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Machine learning of lateral adsorbate interactions in 
surface reaction kinetics 
Tianyou Mou*, Xue Han*, Huiyuan Zhu and Hongliang Xin   

The importance of lateral adsorbate interactions cannot be 
overstated in describing surface reaction kinetics. To realize the 
goal of operando computational modeling of catalytic 
processes, it is crucial to integrate effects of relevant adsorbate 
coverages and configurations into mean-field kinetic analysis 
and beyond. Herein, we highlight the recent applications of 
machine learning (ML) algorithms in the development of 
adsorbate-adsorbate interaction models, ranging from analytic 
relationships, to ML-parameterized cluster expansions, and to 
highly nonlinear deep learning models. We also discuss 
prospects and challenges in moving the field forward, 
particularly in the integration of theoretical understanding into 
ML of lateral adsorbate interactions across the chemistry and 
materials space. 
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Introduction 
Lateral adsorbate interactions on solid surfaces play a 
crucial role in heterogeneous catalysis, self-assembly, 
nucleation and growth, and many interfacial phenomena 
governed by molecular processes [1]. For instance, the 
outcome of a surface-catalyzed reaction can be greatly 
influenced by introducing chemical additives as coad
sorbed modifiers which promote or inhibit the transfor
mation of kinetically significant intermediates. As being 
increasingly recognized, intrinsic reaction intermediates 
at noticeable coverages often synergistically regulate the 
catalytic cycle with active sites in a self-adjusting 

manner [2,3]. At the most fundamental level, an en
semble of adsorbate–adsorbate configurations collec
tively renders the local environment of reacting species 
by substrate-mediated electronic couplings and through- 
space electrostatic interactions [4,5], or direct orbital 
overlaps in some cases [6]. Experimentally, it is possible 
but remains challenging to measure interaction energies 
of adsorbates on single-crystal surfaces under ultrahigh 
vacuum conditions. However, the so-called pressure and 
materials gaps prevent the generalization of attained 
knowledge to industrial operating conditions [7]. In this 
regard, computational chemistry with a vast array of so
phisticated tools is invaluable in describing the struc
tures and energetics of complex systems [8]. Particularly, 
density functional theory (DFT) has proved to be rea
sonably accurate for capturing kinetic parameters of 
elementary steps occurring at active sites while con
sidering lateral adsorbate interactions in an ad hoc 
fashion. The practicability and maturity of this approach 
have reached such a level that rudimentary energy ana
lyses of reaction pathways can often tell us whether a 
material candidate can selectively catalyze desired che
mical transformations. 

To provide truly actionable insights for guiding the de
sign of high-performance catalytic systems, rigorous ki
netic analysis is required. With recent advances in 
computing infrastructures and numerical algorithms, ki
netic modeling of surface reactions has gained popularity 
because it directly links atomistic processes with mac
roscopic observables under relevant conditions [9]. 
Among various practiced techniques, microkinetic 
modeling (MKM) with the Brønsted-Evans-Polanyi and 
linear adsorption–energy scaling relationships is widely 
used in heterogeneous catalysis by mapping the catalytic 
outcome of surface reactions onto reactivity descriptors, 
for example, adsorption energies of key intermediates or 
their derivatives [10]. It has been shown that when ap
plying the adsorbate interactions to kinetic studies, cat
alytic reaction pathways and microkinetic predictions 
like turnover frequency, selectivity and apparent acti
vation energies are different, highlighting the generic 
consequences of lateral interactions [11]. Although lat
eral adsorbate interactions can be included in energetics, 
the spatial distribution of adsorbates on a catalytic sur
face is not explicitly considered because of the inherent 
mean-field approximation [12,13]. To go beyond the 
mean-field treatment [14,15], one of the common ap
proaches is solving a stochastic Markov process within a 
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lattice-based kinetic Monte Carlo (kMC) framework. 
However, it is not feasible to directly compute en
ergetics of every Monte Carlo (MC) step from quantum 
mechanics across experimentally relevant time and 
length scales [16]. To address this dilemma, developing 
surrogate models by learning from ab initio data has 
become an emerging research frontier of fundamental 
catalysis [17,18]. Herein, we survey the machine learning 
(ML) algorithms for predicting lateral adsorbate inter
actions on solid surfaces, for example, transition metals, 
ranging from analytic relationships, to ML-para
meterized cluster expansions (CEs), and to highly non
linear deep learning models (Figure 1). We will also 
discuss prospects and foreseeable challenges in im
plementing generalizable ML techniques in operando 
computational modeling of surface reaction kinetics. 

Analytic relationships 
To include adsorbate coverage effects in MKM, analytic 
relationships have been developed to describe adsorp
tion energies and reaction barriers as a function of cov
erages [19–23•]. The analytic relationships do not 
contain any ML aspects but serve as the initial idea of 
ways to consider the adsorbate interactions. Grabow 
et al. [20] found that the differential binding energy 

changes linearly with the coverage after a certain 
threshold and applied the piecewise linear model to the 
kinetic studies of CO oxidation (Figure 2a and b). The 
activity volcano plot as a function of O and CO binding 
energies at the low coverage limit is shown in Figure 2c. 
It was concluded that adsorbate–adsorbate interactions 
significantly increase the activity of strong binding me
tals (the bottom left corner of the volcano), but the in
teractions do not change the relative activity of different 
metals and have a very small influence on top right 
corner of the volcano, that is, on which one is the best 
elemental metal catalyst. Liu et al. [23•] studied the 
coverage effect of *CO for CO2 electroreduction on Pd 
surfaces. The differential CO adsorption energy has a 
linear relationship with the CO coverage (Figure 2d). 
With the consideration of the adsorbate–adsorbate in
teractions, the experimentally measured activity trend of 
four surface terminations, that is, Pd(111), Pd(100), Pd 
(110), and Pd(211), can be well captured by theoretical 
onset potentials (Figure 2e and f). Formulations of 
coverage and binding energy beyond linear relationships 
have also been previously employed in microkinetic 
models [24,25], emphasizing the importance of con
sidering the linear or beyond linear coverage effects in 
surface reaction kinetics. 

Figure 1  
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Lateral adsorbate interactions can be considered as the change of the binding energy for a given adsorbate in response to a perturbation of its local 
environment by co-adsorbates. Analytic relationships between the average (or differential) adsorption energies and the coverage have been employed 
to determine lateral adsorbate interactions in simple scenarios. Another way that has been widely used is ML-parameterized (cross validation, 
regularization, pattern recognition, etc.) CEs. An emerging approach is using highly nonlinear deep learning models, for example, graph convolutional 
neural networks, to predict adsorption energies after seeing a large amount of surface configurations by the algorithms.   
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Machine learning-parameterized cluster 
expansions 
Lateral adsorbate interactions can be considered in kMC 
simulations by employing CEs, one common type of 
lattice-gas models with parameterized Hamiltonians. 
The CE-based models are physical models and not ML 
methods but determining Hamiltonians in CE-based 
models employs ML methods for fast and accurate 
parameterization. Wu et al. [26] first applied CEs in ki
netic models to estimate the catalytic rates, and CEs 
gained popularity with different frameworks (Alloy 
Theoretic Automated Toolkit (ATAT), UNiversal 
CLuster Expansion (UNCLE), Integrated cluster ex
pansion toolkit (ICET), Zacros, kmos, etc.) [27–30] de
veloped and applied to surface catalytic reactions, for 
example, NO oxidation reaction, CO oxidation, and Fi
scher-Tropsch synthesis [12,26,31–34]. CEs have ad
vantages over simplified linear models since they can 
predict energetics of elementary steps with the con
sideration of the spatial environment of surface species 
on lattice sites [35•]. The origin of CEs can be traced 
back to the early 1950s, when Kikuchi [36] developed an 

Ising model-based cluster variation method to study 
order–disorder phenomena. In 1984, Sanchez et al. [37] 
developed a general formalism for the description of 
configurational CEs in terms of a complete basis set 
expansion. In simple terms, CE decomposes the energy 
of a configuration into one-body, two-body, and higher 
order interaction terms (‘clusters’), and each term has a 
corresponding weight called effective cluster interaction 
(ECI) analogous to the interaction strength [38]. The 
energy can be exactly reproduced only if all clusters are 
included in the CE. However, the ECIs for clusters that 
contain a large number of sites or a large distance be
tween sites are usually negligible. Therefore, the CEs 
can be truncated to a sum over finite numbers of cluster 
functions with little loss of accuracy. 

The construction of CEs includes data generation by 
DFT calculations, structure selection, and cluster se
lection. When referring to surface reactions, the training 
becomes more challenging due to the loss of transla
tional symmetry at the interface and the increase of the 
complexity of adsorbate interactions and the number of 

Figure 2  
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Coverage-dependent binding energies for O and CO on fcc(111) of seven transition metals are shown in (a) and (b), respectively [20]. (c) It shows the 
contour plot of the CO oxidation activity (defined as k T ln r( / )B , k T h= /B ) under high-temperature conditions (T = 600 K, PO2= 0.33 bar, PCO= 
0.67 bar, PCO2= 1 bar) as a function of the O and CO adsorption energies at the low coverage limit [23•]. The differential adsorption energies of CO on 
Pd(111), Pt(100), Pt(110) and Pt(211) surfaces as a function of the coverage of CO [23•]. The reaction pathways of CO2 electroreduction to CO at the 
applied potential (−0.6 V vs. RHE) with and without the consideration of adsorbate-adsorbate interactions are shown in (e) and (f), respectively [23•].   
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surface species. While DFT calculations typically re
quire a large number of computational resources, it has 
become more or less standardized in catalysis research. 
In contrast, the algorithms driving structure selection 
and cluster selection are arguably more critical to the 
overall accuracy of the CEs. Therefore, significant ef
forts have been put into developing approaches to gen
erate effective clusters for a given training set. The goal 
of the selection algorithm is to find the clusters that have 
physical contributions to lateral interactions. Early CEs 
relied on heuristic methods to manually select clusters, 
while recent approaches incorporate automated ML ap
proaches to systematically optimize the selection pro
cess. Multiple automated selection algorithms have been 
developed for CEs including MIT Ab-initio Phase 
Stability [27], genetic algorithm [39,40], and steepest 
descent [41], which incorporate various well-established 
ML approaches such as cross validation [27,42], feature 
selection, pattern recognition [43], and regularization  
[44–46]. Pattern recognition has been employed by 
Vignola et al. [43] to develop a set of ML tools to pro
duce unbiased CEs. They developed an approach that is 
based on the pattern recognition algorithm to auto
matically determine model Hamiltonians for a given 
system. 

Bayesian optimization, as one of the regularization ap
proaches, has been widely applied to CE models  
[44–46]. Mueller et al. [44,46] have a series of work of 
applying Bayesian approach to CEs. In 2009, Mueller 
and Ceder [44] applied the Bayesian approach to fit CEs 
with a prior probability distribution to ECI values, and 
cross validation is used to determine the hyperpara
meters of the prior distributions and identify clusters 
during cluster selection. As one of the benefits of the 
regularization approach, the Bayes' theorem helps to 
generate more clusters and ECIs for a given training set 
which allows for more accurate description of energies of 
low symmetry surfaces. The method used a physically 
meaningful prior distribution to serve as a prior guess of 
the ECI values and to accelerate the convergence of 
CEs. For example, when considering ECIs for surface 
adsorption energies, the prior probability distribution is 
able to initiate the magnitude of ECIs on the order of 
meV/atom instead of keV/atom, which is usually the case 
for surface adsorption. 

Besides the development of CE-based kMC models, 
efforts have been made to improve the mean-field MKM 
with spatial-aware lateral interaction models [47], be
cause MKM can shed light on cases where kMC is 
limited by the time scale or computational cost. Li and 
Grabow [35•] evaluate the kMC and MKM with the 
consideration of lateral interactions using CO oxidation 
as an example. They found that MKM makes reasonable 
predictions with a computational cost that is around 
three orders of magnitude lower than kMC. Pineda and 

Stamatakis [15] developed a framework using the cluster 
mean-field approach to treat the spatial correlations at a 
progressively higher level of approximations. Tian et al.  
[48•] also presented an ML algorithm to correct the 
mean-field assumption in microkinetic models to in
corporate adsorbate interactions and surface in
homogeneity at the fast diffusion limit. The workflow is 
shown in Figure 3a, in which a simple reaction, 

+ +A B C* * * *, is used as an example. For adsorbates A 
and B at a specific coverage Aand B , a lattice MC model 
is used to compute the reaction rates of the elementary 
step with the consideration of lateral interactions. So for 
a set of different coverages, there are corresponding 
numbers of reaction rates calculated. As shown in Eq. 
(1), reaction rates from MC can also be derived as the 
reaction rates of mean field multiplied by the ex
ponential of a correction term , which can be considered 
as the correction induced by the lateral interactions from 
MC models. Thus, they can generate a dataset of dif
ferent coverages of adsorbates and the corresponding 
correction terms. 

= ×r r exp( )M C M F (1)  

A neural network (NN) was then employed to determine 
a continuous relationship between the coverages of ad
sorbates and correction terms ( ). The traditional mean- 
field MKM was then modified by adding the correction 
to the reaction rates of elementary steps, and activation 
barriers, in the same fashion. Therefore, the MKM was 
modified by considering the lateral interactions com
puted by MC models, which improved the accuracy of 
the MKM model. The model was applied to an example 
of CO oxidation reaction, and they showed that NN- 
MKM captured the phenomenon as shown in Figure 3b 
and c, in which the MKM completely failed, particularly 
for the *CO coverage. This work has improved the 
MKM to have similar performance compared to kMC 
simulations. The modified mean-field model is still in 
the form of deterministic ordinary differential equations, 
allowing various numerical operations which are difficult 
to implement in stochastic kMC simulations. 

Deep learning models 
When aiming for kinetic studies of more complex sur
face reactions such as CO methanation, partial methane 
oxidation, or the Fischer-Tropsch reaction with diverse 
surface species and adsorption modes, the cluster ex
pansion approach is fundamentally limited by the 
number of required calculations, since the number of 
surface configurations grows exponentially with the 
number of adsorbate species. Even a simple case with 
*NO and *O adsorbates on Pt(111) have enormous 
configurations [33]. For low symmetry surfaces with 
various types of active sites, such as kinks and steps  
[12,13,49,50], and multielemental alloys [51], the loss of 
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translational symmetry causes a drastic increase of con
figurations and clusters needed to determine model 
Hamiltonians. The problem is exacerbated when mul
tidentate species adsorb on surfaces since current CEs 
applications are only limited to simple adsorbates that 
can be directly mapped to individual active sites. Thus, 
researchers introduced surrogate models by using ML 
methods, which rely on flexible and often non-linear 
models that are trained from reference material data to 
predict desired material properties. Many ML models 
employing neural networks and various algorithms have 
been developed to estimate adsorbate interactions  
[52–54]. As a subset of ML models, graph-based con
volutional NN frameworks can directly learn material 
properties from crystal structures. The reference struc
tures are converted into crystal graph features, and then 
connected with convolution, pooling layers, and the fully 
connected network to predict the target properties. 
Graph-based deep learning methods have huge ad
vantages when dealing with low symmetry surfaces and 
multidentate adsorbates compared to CEs since the 
featurization automatically learns the structural in
formation, and the nature of non-linearity improves the 
accuracy. 

Several graph-based deep learning frameworks have 
been developed for lateral adsorbate interactions. Lym 
et al. [55] developed a novel lattice convolutional neural 
network (LCNN) that improved the formation energy 
prediction compared to state-of-the-art CE methods by 
20–30% (Figure 4a). Featurization process extracts fea
tures of each site’s neighbor lists using one-hot en
coding. The extracted information then undergoes 

lattice convolutional (LConv) layers which are built to 
construct the local environment by considering the 
nearest neighbors and including permutations to account 
for the symmetry of the lattice. Activation and summa
tion are followed for new site features. Once all con
volution operations are performed, the representation of 
the lattice is obtained. Followed by the site-wise acti
vation and linear multiplication, the formation energy of 
each image can be predicted. They applied the LCNN 
model to study the coverage of O and NO adsorption on 
Pt(111) surface, the model captures the local environ
ment of adsorbates, and a one-hot encoding input and 
the predicted site formation energy distribution are 
shown in Figure 4b and c, respectively. Compared to CE 
models, the LCNN achieves the best performance with 
a test root mean squared error of 4.4 meV/site using less 
training data. The effect of van der Waals (vdW) forces 
on lateral interactions have also been studied by com
paring the formation energy with and without vdW 
forces for an example of all unique configurations in a 
unit cell containing up to 12 adsorption sites (1 581 607 
in total). The convex hull diagrams of LCNN computed 
formation energies trained using Perdew–Burke-Ern
zerhof-D3 (PBE-D3) (with vdW forces) and PBE 
(without vdW forces) datasets are shown in Figure 4d 
and e, respectively. They found that the trend in the 
convex hull has changed by the vdW interactions. Par
ticularly, the global ground state configuration for PBE is 
observed at 0.78 monolayer (ML) of NO, whereas it is 
1.0 ML of NO for PBE-D3. 

Ghanekar et al. [56•] developed a workflow called Ad
sorbate Chemical Environment-based Graph 

Figure 3  
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(a) The schematic illustration of the neural network-modified microkinetic (NN-MK) framework [48•]. It contains three modules: lattice kinetic MC to 
build a dataset, NN to map nonlinear relationships, and microkinetic model with a modified reaction rate term. The coverages of *CO and *O when 
varying the dissociative adsorption rate of O2 ( ), which is proportional to the partial pressure of O2, are predicted by different modeling formalisms 
(NN-MK, mean-field microkinetic (MF-MK), and kMC) as shown in (b) and (c), respectively [48•]. The solid and dashed lines represent stable and 
unstable steady states, respectively. The kinetic MC simulations are shown for reference as red-filled circles.   
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Convolution Neural Network (ACE-GCN) (Figure 5a) 
to overcome some challenges: high adsorbate coverages, 
the local morphology of the catalysts, and variations in 
the catalysts’ surface composition induced by adsorption. 
Systematic enumeration of surface configurations can be 
efficiently performed using graph-based representations  
[57]. ACE-GCN utilizes the chemical and structural 
environment of a given adsorbate surface configuration 
as the input, and first splits each configuration into 
multiple subgraphs, each of which represent one ad
sorbate and local environmental properties. Each sub
graph is featured and expressed in a vector 
representation based on the elemental properties and 
spatial bond distance. Followed by convolutional, 
pooling, and fully connected NN operations, the target 
property of choice, such as the average adsorption en
ergy, can be mapped and predicted. They applied their 
workflow to *OH adsorption on stepped or defected 
crystal surfaces with the consideration of lateral inter
actions. The datasets have around 200 configurations of 
*OH adsorption on Pt(100) at coverages from 1/8 to 5/ 
8 ML, and around 400 configurations of *OH adsorption 
on Pt(221) at coverages from 1/12 ML to 1/4 ML (Figure 
5b). With subsequently another ~800 configurations 
added during the training of ACE-GCN, this framework 
was able to explore a huge design space (~11500) for 
*OH on Pt(221) with different coverages (1/12 ML–1/ 
2 ML), even including high coverage configurations (1/ 
3 ML–1/2 ML of *OH on Pt(221)) that are not included 
in the training data. For example, Figure 5c shows the 
strong correlations of the ACE-GCN predicted average 
binding energies with unrelaxed structures and the 

corresponding DFT energies with relaxed structures for 
*OH on Pt(221) at both 1/3 ML and 5/12 ML coverages. 
The application of *OH adsorption on different surfaces 
demonstrates the possibility to employ the transfer 
learning approach to utilize multiple datasets with a 
moderate number of different configurations to describe 
the vast configurational spaces for the complex and low 
symmetry surfaces. The model can serve as a starting 
point for rational design of catalysts and potentially 
provide the structurally and chemically governing factors 
of heterogeneous catalysis. 

Prospects and future challenges 
Although ML of lateral adsorbate interactions has 
proved to be useful in modeling surface reaction ki
netics, there are important challenges toward the de
velopment of highly accurate, data-driven models that 
can be flexibly generalized across the chemistry and 
materials space. For surface reactions involving simple 
adsorbates, for example, monatomic or diatomic species, 
CEs are highly promising for parameterizing interaction 
energies of effective clusters with limited training data. 
However, the use of deep learning as a generic frame
work in modeling complex surface interactions is clear 
for moving the catalysis field forward. The challenge of 
data generation can be partially alleviated by strategic 
sampling algorithms, for example, active learning [58]. In 
this aspect, uncertainty quantification of model predic
tions [59] is particularly important for not only refining 
model predictions but also providing meaningful statis
tics in kinetic modeling. While the purely data-driven 
models have advantages when tackling diverse surface 

Figure 4  
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(a) Overall design of the lattice CNN model with the 2D hexagonal lattice as an example [55]. The model contains featurization, LConv layers, and site- 
wise activation and linear multiplication layers to predict the average formation energy. (b) Visualization of the site layer of adsorbates for each 
adsorption site after one-hot encoding of site species, that is, *NO, *O, or vacant [55]. (c) Visualization of the site layer shows the formation energies for 
each adsorption site (eV/site), where color in red means a more exothermic formation energy [55]. The convex hull of LCNN-computed formation 
energies (eV/site) trained using (d) PBE-D3 and (e) PBE [55]. The green circle indicates the configuration with the global minimum formation energy.   
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configurations, they lose interpretability of ad
sorbate–adsorbate interactions which are valuable for 
rationally designing catalysts with promoters or surface 
modifiers. In this aspect, physical models have some 
merits by considering the electronic structure of ad
sorbates and adsorption sites to obtain an analytic ex
pression, which can reduce the number of data samples 
needed for parameterization [60]. Physical under
standing of adsorbate–adsorbate interactions often starts 
from the change of surface d-band characteristics upon 
the perturbation from adsorbate frontier orbitals [61]. 
Xin and Linic [5] interpreted complex interactions on 
metal surfaces in terms of tractable energy contributions, 
that is, one-electron interaction, electrostatic interaction, 
and polarization, all of which can be evaluated in
dependently to identify the dominating mode of inter
actions that governs surface reactivity trends. Hoffmann 
et al. [60] developed a general framework that predicts 
the magnitude of adsorbate-adsorbate interactions based 
on the precalculated electronic structure properties, such 

as the d-band center and the Bader charge. The frame
work is able to predict differential adsorption energies of 
adsorbate at different coverages without explicitly sam
pling a large amount of surface configurations, which 
makes the kinetic studies feasible even with multiple 
adsorbate species. Although these studies provide valu
able insights toward understanding lateral interactions, 
physical models have limited accuracy and typically 
need electronic structure information that adds to the 
computational overhead. Improving the interpretability 
of purely data-driven models by the consideration of 
physically meaningful interactions [62•] could be a po
tential solution to accurately predict lateral adsorbate 
interactions in surface reaction kinetics. Leveraging 
physics-based models and knowledge in deep learning 
might prove to be fruitful but appears difficult at this 
stage because of the complexity of adsorbate-adsorbate 
interactions across the chemistry and materials space. Its 
realization will likely need new developments of the 
high-level featurization of surface configurations [63], 

Figure 5  
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(a) The ACE-GCN algorithm to encode adsorbate configurations, which undergoes generating subgraphs, subgraph featurization, subgraph 
convolutions, fingerprints and NN layers to predict the target property [56•]. (b) *OH adsorption on two surface structures (Pt(100) and Pt(221)) with 
possible sites (top and bridge) [56•]. (c) Parity plots show the average *OH binding energies of unrelaxed configurations for coverages of 1/3 ML and 5/ 
12 ML, as predicted by ACE-GCN (x-axis), with DFT-relaxed energies of the corresponding structures (y-axis) [56•].   
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integrated architecture design of deep neural networks  
[62•], and theoretical advances of chemical interactions 
at solid surfaces [64]. 
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