SCIENCE CHINA @ CrossMark
Mathematics ¢

« ARTICLES - March 2022 Vol.65 No.3: 539-558
https://doi.org/10.1007/s11425-020-1778-4

Subordinacy theory for extended CMYV matrices

Shuzheng Guo'?, David Damanik? & Darren C. Ong*

1School of Mathematical Sciences, Ocean University of China, Qingdao 266100, China;
2Department of Mathematics, Rice University, Houston, TX 77005, USA;
3Department of Mathematics, Xiamen University Malaysia, Sepang, Selangor Darul Ehsan 43900, Malaysia

Email: gszouc@gmail.com, damanik@rice.edu, darrenong@rmu.edu.my

Received June 13, 2020; accepted August 25, 2020; published online August 3, 2021

Abstract We develop subordinacy theory for extended Cantero-Moral-Veldzquez (CMV) matrices, i.e., we
provide explicit supports for the singular and absolutely continuous parts of the canonical spectral measure
associated with a given extended CMV matrix in terms of the presence or absence of subordinate solutions to

the generalized eigenvalue equation. Some corollaries and applications of this result are described as well.
Keywords spectral theory, subordinacy theory, CMV matrix, unitary operator, Carathéodory function

MSC(2020) 47B36

Citation: Guo S Z, Damanik D, Ong D C. Subordinacy theory for extended CMV matrices. Sci China Math,
2022, 65: 539-558, https://doi.org/10.1007/s11425-020-1778-4

1 Introduction

Subordinacy theory was first developed in the setting of continuum half-line Schrédinger operators by
Gilbert and Pearson [11]. Its primary aim is to relate the spectral decomposition of the operator in
question to the behavior of the solutions to the associated generalized eigenvalue equation. The following
correspondence is obvious: a value E of the spectral parameter is an eigenvalue of the operator H in
question if and only if the equation Hu = Fu admits a non-zero solution u that belongs to the domain of
the operator. Modulo a suitable regularity property, this means that u satisfies the designated boundary
condition at the origin and is square-integrable at +o0o. Since the pure point part of any spectral measure
of H is supported by the set of eigenvalues, it follows that we can extract the pure point part of any
spectral measure by restricting this measure to the set of E’s for which the solution that obeys the
boundary condition at the origin is square-integrable. Similarly, we extract the continuous part by
restriction to the set of E’s for which the solution that obeys the boundary condition at the origin is not
square-integrable. Gilbert-Pearson’s subordinacy theory provides a similar partition related to the split
between the singular part and the absolutely continuous part of a spectral measure: the crucial question
is now whether the solution that obeys the boundary condition at the origin is subordinate.

A follow-up paper by Gilbert [9] developed subordinacy theory for continuum Schréodinger operators
on the whole line, and the resulting theory is completely analogous if one replaces “obeying the boundary

2

condition at the origin” by “being square-integrable/subordinate at —oco” in the discussion above.
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Subsequently, subordinacy theory was developed in other settings as well: for Jacobi matrices by Khan
and Pearson [18] and for CMV matrices by Simon [26]. Furthermore, there were simplifications and
extensions of subordinacy theory by Remling [22], Jitomirskaya and Last [14,15], Damanik et al. [5] and
Killip et al. [19].

The papers mentioned above establish subordinacy theory for half-line and whole-line Schrédinger
operators, for half-line and whole-line Jacobi matrices, and for standard (i.e., half-line) CMV matrices.
There is no subordinacy theory yet for extended (i.e., whole-line) CMV matrices, and it is the purpose
of this paper to fill this gap in the literature.

Thus we are naturally motivated by the fact that subordinacy theory is a fundamental result to be
established for any operator family for which such a theory exists. It is usually the most convenient
way to perform a spectral analysis of a given operator, precisely because the behavior of generalized
eigenfunctions is easier to study than other properties of the operator in question that are relevant to the
identification of its spectral type. We expect our work to be useful in the study of spectral properties for
many classes of extended CMV matrices.

The rest of this paper is structured as follows. We describe the setting, the main result, and some
consequences of it in Section 2. Some known results that will be used in the proofs are presented in
Section 3. Section 4 develops the version of the Jitomirskaya-Last inequalities from [26] that we need to
analyze the left half-line of a given extended CMV matrix. The main subordinacy result is then proved
in Section 5 and its applications are discussed in Section 6.

2 The setting and the main result

In this section, we describe the setting in which we work and state the main result, a description of
supports of the parts of spectral measures of extended CMV matrices in terms of solutions, along with
some corollaries. We refer the reader to [25,26] for the general background, and we follow largely the
notation from these monographs.

Let p be a non-trivial probability measure on the unit circle 0D = {z € C : |z| = 1}, which means the
support of £ contains infinitely many points. By the non-triviality assumption, the functions 1, z, 22, ...
are linearly independent in the Hilbert space H = L?(0D, du), and hence one can form, by the Gram-
Schmidt procedure, the monic orthogonal polynomials ®,(z), whose Szegd dual is defined by @ =
2"®,(1/Z). There are constants {ay, tnen, in D = {z € C: |z| < 1}, called the Verblunsky coefficients, so
that

D,11(2) = 20, (2) — @, P} (2) for n € Ny, (2.1)

which is the so-called Szegd recurrence. Conversely, every sequence {ay, }nen, in D arises as a sequence of
recurrence coefficients corresponding to a Gram-Schmidt procedure on a non-trivial probability measure
on JD.

In fact, if we normalize the monic orthogonal polynomials ®,,(z) by

P, (2)
zZ,m) = )
SN TGP
where || - ||, is the norm of H, it is easy to see that (2.1) is equivalent to

pn(@)p(z,n +1) = 20(2,n) — W™ (2,1),

where p, = (1 — |a,|?)!/2.
Define

1 z —a
S(a,z) = 5 (_az ) ) : (2.2)

where p = (1 — |af?)'/2.
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The Szegé recursion can be written in a matrix form as follows:
z,n+1 zZ,mn
o V) 2 St [P ) (2.3)
©*(z,m+1) v*(z,n)

Alternatively, one can consider a different initial condition and derive the orthogonal polynomials of the
second kind, by setting 1(z,0) = 1 and then

P(z,n+1) P(z,n)
= S(am, 2) .
—¢*(z,n+1) —¢*(z,n)
The orthogonal polynomials may or may not form a basis of H. However, if we apply the Gram-

Schmidt procedure to 1, 2,271, 22, 272,..., we will obtain a basis—called the CMV basis. In this basis,
multiplication by the independent variable z in H has the matrix representation

g ®ipo  P1Po 0 0
po —a1ap —prag 0 0
0 Qop1 —apaq Q3p2  p3p2
C= _ ; (2.4)
0 p2p1 —p2oy —Qzay —p3an -
0 0 0 Qup3 —QqQg -

where a = {an}, oy, € D and p, = /1 — |ay|? for n € Ng. A matrix of this form is called a CMV
matriz.

Furthermore, an extended CMV matriz is a special five-diagonal doubly infinite matrix in the standard
basis of £2(Z) according to [25, Subsection 4.5] and [26, Subsection 10.5], written as

©—Qpa—1 @1po  P1Po 0 0
©r —poa—1 —a1g —prag 0 0
E=1]--. 0 Qop1 —Qiay Qgp2  P3P2 ) (2:5)
0 p2p1  —pP20y1 —Q3Qiy —pP3Q v
0 0 0 Qyps —Oya -

where a = {an},, o, C D and p, = /1 — |a,|? for n € Z. In some settings, it is more natural to consider
extended CMV matrices, rather than standard CMV matrices. This is the case, for example, where the
Verblunsky coefficients are generated by an invertible ergodic dynamical system. This class of coefficients
contains the important special cases of almost periodic and random coefficients and some important parts
of the theory for ergodic coefficients, for example Kotani theory [6,7,26], require the consideration of the
two-sided case.

The main goal of this paper is to provide a general approach to the study of the spectral properties of a
given extended CMV matrix £ via the properties of the solutions to the associated generalized eigenvalue
equation. To this end, let us first discuss the canonical spectral measure and then the generalized
eigenvalue equation.

Given an extended CMV matrix &, the canonical spectral measure A is given by the sum of the spectral
measures of € relative to the vectors dp and d;. It is well known that {dg, 61} forms a spectral basis for the
operator £ (see, e.g., [20, Lemma 3]) and hence for every v € £?(Z), the spectral measure corresponding

to £ and v is absolutely continuous with respect to A.
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Consider the Lebesgue decomposition of A into its pure point, singular continuous, and absolutely
continuous parts,
A= App + Age + Aam

i.e., Ayp is supported by a countable set, Ay, gives no weight to countable sets but is supported by some
set of zero Lebesgue measure, and A, gives no weight to sets of zero Lebesgue measure. Here, we refer
to the standard arc length measure on JD as the Lebesgue measure on 9.
We also consider the singular part of A, As = A, + Agc and the continuous part of A, Ac = Agc + Aqc.
Consider the corresponding eigenvalue equation

Eu = zu (2.6)

with boundary conditions

(gpw(O) ¥.,(0) ) _ (cosw—i—isinw cosw + isinw ) (2.7)

©x(0) —r(0) cosw —isinw —cosw +isinw
Here is the fundamental definition of subordinacy, introduced by Gilbert and Pearson [11] in the

Schrodinger case, adapted to the CMV setting.

Definition 2.1.  (a) Define for a sequence ag, ay, ... and z € (0, 00),

[]
lallz = > la;* + (& = [2])lap 41,
§=0

where [r] denotes the greatest integer less than or equal to 2. An analogous expression defines ||a||? for
a_i,a_2,...and & € (—oo,—1). Then

-1
lal? = > o + ([2] — 2)lafz) -1,

j=lz]

where [2] denotes the least integer greater than or equal to .
(b) Let z € OD. A solution u to (2.6) is called subordinate at o0 if it does not vanish identically and
obeys

lim 1l _
w00 ||pla

for any linearly independent solution p to (2.6).
Similarly, a solution u to (2.6) is called subordinate at —oo if it does not vanish identically and obeys

oy Ml
o= lpl

for any linearly independent solution p to (2.6).
We are now ready to state the main result of this paper.

Theorem 2.2. Let £ be an extended CMV matriz in (*(Z) and denote by A its canonical spectral
measure. Then, the three parts of the canonical spectral measure have the following supports defined in
terms of the behavior of the solutions to (2.6):

(a) Let

P ={z€0D: (2.6) has a solution that is square-summable at + co}.

Then App (0D \ P) = 0 and Ac(P) = 0.

(b) Let

S={z€dD: (2.6) has a solution that is subordinate at + oo}.
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Then As(OD\ S) =0 and Aae(S) = 0. In particular, we have
Asc(OD\ (S\P)) =0 and (App+Auc)(S\P)=0.

(c) Let
Ay = {z € 9D : (2.6) has no solution that is subordinate at + oo} (2.8)

and

A=A, UA_.

Then Aae(OD\A) = 0 and As(A) = 0. Moreover, A is an essential support of Aac, i.e., for any measurable
set A" with Ay (OD\A') = 0, we have Leb(A\A") = 0.

Remark 2.3. Theorem 2.2(a) is well known and stated here for completeness. The statement follows
quickly from the spectral theorem; see, for example, the proof of [28, Theorem 7.27(a)] for the derivation
in the self-adjoint case—the argument is analogous in the unitary case. Indeed, as discussed in Section 1,
the philosophy behind subordinacy theory is to identify a type of solution behavior that discriminates
between the absolutely continuous and singular parts of spectral measures, just as square-summability
discriminates between the continuous and pure point parts of spectral measures.

Typical applications of this result rely on sufficient conditions for the absence or presence of subordinate
solutions. For example, the absence of subordinate solutions follows from the boundedness of the transfer
matrices, which are defined as follows:

0,

An,z) = {S<amz> % +ex S(ag, ), 0.

S(—n—2,2) X S(—=p_1,2) X - X S(—a_qg, 2),

NV

n
n

where S(-, z) is given by (2.2). We will give more details in Section 4. Specifically, we have the following
statement.

Corollary 2.4. Let
Bt = {z € 0D : sup ||A(n,z)| < oo}.
nEL+
Then, By C Ay with Ay as defined in (2.8). In particular, the restriction of A to each of By is purely
absolutely continuous.

In many cases of interest, the Verblunsky coefficients are dynamically defined. As a result, the as-
sociated Szegb recursion can be expressed in terms of SU(1, 1)-valued cocycles over the base dynamical
system in question. The boundedness property that feeds into Corollary 2.4 is then often established
via a suitable reducibility result. Let us state another corollary in the dynamically defined setting that
implements this connection.

Corollary 2.5. Suppose T : Q0 — Q is invertible and f : Q — D. This gives rise to w-dependent
Verblunsky coefficients
ap(w) = f(TMw), we, neZk

and w-dependent extended CMV matrices E(w) = E({an(w)}). Moreover, for each z € ID, consider the
map A, : Q — SU(1,1) given by A, (w) = 27/25(f(w), 2), where S(-, z) is given by (2.2).

Denote by R the set of z € ID for which there exist B, : Q@ — SU(1,1) bounded and AS” € SU(1,1)
elliptic such that for every w € Q, we have A,(w) = BZ(Tw)Ago)BZ(w)_l.

Then, for every w € Q, the canonical spectral measure associated with £(w) and A(w), is purely abso-
lutely continuous on R.

Recall that an SU(1,1) matrix is called elliptic if its trace belongs to the real interval (—2,2) (in
this context it is useful to remind the reader that SU(1,1) and SL(2,R) are canonically conjugate [26,
Equation (10.4.27)]). The assumptions of Corollary 2.5 can be verified in a variety of situations, in analogy
to the extensive literature on reducibility for quasi-periodic SL(2,R) cocycles of sufficient regularity (see,
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for example, [1,2,12] and the references therein). This connection is presently being worked out by Long
LiY.

We conclude this section with two applications of the description of the singular part of an extended
CMV matrix in terms of subordinate solutions. Both of these applications are known via different
methods, but the approach via subordinacy theory provides an interesting additional angle. Since these
results are not new, we will not state them as formal corollaries.

The first application is the following statement: any extended CMV matrix £ has the simple singular
spectrum. In the setting of extended CMV matrices, this result was first proved by Simon [24]. However,
a statement of this kind had been obtained earlier for second-order differential operators, originally proved
by Kac [16,17] and then proved via subordinacy theory by Gilbert [10]. The present paper provides the
basis for Gilbert’s approach to this result in the setting of extended CMV matrices.

Another application concerns a version of the Ishii-Pastur theorem for ergodic extended CMV ma-
trices, proved via subordinacy theory, an approach proposed in the setting of Schrodinger operators by
Buschmann [3]. Again we will not state this as a formal corollary since the result is already known
(see [6, Theorem B.2]), and merely point out that the Ishii-Pastur theorem is the inclusion C in the
identity stated in [6, Theorem B.2], and that this inclusion can be proved along similar lines to those
in [3] by using Theorem 2.2 above.

3 Preliminaries

3.1 Carathéodory functions

A Carathéodory function is a holomorphic map from D to the right half plane {z: Rez > 0}. We also
say a function is an anti-Carathéodory function when its negative is a Carathéodory function. If we
modify a(ng) = —1, then (2.5) becomes the direct sum of matrices acting on ¢2([ng + 1,00) N Z) and
0?((—o0,n0] N Z) of the form (2.4). We label the halves as C(f“H) and C™), respectively. We consider
the case where ng = —1. Concretely, (2.5) becomes the direct sum of matrices acting on ¢*(Z,) and
(*(Z_) of the form (2.4), where we write Z, := [0,00) NZ and Z_ := [~1,—00) N Z. One can find
the correspondence between a given CMV matrix and its Carathéodory function in [25, Subsection 1.3].
Specifically, a Carathéodory function is the CMV analog of the m-function in the theory of Jacobi
matrices, and is connected to the spectral theory of the CMV matrices.
Denote the Carathéodory function corresponding to C(+O) by

Fi(2,0) = - gi—idA+(C70)
and ¢V by
(+=z
F_(z,—-1)=— dA_(¢,—1
(Z7 ) oD C_Z (C? )a

where Ay ((,0) and A_({, —1) are the spectral measures of CS?) and C(__l), respectively.
The Carathéodory function for £ is given by the formula

F(z)z/ei T2 4A0),

el — 2

where as above A is the sum of the spectral measures of £ relative to the vectors dg and d.
3.2 Gesztesy-Zinchenko description

The Gesztesy-Zinchenko (GZ) matrix from [8] is a key tool to encode the behavior of solutions to (2.6).
As we follow the conventions from [25,26], let us point out that there are some differences between the
notations in [8] and ours, which are as follows: «,, = —a,_1, U{an}) = E{—an-1}), Uy o{an}) =

D Li L. Private communication
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T({=@n_1}), us(z,n) = si(z,n) and v4(z,n) = s4(z,n), where the left-hand sides are their nota-
tions and the right-hand sides are our notations.
First, recall that any extended CMV matrix £ can be factorized into direct sums of 2 x 2 matrices of

the form
0= <a P )
p —«
Let
= @@(agj) and M := @ @(Oézj+1).
JEZL JEL
Then £ = LM.
Set

Pla,z) = 1 (—a z> and Q(a,z):= 1 (—a ! ) for z € C\ {0}.

z —« P 1 —«

Now, if u is a complex sequence such that £u = zu and v = Mu, one can easily see that £Tv = zv holds.
By [4, Proposition 2.1], the following equation holds for n € Ny, which can be extended to n € Z,

u(n +1) u(n)
=T(n,z , 3.1
(v(n + 1)) (n.2) <v(n)) (8-1)

T(n, 2) P(ap,z), niseven,
n,z) =
Q(ay, 2), nis odd.

where

Definition 3.1. We denote by

u+(z,n,n0) and p+(z,n,no)
v_,_(z,n,no) q+(z,m,np) .

for z € C\ {0}, two linearly independent solutions to (3.1) for n > 0 with the following initial conditions:

—_

(3.2)

(1>
ng is even,
<u+(z no,n0)> _

v4(z,m0,Mn0) 1
ng is odd,
1

<p+(27n07n0)> _ ( 1) , 7o is even,

Q+(Z7n07n0) -1 .
, ng is odd.

Similarly, we denote by

(U(Z,’I’L,’I’L(ﬂ) and (p(zan7n0)>
v,(z,n,no) n<no q,(z,n,no) n<no

for z € C\ {0}, two linearly independent solutions to (3.1) for n < —1 with the following initial conditions:

(3.3)

1
( ) ,  ng is even,
(u_(z,no,no)> A\
-1 _
,  ng is odd,
1

v_(z,m0,n0)
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1
( ) ,  Mng is even,
(p—(z7n07n0)> o <

q*('zan()ano) 1 3
L) ng is odd.

Remark 3.2. The above definition is from [8, Definition 2.4]. Here, our uy, vy, p1+ and ¢4 are their
r4, pt, S+ and g, respectively. By (2.3) and (3.1), we have

—(n+1)
z7 2 *(z,n), mnisodd,
wp(emy =7 £ (3.4
272 p(z,n), n is even,
~(n=1)
z7 2 z,n), mnisodd,
vi(em) = {7, #Em (35)
272 p*(z,n), n is even,

po () = {_Zn2 Y*(z,n), nisodd, (3.6)

272 Y(z,n), n is even,

{z(”zl)w(z,n), n is odd, (3.7)

—z729*(z,n), niseven

for z € OD.

For simplicity to check (3.4)-(3.7), we rewrite the equation for {¢(2,n)}, ey, {¥(2,7)}en,
{ut(z,n)}, ey, and {vi(2,n)},cy,- Once we have (3.4) and (3.5), (3.6) and (3.7) hold immediately.
Indeed, for {¢(z,n)}, ¢y, and {¥(2,n)}, ey, We have

pnp(z,m + 1) = 20(z,n) — @np*(z,n),
e (z,n+1) = —ayzp(z,n) + ©*(2,n).

For {u4(z,n)}, oy, and {v4(z,n)}, cy,, when n is even,

prtiy (z,n +1) = —apuy(z,n) + 27 vy (2,n),

pnvy(z,n+ 1) = zuy(z,n) — @uu(z,n);
when n is odd,

pnus(z,n+1) = —@us(z,n) +ve(z,n),

panr(z,n +1) = u+(z,n) - Oén’U+(Z,n).

It follows that (3.4) and (3.5) hold.

Lemma 3.3 (See [8, Corollary 2.16]).  There are solutions (iig; Ynez to (3.1), unique up to constant
multiples so that for z € C\(0D U {0}),

s4(z,+) 9 9 5—(2,°) 2 2
<t+(z,~)> € (2y)7, (t(z,-)) € (2-)".

Lemma 3.4 (See [23, Theorem 5.3]).  Let z € D. Then
(wwm>)+ﬁ<wam>
_/(/)*(Zv n) 90* (Zv n)

/8 = F+(Z,0)

2
e}

>

n=0

< o0

if and only if
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Let
and

0¥ (z,n) = =" (z,n) + Fi(2,009" (2,7).

Consider the equation

with the boundary condition
—_ 1+ F+ (27 O)
=0 = )
-1+ F+ (Z7 O)
where S, (2) = S(ap—1,2) - S(ap, z). Then (Zézg) is the unique £2 solution to (3.8).
$ (=,
The Green function G (or the resolvent function (£—z)~!) for £ is computed by using formal eigenvalues
of C1 and CI. For k € Z, define

ap =1—ag, by =1+ap,
where ay’s are Verblunsky coefficients associated with the CMV matrix £.

Lemma 3.5 (See [8, Lemma 3.1]).  For z € C\(0DU{0}), let M_(z,0) be an anti-Carathéodory function
in [8, (2.139)], which is related to F_(z,—1) by

Re(a_1) +ilm (b_1)F_(z,—-1)

M0 = i @) + Re (b P (2. 1)

(3.9)

Let sy be £ solutions to (C+ — z)s = 0, and let t+ be £ solutions to (CL — 2)t = 0, normalized by

$+(2,0) =1+ Fy(2,0), s_(2,0)=1+ M_(z,0),
ty(2,0) = -1+ Fy(2,0), t_(z0)=1-M_(z,0).

These st and t+ are equivalent to the ones in Lemma 3.3. We may extend these solutions to solutions
to (£ —2)w=0 and (T — 2)w = 0.

Then the resolvent function (€ — z)~ (x,y) can be expressed as

(3.10)

-1 ~Jto(zm)si(z,n), ifm<norm=mn andm is odd,
2Z(F+(Z7O)_M—(Z7O)) B

ty(z,m)s_(z,m), ifm>mn orm=n and m is even.

From [8, p. 181, the table], we are in the case of kg = 0 and obtain

L@Aw:lu+mo+%w—awM4am

Po

1 1 1/1
sy(z,])=—| ———ap | + —| - — o | Ft(2,0).
(1) m( ! 0) m(z 0)+()

Notice that our s+ and ¢4 are their v+ and ., respectively.
3.3 Green and Carathéodory functions

One can write Gog + G171 as

(=14 Fi(2,0))(1 + M_(2,0))
22(F4(2,0) — M_(z,0))
a0+ M_(2,0)(z — @0)][-1 — aoz + Fi (2,0)(1 — apz)]
2032(Fy (2,0) = M_(,0))
R = Fy(2,0) + M (2,0) — Fy (2, 0)M_(2,0)) + (= + To) (1 + ap2)
2032 (F (50) = M_(2,0))

Goo+ G111 =—
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N (z — @) (14 apz)M_(2,0) — (z + @) (1 — apz) Fy(2,0)
203 2(F4 (2,0) — M_(2,0))
(z —a@o)(1 — a2z)Fy(2,0)M_(2,0)
2052°(Fy(2,0) = M_(2,0))
_ (PBz+ 2+ + apz? + |aol?2) + (pgz + 2 — dp + az? — | |*2) M_(2,0)
B 2052°(Fy(2,0) = M_(2,0))
(—p22 + ap2? — 2 + ||?2 — @) F1(2,0)
2p32’2(F+(Z, O) - M—(Z’ 0))
+ (—p%z + agz? — 2z — ‘O‘O|2Z + @) Fli (2,0)M_(z,0)
2072 (F (2,0) = M_(2,0))
(22 + a0 + ap2?) + (2p3z — @ + apz?)M_(z,0)
20222(F; (2,0) = M_(5,0))
(2% —ap — 2p22)F1(2,0) + (92 + @y — 22)M_(2,0)Fy(z,0)
2p(2)2’2(F+(Z,0) - M- (Z’ 0))
(22 + @ + @p2?) + (ap2? — @) (Fy(2,0) + M_(z,0))
ngZQ(F-i-(ZaO) - M- (Z’ 0))
N 2p32(M_(z,0) — F (2,0)) + (o2 + @y — 22)M_(2,0)F(z,0)
2p322(F+(270) —M,(Z,O)) .

+

+

It follows that

(@0 + 22 + 2p2?) + (ap2? — @) (M_(2,0) + F(2,0))
PP (2,0) ~ M_(2,0)

(qo — 22 + p2?)M_(2,0)F1(2,0)

PP (,0) ~ M (2,0)

22(Goo(2) + G11(2)) = =2+

(3.11)

Finally we note the connection between Ggg + G117 and the Carathéodory function F' corresponding
to & and dA. We have by definition

eie V4
F(z) = / REFIVON

el — 2z
Define "
dA,(0) = Re F(rel) —.
2

It is well known that dA, converges to dA weakly as r 1 1. Moreover,

eie z
F(z):/ REFIND)

elf — »

=1+ 22/ ! dA(9)

= elf _ 5

= 1+ 22(Goo(2) + G11(2))-

4 Jitomirskaya-Last inequalities

In this section, we obtain a suitable version of the Jitomirskaya-Last inequality for the left half-line CMV
matrix

CQ_y4p_5 —Q_40_5 Q_3p_4 P_3P—4 0
Co= |- pups —psa_s —T_30_4 —p_3a_y 0
0 0 Q_9p_3 —Q_20_3 Q_1p_2

0 0 p—2p—3 —pP-200_3 —Q_1Q_2



Guo S Z et al. Sci China Math ~ March 2022 Vol. 65 No.3 549

via a relation between the eigenfunctions of C_ and the associated right half-line CMV matrix (,;Jr =
Cf)({dn}n>0), where &, = —@_(p42) and &_; = —1.

First, recall the Jitomirskaya-Last inequality for a right half-line CMV matrix. With the solutions
to (2.6) obeying (2.7) with w = 0 and the local ¢? norms from Definition 2.1, we have the following
lemma.

Lemma 4.1 (See [25, Theorem 10.8.2]).  For z € ID and r € [0,1), define z(r) € (0,00) to be the
unique solution to

(1= 2)e- () 19 (2) |y = V2.

Then
A7 (r,0)] < WOMe) gy, ), (41)
- ()l
where A is a universal constant in (1,00).
Remark 4.2. By Remark 3.2, (4.1) is equivalent to
A7V F(rz,0)] < lp+(2)lloer) A|F, (rz,0)], (4.2)

- ”u-i-(Z)Hm(r)
where A € (1,00) is a universal constant.

Next, we address the relation between C_ and C~'+. Let J be the matrix with elements

1, ifi=—j—1,
Jij = .
0, otherwise

fori=-1,-2,-3,...and j =0,1,2,... Let J be the matrix with elements

. 1, ifi=—j—1,
Jijj = .
0, otherwise
fori=0,1,2,...and j = —-1,-2,-3,...
Define the operator U : £2(Z) — ¢?(Z) that maps (?(Z_) — (*(Z) as follows:

0J
U=1. |,

where 0 is the zero matrix, i.e., Ud,, = d_,,_1 for n € Ny.
A direct calculation implies

—Q_1Q_2 —p_20i_3 pP_2P-3 0 0
a_lp_g —a_QOé_g 6_2,0_3 0 0
UC_U* = 0 —p-3Q_4 —Q_300_4 —P_4Q_5 P_ap-5 ‘-

0 pP-3Pp—4 Q304 —Q_40 5 Q_4p_5 "

Set &y, = —a_(p42) and &_1 = —1. Then p, = p_(,42) and C~+ =UC_U*.

For C,, denote ¢ and v to be the orthogonal polynomials and the orthogonal polynomials of the second
kind, respectively. Denote u_ and @ (p— and p;) to be the eigenfunctions for C_ and é+, respectively,
and v_ and 74 (g— and G4) to be the eigenfunctions for C* and CT, respectively. Since C; = UC_U*,
g (n) =u_(—(n+1)) for n € Ny.

We have

—(n2+1) ~

2
-_n ~ .
—z72 ¢(z,m), n is even,

z (z,n), nisodd,

u_(z,—n—1)=1a4(z,n) = {
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5 P(z,n), nisodd,

272 ¢*(z,n), n is even,

v_(z,—n —1) =04(z,n) = {

2520 (z,n), nis odd
~ ) K 1 )
p—(zv -n- 1) = p+(Z,n) - { —n ~

27z Y(z,n), n is even,

—(n—1) ~

z7 2z (z,n), nisodd,

z%nzﬂ*(z,n), n is even
1

q-(z,—n—1) =q4(z,n) = {

for z € OD. Thus the initial conditions (3.3) with ng = —1 are equivalent to

<~¢(Z’O)> _ <1> ’ (1/3(2,0)> _ <1> , (4.3)
¢"(2,0) 1 ¥7(2,0) 1

Since z € 81D>, Hu—(z)Hfm(r)fl = ||¢(Z)||w('r) and ||p_(Z)||,~I(T),1 = H'(ZJ(Z)”w(r)a where x(r) is as in
Lemma 4.1. Due to Lemma 3.4, there must then be a unique F(z) such that

( —(2,m) + Fy (2)9(2,m)
95*(2’ n) + F+(z)1/1*(z, n)
Due to the unitarity of U, F_(z, —1) = —F(z,0), where F; (2, 0) is the Carathéodory function for C..

Hence, the Jitomirskaya-Last inequality holds for C_. For z € 0D and r € [0, 1), define z1(r) € (—o0, —1)
to be the unique solution to

) € 2(Zy).

(1 = ) Ju(2) ey () 1P ()]l () = V2.
Then

A71|F_(T’Z 71)| < ||u_(z)||E1(7’)

< < AIF_(rz,—1), 4.4
FRE]E ) 44

where A is a universal constant in (1, 00).
Next, we extend the Jitomirskaya-Last inequality, which holds for the boundary condition ¢(z,0) = 1,
to a general boundary condition of the form

©(z,0)(cosw — isinw) — p*(z,0)(cosw + isinw) = 0. (4.5)

Given z € D and w € [0,7), let (i:) and (_1’/}1;”* ) denote the solutions to (3.8) obeying (2.7). Thus,

(i‘i ) obeys the boundary condition (4.5) and (j;j* ) obeys the orthogonal boundary condition.
Define uy,(2z,n) and p,(z,n) to be the solutions to (2.6), subject to the boundary conditions (2.7). For
r € [0,1), define z(r) to be the unique solution to

(1= )1 () o 1P ()la(ry = V2. (4.6)
By [8, Theorem 2.18], there are a unique F(2,0) such that
£7(2,1n,0) = pu(z,n) + FY(2,0)un(z,n)
is /2 at infinity and a unique M“(z,0) such that
£ (2,n,0) = pu(z,n) + M?(z,0)u,(z,n)
is 2 at —oco. By (3.4) and (3.6), we have
£5(2,0,0) = ¥u(2,0) + F(2,0)0u(2,0),
€°(2,0,0) = ¥ (2,0) + M_(2,0)¢p,(z,0).
Define
£97(2,0,0) = =¥ (2,0) + Fi(2,0)pu(2,0),
£2%(2,0,0) = —*(2,0) + M_(z,0)¢5(2,0).

With these definitions the following generalization of Lemma 3.4 holds.
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Lemma 4.3. For z € 9D, define x(r) € (0,00) to be the unique solution to

(1 = M)l (o) 1P (|2 (ry = V2.

Then we have
||Pw(Z)||z(r)
Huw(z)Hx(r)

where Ay is a universal constant in (1,00). Similarly, define x1(r) € (—oo0,—1) to be the unique

AT FE (r2,0)] < < ALl F(rz,0)], (4.7)

solution to
(1 - T)HuW(Z)HIl(T)HpUJ(Z)HII("’) = \/i

Then we have
[[Peo (2) |2, ()

ATYFY(rz,0)| <
R P e

< Ao F2(rz,0)], (4.8)

where Az is a universal constant in (1,00).

Proof.  In order to follow the proof of [26, Theorem 10.8.2], define T;, as

oL (eiwm(n) +1u(n) € (pu(n) - mn)))
2 \e (gl (n) —vi(n) e“(ps(n) +¢5(n)
This is from [25, (3.2.27)] with the boundary conditions (e‘iifw ) and (_:ifw ). By [25, (3.2.28)], det T;, = 2™.
We have . .
" ( (g () +usl)  —e(pu(l) - %(D))
l - —iw * * —iw :
28 \—e (el (D) = i) e (pull) + (D))
A direct calculation shows that T, ; = T,LTI_1 which is the same as T;,.; in [26, (10.8.8)]. The remaining

proof is the same as the proof of [26, Theorem 10.8.2]. We can then conclude that (4.7) holds. O
Lemma 4.4. Let 0 € [0,27) be given.
(1) One has lim4; Fy(re'?,0) = —icotw for some w € [0,7) if and only if u,, is subordinate at +oo.
(2) One has lim4+1 M_(re'? 0) = —icotw for some w € [0,7) if and only if u,, is subordinate at —oo.

(3) The difference equation (2.6) enjoys a subordinate solution at +oo if and only if

liglF+(reig,O) € i(RU {o0}).
T

(4) The difference equation (2.6) enjoys a subordinate solution at —oo if and only if
h'Irrll M_(rel?,0) € i(R U {oc}).
(5) The difference equation (2.6) enjoys a solution that is subordinate at +o00 if and only if
. i0 T i0
l:glF.AM ,0) = lrl%IllM_(’l"e ,0).
Proof. (1) Consider the m-function for orthogonal polynomials on the unit circle (OPUC) of the form

€% (rel?,0,0)

+ i6
mg (re'”) = gg (rei?,0,0) :
By Lemma 3.3,
W, * 19
+ i0 _ §+ (7"6 70a0)
mg (7"6 ) gi(reig’o,o)
implies

—p*(re,0) + F (rel? 0)¢* (re®,0) =y (re'?,0) + F (re'?, 0)pr (re'?, 0)
Y(rel, 0) + Fo(rel?, 0)p(rei?,0) 1, (rei?,0) + F¢(rei?,0)p,(rei?,0)
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For simplicity, write ¢, (rel?,0) and v, (rei?,0) as ¢, and v,,, respectively. It follows that

—14 Fy(re'?,0) =y + F¢(re,0)07,
L+ Fi(rei?,0) 4, + Fy(re?, 0)p,

and then
. alyk o — F i970 * »
F_‘:(Tele70) — 7/% + 7/’* +(Te 5 )(d)w + 7/’ *) .
—(pw + %) + Fi(rel?, 0)(¢w — ¢5)
By (2.7), we have
) .. _F i0 0
F_‘;’(rele,O) _ isinw ' (re'?,0) cosw (4.9)

—cosw + 1Fy (rel? 0)sinw’
We see that lim,41 [F¥ (rel,0)| = oo if and only if
li%rll Fy(re'?,0) = —icotw.
By Lemma 4.3, lim,+; |[F¥(re'?,0)| = oo if and only if u, is subordinate at +oo. By putting the two

equivalences together, (1) follows.
(2) Consider the m-function for the left half-line CMV matrix Cy as

0,* i
m (rel?) = ¢ (re,0,0) (rej@?0,0).
EO— (lrelgﬂ 0? O)
It implies

—*(rel?,0) + M_(re?,0)p*(re'®,0)  —¢5(re?,0) + M“(rel?, 0), (rel?, 0)
P(ret? 0) + M_(rel? 0)p(rel?, 0) 9, (rei?,0) + M¥(rel?, 0)p, (rel?,0)

A direct calculation gives
isinw — M_(rel,0) cosw

MY i0 0) = _ . 4.10
=(re™,0) —cosw +iM_(rel?, 0) sinw (4.10)
Since the ¢ solution is unique up to a non-zero constant C, by [8, Remark 2.19], we have
C¢_(2,0,0) =p_(2,0,0) + F_(z,0)u_(2,0,0),
which implies that
C(l1+ M_(z,0) =1+ F_(z,0), (4.11)

where F_(z,0) is the Carathéodory function for C_ acting on ¢?([0, —00) N Z) with |ag| = 1. Thus,
7M—(Za O) =1- 671(1 + F—(Za O))7
which means lim,+1 [M_(rel,0)| = oo if and only if lim,+1 |F_(rel?,0)| = co. We see that
li{rll |M*“ (re',0)| = oo

if and only if lim,4; M_(re?,0) = —icotw. By the Jitomirskaya-Last inequalities, lim,1 |F“(rel,0)]
= oo if and only if w,, is subordinate at —oo. By putting the three equivalences together, (2) follows.

We observe that (3) and (4) follow immediately from (1) and (2). Recall now that F(re'’ 0) is a
Carathéodory function and M_ (rei,0) is an anti-Carathéodory function. Thus (5) follows immediately

from (3) and (4) by noting that lim,4; F (re'?,0) = lim,+; M_(rel?,0) forces the common limit to belong
to i(RU {oo}). O
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5 Proof of Theorem 2.2

In this section, we prove Theorem 2.2. We will make use of the preparatory work in the previous sections,
culminating in Lemmas 4.3 and 4.4.
Proof of Theorem 2.2.  (a) As discussed in Remark 2.3, this statement is well known and a proof can
be given by arguments similar to those in the proof of [28, Theorem 7.27(a)].

Before turning our attention to the statements (b) and (c¢) in Theorem 2.2, let us recall that F' is the
Borel transform of the canonical spectral measure A and it can be expressed as follows:

F(z) =1+ 22(Goo(z) + G11(2))

(@ + 22 + @p2?) + (z? — @) (M_(z,0) + F1(2,0))
P(Fy (2,0) = M_(5,0))

(@ — 22 + apz?)M_(2,0)F, (2,0)

5.1a

Ro(F5(2,0) — M_(2,0)) (5-18)
(EO+2z+aoz2) 2 — 1 1 — 2
o=t 02 L (2t — @ + + (ag — 22 + a2

-1+ F.(z,0)M_(z,0) ( 0 0)(F+(z,0) M_(z,())) ( 0 0 ) (51b)

sz(M,%z,o) - F+(1z,0))

From [25, Subsection 1.3.5], recall that Ay is supported on
Sp = {9 : lgjlrxllReF(reie) = oo},
and an essential support of A, is given by
Ay = {0 0 < lri%IllReF(reie) < oo}.

With these preliminaries out of the way, we can now address Theorems 2.2(b) and 2.2(c).

(b) It suffices to show that As(Sa\S) = 0. Consider 6 € Sy, i.e., lim,1; Re F(rel) exists and is infinite.
In particular, we also have lim,4; |[F(re!)| = co. There are the following three cases:

(1) lim,4; Fy(re'?,0) and lim,4+; M_(re'?, 0) both exist (with oo being an admissible limit).

(2) Exactly one of lim,+1 F (re',0) and lim,+1 M_ (el 0) exists.

(3) Neither of them exists.

We will show that 6’s that are in Case (1) belong to S, Case (2) is impossible, and 6’s in Case (3)
have the zero measure with respect to A;. Combining these three statements, we obtain the desired
As(SA\S) = 0.

Case (1) Suppose the limits lim,+; Fy(re?,0) and lim,4; M_(re?,0) both exist (with oo being an
admissible limit). By (5.1a), as r 1 1, we must have

|F(rel?, 0) — M_(rel?,0)] — 0 (5.2)
or

[(@o + 22z + a022) + (a022 —ap) (M- (reig, 0) + F+(rei0, 0))
+ (@ — 22 + ap2®)M_(re? | 0) F (re'?  0)] — oc. (5.3)

Let us consider the first case where |F (rel?, 0) — M_(re'?, 0)| — 0, which implies that

. i0 T i0
lrlglFJr(re ,O)—lrlglM_(re ,0).

If lim,4q |Fy (€%, 0)| = lim,4; |[M_(re'?,0)] is finite, by Lemma 4.4(5), there is a solution u,, that is subor-
dinate at 00 with non-zero w. If lim,41 |Fy (rel, 0)| = lim,41 [M_(rel, 0)| is infinite, lim,+1 |F_(rel, 0)|

is infinite by (4.11). Thus, u (e'?) is a subordinate solution at co and u_(e'?) is a subordinate solution



554 Guo S Z et al. Sci China Math ~ March 2022 Vol. 65 No.3

at —oo. From Lemmas 4.4(1) and 4.4(2), we have I, (re!, 0) = —icotw; and M_(re'?,0) = —icotwa, so
w1 = we = 0, which means that there is a subordinate solution wug(e i0 ) at +o0.

Now, we consider the second case, which means |M_ (re', )F+(re 0)] = oo, |Fy(re'?,0)] — oo or
|M_(re'? 0)] — oo. In this case, if one of [M_(re',0)| and |F, (rel?,0)| goes to infinity while the other
one goes to a constant, then |F(rei?)| cannot go to infinity.

Therefore, both [M_(re'?,0)| and |Fy (re'?, 0)| go to infinity. As in the first case, there is a subordinate
solution ug(e'?) at +oo.

Case (2) Suppose exactly one of lim,41 F} (re'?, 0) and lim,41 M_ (re'?,0) exists, i.e., lim,q4+; Fy (re'?,0).
As in Case (1), one of (5.2) and (5.3) must hold true. First, consider the case where (5.2) holds. It implies
that if lim,11 | F (re?, 0)| exists, then lim,.4; |[M_ (rel, 0)| also exists, which leads to a contradiction. Now,
consider the case where (5.3) holds, which implies lim,+; |[F} (rel,0)| = oco. By (5.1b), [M_(re'?,0)| must
go to infinity as r 1 1, which leads to a contradiction. Thus, Case (2) is impossible.

i0

Case (3) Suppose that neither lim,+; Fi (rel,0) nor lim,+; M_(rel,0) exists. Therefore,

liminf £y (rel?,0) and liminf M_(re'?, 0)
11 11
are finite. We can thus choose a sequence r,, 1 1 in such a way that the limits

0y = liITn1 Fy(rne?,0) and ¢ = lim M_(r,e,0)

11
exist, and ¢4 is finite. Following a similar argument to that in Case (1), since lim,4q |F(rel?)| = oo,
(_ ={, € iR, which means that all accumulation points of {F (re' }0<T<1 and {M_ (7"619,0)}0<r<1

are either 0 or purely imaginary numbers. Thus Re ¢, = 0.

Since M_(rel,0) is an anti-Carathéodory function, it is analytic in D. If ia,ib € iR are two different
accumulation points of M_ (re'?, 0), by the intermediate value theorem and the fact that all accumulation
points are imaginary, we can find a sequence of {r/,} such that M_(r/,e!’ 0) goes to ic for any c € (a,b)
as r!, 1 1. We thus observe that since the limits do not exist and the real parts of accumulation points
are zero, M_(rel? 0) has uncountably many accumulation points.

So we can choose r, and t, in such a way that

lim M_(r,e'?,0) = ¢, lirﬁ M_(t,e?,0) = 1s,

rnT1
hITn Fy (r,€e9,0) = ¢4, hm Fy (t,e? 0) = £y,

where ¢ # {5 and ¢1,/¢5 € iR. Let Ag denote the dy-spectral measure of £, given by

619+Z

61«9 ZdAO = MOO, S C\@D
D _

(80, (€ + 2I)(E — 21)715,) = /0

v [8, (3.25)], Moo is of the form

[1—ap— (14 ap)Fi(2,0)][1 —ap+ (1 +ayM_(z,0))]
po(Fi(2,0) = M_(2,0)) '

By deﬁmng Ay and M7, similarly, the canonical spectral measure is A = Ag + A;. Since Ay < A and
F(z)= [ 219+§ dA(0), the corresponding Radon-Nikodym derivative satisfies

MQ()(Z) = 1 +

Ao Moo (re'?)

an @) = ey (54)

for As-almost every 6.
This follows from Poltoratskii’s theorem [13,21]. We are grateful to Jake Fillman for the idea to use
Poltoratskii’s theorem to simplify this part of the proof. The version we use can be found in [27, Remark
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after Proposition 3.1], which says that for any complex Borel measure y on D and any g € L' (0D, du)
we have that for almost any el with respect to dus (but not for duac),

i0 o’
lim fa]D) ziet:ze’ f(e)dﬂ(e)
! elf4reit’ du(0)

OD eif —peib’

= f(#").

Due to our choices of r,,t, and {1 # {5, we obtain

. MOO(TneiG) s MOO(tneia)
lim ————~ # lim —————=.
n—oo F(rpel?) 7 n—ooo F(t,el)

Thus, the 6’s in Case (3) are contained in the set where (5.4) fails, which has the zero A -measure.
(c) Since A, gives the zero weight to sets of zero Lebesgue measure and N, is an essential support, it
suffices to show that

Leb(A\Ay) = 0 (5.5)

and

Leb(Ax\A) = 0. (5.6)

Assume that lim,+1 F(rel?), lim,41 Fy (rel?,0) and lim,41 M_(rel?,0) all have finite boundary values as
r 11 for all z = e'? in question.

To prove (5.5), we consider § € Ay for which lim,+1 [F(re'?)|, lim,+; |F} (re'?,0)| and lim,+1 [M_(rel%, 0)|
exist and are finite, and show that z = ¢! € A.

Let us first consider the possibility that lim,4; Fy(re?,0) and lim,4+; M_(re'? 0) are both purely
imaginary. Specifically, let lim,4; F(re'?,0) = ia and lim,.4; M_(re?,0) = ib, where a # b € R.
Since F(rel?) =1+ 22(Gop + G11), we firstly consider 1 + 22Ggg. We have

ila—0b) — (—1+1ia)(1 +1ib)
i(la—10)

1+ab

i(a—10)’

1+ 2ZG00 =

which is a purely imaginary number. Consider 22G11, which is

[z 4+ @ +ib(z — @p)][-1 — apz + ia(l — apz)]

2ZG11 = —

ip3z(a —b)
_ (z+a0)(1 + apz) 4+ ab(z —ap)(1 — apz)
B ip3z(a —b)
n i[b(z — @) (1 + apz) — a(z + ) (1 — ap2)]
ip3z(a —b)
2+ ap + apz? + |ag|?z + abz — @pab — apabz? + ablag|*2
B ipgz(a —b)
i[bz — bag + bapz? — blag|?2 — az — adiy + acpz? + alag|?z]
ip¢z(a —b)
1+a@z !+ apz + |agl? + ab — @pabz ™! — agabz + ablag|?
N ip3(a —0)
i[b — bzt + bagz — blag|? — a — a2zt + acgz + alag)?]
ipg(a —0) '

Thus,

Re (—2p2(a — b)2G11) = Re (impz ™! + iz — iabagz ! — iabagz + (a — b)pi
+ bagz "' — bagz + atpz ™ — aagz)

= (1 —ab)Re (impz ™" +iagz) + (a + b)Re (@oz ™" — agz)
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+(a—b)pp.

With z = rel?, we have

Le™9 1 ingrel?) — Re (i(apet® + ape'?)) =0

Re (iagr™

and
Re (@or te % — agre?) — Re (agel? — agel?) = 0
asr 1 1.

Putting these together, we have lim,+; Re F(rel’) = —1, which is impossible. If a = b, |lim,+; F(rel?)]
= 00, which is also impossible. We conclude that lim,+; F; (re'?,0) and lim,+; M_(re'?,0) cannot both
be purely imaginary.

Without loss of generality, we assume that lim,1 F (rel, 0) is not a purely imaginary number, which
implies that there is no subordinate solution at +oco by Lemma 4.4(3). Thus, z = €' € A,. Therefore,
z=¢e% e A

To prove (5.6), we consider z = e € A for which

lgrll |F(re'?)], 13?11|F+(7’e“9,0)| and 1;%1 |M_(re?, 0)]
exist and are finite, and show that § € A,. Without loss of generality, assume that z = €' € A, so
(2.6) has no solution that is subordinate at +oo. Then Lemma 4.4 implies that lim,4; Fy (rel?,0) cannot
be purely imaginary, which implies that 0 < lim,1; Re F(re?,0) < oco. Since lim,4+; M_(rel,0) also
exists and must belong to C, = {2 € C | Re(z) < 0}, we have 0 < lim,+; Re F(re!?) < oco. Therefore,
0 Ay. O

6 Proofs of the corollaries

In this section, we prove Corollaries 2.4 and 2.5.
Proof of Corollary 2.4.  Suppose that z € By, i.e., z € D is such that

sup [|A(n, z)|| < oo.
n€EZ+

By an extension of the discussion in the proof of [26, Corollary 10.8.4], it follows from the Jitomirskaya-
Last inequality that (2.6) has no solution that is subordinate at +oo, and hence z € Ay. Specifically,
due to (3.4)—(3.7), we have

s (zm)] = lon(=)| and  |ps(zn)| = [a(2)], when n is even,

lvi(z,n)| = len(2)] and g4 (z,n)] = [¢hn(2)|, when n is odd.

Let ¢ = sup,,cz, [[A(n,2)|l. Then |uy(z,n)| < cif n is even and [v4(2,n)| < ¢ if n is odd. By [26,
(3.2.23)], [p+(2,n)| = ¢t if n is even and |q;(2,n)| > ¢7! if n is odd. Thus,

up(z,mn .

2L e+ € )”:c(r) < 62, when n is even,
[P+ (25 2w (r)
ve(z,n

2L M <%, when n is odd.
g+ (2, 1) | (r)

It follows that By C A..
The inclusion B_ C A_ is proved in a similar way. In Section 4, we have proved C_ conjugates to C4
with —@_(,42) = &, for n € Ng. Hence, we can rewrite the representation of A(n, z) for n < —1 as

S(a—n,2) X S(@—pt1,2) X -+ x S(&o, 2).
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From the above statements, C; has no solution that is subordinate at +co. Due to the conjugation, (2.6)
has no solution that is subordinate at —oo. It follows that B_ C A_.

The fact that the restriction of A to each of By is purely absolutely continuous now follows from
Theorem 2.2(c). O

Proof of Corollary 2.5. If z € R, then it follows from the definition of R that there exist B,
) — SU(1,1) bounded and AD ¢ SU(1,1) elliptic such that for every w € Q, we have A,(w) =
BZ(Tw)AgO)BZ (w)~!. This in turn shows that for n > 2, we have

AT ) x - x AL (Tw) A, (w)
= B (T"w) AV B (T" W)™ x - -+ x B,(T?w) AV B, (Tw) ' B, (Tw) A" B, (w) !
= B.(T"w) (A" B, (w)L.

Given that the matrix on the left-hand side has the same norm as A(n, z;w) (it is obtained from that
matrix by multiplication with the unimodular number z~"/2) and the right-hand side remains bounded
as n — oo since A is elliptic and B, : Q — SU(1,1) is bounded, we find that

R C By (w). (6.1)

We note in passing that a similar analysis can be applied to the left half-line and yield R C B_(w).
Here, we denote the matrices A(n,z) and the sets By introduced earlier for a fixed extended CMV
matrix £ by A(n, z;w) and By (w) if they are associated with the dynamically defined extended CMV
matrix € (w).
The assertion of Corollary 2.5 now follows from (6.1), which as discussed above holds for every w € €,
and Corollary 2.4. 0
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