2-azis}} as

g: D (rcosd,rsind, z),
where (r,9, z) is defined above. Moreover, g is a homeomorphism.

Under the representation (4.2), the two eigenvalues of D are

1
Ay = 2T{(7‘2+z2+1)cos19i\/(1+r2+22)2cos219—4r2}.

Then we have
Sp(2,R) = Sp"(2,R) U Sp°(2,R) USp” (2, R),
where
Sp"(2,R) := {(r,9,2) e RT xS' x R: (1472 +2%)cosd > 2r},
Sp°(2,R) = {(r,9,2) € RT x S' x R: (14 7r®+2%)cosd < 2r},
SPP(2,R) := {(r,d,2) e R" x S" x R: (1+7r°+2%)cost) =2r}.
Due to the expression of (1.2), we only consider the following group denoted by

Trig(2,R) := {RC = ( (1) f ) ce R} C Sp(2,R).

For R, € Trig(2,R), the unique decomposition can be calculated as

]

Ve2+4 c2+4+4

242 c 2 c
R :< VeZ+a o Ve244 V244 c24+4
c c 2 c 2 .
Ve

]

2+
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FIGURE 1. z(2? +y? + 22 + 1) = 222 + 292

Construct a continuous path P.(-) : [0,1] — Sp(2,R) as
(TC)2+2 TC 2 Te
Po(r)= | Vi Vo ) Vg v ( 0 ) .
\/(TC)2+4 \/(70)2—‘1—4 \/(TC)2+4 \/(TC)2+4

P.(-) connects Iz and R., and lies on the hypersurface shown in Figure 1. Note
that Figure 1 shows the parabolic region of Sp(2,R) with eigenvalues Ay = 1. The
homotopy class of P.(-) is denoted by [P.]. Then the jump of arguments on I' can
be well defined when the homotopy class is fixed as the construction [P.].

In detail, denote by V(R?) the set of all vectors starting from the origin in R?.
The equivalence ~ on V(R?) is defined by

Uy ~ Uy < U] = k??g, for some k € RT.

It is well known that
L(R) := V(R?)/ ~
is an orientable compact manifold of dimension one, and may be regarded as a
two-covering of the real projective line RP'. Topologically, L(R) is homeomorphic
to Sor 1= R/27Z.
Let = € R. Then we have
P.(7)(cos Z,sinE)T = (cos E + resin Z, sin )7
Since the homotopy class of P,.(-) is fixed and arg(-) is understood as a continuous
branch, the argument function

F(e,1,2) = arg(cos 2 4 Tesin = 4+ v/ —1sin E)
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is continuous with respect to (¢, 7,Z) € R x [0, 1] x R. In particular, we may choose
one continuous branch of F(¢, 7, Z) such that when 7 = 0, we have

arg(cosE+ v —1sin=) = E.
Then we define the jump of arguments by
J(¢,E) = F(¢,1,2) — F(c,0,E)
= arg(cosE+ csinZ 4+ v/ —1sinE) — arg(cosE 4+ v/ —1sinE)
(4.3) = arg(cosE+ csinZ 4+ v/ —1sinE) — E.

Lemma 4.4. J : R? — R is continuous with respect to (¢,Z) € R%. Moreover,
J(e,2+27) = J(c, =).

Proof. This is obvious from the continuity of F'(c, 7, =) and (4.3). O

Remark 4.5. Instead of the special case R, we have an extended version of Lemma
4.4 for a general jump matrix A € Sp(2,R) with the help of Lemma 4.3 and (4.2);
see [3]. The key point is to represent A as in (4.2) and construct a continuous path
Pa(-) : [0,1] = Sp(2,R) between I and A as follows:

Pa(r) = Tr+1—71 TZ , cost? —sinTV
A\T) = Tz % sinTd  cosTd ‘

Then the homotopy class [P4] yields a transfer function on L(R).

5. REDUCTION TO SKEW-PRODUCT DYNAMICAL SYSTEMS

Let us revisit the system (1.2). Let (¢, V,T) € Cap(R) x L9 (R) X LY, 1/ 0
need to embed it in a family of systems as follows:

N N (G R A -
S0 )= () eemin
V(E,+)\ (1 Dy W (Fn—) .
( V(Zp+) ) - ( 0 1 ) ( V(Fn—) ) ) r=2In €I,
where (¢, V7f) € E, v,r. By the Priifer transformation (4.1), the evolution of the

arguments is found to be

{ 0'(z) = cos? O(z) — (G(x) — ) sin? §(z), zeR\ f‘,~
0(Zn+) — 0(Zn—) = J(0n, 0(Zn—)), r=2a,€l.

‘We

(5.1)

Denote by 0(z) = 0(z+; (¢, V,T),E) the solution of (5.1) with the initial value
6(0) = E € R. By the boundedness of both almost periodic objects and jump of
arguments, we obtain:

Lemma 5.1. We have the following relation:

lim HA(:C; (qa er)v‘:') - = — lim 0)\(:571) (qa ‘far),:) - ‘:‘.
r——+00 €T n—-+00 In

That is, if one of limits exists, then the other one exists as well and they are equal.
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Proof. For € R and T = {#,}nez € LY, \.ap» there exists ng € Z such that

X € [Eng, Tng+1). Then by (5.1) and (2.9), we have
1023 (3, V. 1), Z) = 0z (Eno; (3, V., 1), )|

/[: '] (cos2 (1) — (g(r) = N) sin? 0(r))dr

< / |cos2 0(7) — (g(1) = N) sin? O(7)|dr
[Fng rEng+M]

< ML+ A+ [|@floc) < +o0.
It follows that

li 9A($7 (da af)v E) - =
1m
r—+00 xT
- 1 i'no GA(w7 (q»var)va) _ek(*fino;(ijvva]——‘%E)+9A(*fino;((jvvvr)75) - =
r—+oo I i‘ng
P (3, V,T),E) - E
— hm 9)\ (x’l’l? (q7 ‘f) )7 ) ,
n—+oo Ty
provided one of limits exists. O

Lemma 5.2. For k € Z, we have
Ox(z;(q,V,T),E + 2km) — (2 + 2k7) = Ox(2;(q,V,T),E) —

[

Proof. By Lemma 4.4, we know that the vector field of (5.1) is 27-periodic with re-
spect to 0. Then both 0, (x) := 0 (2; (¢, V,T), E+2kn) and Oy (x) := O (2; (¢, V,T),E)+
2k satisfy (5.1) with the initial value 0;(0) = 242k, i = 1,2. By the uniqueness
of solutions of (5.1), we have

Ox(w; (3, V,T),E + 2km) = (23 (4. V. T), E) + 2k,

finishing the proof. (]

Lemma 5.3. For ki, ke € Z, we have
On(Thy 4123 (@, V, 1), E) = O3 (Fry ks — Fho (4, V, ) - ko, Ox (T (3, V, 1), B)),
where (§,V,T) - ko is defined by (3.2).
Proof. Denote
01(x) = Ox(w; (3, V,T) - k2, (31,3 (3, V, 1), B)),
and
0_2(17) = GA(I + ‘ikfz; (ljv V7 F)a E)
Then 0, (x) satisfies the following equation,
(5.2)
0'(z) = (zos2 0(x) — (G- Tp, () — N)sin® O(x),
x € R\T - ko,
9((j@+k2 - i'kz)—i—) - 6((jn+k2 - ‘ikz)_) = J<’En+k2’ 9((‘in+k2 - j/*32)_))7
rel- ]{?2 = {ifn+k2 - jkz}n€Z7
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with the initial value 6;(0) = 6(&,; (¢, V,T),E), and 0y(z) satisfies the following
equation,

0 (x + Zp,) = (3082 0(x + Zp,) — (G(x + Tp,) — N sin? 0(z + Zp,),
+ix, € R\T,
0(5:714') - Q(jn_) = J({}na 9(5:”_))7

T+ jkz el'= {i‘n}ne%

with the initial value 05(0) = 0 (Zx,; (¢, V,T),Z). It is easy to check that (5.2) is
equivalent to (5.3). Note that this is the reason that we choose the direction of the
translation of point sets as the reverse of that of functions and define it by (2.11).
Due to the uniqueness of solutions of ODEs, we conclude that 6 (z) = f2(x) for all
x € R. Taking © = 2y, 4k, — Tk,, We have the desired result. ]

(5.3)

By the continuity of solutions of ODEs with respect to parameters and initial
values and Lemma 4.4, we have the following;:

Lemma 5.4. When k € Z is fized, 05 (Z; (c}f/,f‘),E) :Eqvir xR — R is contin-

UOUS.
Proof. Without loss of generality we assume that k = 1. Let

0:(z) = 0x(3%; (¢", V', T%),5:), i=1,2,
where I = {Z! },,cz. Then we have

0i(x) = cos® bi(x) — (¢'(x) — N)sin® 0y (z), =z € (0,7)),
0:(0) = E;.

This implies that

(5-4) 02(77—) — 01(71-)

= (E2—E1)+ </0x Jr/"ml) cos® O2(7) — (¢*(7) — A) sin® Oo(7) dr

Denote

and
~1

Dy = / (cos” B (7)—((r) ~X) sin® B (7)) — (cos? 6 (r) — (3" ()~ \) sin® B, (7)) d.

Then by (5.4) we have

(5.5) 02(77—) = 01(Z1—) = (E2 — 1) + D1 + Da.
By the boundedness of ¢* € C,,(RR), we know that there exists C; > 0 such that
(5.6) |D1| < G173} — 7.

Note that #1 = A#] < M. By a similar argument as in [20, Lemma 3.2.], we know
that there exists C5 > 0 such that

(5.7) [Da| < Ca|@® = G'[|oo-



18 D. DAMANIK AND Z. ZHOU

It follows from (5.5), (5.6) and (5.7) that 6(&,—;(q,V,T),Z) : E;vr x R — R is
Lipschitz continuous. Furthermore, we have

0(%1) = 0(T1—) + J(01,0(Z1—))-

By Lemma 4.4, we know that 05 (z1; (¢, V,T),E) : Eqvr xR — R is continuous. O

Lemma 5.5. When (§,V,T) € Eqvr and k € Z are fired, 0x(7x;(q,V,T),
R — R is a strictly increasing homeomorphism.

m

Proof. Due to the uniqueness of solutions of (5.1), we know that 6 (Zx; (¢, V,T), Z) :
R — R is strictly increasing. By Lemma 5.3, we have

0)\(57]@; (dy ‘7’ f)7 QA(_i'k; (67 Vaf)k7E)) === ok(_i‘k; (67 ‘N/vf)'kve)\('ik; (da ‘7’1:‘)75))

This implies that the inverse of 0(ix; (¢, V,T),E) is Ox(—ix; (¢, V,T) - k,Z). By
Lemma 5.4, we obtain that 0)(Zg;(q,V,T),Z) : R — R is a strictly increasing
homeomorphism. O

Let Sor := R/27Z and Z := E, v x Sor. We introduce the distance on the
product space Z as

diSt((((jl’ ‘7171:‘1)7191)? (<627 ‘72; f‘z)?192))
= max{dist((g", V', T"), (¢%, V2,T2)), 91 — Vals,, }

where ((¢%, Vi, T%),9;) € Z, i = 1,2. We know that (Z,dist) is a compact metric
space.
For each k € Z, the skew-product transformation ®* on Z is defined by

(58) CI)])C\(((L ‘73 f‘)vﬁ) = ((qa va) : k79)\(:ik; (Q~a f/’f)’E) mod 27T)7

where ((§,V,T),9) € Z, and there exists Z € R satisfying ¥ = £ mod 27. By
Lemma 5.2, <1>’f\ is well defined for each k € Z. Moreover, by Lemma 5.3 and
Lemma 5.5, we have:

Lemma 5.6. {qﬂf\}kez s a skew-product continuous dynamical system on the com-
pact space 7.

Proof. First, we show that {®%},cz is continuous. Indeed, we have
(@, V,0) - k:=(G -,V kT-k), (§V,I)€E,vr.

By Lemma 2.9, we know that T - & is continuous on E.vr. By (2.2), V. kis
continuous on E, v,r. Since

IG1 - & — Go - &3l < ||G1 - & — Go - B4l + G2 - T — G2 - FR|

It follows from Lemma 2.8, (2.2) and (2.3) that ¢ - Z is continuous on E, v r.
Combining this with Lemma 5.4, we have the desired assertion.
Now we aim to prove that

PhtR — oM o 82 for ky, ko € Z.
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In fact, assume that ((¢,V,T),9) € Z and there exists Z € R satisfying ¥ = =
mod 27. By (5.8) and Lemma 5.3, we have
oY 0 ®32((q, V, 1), 9)
= O3 (¢, V,T) - ko, 0x (&1, (¢, V,T),Z)  mod 27)
= ((§.V,T) - ko k1, Ox(Zky 1k — Fko3 (G, V,T) - k2, Ox(Fy5 (¢, V,T),E))  mod 2n)
= oY *r2((g,V, 1), 9).

The proof is complete. O

Introduce the observation F)\ from Z to R as
(5.9)  E\((qV,1),9) :=0(31; (¢, V,T),E) -5, ((¢,V,]),9) €2,
where 2 € R satisfies ¥ = Z mod 2r. By Lemma 5.2, F\((¢,V,T)
defined on Z. Furthermore, by Lemma 5.4, we have:
Lemma 5.7. F\((¢,V,T),9) is continuous on Z.

By (4.3), we have

FA((q,V,1),9) = 0x(&1—5 (¢, V, 1), B) — E+ J (&1, 0(F1-)).

where E € R satisfies ¥ = Z mod 27. By the construction above and Lemma 2.16,

we reduce the existence of rotation numbers to that of the following ergodic limit
with respect to the skew-product dynamical system {‘I’ﬁ}kez-

Lemma 5.8. Assume that ((§,V,T),9) € Eqvr X Sor and E € R satisfies ¥ = 2
mod 27w. Then we have the following relation:

) is well

0 Nn; ~7~5f‘75 —B =~
i AE@GVDEZE ZFA (®%((q,V,T),9)).

n—-+oo Tn n%Jroo n
That is, if one of the limits exists, then the other one exists as well and they are
equal. When T’ =Z, then [I'] = 1.
Proof. By Lemma 2.16, we have
Ox(Zn; (¢, V,T),2) — = . 0\(@n;(q,V,1),E) - E

lim — =[] lim ,
n—-+oo Tn n—-+4oo n

provided one of limits exists. Furthermore,
0)\<i'n; ((ja f/ f)7 E) -2

= Z (Ox(Zk+415 (4, V, 1), E) — 0 (dx; (4, V,T), E))
k=0

n—1

=
<r
Ll
??‘
>
>
—
=
-
[
<
=
:/
m
I
>
>
IS}
T
—~
=
<
s
:_/
[1]
S~—

(]

(Or(Zr41 — Zis (G,

The proof is complete. O
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6. THE ROTATION NUMBER
The following uniform ergodic theorem is due to Johnson and Moser [8].

Lemma 6.1. [8] Let {¢F}rez be a continuous discrete-time dynamical system on
a compact metric space X. Then, for any f € C(X,R) satisfying

/deu:()

for all invariant Borel probability measures yu under {¢*}, one has

. 1
lim —
n—-+oco n

n—1
D f@@) =0
k=0
uniformly for all x € X.
To show the existence of rotation numbers, inspired by Lemma 5.8, we introduce
the following notation.

- 1
Fi((q,V,0),9) = lim —

n—1
o = o
Jim = D R(@K(¢. V. D), 9), (@, V.T).0) €,
k=0
whenever the limit exists. For (¢, V,T) € E,vr and E € R, denote

n—-+oo jn

b

provided the limit exists. By Lemma 5.2, we obtain the following:

Lemma 6.2. If FY((q, V.,T),Z) exists for Zg € R, then Fy((q, V.T),2) exists for
all = € R and is independent of the choice of = € R.

Proof. By Lemma 5.2, we know that Ff((d,f/,f‘),Eo + 2km) exists for all k € Z.
Then for any = € R, there exists k= € Z such that

Eo 4 2kzm <2< Eg +2(kz + 1)
By Lemma 5.2 and Lemma 5.5, for all n € N, we have
Ox(Zn; (4, V,T),Eo+2kem) < 0x(Zn; (4, V,T),E) < 0x(Z4; (4, V,T), Eo+2k=m)+27.
This implies that for all Z € R, we have
F((q,V,1),8) = F{(@, V. 1), Z).
The proof is complete. i

We obtain the main result as follows.

Theorem 6.3. For any Z € R, the limit F$((§,V,T),E)) exists and is independent
of the choice of the = € R and (G,V,T") € Eqv,r. Thus we denote it by px(q,V,T)
and call it the rotation number of (1.2).

Proof. By the Krylov-Bogoliubov theorem and Lemma 5.6, there exists an invariant
Borel probability measure under {®%}, denoted by p. Then by the Birkhoff ergodic
theorem, there exists a Borel set 7, C Z, which depends on the measure p, such
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that 1(Z,) = 1 and Fy((¢,V,T),9)) exists for all (¢,V,T),9) € Z,. Furthermore,
F* is integrable and satisfies

(6.2) /F;fd,uz/F)\d,u = Pap-
z z

Due to Lemma 6.2, Z,, can be written in the form 7, = E,, X Sy, where E, is a
Borel set in E, y;r. Let v be the Haar measure on E, v r. Then we have v(E,) = 1.
By the unique ergodicity of the Haar measure, there exists a set E C E, such that
v(E,) = u(E, x Sgr) =1 and F((¢,V,T),1)) is a constant functlon on E,, x Sa,.
It follows from (6.2) that the constant must be py ,.

By (6.1), we know that py , in (6.2) is independent of the choice of the measure
. Set Fy:=F\ — pa- By Lemma 5.7, F) is continuous on Z. By (6.2), F\ satisfies
the requirement of Theorem 6.1. Thus, as k * +0o0,

(6.3)
§ k T _ § k I o

uniformly for all (g, V~7 F), 9) € Z.
At last, taking (g, V,T') = (¢, V,T') in (6.3), then by Lemma 5.1 and Lemma 5.8,
we obtain the existence of the desired limit (6.1). O

Remark 6.4. As we said in the Introduction, the rotation number has key con-
nections to the spectral analysis of H, y.r. We numerically compute the rotation
number in three cases, in which the black plot is created when v; = —1, the red one
when v; = 0, and the blue one when v; = 1. Numerical exploration in other models
can be founded in [14, 6]; see [14] for the discrete Schrédinger operator on ¢2(Z)
and [6] for the quasi-periodic Schrédinger operator on L?(R). For our model, two
things should be mentioned. One is that when v; increases, the rotation number
decreases. The other is that, it is evident that the rotation number takes a constant
value in a sub-interval in the A-axis which is a gap of the spectrum of H, v r. The
detail on the spectrum will be discussed in a future publication.
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