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SOLID-OXIDE FUEL CELLS

Catalyst design with machine learning

Development of oxygen reduction catalysts is of key importance to a range of energy technologies; however, the
process has long relied on slow trial-and-error approaches. Now, accelerated discovery of perovskite oxides for use
as air electrodes in solid-oxide fuel cells is achieved with machine learning.
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solid-oxide fuel cell (SOFC) is

an electrochemical device that

converts the chemical energy of a
fuel (for example, hydrogen or syngas) into
electricity and heat. SOFCs are both highly
efficient and fuel-flexible'. They consist
of an ion-conducting ceramic electrolyte
stacked between a fuel-oxidizing anode
and an air cathode. At the cathode, oxygen
(O,) in ambient air is reduced to oxide ions
(O*), which travel across the electrolyte
to the anode side where they react with
fuel molecules, liberating electrons to the
external circuit (Fig. 1).

Oxygen reduction at metal oxide
cathodes is a kinetic bottleneck that often
limits the process to high temperatures
(800-1,000 °C); lowering the operating
temperature to 500-800 °C through
materials design is essential to improve
the prospects of SOFC technologies.
However, due to the intrinsic complexity of
oxide materials with entangled structure,
composition, and phase attributes,
finding high-performance electrocatalysts
of this type, preferably composed of
earth-abundant elements, is a long,
expensive, and tedious trial-and-error
endeavour. Now, writing in Nature Energy,
Shuo Zhai and colleagues in China report an
experimentally validated machine learning
approach to accelerate the discovery of
perovskite oxides for oxygen reduction in
solid-oxide fuel cells™.

To begin, the researchers curated a
small dataset of perovskite oxides from
the literature on which to train machine
learning algorithms to learn underlying
composition-activity correlations, as has
been attempted previously* albeit with
different data sources. For each material
they collated the polarization resistance —
an activity metric — and various features
relating to the metal ions in the perovskites,
including: electronegativity, ionic radius,
Lewis acidic strength, ionization energy,
and tolerance factor (a predictor for the
stability of perovskite structures). A wide
range of machine learning algorithms were
then employed to determine which showed
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Fig. 1| Interpretable machine learning for discovery of catalytic materials for solid-oxide fuel cells.

Feature engineering of perovskite oxides leads to accu
new materials while providing interpretation or design
technologies in an integrated workflow for materials d

rate machine learning models that can predict
rules, a key component of explainable Al
iscovery.

the best generalizability in predicting the
polarization resistance of materials. Both
linear regression and highly non-linear
regression (for example, artificial neural
networks with multiple hidden layers
between input and output) methods were
tried, with the latter showing the best results.

In previous works, a variety of reactivity
descriptors for perovskite oxides have
been proposed to guide the design of new
materials®”’. However, some of those features
require time-consuming quantum-chemical
simulations — the p-band centre of bulk
oxygen atoms, for example — limiting
their practical applications in large-scaling
materials screening. One of the strengths of
the work by Zhai et al. is that the descriptors
used are easily accessible and thus a much
larger materials space can be explored
quickly.

By ranking the importance of features
within the artificial neural network models,
the researchers found that the Lewis

acid strength of metal ions is crucial in
determining the polarization resistance.
Perovskite oxides typically contain two or
more types of metal ion and have the general
chemical formula ABO,. A-site cations are
often alkaline-earth and rare-earth metals;
B-site cations are transition-metals of
variable valence essential for modulating
electron transfer during electrochemical
reactions. From the researchers’ analysis,

a simple design rule emerged: promising
oxygen reduction electrocatalysts should
have a smaller A-site Lewis acidic strength
and, to a certain extent, a larger B-site value.
In other words, a polarization of the ionic
Lewis acidity is needed across the A- and
B-sites.

With this insight, the team suggests
candidate materials by doping A- and B-sites
with ions of choice that have a relatively low
or high Lewis acidity — such as Cs* for A
sites — while satisfying the charge neutrality
constraint with fractional compositions.



Among those predicted to be promising,
they successfully synthesize four of them
(including Sr,,Cs,,Co,,Nb,,0;) and find
them to be more active than the benchmark
material, Ba, ;Sr, ;Co, sFe,,0,_;. Density
functional theory calculations suggest that
the polarization of Lewis acidity across
sites shifts the adsorption of electron-pair
species toward B-site cations. This provides
a unique site for facile formation of oxygen
vacancies and labile oxygen species, which
are essential for surface oxygen exchange
and their transport at reduced temperatures.
The work from Zhai et al. highlights
the importance of interpretable machine
learning — machine learning models
for which we can understand how final
decisions were made — to accelerate
discovery of catalytic materials. Broadly
speaking, machine learning models can be
made interpretable using three different
approaches, including feature engineering,
algorithm development, and post hoc
analysis’. Zhai et al. showcase an example of
the former: they engineer easily-accessible
features that are rooted in the mechanistic
understanding of physical processes.
Future development of interpretable
machine learning is needed on the path
towards explainable artificial intelligence
(AI) technologies that humans can
comprehend and trust. Open challenges
include automatically extracting high-level
feature representations of diverse materials

with physical constraints, integrating
established theories into learning algorithms
that have seen promise for metal catalysis’,
and gaining actionable insights by analysing
feature importance of machine learning
models while being mindful about possible
feature correlations.

In order to realize Al-automated design
of catalytic materials with increasing
complexity (for example: strain- and/or
ligand-modified systems; heterostructures;
and high-entropy materials) a large amount
of high-quality data from high-throughput
experiments and computational modelling
are likely a prerequisite. Encouragingly,
many data initiatives are emerging,
such as the open catalyst project'.

More importantly, deep fundamental
understanding of the electronic properties
of materials beyond the nearly free-electron
approximation (in which electrons move
almost freely through the crystal lattice

of a solid) is a long-lasting challenge in
oxide catalysis; this might hold the key to
unlocking the full potential of large-scale
materials data and shedding light on design
rules for improved catalysts.

Notably, the materials space for
perovskite oxides is immense: not only the
composition, but also the phase, defect, and
symmetry of structural motifs influence
catalytic activity' and thus it is imperative
to leverage tuning knobs beyond simplified
ionic descriptors. Nevertheless, the work

from Zhai et al. lays important groundwork
to tackle materials design challenges with
machine learning, and it will be fascinating
to see how the computational and data
sciences evolve over the coming years in
accelerating the discovery of materials with
increasing complexity. a
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