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SOLID-OXIDE FUEL CELLS

Catalyst design with machine learning
Development of oxygen reduction catalysts is of key importance to a range of energy technologies; however, the 
process has long relied on slow trial-and-error approaches. Now, accelerated discovery of perovskite oxides for use 
as air electrodes in solid-oxide fuel cells is achieved with machine learning.
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A solid-oxide fuel cell (SOFC) is 
an electrochemical device that 
converts the chemical energy of a 

fuel (for example, hydrogen or syngas) into 
electricity and heat. SOFCs are both highly 
efficient and fuel-flexible1. They consist 
of an ion-conducting ceramic electrolyte 
stacked between a fuel-oxidizing anode 
and an air cathode. At the cathode, oxygen 
(O2) in ambient air is reduced to oxide ions 
(O2–), which travel across the electrolyte 
to the anode side where they react with 
fuel molecules, liberating electrons to the 
external circuit (Fig. 1).

Oxygen reduction at metal oxide 
cathodes is a kinetic bottleneck that often 
limits the process to high temperatures 
(800–1,000 °C); lowering the operating 
temperature to 500–800 °C through 
materials design is essential to improve 
the prospects of SOFC technologies. 
However, due to the intrinsic complexity of 
oxide materials with entangled structure, 
composition, and phase attributes, 
finding high-performance electrocatalysts 
of this type, preferably composed of 
earth-abundant elements, is a long, 
expensive, and tedious trial-and-error 
endeavour. Now, writing in Nature Energy, 
Shuo Zhai and colleagues in China report an 
experimentally validated machine learning 
approach to accelerate the discovery of 
perovskite oxides for oxygen reduction in 
solid-oxide fuel cells2.

To begin, the researchers curated a 
small dataset of perovskite oxides from 
the literature on which to train machine 
learning algorithms to learn underlying 
composition–activity correlations, as has 
been attempted previously3,4 albeit with 
different data sources. For each material 
they collated the polarization resistance — 
an activity metric — and various features 
relating to the metal ions in the perovskites, 
including: electronegativity, ionic radius, 
Lewis acidic strength, ionization energy, 
and tolerance factor (a predictor for the 
stability of perovskite structures). A wide 
range of machine learning algorithms were 
then employed to determine which showed 

the best generalizability in predicting the 
polarization resistance of materials. Both 
linear regression and highly non-linear 
regression (for example, artificial neural 
networks with multiple hidden layers 
between input and output) methods were 
tried, with the latter showing the best results.

In previous works, a variety of reactivity 
descriptors for perovskite oxides have 
been proposed to guide the design of new 
materials5–7. However, some of those features 
require time-consuming quantum-chemical 
simulations — the p-band centre of bulk 
oxygen atoms, for example — limiting 
their practical applications in large-scaling 
materials screening. One of the strengths of 
the work by Zhai et al. is that the descriptors 
used are easily accessible and thus a much 
larger materials space can be explored 
quickly.

By ranking the importance of features 
within the artificial neural network models, 
the researchers found that the Lewis 

acid strength of metal ions is crucial in 
determining the polarization resistance. 
Perovskite oxides typically contain two or 
more types of metal ion and have the general 
chemical formula ABO3. A-site cations are 
often alkaline-earth and rare-earth metals; 
B-site cations are transition-metals of 
variable valence essential for modulating 
electron transfer during electrochemical 
reactions. From the researchers’ analysis, 
a simple design rule emerged: promising 
oxygen reduction electrocatalysts should 
have a smaller A-site Lewis acidic strength 
and, to a certain extent, a larger B-site value. 
In other words, a polarization of the ionic 
Lewis acidity is needed across the A- and 
B-sites.

With this insight, the team suggests 
candidate materials by doping A- and B-sites 
with ions of choice that have a relatively low 
or high Lewis acidity — such as Cs+ for A 
sites — while satisfying the charge neutrality 
constraint with fractional compositions. 
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Fig. 1 | Interpretable machine learning for discovery of catalytic materials for solid-oxide fuel cells. 
Feature engineering of perovskite oxides leads to accurate machine learning models that can predict 
new materials while providing interpretation or design rules, a key component of explainable AI 
technologies in an integrated workflow for materials discovery.
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Among those predicted to be promising, 
they successfully synthesize four of them 
(including Sr0.9Cs0.1Co0.9Nb0.1O3) and find 
them to be more active than the benchmark 
material, Ba0.5Sr0.5Co0.8Fe0.2O3–δ. Density 
functional theory calculations suggest that 
the polarization of Lewis acidity across 
sites shifts the adsorption of electron-pair 
species toward B-site cations. This provides 
a unique site for facile formation of oxygen 
vacancies and labile oxygen species, which 
are essential for surface oxygen exchange 
and their transport at reduced temperatures.

The work from Zhai et al. highlights 
the importance of interpretable machine 
learning — machine learning models 
for which we can understand how final 
decisions were made — to accelerate 
discovery of catalytic materials. Broadly 
speaking, machine learning models can be 
made interpretable using three different 
approaches, including feature engineering, 
algorithm development, and post hoc 
analysis8. Zhai et al. showcase an example of 
the former: they engineer easily-accessible 
features that are rooted in the mechanistic 
understanding of physical processes.

Future development of interpretable 
machine learning is needed on the path 
towards explainable artificial intelligence 
(AI) technologies that humans can 
comprehend and trust. Open challenges 
include automatically extracting high-level 
feature representations of diverse materials 

with physical constraints, integrating 
established theories into learning algorithms 
that have seen promise for metal catalysis9, 
and gaining actionable insights by analysing 
feature importance of machine learning 
models while being mindful about possible 
feature correlations.

In order to realize AI-automated design 
of catalytic materials with increasing 
complexity (for example: strain- and/or 
ligand-modified systems; heterostructures; 
and high-entropy materials) a large amount 
of high-quality data from high-throughput 
experiments and computational modelling 
are likely a prerequisite. Encouragingly, 
many data initiatives are emerging, 
such as the open catalyst project10. 
More importantly, deep fundamental 
understanding of the electronic properties 
of materials beyond the nearly free-electron 
approximation (in which electrons move 
almost freely through the crystal lattice 
of a solid) is a long-lasting challenge in 
oxide catalysis; this might hold the key to 
unlocking the full potential of large-scale 
materials data and shedding light on design 
rules for improved catalysts.

Notably, the materials space for 
perovskite oxides is immense: not only the 
composition, but also the phase, defect, and 
symmetry of structural motifs influence 
catalytic activity1 and thus it is imperative 
to leverage tuning knobs beyond simplified 
ionic descriptors. Nevertheless, the work 

from Zhai et al. lays important groundwork 
to tackle materials design challenges with 
machine learning, and it will be fascinating 
to see how the computational and data 
sciences evolve over the coming years in 
accelerating the discovery of materials with 
increasing complexity. ❐
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