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1 Introduction

Subordinacy theory was first developed in the setting of continuum half-line Schrödinger operators by

Gilbert and Pearson [11]. Its primary aim is to relate the spectral decomposition of the operator in

question to the behavior of the solutions to the associated generalized eigenvalue equation. The following

correspondence is obvious: a value E of the spectral parameter is an eigenvalue of the operator H in

question if and only if the equation Hu = Eu admits a non-zero solution u that belongs to the domain of

the operator. Modulo a suitable regularity property, this means that u satisfies the designated boundary

condition at the origin and is square-integrable at +∞. Since the pure point part of any spectral measure

of H is supported by the set of eigenvalues, it follows that we can extract the pure point part of any

spectral measure by restricting this measure to the set of E’s for which the solution that obeys the

boundary condition at the origin is square-integrable. Similarly, we extract the continuous part by

restriction to the set of E’s for which the solution that obeys the boundary condition at the origin is not

square-integrable. Gilbert-Pearson’s subordinacy theory provides a similar partition related to the split

between the singular part and the absolutely continuous part of a spectral measure: the crucial question

is now whether the solution that obeys the boundary condition at the origin is subordinate.

A follow-up paper by Gilbert [9] developed subordinacy theory for continuum Schrödinger operators

on the whole line, and the resulting theory is completely analogous if one replaces “obeying the boundary

condition at the origin” by “being square-integrable/subordinate at −∞” in the discussion above.
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Subsequently, subordinacy theory was developed in other settings as well: for Jacobi matrices by Khan

and Pearson [18] and for CMV matrices by Simon [26]. Furthermore, there were simplifications and

extensions of subordinacy theory by Remling [22], Jitomirskaya and Last [14,15], Damanik et al. [5] and

Killip et al. [19].

The papers mentioned above establish subordinacy theory for half-line and whole-line Schrödinger

operators, for half-line and whole-line Jacobi matrices, and for standard (i.e., half-line) CMV matrices.

There is no subordinacy theory yet for extended (i.e., whole-line) CMV matrices, and it is the purpose

of this paper to fill this gap in the literature.

Thus we are naturally motivated by the fact that subordinacy theory is a fundamental result to be

established for any operator family for which such a theory exists. It is usually the most convenient

way to perform a spectral analysis of a given operator, precisely because the behavior of generalized

eigenfunctions is easier to study than other properties of the operator in question that are relevant to the

identification of its spectral type. We expect our work to be useful in the study of spectral properties for

many classes of extended CMV matrices.

The rest of this paper is structured as follows. We describe the setting, the main result, and some

consequences of it in Section 2. Some known results that will be used in the proofs are presented in

Section 3. Section 4 develops the version of the Jitomirskaya-Last inequalities from [26] that we need to

analyze the left half-line of a given extended CMV matrix. The main subordinacy result is then proved

in Section 5 and its applications are discussed in Section 6.

2 The setting and the main result

In this section, we describe the setting in which we work and state the main result, a description of

supports of the parts of spectral measures of extended CMV matrices in terms of solutions, along with

some corollaries. We refer the reader to [25, 26] for the general background, and we follow largely the

notation from these monographs.

Let µ be a non-trivial probability measure on the unit circle ∂D = {z ∈ C : |z| = 1}, which means the

support of µ contains infinitely many points. By the non-triviality assumption, the functions 1, z, z2, . . .

are linearly independent in the Hilbert space H = L2(∂D, dµ), and hence one can form, by the Gram-

Schmidt procedure, the monic orthogonal polynomials Φn(z), whose Szegő dual is defined by Φ∗n =

znΦn(1/z). There are constants {αn}n∈N0 in D = {z ∈ C : |z| < 1}, called the Verblunsky coefficients, so

that

Φn+1(z) = zΦn(z)− αnΦ
∗
n(z) for n ∈ N0, (2.1)

which is the so-called Szegő recurrence. Conversely, every sequence {αn}n∈N0 in D arises as a sequence of

recurrence coefficients corresponding to a Gram-Schmidt procedure on a non-trivial probability measure

on ∂D.
In fact, if we normalize the monic orthogonal polynomials Φn(z) by

φ(z, n) =
Φn(z)

∥Φn(z)∥µ
,

where ∥ · ∥µ is the norm of H, it is easy to see that (2.1) is equivalent to

ρn(x)φ(z, n+ 1) = zφ(z, n)− αnφ
∗(z, n),

where ρn = (1− |αn|2)1/2.
Define

S(α, z) =
1

ρ

(
z −α

−αz 1

)
, (2.2)

where ρ = (1− |α|2)1/2.



Guo S Z et al. Sci China Math March 2022 Vol. 65 No. 3 541

The Szegő recursion can be written in a matrix form as follows:(
φ(z, n+ 1)

φ∗(z, n+ 1)

)
= S(αn, z)

(
φ(z, n)

φ∗(z, n)

)
. (2.3)

Alternatively, one can consider a different initial condition and derive the orthogonal polynomials of the

second kind, by setting ψ(z, 0) = 1 and then(
ψ(z, n+ 1)

−ψ∗(z, n+ 1)

)
= S(αn, z)

(
ψ(z, n)

−ψ∗(z, n)

)
.

The orthogonal polynomials may or may not form a basis of H. However, if we apply the Gram-

Schmidt procedure to 1, z, z−1, z2, z−2, . . . , we will obtain a basis—called the CMV basis. In this basis,

multiplication by the independent variable z in H has the matrix representation

C =



α0 α1ρ0 ρ1ρ0 0 0 · · ·
ρ0 −α1α0 −ρ1α0 0 0 · · ·
0 α2ρ1 −α2α1 α3ρ2 ρ3ρ2 · · ·
0 ρ2ρ1 −ρ2α1 −α3α2 −ρ3α2 · · ·
0 0 0 α4ρ3 −α4α3 · · ·
...

...
...

...
...

. . .


, (2.4)

where α = {αn}n∈N0
⊂ D and ρn =

√
1− |αn|2 for n ∈ N0. A matrix of this form is called a CMV

matrix.

Furthermore, an extended CMV matrix is a special five-diagonal doubly infinite matrix in the standard

basis of ℓ2(Z) according to [25, Subsection 4.5] and [26, Subsection 10.5], written as

E =



. . .
...

...
...

...
...

...

· · · −α0α−1 α1ρ0 ρ1ρ0 0 0 · · ·
· · · −ρ0α−1 −α1α0 −ρ1α0 0 0 · · ·
· · · 0 α2ρ1 −α2α1 α3ρ2 ρ3ρ2 · · ·
· · · 0 ρ2ρ1 −ρ2α1 −α3α2 −ρ3α2 · · ·
· · · 0 0 0 α4ρ3 −α4α3 · · ·
...

...
...

...
...

...
. . .


, (2.5)

where α = {αn}n∈Z ⊂ D and ρn =
√
1− |αn|2 for n ∈ Z. In some settings, it is more natural to consider

extended CMV matrices, rather than standard CMV matrices. This is the case, for example, where the

Verblunsky coefficients are generated by an invertible ergodic dynamical system. This class of coefficients

contains the important special cases of almost periodic and random coefficients and some important parts

of the theory for ergodic coefficients, for example Kotani theory [6,7,26], require the consideration of the

two-sided case.

The main goal of this paper is to provide a general approach to the study of the spectral properties of a

given extended CMV matrix E via the properties of the solutions to the associated generalized eigenvalue

equation. To this end, let us first discuss the canonical spectral measure and then the generalized

eigenvalue equation.

Given an extended CMV matrix E , the canonical spectral measure Λ is given by the sum of the spectral

measures of E relative to the vectors δ0 and δ1. It is well known that {δ0, δ1} forms a spectral basis for the

operator E (see, e.g., [20, Lemma 3]) and hence for every ψ ∈ ℓ2(Z), the spectral measure corresponding

to E and ψ is absolutely continuous with respect to Λ.
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Consider the Lebesgue decomposition of Λ into its pure point, singular continuous, and absolutely

continuous parts,

Λ = Λpp + Λsc + Λac,

i.e., Λpp is supported by a countable set, Λsc gives no weight to countable sets but is supported by some

set of zero Lebesgue measure, and Λac gives no weight to sets of zero Lebesgue measure. Here, we refer

to the standard arc length measure on ∂D as the Lebesgue measure on ∂D.
We also consider the singular part of Λ, Λs = Λpp +Λsc and the continuous part of Λ, Λc = Λsc +Λac.

Consider the corresponding eigenvalue equation

Eu = zu (2.6)

with boundary conditions(
φω(0) ψω(0)

φ∗ω(0) −ψ∗ω(0)

)
=

(
cosω + i sinω cosω + i sinω

cosω − i sinω − cosω + i sinω

)
. (2.7)

Here is the fundamental definition of subordinacy, introduced by Gilbert and Pearson [11] in the

Schrödinger case, adapted to the CMV setting.

Definition 2.1. (a) Define for a sequence a0, a1, . . . and x ∈ (0,∞),

∥a∥2x =

[x]∑
j=0

|aj |2 + (x− [x])|a[x]+1|2,

where [x] denotes the greatest integer less than or equal to x. An analogous expression defines ∥a∥2x for

a−1, a−2, . . . and x ∈ (−∞,−1). Then

∥a∥2x =
−1∑

j=⌈x⌉

|aj |2 + (⌈x⌉ − x)|a⌈x⌉−1|2,

where ⌈x⌉ denotes the least integer greater than or equal to x.

(b) Let z ∈ ∂D. A solution u to (2.6) is called subordinate at +∞ if it does not vanish identically and

obeys

lim
x→+∞

∥u∥x
∥p∥x

= 0

for any linearly independent solution p to (2.6).

Similarly, a solution u to (2.6) is called subordinate at −∞ if it does not vanish identically and obeys

lim
x→−∞

∥u∥x
∥p∥x

= 0

for any linearly independent solution p to (2.6).

We are now ready to state the main result of this paper.

Theorem 2.2. Let E be an extended CMV matrix in ℓ2(Z) and denote by Λ its canonical spectral

measure. Then, the three parts of the canonical spectral measure have the following supports defined in

terms of the behavior of the solutions to (2.6):

(a) Let

P = {z ∈ ∂D : (2.6) has a solution that is square-summable at ±∞}.

Then Λpp(∂D \ P) = 0 and Λc(P) = 0.

(b) Let

S = {z ∈ ∂D : (2.6) has a solution that is subordinate at ±∞}.
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Then Λs(∂D \ S) = 0 and Λac(S) = 0. In particular, we have

Λsc(∂D \ (S \ P)) = 0 and (Λpp + Λac)(S \ P) = 0.

(c) Let

A± = {z ∈ ∂D : (2.6) has no solution that is subordinate at ±∞} (2.8)

and

A = A+ ∪ A−.

Then Λac(∂D\A) = 0 and Λs(A) = 0. Moreover, A is an essential support of Λac, i.e., for any measurable

set A′ with Λac(∂D\A′) = 0, we have Leb(A\A′) = 0.

Remark 2.3. Theorem 2.2(a) is well known and stated here for completeness. The statement follows

quickly from the spectral theorem; see, for example, the proof of [28, Theorem 7.27(a)] for the derivation

in the self-adjoint case—the argument is analogous in the unitary case. Indeed, as discussed in Section 1,

the philosophy behind subordinacy theory is to identify a type of solution behavior that discriminates

between the absolutely continuous and singular parts of spectral measures, just as square-summability

discriminates between the continuous and pure point parts of spectral measures.

Typical applications of this result rely on sufficient conditions for the absence or presence of subordinate

solutions. For example, the absence of subordinate solutions follows from the boundedness of the transfer

matrices, which are defined as follows:

A(n, z) =

{
S(αn, z)× · · · × S(α0, z), n > 0,

S(−αn−2, z)× S(−αn−1, z)× · · · × S(−α−2, z), n 6 −1,

where S(·, z) is given by (2.2). We will give more details in Section 4. Specifically, we have the following

statement.

Corollary 2.4. Let

B± =
{
z ∈ ∂D : sup

n∈Z±

∥A(n, z)∥ <∞
}
.

Then, B± ⊆ A± with A± as defined in (2.8). In particular, the restriction of Λ to each of B± is purely

absolutely continuous.

In many cases of interest, the Verblunsky coefficients are dynamically defined. As a result, the as-

sociated Szegő recursion can be expressed in terms of SU(1, 1)-valued cocycles over the base dynamical

system in question. The boundedness property that feeds into Corollary 2.4 is then often established

via a suitable reducibility result. Let us state another corollary in the dynamically defined setting that

implements this connection.

Corollary 2.5. Suppose T : Ω → Ω is invertible and f : Ω → D. This gives rise to ω-dependent

Verblunsky coefficients

αn(ω) = f(Tnω), ω ∈ Ω, n ∈ Z

and ω-dependent extended CMV matrices E(ω) = E({αn(ω)}). Moreover, for each z ∈ ∂D, consider the

map Az : Ω → SU(1, 1) given by Az(ω) = z−1/2S(f(ω), z), where S(·, z) is given by (2.2).

Denote by R the set of z ∈ ∂D for which there exist Bz : Ω → SU(1, 1) bounded and A
(0)
z ∈ SU(1, 1)

elliptic such that for every ω ∈ Ω, we have Az(ω) = Bz(Tω)A
(0)
z Bz(ω)

−1.

Then, for every ω ∈ Ω, the canonical spectral measure associated with E(ω) and Λ(ω), is purely abso-

lutely continuous on R.

Recall that an SU(1, 1) matrix is called elliptic if its trace belongs to the real interval (−2, 2) (in

this context it is useful to remind the reader that SU(1, 1) and SL(2,R) are canonically conjugate [26,

Equation (10.4.27)]). The assumptions of Corollary 2.5 can be verified in a variety of situations, in analogy

to the extensive literature on reducibility for quasi-periodic SL(2,R) cocycles of sufficient regularity (see,
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for example, [1,2,12] and the references therein). This connection is presently being worked out by Long

Li1).

We conclude this section with two applications of the description of the singular part of an extended

CMV matrix in terms of subordinate solutions. Both of these applications are known via different

methods, but the approach via subordinacy theory provides an interesting additional angle. Since these

results are not new, we will not state them as formal corollaries.

The first application is the following statement: any extended CMV matrix E has the simple singular

spectrum. In the setting of extended CMV matrices, this result was first proved by Simon [24]. However,

a statement of this kind had been obtained earlier for second-order differential operators, originally proved

by Kac [16, 17] and then proved via subordinacy theory by Gilbert [10]. The present paper provides the

basis for Gilbert’s approach to this result in the setting of extended CMV matrices.

Another application concerns a version of the Ishii-Pastur theorem for ergodic extended CMV ma-

trices, proved via subordinacy theory, an approach proposed in the setting of Schrödinger operators by

Buschmann [3]. Again we will not state this as a formal corollary since the result is already known

(see [6, Theorem B.2]), and merely point out that the Ishii-Pastur theorem is the inclusion ⊆ in the

identity stated in [6, Theorem B.2], and that this inclusion can be proved along similar lines to those

in [3] by using Theorem 2.2 above.

3 Preliminaries

3.1 Carathéodory functions

A Carathéodory function is a holomorphic map from D to the right half plane {z : Re z > 0}. We also

say a function is an anti-Carathéodory function when its negative is a Carathéodory function. If we

modify α(n0) = −1, then (2.5) becomes the direct sum of matrices acting on ℓ2([n0 + 1,∞) ∩ Z) and

ℓ2((−∞, n0] ∩ Z) of the form (2.4). We label the halves as C(n0+1)
+ and C(n0)

− , respectively. We consider

the case where n0 = −1. Concretely, (2.5) becomes the direct sum of matrices acting on ℓ2(Z+) and

ℓ2(Z−) of the form (2.4), where we write Z+ := [0,∞) ∩ Z and Z− := [−1,−∞) ∩ Z. One can find

the correspondence between a given CMV matrix and its Carathéodory function in [25, Subsection 1.3].

Specifically, a Carathéodory function is the CMV analog of the m-function in the theory of Jacobi

matrices, and is connected to the spectral theory of the CMV matrices.

Denote the Carathéodory function corresponding to C(0)
+ by

F+(z, 0) =

∫
∂D

ζ + z

ζ − z
dΛ+(ζ, 0)

and C(−1)
− by

F−(z,−1) = −
∫
∂D

ζ + z

ζ − z
dΛ−(ζ,−1),

where Λ+(ζ, 0) and Λ−(ζ,−1) are the spectral measures of C(0)
+ and C(−1)

− , respectively.

The Carathéodory function for E is given by the formula

F (z) =

∫
eiθ + z

eiθ − z
dΛ(θ),

where as above Λ is the sum of the spectral measures of E relative to the vectors δ0 and δ1.

3.2 Gesztesy-Zinchenko description

The Gesztesy-Zinchenko (GZ) matrix from [8] is a key tool to encode the behavior of solutions to (2.6).

As we follow the conventions from [25, 26], let us point out that there are some differences between the

notations in [8] and ours, which are as follows: αn = −αn−1, U({αn}) = E({−αn−1}), U+,0({αn}) =

1) Li L. Private communication
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C(0)⊤
+ ({−αn−1}), u±(z, n) = s±(z, n) and v±(z, n) = s±(z, n), where the left-hand sides are their nota-

tions and the right-hand sides are our notations.

First, recall that any extended CMV matrix E can be factorized into direct sums of 2 × 2 matrices of

the form

Θ =

(
α ρ

ρ −α

)
.

Let

L : =
⊕
j∈Z

Θ(α2j) and M :=
⊕
j∈Z

Θ(α2j+1).

Then E = LM.

Set

P (α, z) :=
1

ρ

(
−α z−1

z −α

)
and Q(α, z) :=

1

ρ

(
−α 1

1 −α

)
for z ∈ C\ {0} .

Now, if u is a complex sequence such that Eu = zu and v = Mu, one can easily see that ETv = zv holds.

By [4, Proposition 2.1], the following equation holds for n ∈ N0, which can be extended to n ∈ Z,(
u(n+ 1)

v(n+ 1)

)
= T (n, z)

(
u(n)

v(n)

)
, (3.1)

where

T (n, z) =

{
P (αn, z), n is even,

Q(αn, z), n is odd.

Definition 3.1. We denote by(
u+(z, n, n0)

v+(z, n, n0)

)
n>n0

and

(
p+(z, n, n0)

q+(z, n, n0)

)
n>n0

for z ∈ C\ {0}, two linearly independent solutions to (3.1) for n > 0 with the following initial conditions:

(
u+(z, n0, n0)

v+(z, n0, n0)

)
=



(
1

1

)
, n0 is even,

(
1

z

)
, n0 is odd,

(3.2)

(
p+(z, n0, n0)

q+(z, n0, n0)

)
=



(
1

−1

)
, n0 is even,

(
−1

z

)
, n0 is odd.

Similarly, we denote by (
u−(z, n, n0)

v−(z, n, n0)

)
n6n0

and

(
p−(z, n, n0)

q−(z, n, n0)

)
n6n0

for z ∈ C\ {0}, two linearly independent solutions to (3.1) for n 6 −1 with the following initial conditions:

(
u−(z, n0, n0)

v−(z, n0, n0)

)
=



(
1

−z

)
, n0 is even,

(
−1

1

)
, n0 is odd,

(3.3)



546 Guo S Z et al. Sci China Math March 2022 Vol. 65 No. 3

(
p−(z, n0, n0)

q−(z, n0, n0)

)
=



(
1

z

)
, n0 is even,

(
1

1

)
, n0 is odd.

Remark 3.2. The above definition is from [8, Definition 2.4]. Here, our u±, v±, p± and q± are their

r±, p±, s± and q±, respectively. By (2.3) and (3.1), we have

u+(z, n) =

{
z

−(n+1)
2 φ∗(z, n), n is odd,

z
−n
2 φ(z, n), n is even,

(3.4)

v+(z, n) =

{
z

−(n−1)
2 φ(z, n), n is odd,

z
−n
2 φ∗(z, n), n is even,

(3.5)

p+(z, n) =

{
−z

−(n+1)
2 ψ∗(z, n), n is odd,

z
−n
2 ψ(z, n), n is even,

(3.6)

q+(z, n) =

{
z

−(n−1)
2 ψ(z, n), n is odd,

−z −n
2 ψ∗(z, n), n is even

(3.7)

for z ∈ ∂D.
For simplicity to check (3.4)–(3.7), we rewrite the equation for {φ(z, n)}n∈N0

, {ψ(z, n)}n∈N0
,

{u+(z, n)}n∈N0
and {v+(z, n)}n∈N0

. Once we have (3.4) and (3.5), (3.6) and (3.7) hold immediately.

Indeed, for {φ(z, n)}n∈N0
and {ψ(z, n)}n∈N0

, we have

ρnφ(z, n+ 1) = zφ(z, n)− αnφ
∗(z, n),

ρnφ
∗(z, n+ 1) = −αnzφ(z, n) + φ∗(z, n).

For {u+(z, n)}n∈N0
and {v+(z, n)}n∈N0

, when n is even,

ρnu+(z, n+ 1) = −αnu+(z, n) + z−1v+(z, n),

ρnv+(z, n+ 1) = zu+(z, n)− αnv(z, n);

when n is odd,

ρnu+(z, n+ 1) = −αnu+(z, n) + v+(z, n),

ρnv+(z, n+ 1) = u+(z, n)− αnv+(z, n).

It follows that (3.4) and (3.5) hold.

Lemma 3.3 (See [8, Corollary 2.16]). There are solutions (
s±(z,·)
t±(z,·) )n∈Z to (3.1), unique up to constant

multiples so that for z ∈ C\(∂D ∪ {0}),(
s+(z, ·)
t+(z, ·)

)
∈ ℓ2(Z+)

2,

(
s−(z, ·)
t−(z, ·)

)
∈ ℓ2(Z−)2.

Lemma 3.4 (See [23, Theorem 5.3]). Let z ∈ D. Then

∞∑
n=0

∣∣∣∣∣
(

ψ(z, n)

−ψ∗(z, n)

)
+ β

(
φ(z, n)

φ∗(z, n)

)∣∣∣∣∣
2

<∞

if and only if

β = F+(z, 0).
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Let

η+(z, n) = ψ(z, n) + F+(z, 0)φ(z, n)

and

η~+(z, n) = −ψ∗(z, n) + F+(z, 0)φ
∗(z, n).

Consider the equation

Ξn = Sn(z)Ξ0 (3.8)

with the boundary condition

Ξ0 =

(
1 + F+(z, 0)

−1 + F+(z, 0)

)
,

where Sn(z) = S(αn−1, z) · · ·S(α0, z). Then (
η+(z,n)

η~+ (z,n)
) is the unique ℓ2 solution to (3.8).

The Green function G (or the resolvent function (E−z)−1) for E is computed by using formal eigenvalues

of C± and CT
±. For k ∈ Z, define

ak = 1− αk, bk = 1 + αk,

where αk’s are Verblunsky coefficients associated with the CMV matrix E .
Lemma 3.5 (See [8, Lemma 3.1]). For z ∈ C\(∂D∪{0}), letM−(z, 0) be an anti-Carathéodory function

in [8, (2.139)], which is related to F−(z,−1) by

M−(z, 0) =
Re (a−1) + iIm (b−1)F−(z,−1)

iIm (a−1) + Re (b−1)F−(z,−1)
. (3.9)

Let s± be ℓ2 solutions to (C± − z)s = 0, and let t± be ℓ2 solutions to (CT
± − z)t = 0, normalized by

s+(z, 0) = 1 + F+(z, 0), s−(z, 0) = 1 +M−(z, 0),

t+(z, 0) = −1 + F+(z, 0), t−(z, 0) = 1−M−(z, 0).

These s± and t± are equivalent to the ones in Lemma 3.3. We may extend these solutions to solutions

to (E − z)w = 0 and (ET − z)w = 0.

Then the resolvent function (E − z)−1(x, y) can be expressed as

−1

2z(F+(z, 0)−M−(z, 0))
=

{
t−(z,m)s+(z, n), if m < n or m = n and m is odd,

t+(z,m)s−(z, n), if m > n or m = n and m is even.
(3.10)

From [8, p. 181, the table], we are in the case of k0 = 0 and obtain

t−(z, 1) =
1

ρ0
(z + α0) +

1

ρ0
(z − α0)M−(z, 0),

s+(z, 1) =
1

ρ0

(
− 1

z
− α0

)
+

1

ρ0

(
1

z
− α0

)
F+(z, 0).

Notice that our s± and t± are their v± and ũ±, respectively.

3.3 Green and Carathéodory functions

One can write G00 +G11 as

G00 +G11 = − (−1 + F+(z, 0))(1 +M−(z, 0))

2z(F+(z, 0)−M−(z, 0))

− [z + α0 +M−(z, 0)(z − α0)][−1− α0z + F+(z, 0)(1− α0z)]

2ρ20z
2(F+(z, 0)−M−(z, 0))

=
ρ20z(1− F+(z, 0) +M−(z, 0)− F+(z, 0)M−(z, 0)) + (z + α0)(1 + α0z)

2ρ20z
2(F+(z, 0)−M−(z, 0))
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+
(z − α0)(1 + α0z)M−(z, 0)− (z + α0)(1− α0z)F+(z, 0)

2ρ20z
2(F+(z, 0)−M−(z, 0))

− (z − α0)(1− α0z)F+(z, 0)M−(z, 0)

2ρ20z
2(F+(z, 0)−M−(z, 0))

=
(ρ20z + z + α0 + α0z

2 + |α0|2z) + (ρ20z + z − α0 + α0z
2 − |α0|2z)M−(z, 0)

2ρ20z
2(F+(z, 0)−M−(z, 0))

+
(−ρ20z + α0z

2 − z + |α0|2z − α0)F+(z, 0)

2ρ20z
2(F+(z, 0)−M−(z, 0))

+
(−ρ20z + α0z

2 − z − |α0|2z + α0)F+(z, 0)M−(z, 0)

2ρ20z
2(F+(z, 0)−M−(z, 0))

=
(2z + α0 + α0z

2) + (2ρ20z − α0 + α0z
2)M−(z, 0)

2ρ20z
2(F+(z, 0)−M−(z, 0))

+
(α0z

2 − α0 − 2ρ20z)F+(z, 0) + (α0z
2 + α0 − 2z)M−(z, 0)F+(z, 0)

2ρ20z
2(F+(z, 0)−M−(z, 0))

=
(2z + α0 + α0z

2) + (α0z
2 − α0)(F+(z, 0) +M−(z, 0))

2ρ20z
2(F+(z, 0)−M−(z, 0))

+
2ρ20z(M−(z, 0)− F+(z, 0)) + (α0z

2 + α0 − 2z)M−(z, 0)F+(z, 0)

2ρ20z
2(F+(z, 0)−M−(z, 0))

.

It follows that

2z(G00(z) +G11(z)) = −2 +
(α0 + 2z + α0z

2) + (α0z
2 − α0)(M−(z, 0) + F+(z, 0))

ρ20z(F+(z, 0)−M−(z, 0))

+
(α0 − 2z + α0z

2)M−(z, 0)F+(z, 0)

ρ20z(F+(z, 0)−M−(z, 0))
. (3.11)

Finally we note the connection between G00 + G11 and the Carathéodory function F corresponding

to E and dΛ. We have by definition

F (z) =

∫
eiθ + z

eiθ − z
dΛ(θ).

Define

dΛr(θ) = ReF (reiθ)
dθ

2π
.

It is well known that dΛr converges to dΛ weakly as r ↑ 1. Moreover,

F (z) =

∫
eiθ + z

eiθ − z
dΛ(θ)

= 1 + 2z

∫
1

eiθ − z
dΛ(θ)

= 1 + 2z(G00(z) +G11(z)).

4 Jitomirskaya-Last inequalities

In this section, we obtain a suitable version of the Jitomirskaya-Last inequality for the left half-line CMV

matrix

C− =



. . .
...

...
...

...
...

· · · α−4ρ−5 −α−4α−5 α−3ρ−4 ρ−3ρ−4 0

· · · ρ−4ρ−5 −ρ−4α−5 −α−3α−4 −ρ−3α−4 0

· · · 0 0 α−2ρ−3 −α−2α−3 α−1ρ−2

· · · 0 0 ρ−2ρ−3 −ρ−2α−3 −α−1α−2


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via a relation between the eigenfunctions of C− and the associated right half-line CMV matrix C̃+ =

C(0)
+ ({α̃n}n>0), where α̃n = −α−(n+2) and α̃−1 = −1.

First, recall the Jitomirskaya-Last inequality for a right half-line CMV matrix. With the solutions

to (2.6) obeying (2.7) with ω = 0 and the local ℓ2 norms from Definition 2.1, we have the following

lemma.

Lemma 4.1 (See [25, Theorem 10.8.2]). For z ∈ ∂D and r ∈ [0, 1), define x(r) ∈ (0,∞) to be the

unique solution to

(1− r)∥φ·(z)∥x(r)∥ψ·(z)∥x(r) =
√
2.

Then

A−1|F+(rz, 0)| 6
∥ψ·(z)∥x(r)
∥φ·(z)∥x(r)

6 A|F+(rz, 0)|, (4.1)

where A is a universal constant in (1,∞).

Remark 4.2. By Remark 3.2, (4.1) is equivalent to

A−1|F+(rz, 0)| 6
∥p+(z)∥x(r)
∥u+(z)∥x(r)

6 A|F+(rz, 0)|, (4.2)

where A ∈ (1,∞) is a universal constant.

Next, we address the relation between C− and C̃+. Let J be the matrix with elements

Ji,j =

{
1, if i = −j − 1,

0, otherwise

for i = −1,−2,−3, . . . and j = 0, 1, 2, . . . Let J̃ be the matrix with elements

J̃i,j =

{
1, if i = −j − 1,

0, otherwise

for i = 0, 1, 2, . . . and j = −1,−2,−3, . . .

Define the operator U : ℓ2(Z) → ℓ2(Z) that maps ℓ2(Z−) → ℓ2(Z+) as follows:

U =

(
0 J

J̃ 0

)
,

where 0 is the zero matrix, i.e., Uδn = δ−n−1 for n ∈ N0.

A direct calculation implies

UC−U∗ =



−α−1α−2 −ρ−2α−3 ρ−2ρ−3 0 0 · · ·
α−1ρ−2 −α−2α−3 α−2ρ−3 0 0 · · ·

0 −ρ−3α−4 −α−3α−4 −ρ−4α−5 ρ−4ρ−5 · · ·
0 ρ−3ρ−4 α−3ρ−4 −α−4α−5 α−4ρ−5 · · ·
...

...
...

...
...

. . .


.

Set α̃n = −α−(n+2) and α̃−1 = −1. Then ρ̃n = ρ−(n+2) and C̃+ = UC−U∗.
For C̃+, denote φ̃ and ψ̃ to be the orthogonal polynomials and the orthogonal polynomials of the second

kind, respectively. Denote u− and ũ+ (p− and p̃+) to be the eigenfunctions for C− and C̃+, respectively,
and v− and ṽ+ (q− and q̃+) to be the eigenfunctions for CT

− and C̃T
+, respectively. Since C̃+ = UC−U∗,

ũ+(n) = u−(−(n+ 1)) for n ∈ N0.

We have

u−(z,−n− 1) = ũ+(z, n) =

{
z

−(n+1)
2 φ̃∗(z, n), n is odd,

−z −n
2 φ̃(z, n), n is even,
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v−(z,−n− 1) = ṽ+(z, n) =

{
−z

−(n−1)
2 φ̃(z, n), n is odd,

z
−n
2 φ̃∗(z, n), n is even,

p−(z,−n− 1) = p̃+(z, n) =

{
z

−(n+1)
2 ψ̃∗(z, n), n is odd,

z
−n
2 ψ̃(z, n), n is even,

q−(z,−n− 1) = q̃+(z, n) =

{
z

−(n−1)
2 ψ̃(z, n), n is odd,

z
−n
2 ψ̃∗(z, n), n is even

for z ∈ ∂D. Thus the initial conditions (3.3) with n0 = −1 are equivalent to(
−φ̃(z, 0)
φ̃∗(z, 0)

)
=

(
−1

1

)
,

(
ψ̃(z, 0)

ψ̃∗(z, 0)

)
=

(
1

1

)
. (4.3)

Since z ∈ ∂D, ∥u−(z)∥−x(r)−1 = ∥φ̃(z)∥x(r) and ∥p−(z)∥−x(r)−1 = ∥ψ̃(z)∥x(r), where x(r) is as in

Lemma 4.1. Due to Lemma 3.4, there must then be a unique F̃+(z) such that(
−φ̃(z, n) + F̃+(z)ψ̃(z, n)

φ̃∗(z, n) + F̃+(z)ψ̃
∗(z, n)

)
∈ ℓ2(Z+).

Due to the unitarity of U , F−(z,−1) = −F̃+(z, 0), where F̃+(z, 0) is the Carathéodory function for C̃+.
Hence, the Jitomirskaya-Last inequality holds for C−. For z ∈ ∂D and r ∈ [0, 1), define x1(r) ∈ (−∞,−1)

to be the unique solution to

(1− r)∥u−(z)∥x1(r)∥p−(z)∥x1(r) =
√
2.

Then

A−1|F−(rz,−1)| 6
∥u−(z)∥x1(r)

∥p−(z)∥x1(r)
6 A|F−(rz,−1)|, (4.4)

where A is a universal constant in (1,∞).

Next, we extend the Jitomirskaya-Last inequality, which holds for the boundary condition φ(z, 0) = 1,

to a general boundary condition of the form

φ(z, 0)(cosω − i sinω)− φ∗(z, 0)(cosω + i sinω) = 0. (4.5)

Given z ∈ D and ω ∈ [0, π), let (
φω

φ∗
ω
) and (

ψω

−ψ∗
ω
) denote the solutions to (3.8) obeying (2.7). Thus,

(
φω

φ∗
ω
) obeys the boundary condition (4.5) and (

ψω

−ψ∗
ω
) obeys the orthogonal boundary condition.

Define uω(z, n) and pω(z, n) to be the solutions to (2.6), subject to the boundary conditions (2.7). For

r ∈ [0, 1), define x(r) to be the unique solution to

(1− r)∥uω(z)∥x(r)∥pω(z)∥x(r) =
√
2. (4.6)

By [8, Theorem 2.18], there are a unique Fω+(z, 0) such that

ξω+(z, n, 0) = pω(z, n) + Fω+(z, 0)uω(z, n)

is ℓ2 at infinity and a unique Mω
−(z, 0) such that

ξω−(z, n, 0) = pω(z, n) +Mω
−(z, 0)uω(z, n)

is ℓ2 at −∞. By (3.4) and (3.6), we have

ξω+(z, 0, 0) = ψω(z, 0) + F+(z, 0)φω(z, 0),

ξω−(z, 0, 0) = ψω(z, 0) +M−(z, 0)φω(z, 0).

Define

ξω,∗+ (z, 0, 0) = −ψ∗ω(z, 0) + F+(z, 0)φω(z, 0),

ξω,∗− (z, 0, 0) = −ψ∗ω(z, 0) +M−(z, 0)φ
∗
ω(z, 0).

With these definitions the following generalization of Lemma 3.4 holds.
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Lemma 4.3. For z ∈ ∂D, define x(r) ∈ (0,∞) to be the unique solution to

(1− r)∥uω(z)∥x(r)∥pω(z)∥x(r) =
√
2.

Then we have

A−11 |Fω+(rz, 0)| 6
∥pω(z)∥x(r)
∥uω(z)∥x(r)

6 A1|Fω+(rz, 0)|, (4.7)

where A1 is a universal constant in (1,∞). Similarly, define x1(r) ∈ (−∞,−1) to be the unique

solution to

(1− r)∥uω(z)∥x1(r)∥pω(z)∥x1(r) =
√
2.

Then we have

A−12 |Fω−(rz, 0)| 6
∥pω(z)∥x1(r)

∥uω(z)∥x1(r)
6 A2|Fω−(rz, 0)|, (4.8)

where A2 is a universal constant in (1,∞).

Proof. In order to follow the proof of [26, Theorem 10.8.2], define Tn as

Tn =
1

2

(
e−iω(φω(n) + ψω(n)) eiω(φω(n)− ψω(n))

e−iω(φ∗ω(n)− ψ∗ω(n)) eiω(φ∗ω(n) + ψ∗ω(n))

)
.

This is from [25, (3.2.27)] with the boundary conditions ( eiω

e−iω ) and ( eiω

−e−iω ). By [25, (3.2.28)], detTn = zn.

We have

T−1l =
1

2zl

(
eiω(φ∗ω(l) + ψ∗ω(l)) −eiω(φω(l)− ψω(l))

−e−iω(φ∗ω(l)− ψ∗ω(l)) e−iω(φω(l) + ψω(l))

)
.

A direct calculation shows that Tn←l = TnT
−1
l which is the same as Tn←l in [26, (10.8.8)]. The remaining

proof is the same as the proof of [26, Theorem 10.8.2]. We can then conclude that (4.7) holds.

Lemma 4.4. Let θ ∈ [0, 2π) be given.

(1) One has limr↑1 F+(re
iθ, 0) = −i cotω for some ω ∈ [0, π) if and only if uω is subordinate at +∞.

(2) One has limr↑1M−(re
iθ, 0) = −i cotω for some ω ∈ [0, π) if and only if uω is subordinate at −∞.

(3) The difference equation (2.6) enjoys a subordinate solution at +∞ if and only if

lim
r↑1

F+(re
iθ, 0) ∈ i(R ∪ {∞}).

(4) The difference equation (2.6) enjoys a subordinate solution at −∞ if and only if

lim
r↑1

M−(re
iθ, 0) ∈ i(R ∪ {∞}).

(5) The difference equation (2.6) enjoys a solution that is subordinate at ±∞ if and only if

lim
r↑1

F+(re
iθ, 0) = lim

r↑1
M−(re

iθ, 0).

Proof. (1) Consider the m-function for orthogonal polynomials on the unit circle (OPUC) of the form

m+
0 (re

iθ) =
ξ0,∗+ (reiθ, 0, 0)

ξ0+(re
iθ, 0, 0)

.

By Lemma 3.3,

m+
0 (re

iθ) =
ξω,∗+ (reiθ, 0, 0)

ξω+(re
iθ, 0, 0)

implies
−ψ∗(reiθ, 0) + F+(re

iθ, 0)φ∗(reiθ, 0)

ψ(reiθ, 0) + F+(reiθ, 0)φ(reiθ, 0)
=

−ψ∗ω(reiθ, 0) + Fω+(reiθ, 0)φ∗ω(re
iθ, 0)

ψω(reiθ, 0) + Fω+(reiθ, 0)φω(reiθ, 0)
.
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For simplicity, write φω(re
iθ, 0) and ψω(re

iθ, 0) as φω and ψω, respectively. It follows that

−1 + F+(re
iθ, 0)

1 + F+(reiθ, 0)
=

−ψ∗ω + Fω+(reiθ, 0)φ∗ω
ψω + Fω+(reiθ, 0)φω

,

and then

Fω+(reiθ, 0) =
−ψ∗ω + ψω − F+(re

iθ, 0)(ψ∗ω + ψω)

−(φω + φ∗ω) + F+(reiθ, 0)(φω − φ∗ω)
.

By (2.7), we have

Fω+(reiθ, 0) =
i sinω − F+(re

iθ, 0) cosω

− cosω + iF+(reiθ, 0) sinω
. (4.9)

We see that limr↑1 |Fω+(reiθ, 0)| = ∞ if and only if

lim
r↑1

F+(re
iθ, 0) = −i cotω.

By Lemma 4.3, limr↑1 |Fω+(reiθ, 0)| = ∞ if and only if uω is subordinate at +∞. By putting the two

equivalences together, (1) follows.

(2) Consider the m-function for the left half-line CMV matrix C̃+ as

m̃−(reiθ) =
ξ0,∗− (reiθ, 0, 0)

ξ0−(re
iθ, 0, 0)

.

It implies

−ψ∗(reiθ, 0) +M−(re
iθ, 0)φ∗(reiθ, 0)

ψ(reiθ, 0) +M−(reiθ, 0)φ(reiθ, 0)
=

−ψ∗ω(reiθ, 0) +Mω
−(re

iθ, 0)φ∗ω(re
iθ, 0)

ψω(reiθ, 0) +Mω
−(re

iθ, 0)φω(reiθ, 0)
.

A direct calculation gives

Mω
−(re

iθ, 0) =
i sinω −M−(re

iθ, 0) cosω

− cosω + iM−(reiθ, 0) sinω
. (4.10)

Since the ℓ2 solution is unique up to a non-zero constant C, by [8, Remark 2.19], we have

Cξ−(z, 0, 0) = p−(z, 0, 0) + F−(z, 0)u−(z, 0, 0),

which implies that

C(1 +M−(z, 0)) = 1 + F−(z, 0), (4.11)

where F−(z, 0) is the Carathéodory function for C− acting on ℓ2([0,−∞) ∩ Z) with |α0| = 1. Thus,

−M−(z, 0) = 1− C−1(1 + F−(z, 0)),

which means limr↑1 |M−(reiθ, 0)| = ∞ if and only if limr↑1 |F−(reiθ, 0)| = ∞. We see that

lim
r↑1

|Mω
−(re

iθ, 0)| = ∞

if and only if limr↑1M−(re
iθ, 0) = −i cotω. By the Jitomirskaya-Last inequalities, limr↑1 |Fω−(reiθ, 0)|

= ∞ if and only if uω is subordinate at −∞. By putting the three equivalences together, (2) follows.

We observe that (3) and (4) follow immediately from (1) and (2). Recall now that F+(re
iθ, 0) is a

Carathéodory function and M−(re
iθ, 0) is an anti-Carathéodory function. Thus (5) follows immediately

from (3) and (4) by noting that limr↑1 F+(re
iθ, 0) = limr↑1M−(re

iθ, 0) forces the common limit to belong

to i(R ∪ {∞}).
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5 Proof of Theorem 2.2

In this section, we prove Theorem 2.2. We will make use of the preparatory work in the previous sections,

culminating in Lemmas 4.3 and 4.4.

Proof of Theorem 2.2. (a) As discussed in Remark 2.3, this statement is well known and a proof can

be given by arguments similar to those in the proof of [28, Theorem 7.27(a)].

Before turning our attention to the statements (b) and (c) in Theorem 2.2, let us recall that F is the

Borel transform of the canonical spectral measure Λ and it can be expressed as follows:

F (z) = 1 + 2z(G00(z) +G11(z))

= −1 +
(α0 + 2z + α0z

2) + (α0z
2 − α0)(M−(z, 0) + F+(z, 0))

ρ20z(F+(z, 0)−M−(z, 0))

+
(α0 − 2z + α0z

2)M−(z, 0)F+(z, 0)

ρ20z(F+(z, 0)−M−(z, 0))
(5.1a)

= −1 +

(α0+2z+α0z
2)

F+(z,0)M−(z,0) + (α0z
2 − α0)(

1
F+(z,0) +

1
M−(z,0) ) + (α0 − 2z + α0z

2)

ρ20z(
1

M−(z,0) −
1

F+(z,0) )
. (5.1b)

From [25, Subsection 1.3.5], recall that Λs is supported on

SΛ =
{
θ : lim

r↑1
ReF (reiθ) = ∞

}
,

and an essential support of Λac is given by

AΛ =
{
θ : 0 < lim

r↑1
ReF (reiθ) <∞

}
.

With these preliminaries out of the way, we can now address Theorems 2.2(b) and 2.2(c).

(b) It suffices to show that Λs(SΛ\S) = 0. Consider θ ∈ SΛ, i.e., limr↑1 ReF (re
iθ) exists and is infinite.

In particular, we also have limr↑1 |F (reiθ)| = ∞. There are the following three cases:

(1) limr↑1 F+(re
iθ, 0) and limr↑1M−(re

iθ, 0) both exist (with ∞ being an admissible limit).

(2) Exactly one of limr↑1 F+(re
iθ, 0) and limr↑1M−(re

iθ, 0) exists.

(3) Neither of them exists.

We will show that θ’s that are in Case (1) belong to S, Case (2) is impossible, and θ’s in Case (3)

have the zero measure with respect to Λs. Combining these three statements, we obtain the desired

Λs(SΛ\S) = 0.

Case (1) Suppose the limits limr↑1 F+(re
iθ, 0) and limr↑1M−(re

iθ, 0) both exist (with ∞ being an

admissible limit). By (5.1a), as r ↑ 1, we must have

|F+(re
iθ, 0)−M−(re

iθ, 0)| → 0 (5.2)

or

|(α0 + 2z + α0z
2) + (α0z

2 − α0)(M−(re
iθ, 0) + F+(re

iθ, 0))

+ (α0 − 2z + α0z
2)M−(re

iθ, 0)F+(re
iθ, 0)| → ∞. (5.3)

Let us consider the first case where |F+(re
iθ, 0)−M−(re

iθ, 0)| → 0, which implies that

lim
r↑1

F+(re
iθ, 0) = lim

r↑1
M−(re

iθ, 0).

If limr↑1 |F+(re
iθ, 0)| = limr↑1 |M−(reiθ, 0)| is finite, by Lemma 4.4(5), there is a solution uω that is subor-

dinate at ±∞ with non-zero ω. If limr↑1 |F+(re
iθ, 0)| = limr↑1 |M−(reiθ, 0)| is infinite, limr↑1 |F−(reiθ, 0)|

is infinite by (4.11). Thus, u+(e
iθ) is a subordinate solution at ∞ and u−(e

iθ) is a subordinate solution
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at −∞. From Lemmas 4.4(1) and 4.4(2), we have F+(re
iθ, 0) = −i cotω1 and M−(re

iθ, 0) = −i cotω2, so

ω1 = ω2 = 0, which means that there is a subordinate solution u0(e
iθ) at ±∞.

Now, we consider the second case, which means |M−(reiθ, 0)F+(re
iθ, 0)| → ∞, |F+(re

iθ, 0)| → ∞ or

|M−(reiθ, 0)| → ∞. In this case, if one of |M−(reiθ, 0)| and |F+(re
iθ, 0)| goes to infinity while the other

one goes to a constant, then |F (reiθ)| cannot go to infinity.

Therefore, both |M−(reiθ, 0)| and |F+(re
iθ, 0)| go to infinity. As in the first case, there is a subordinate

solution u0(e
iθ) at ±∞.

Case (2) Suppose exactly one of limr↑1 F+(re
iθ, 0) and limr↑1M−(re

iθ, 0) exists, i.e., limr↑1 F+(re
iθ, 0).

As in Case (1), one of (5.2) and (5.3) must hold true. First, consider the case where (5.2) holds. It implies

that if limr↑1 |F+(re
iθ, 0)| exists, then limr↑1 |M−(reiθ, 0)| also exists, which leads to a contradiction. Now,

consider the case where (5.3) holds, which implies limr↑1 |F+(re
iθ, 0)| = ∞. By (5.1b), |M−(reiθ, 0)| must

go to infinity as r ↑ 1, which leads to a contradiction. Thus, Case (2) is impossible.

Case (3) Suppose that neither limr↑1 F+(re
iθ, 0) nor limr↑1M−(re

iθ, 0) exists. Therefore,

lim inf
r↑1

F+(re
iθ, 0) and lim inf

r↑1
M−(re

iθ, 0)

are finite. We can thus choose a sequence rn ↑ 1 in such a way that the limits

ℓ+ := lim
rn↑1

F+(rne
iθ, 0) and ℓ− = lim

rn↑1
M−(rne

iθ, 0)

exist, and ℓ+ is finite. Following a similar argument to that in Case (1), since limr↑1 |F (reiθ)| = ∞,

ℓ− = ℓ+ ∈ iR, which means that all accumulation points of
{
F+(re

iθ, 0)
}
0<r<1

and
{
M−(re

iθ, 0)
}
0<r<1

are either 0 or purely imaginary numbers. Thus Re ℓ+ = 0.

Since M−(re
iθ, 0) is an anti-Carathéodory function, it is analytic in D. If ia, ib ∈ iR are two different

accumulation points of M−(re
iθ, 0), by the intermediate value theorem and the fact that all accumulation

points are imaginary, we can find a sequence of {r′n} such that M−(r
′
ne

iθ, 0) goes to ic for any c ∈ (a, b)

as r′n ↑ 1. We thus observe that since the limits do not exist and the real parts of accumulation points

are zero, M−(re
iθ, 0) has uncountably many accumulation points.

So we can choose rn and tn in such a way that

lim
rn↑1

M−(rne
iθ, 0) = ℓ1, lim

tn↑1
M−(tne

iθ, 0) = ℓ2,

lim
rn↑1

F+(rne
iθ, 0) = ℓ1, lim

tn↑1
F+(tne

iθ, 0) = ℓ2,

where ℓ1 ̸= ℓ2 and ℓ1, ℓ2 ∈ iR. Let Λ0 denote the δ0-spectral measure of E , given by

⟨δ0, (E + zI)(E − zI)−1δ0⟩ =
∫
∂D

eiθ + z

eiθ − z
dΛ0 =:M00, z ∈ C\∂D.

By [8, (3.25)], M00 is of the form

M00(z) = 1 +
[1− α0 − (1 + α0)F+(z, 0)][1− α0 + (1 + α0M−(z, 0))]

ρ20(F+(z, 0)−M−(z, 0))
.

By defining Λ1 and M11 similarly, the canonical spectral measure is Λ = Λ0 + Λ1. Since Λ0 ≪ Λ and

F (z) =
∫

eiθ+z
eiθ−zdΛ(θ), the corresponding Radon-Nikodym derivative satisfies

dΛ0

dΛ
(θ) = lim

r↑1

M00(re
iθ)

F (reiθ)
(5.4)

for Λs-almost every θ.

This follows from Poltoratskii’s theorem [13, 21]. We are grateful to Jake Fillman for the idea to use

Poltoratskii’s theorem to simplify this part of the proof. The version we use can be found in [27, Remark
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after Proposition 3.1], which says that for any complex Borel measure µ on ∂D and any g ∈ L1(∂D, dµ)
we have that for almost any eiθ

′
with respect to dµs (but not for dµac),

lim
r↑1

∫
∂D

eiθ+reiθ
′

eiθ−reiθ′ f(θ)dµ(θ)∫
∂D

eiθ+reiθ′

eiθ−reiθ′ dµ(θ)
= f(θ′).

Due to our choices of rn, tn and ℓ1 ̸= ℓ2, we obtain

lim
n→∞

M00(rne
iθ)

F (rneiθ)
̸= lim
n→∞

M00(tne
iθ)

F (tneiθ)
.

Thus, the θ’s in Case (3) are contained in the set where (5.4) fails, which has the zero Λs-measure.

(c) Since Λac gives the zero weight to sets of zero Lebesgue measure and NΛ is an essential support, it

suffices to show that

Leb(A\AΛ) = 0 (5.5)

and

Leb(AΛ\A) = 0. (5.6)

Assume that limr↑1 F (re
iθ), limr↑1 F+(re

iθ, 0) and limr↑1M−(re
iθ, 0) all have finite boundary values as

r ↑ 1 for all z = eiθ in question.

To prove (5.5), we consider θ ∈ AΛ for which limr↑1 |F (reiθ)|, limr↑1 |F+(re
iθ, 0)| and limr↑1 |M−(reiθ, 0)|

exist and are finite, and show that z = eiθ ∈ A.

Let us first consider the possibility that limr↑1 F+(re
iθ, 0) and limr↑1M−(re

iθ, 0) are both purely

imaginary. Specifically, let limr↑1 F+(re
iθ, 0) = ia and limr↑1M−(re

iθ, 0) = ib, where a ̸= b ∈ R.
Since F (reiθ) = 1 + 2z(G00 +G11), we firstly consider 1 + 2zG00. We have

1 + 2zG00 =
i(a− b)− (−1 + ia)(1 + ib)

i(a− b)

=
1 + ab

i(a− b)
,

which is a purely imaginary number. Consider 2zG11, which is

2zG11 = − [z + α0 + ib(z − α0)][−1− α0z + ia(1− α0z)]

iρ20z(a− b)

=
(z + α0)(1 + α0z) + ab(z − α0)(1− α0z)

iρ20z(a− b)

+
i[b(z − α0)(1 + α0z)− a(z + α0)(1− α0z)]

iρ20z(a− b)

=
z + α0 + α0z

2 + |α0|2z + abz − α0ab− α0abz
2 + ab|α0|2z

iρ20z(a− b)

+
i[bz − bα0 + bα0z

2 − b|α0|2z − az − aα0 + aα0z
2 + a|α0|2z]

iρ20z(a− b)

=
1 + α0z

−1 + α0z + |α0|2 + ab− α0abz
−1 − α0abz + ab|α0|2

iρ20(a− b)

+
i[b− bα0z

−1 + bα0z − b|α0|2 − a− aα0z
−1 + aα0z + a|α0|2]

iρ20(a− b)
.

Thus,

Re (−2ρ20(a− b)zG11) = Re (iα0z
−1 + iα0z − iabα0z

−1 − iabα0z + (a− b)ρ20

+ bα0z
−1 − bα0z + aα0z

−1 − aα0z)

= (1− ab)Re (iα0z
−1 + iα0z) + (a+ b)Re (α0z

−1 − α0z)
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+ (a− b)ρ20.

With z = reiθ, we have

Re (iα0r
−1e−iθ + iα0re

iθ) → Re (i(α0eiθ + α0e
iθ)) = 0

and

Re (α0r
−1e−iθ − α0re

iθ) → Re (α0eiθ − α0e
iθ) = 0

as r ↑ 1.

Putting these together, we have limr↑1 ReF (re
iθ) = −1, which is impossible. If a = b, | limr↑1 F (re

iθ)|
= ∞, which is also impossible. We conclude that limr↑1 F+(re

iθ, 0) and limr↑1M−(re
iθ, 0) cannot both

be purely imaginary.

Without loss of generality, we assume that limr↑1 F+(re
iθ, 0) is not a purely imaginary number, which

implies that there is no subordinate solution at +∞ by Lemma 4.4(3). Thus, z = eiθ ∈ A+. Therefore,

z = eiθ ∈ A.

To prove (5.6), we consider z = eiθ ∈ A for which

lim
r↑1

|F (reiθ)|, lim
r↑1

|F+(re
iθ, 0)| and lim

r↑1
|M−(reiθ, 0)|

exist and are finite, and show that θ ∈ AΛ. Without loss of generality, assume that z = eiθ ∈ A+, so

(2.6) has no solution that is subordinate at +∞. Then Lemma 4.4 implies that limr↑1 F+(re
iθ, 0) cannot

be purely imaginary, which implies that 0 < limr↑1 ReF+(re
iθ, 0) < ∞. Since limr↑1M−(re

iθ, 0) also

exists and must belong to Cℓ = {z ∈ C | Re (z) < 0}, we have 0 < limr↑1 ReF (re
iθ) < ∞. Therefore,

θ ∈ AΛ.

6 Proofs of the corollaries

In this section, we prove Corollaries 2.4 and 2.5.

Proof of Corollary 2.4. Suppose that z ∈ B+, i.e., z ∈ ∂D is such that

sup
n∈Z±

∥A(n, z)∥ <∞.

By an extension of the discussion in the proof of [26, Corollary 10.8.4], it follows from the Jitomirskaya-

Last inequality that (2.6) has no solution that is subordinate at +∞, and hence z ∈ A+. Specifically,

due to (3.4)–(3.7), we have

|u+(z, n)| = |φn(z)| and |p+(z, n)| = |ψn(z)|, when n is even,

|v+(z, n)| = |φn(z)| and |q+(z, n)| = |ψn(z)|, when n is odd.

Let c = supn∈Z+
∥A(n, z)∥. Then |u+(z, n)| 6 c if n is even and |v+(z, n)| 6 c if n is odd. By [26,

(3.2.23)], |p+(z, n)| > c−1 if n is even and |q+(z, n)| > c−1 if n is odd. Thus,

c−2 6
∥u+(z, n)∥x(r)
∥p+(z, n)∥x(r)

6 c2, when n is even,

c−2 6
∥v+(z, n)∥x(r)
∥q+(z, n)∥x(r)

6 c2, when n is odd.

It follows that B+ ⊆ A+.

The inclusion B− ⊆ A− is proved in a similar way. In Section 4, we have proved C− conjugates to C̃+
with −α−(n+2) = α̃n for n ∈ N0. Hence, we can rewrite the representation of A(n, z) for n 6 −1 as

S(α̃−n, z)× S(α̃−n+1, z)× · · · × S(α̃0, z).
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From the above statements, C̃+ has no solution that is subordinate at +∞. Due to the conjugation, (2.6)

has no solution that is subordinate at −∞. It follows that B− ⊆ A−.
The fact that the restriction of Λ to each of B± is purely absolutely continuous now follows from

Theorem 2.2(c).

Proof of Corollary 2.5. If z ∈ R, then it follows from the definition of R that there exist Bz :

Ω → SU(1, 1) bounded and A
(0)
z ∈ SU(1, 1) elliptic such that for every ω ∈ Ω, we have Az(ω) =

Bz(Tω)A
(0)
z Bz(ω)

−1. This in turn shows that for n > 2, we have

Az(T
n−1ω)× · · · × Az(Tω)Az(ω)

= Bz(T
nω)A(0)

z Bz(T
n−1ω)−1 × · · · ×Bz(T

2ω)A(0)
z Bz(Tω)

−1Bz(Tω)A
(0)
z Bz(ω)

−1

= Bz(T
nω)(A(0)

z )nBz(ω)
−1.

Given that the matrix on the left-hand side has the same norm as A(n, z;ω) (it is obtained from that

matrix by multiplication with the unimodular number z−n/2) and the right-hand side remains bounded

as n→ ∞ since A
(0)
z is elliptic and Bz : Ω → SU(1, 1) is bounded, we find that

R ⊆ B+(ω). (6.1)

We note in passing that a similar analysis can be applied to the left half-line and yield R ⊆ B−(ω).
Here, we denote the matrices A(n, z) and the sets B± introduced earlier for a fixed extended CMV

matrix E by A(n, z;ω) and B±(ω) if they are associated with the dynamically defined extended CMV

matrix E(ω).
The assertion of Corollary 2.5 now follows from (6.1), which as discussed above holds for every ω ∈ Ω,

and Corollary 2.4.
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