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The importance of lateral adsorbate interactions cannot be
overstated in describing surface reaction kinetics. To realize the
goal of operando computational modeling of catalytic
processes, it is crucial to integrate effects of relevant adsorbate
coverages and configurations into mean-field kinetic analysis
and beyond. Herein, we highlight the recent applications of
machine learning (ML) algorithms in the development of
adsorbate-adsorbate interaction models, ranging from analytic
relationships, to ML-parameterized cluster expansions, and to
highly nonlinear deep learning models. We also discuss
prospects and challenges in moving the field forward,
particularly in the integration of theoretical understanding into
ML of lateral adsorbate interactions across the chemistry and
materials space.
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Introduction

Lateral adsorbate interactions on solid surfaces play a
crucial role in heterogeneous catalysis, self-assembly,
nucleation and growth, and many interfacial phenomena
governed by molecular processes [1]. For instance, the
outcome of a surface-catalyzed reaction can be greatly
influenced by introducing chemical additives as coad-
sorbed modifiers which promote or inhibit the transfor-
mation of kinetically significant intermediates. As being
increasingly recognized, intrinsic reaction intermediates
at noticeable coverages often synergistically regulate the
catalytic cycle with active sites in a self-adjusting

manner [2,3]. At the most fundamental level, an en-
semble of adsorbate—adsorbate configurations collec-
tively renders the local environment of reacting species
by substrate-mediated electronic couplings and through-
space electrostatic interactions [4,5], or direct orbital
overlaps in some cases [6]. Experimentally, it is possible
but remains challenging to measure interaction energies
of adsorbates on single-crystal surfaces under ultrahigh
vacuum conditions. However, the so-called pressure and
materials gaps prevent the generalization of attained
knowledge to industrial operating conditions [7]. In this
regard, computational chemistry with a vast array of so-
phisticated tools is invaluable in describing the struc-
tures and energetics of complex systems [8]. Particularly,
density functional theory (DFT) has proved to be rea-
sonably accurate for capturing kinetic parameters of
elementary steps occurring at active sites while con-
sidering lateral adsorbate interactions in an ad hoc
fashion. The practicability and maturity of this approach
have reached such a level that rudimentary energy ana-
lyses of reaction pathways can often tell us whether a
material candidate can selectively catalyze desired che-
mical transformations.

To provide truly actionable insights for guiding the de-
sign of high-performance catalytic systems, rigorous ki-
netic analysis is required. With recent advances in
computing infrastructures and numerical algorithms, ki-
netic modeling of surface reactions has gained popularity
because it directly links atomistic processes with mac-
roscopic observables under relevant conditions [9].
Among various practiced techniques, microkinetic
modeling (MKM) with the Brgnsted-Evans-Polanyi and
linear adsorption—energy scaling relationships is widely
used in heterogeneous catalysis by mapping the catalytic
outcome of surface reactions onto reactivity descriptors,
for example, adsorption energies of key intermediates or
their derivatives [10]. It has been shown that when ap-
plying the adsorbate interactions to kinetic studies, cat-
alytic reaction pathways and microkinetic predictions
like turnover frequency, selectivity and apparent acti-
vation energies are different, highlighting the generic
consequences of lateral interactions [11]. Although lat-
eral adsorbate interactions can be included in energetics,
the spatial distribution of adsorbates on a catalytic sur-
face is not explicitly considered because of the inherent
mean-field approximation [12,13]. To go beyond the
mean-field treatment [14,15], one of the common ap-
proaches is solving a stochastic Markov process within a
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Lateral adsorbate interactions can be considered as the change of the binding energy for a given adsorbate in response to a perturbation of its local
environment by co-adsorbates. Analytic relationships between the average (or differential) adsorption energies and the coverage have been employed
to determine lateral adsorbate interactions in simple scenarios. Another way that has been widely used is ML-parameterized (cross validation,
regularization, pattern recognition, etc.) CEs. An emerging approach is using highly nonlinear deep learning models, for example, graph convolutional
neural networks, to predict adsorption energies after seeing a large amount of surface configurations by the algorithms.

lattice-based kinetic Monte Carlo (kMC) framework.
However, it is not feasible to directly compute en-
ergetics of every Monte Carlo (MC) step from quantum
mechanics across experimentally relevant time and
length scales [16]. To address this dilemma, developing
surrogate models by learning from ab initio data has
become an emerging research frontier of fundamental
catalysis [17,18]. Herein, we survey the machine learning
(ML) algorithms for predicting lateral adsorbate inter-
actions on solid surfaces, for example, transition metals,
ranging from analytic relationships, to MIL-para-
meterized cluster expansions (CEs), and to highly non-
linear deep learning models (Figure 1). We will also
discuss prospects and foreseeable challenges in im-
plementing generalizable ML techniques in operando
computational modeling of surface reaction kinetics.

Analytic relationships

T'o include adsorbate coverage effects in MKM, analytic
relationships have been developed to describe adsorp-
tion energies and reaction barriers as a function of cov-
erages [19-23¢]. The analytic relationships do not
contain any ML aspects but serve as the initial idea of
ways to consider the adsorbate interactions. Grabow
et al. [20] found that the differential binding energy

changes linearly with the coverage after a certain
threshold and applied the piecewise linear model to the
kinetic studies of CO oxidation (Figure 2a and b). The
activity volcano plot as a function of O and CO binding
energies at the low coverage limit is shown in Figure 2c.
It was concluded that adsorbate—adsorbate interactions
significantly increase the activity of strong binding me-
tals (the bottom left corner of the volcano), but the in-
teractions do not change the relative activity of different
metals and have a very small influence on top right
corner of the volcano, that is, on which one is the best
elemental metal catalyst. Liu et al. [23¢] studied the
coverage effect of *CO for CO; electroreduction on Pd
surfaces. The differential CO adsorption energy has a
linear relationship with the CO coverage (Figure 2d).
With the consideration of the adsorbate—-adsorbate in-
teractions, the experimentally measured activity trend of
four surface terminations, that is, Pd(111), Pd(100), Pd
(110), and Pd(211), can be well captured by theoretical
onset potentials (Figure 2e and f). Formulations of
coverage and binding energy beyond linear relationships
have also been previously employed in microkinetic
models [24,25], emphasizing the importance of con-
sidering the linear or beyond linear coverage effects in
surface reaction kinetics.
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Coverage-dependent binding energies for O and CO on fcc(111) of seven transition metals are shown in (a) and (b), respectively [20]. (c) It shows the
contour plot of the CO oxidation activity (defined as kgT-In(r/v), v = kg T/h) under high-temperature conditions (T =600 K, Po,= 0.33 bar, Pco=

0.67 bar, Pco,= 1 bar) as a function of the O and CO adsorption energies at the low coverage limit [23¢]. The differential adsorption energies of CO on
Pd(111), Pt(100), Pt(110) and Pt(211) surfaces as a function of the coverage of CO [23¢]. The reaction pathways of CO, electroreduction to CO at the
applied potential (-0.6 V vs. RHE) with and without the consideration of adsorbate-adsorbate interactions are shown in (e) and (f), respectively [23e].

Machine learning-parameterized cluster
expansions

Lateral adsorbate interactions can be considered in kKMC
simulations by employing CEs, one common type of
lattice-gas models with parameterized Hamiltonians.
The CE-based models are physical models and not ML
methods but determining Hamiltonians in CE-based
models employs ML methods for fast and accurate
parameterization. Wu et al. [26] first applied CEs in ki-
netic models to estimate the catalytic rates, and CEs
gained popularity with different frameworks (Alloy
Theoretic Automated Toolkit (ATAT), UNiversal
CLuster Expansion (UNCLE), Integrated cluster ex-
pansion toolkit (ICET), Zacros, kmos, etc.) [27-30] de-
veloped and applied to surface catalytic reactions, for
example, NO oxidation reaction, CO oxidation, and Fi-
scher-Tropsch synthesis [12,26,31-34]. CEs have ad-
vantages over simplified linear models since they can
predict energetics of elementary steps with the con-
sideration of the spatial environment of surface species
on lattice sites [35¢]. The origin of CEs can be traced
back to the early 1950s, when Kikuchi [36] developed an

Ising model-based cluster variation method to study
order—disorder phenomena. In 1984, Sanchez et al. [37]
developed a general formalism for the description of
configurational CEs in terms of a complete basis set
expansion. In simple terms, CE decomposes the energy
of a configuration into one-body, two-body, and higher
order interaction terms (‘clusters’), and each term has a
corresponding weight called effective cluster interaction
(ECI) analogous to the interaction strength [38]. The
energy can be exactly reproduced only if all clusters are
included in the CE. However, the ECIs for clusters that
contain a large number of sites or a large distance be-
tween sites are usually negligible. Therefore, the CEs
can be truncated to a sum over finite numbers of cluster
functions with little loss of accuracy.

The construction of CEs includes data generation by
DFT calculations, structure selection, and cluster se-
lection. When referring to surface reactions, the training
becomes more challenging due to the loss of transla-
tional symmetry at the interface and the increase of the
complexity of adsorbate interactions and the number of
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surface species. While DFT' calculations typically re-
quire a large number of computational resources, it has
become more or less standardized in catalysis research.
In contrast, the algorithms driving structure selection
and cluster selection are arguably more critical to the
overall accuracy of the CEs. Therefore, significant ef-
forts have been put into developing approaches to gen-
erate effective clusters for a given training set. The goal
of the selection algorithm is to find the clusters that have
physical contributions to lateral interactions. Early CEs
relied on heuristic methods to manually select clusters,
while recent approaches incorporate automated ML ap-
proaches to systematically optimize the selection pro-
cess. Multiple automated selection algorithms have been
developed for CEs including MIT Ab-initio Phase
Stability [27], genetic algorithm [39,40], and steepest
descent [41], which incorporate various well-established
ML approaches such as cross validation [27,42], feature
selection, pattern recognition [43], and regularization
[44-46]. Pattern recognition has been employed by
Vignola et al. [43] to develop a set of ML tools to pro-
duce unbiased CEs. They developed an approach that is
based on the pattern recognition algorithm to auto-
matically determine model Hamiltonians for a given
system.

Bayesian optimization, as one of the regularization ap-
proaches, has been widely applied to CE models
[44-46]. Mueller et al. [44,46] have a series of work of
applying Bayesian approach to CEs. In 2009, Mueller
and Ceder [44] applied the Bayesian approach to fit CEs
with a prior probability distribution to ECI values, and
cross validation is used to determine the hyperpara-
meters of the prior distributions and identify clusters
during cluster selection. As one of the benefits of the
regularization approach, the Bayes' theorem helps to
generate more clusters and ECIs for a given training set
which allows for more accurate description of energies of
low symmetry surfaces. The method used a physically
meaningful prior distribution to serve as a prior guess of
the ECI values and to accelerate the convergence of
CEs. For example, when considering ECIs for surface
adsorption energies, the prior probability distribution is
able to initiate the magnitude of ECIs on the order of
meV/atom instead of keV/atom, which is usually the case
for surface adsorption.

Besides the development of CE-based kMC models,
efforts have been made to improve the mean-field MKM
with spatial-aware lateral interaction models [47], be-
cause MKM can shed light on cases where kMC is
limited by the time scale or computational cost. LLi and
Grabow [35¢] evaluate the KMC and MKM with the
consideration of lateral interactions using CO oxidation
as an example. They found that MKM makes reasonable
predictions with a computational cost that is around
three orders of magnitude lower than KMC. Pineda and

Stamatakis [15] developed a framework using the cluster
mean-field approach to treat the spatial correlations at a
progressively higher level of approximations. Tian et al.
[48e] also presented an ML algorithm to correct the
mean-field assumption in microkinetic models to in-
corporate adsorbate interactions and surface in-
homogeneity at the fast diffusion limit. The workflow is
shown in Figure 3a, in which a simple reaction,
A*4+B*—C*+ * is used as an example. For adsorbates A
and B at a specific coverage Gpand B, a lattice MC model
is used to compute the reaction rates of the elementary
step with the consideration of lateral interactions. So for
a set of different coverages, there are corresponding
numbers of reaction rates calculated. As shown in Eq.
(1), reaction rates from MC can also be derived as the
reaction rates of mean field multplied by the ex-
ponential of a correction term &, which can be considered
as the correction induced by the lateral interactions from
MC models. Thus, they can generate a dataset of dif-
ferent coverages of adsorbates and the corresponding
correction terms.

Mc=r X epg) (1)

A neural network (NN) was then employed to determine
a continuous relationship between the coverages of ad-
sorbates and correction terms (§). The traditional mean-
field MKM was then modified by adding the correction
to the reaction rates of elementary steps, and activation
barriers, in the same fashion. Therefore, the MKM was
modified by considering the lateral interactions com-
puted by MC models, which improved the accuracy of
the MKM model. The model was applied to an example
of CO oxidation reaction, and they showed that NN-
MKM captured the phenomenon as shown in Figure 3b
and c, in which the MKM completely failed, particularly
for the *CO coverage. This work has improved the
MKM to have similar performance compared to kMC
simulations. The modified mean-field model is still in
the form of deterministic ordinary differential equations,
allowing various numerical operations which are difficult
to implement in stochastic kMC simulations.

Deep learning models

When aiming for kinetic studies of more complex sur-
face reactions such as CO methanation, partial methane
oxidation, or the Fischer-Tropsch reaction with diverse
surface species and adsorption modes, the cluster ex-
pansion approach is fundamentally limited by the
number of required calculations, since the number of
surface configurations grows exponentially with the
number of adsorbate species. Even a simple case with
*NO and *O adsorbates on Pt(111) have enormous
configurations [33]. For low symmetry surfaces with
various types of active sites, such as kinks and steps
[12,13,49,50], and multielemental alloys [51], the loss of
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(a) The schematic illustration of the neural network-modified microkinetic (NN-MK) framework [48¢]. It contains three modules: lattice kinetic MC to
build a dataset, NN to map nonlinear relationships, and microkinetic model with a modified reaction rate term. The coverages of *CO and *O when
varying the dissociative adsorption rate of O, (8), which is proportional to the partial pressure of O, are predicted by different modeling formalisms
(NN-MK, mean-field microkinetic (MF-MK), and kMC) as shown in (b) and (c), respectively [48¢]. The solid and dashed lines represent stable and
unstable steady states, respectively. The kinetic MC simulations are shown for reference as red-filled circles.

translational symmetry causes a drastic increase of con-
figurations and clusters needed to determine model
Hamiltonians. The problem is exacerbated when mul-
tidentate species adsorb on surfaces since current CEs
applications are only limited to simple adsorbates that
can be directly mapped to individual active sites. Thus,
researchers introduced surrogate models by using ML
methods, which rely on flexible and often non-linear
models that are trained from reference material data to
predict desired material properties. Many ML models
employing neural networks and various algorithms have
been developed to estimate adsorbate interactions
[52-54]. As a subset of ML, models, graph-based con-
volutional NN frameworks can directly learn material
properties from crystal structures. The reference struc-
tures are converted into crystal graph features, and then
connected with convolution, pooling layers, and the fully
connected network to predict the target properties.
Graph-based deep learning methods have huge ad-
vantages when dealing with low symmetry surfaces and
multidentate adsorbates compared to CEs since the
featurization automatically learns the structural in-
formation, and the nature of non-linearity improves the
accuracy.

Several graph-based deep learning frameworks have
been developed for lateral adsorbate interactions. Liym
et al. [55] developed a novel lattice convolutional neural
network (ILCNN) that improved the formation energy
prediction compared to state-of-the-art CE methods by
20-30% (Figurc 4a). Featurization process extracts fea-
tures of each site’s neighbor lists using one-hot en-
coding. The extracted information then undergoes

lattice convolutional (LLConv) layers which are built to
construct the local environment by considering the
nearest neighbors and including permutations to account
for the symmetry of the lattice. Activation and summa-
tion are followed for new site features. Once all con-
volution operations are performed, the representation of
the lattice is obtained. Followed by the site-wise acti-
vation and linear multiplication, the formation energy of
each image can be predicted. They applied the LCNN
model to study the coverage of O and NO adsorption on
Pt(111) surface, the model captures the local environ-
ment of adsorbates, and a one-hot encoding input and
the predicted site formation energy distribution are
shown in Figure 4b and c, respectively. Compared to CE
models, the LCNN achieves the best performance with
a test root mean squared error of 4.4 meV/site using less
training data. The effect of van der Waals (vdW) forces
on lateral interactions have also been studied by com-
paring the formation energy with and without vdW
forces for an example of all unique configurations in a
unit cell containing up to 12 adsorption sites (1 581 607
in total). The convex hull diagrams of LCNN computed
formation energies trained using Perdew—Burke-Ern-
zerhof-D3 (PBE-D3) (with vdW forces) and PBE
(without vdW forces) datasets are shown in Figure 4d
and e, respectively. They found that the trend in the
convex hull has changed by the vdW interactions. Par-
ticularly, the global ground state configuration for PBE is
observed at 0.78 monolayer (ML) of NO, whereas it is
1.0 ML of NO for PBE-D3.

Ghanekar et al. [56¢] developed a workflow called Ad-
sorbate Chemical Environment-based Graph
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(a) Overall design of the lattice CNN model with the 2D hexagonal lattice as an example [55]. The model contains featurization, LConv layers, and site-
wise activation and linear multiplication layers to predict the average formation energy. (b) Visualization of the site layer of adsorbates for each
adsorption site after one-hot encoding of site species, that is, *NO, *O, or vacant [55]. (c) Visualization of the site layer shows the formation energies for
each adsorption site (eV/site), where color in red means a more exothermic formation energy [55]. The convex hull of LCNN-computed formation
energies (eV/site) trained using (d) PBE-D3 and (e) PBE [55]. The green circle indicates the configuration with the global minimum formation energy.

Convolution Neural Network (ACE-GCN) (FFigure 5a)
to overcome some challenges: high adsorbate coverages,
the local morphology of the catalysts, and variations in
the catalysts’ surface composition induced by adsorption.
Systematic enumeration of surface configurations can be
efficiently performed using graph-based representations
[57]. ACE-GCN utilizes the chemical and structural
environment of a given adsorbate surface configuration
as the input, and first splits each configuration into
multiple subgraphs, each of which represent one ad-
sorbate and local environmental properties. Each sub-
graph 1s featured and expressed in a vector
representation based on the elemental properties and
spatial bond distance. Followed by convolutional,
pooling, and fully connected NN operations, the target
property of choice, such as the average adsorption en-
ergy, can be mapped and predicted. They applied their
workflow to *OH adsorption on stepped or defected
crystal surfaces with the consideration of lateral inter-
actions. The datasets have around 200 configurations of
*OH adsorption on Pt(100) at coverages from 1/8 to 5/
8 ML, and around 400 configurations of *OH adsorption
on Pt(221) at coverages from 1/12 ML to 1/4 ML (Figure
5b). With subsequently another ~800 configurations
added during the training of ACE-GCN, this framework
was able to explore a huge design space (~11500) for
*OH on Pt(221) with different coverages (1/12 ML-1/
2ML), even including high coverage configurations (1/
3ML-1/2 ML of *OH on Pt(221)) that are not included
in the training data. For example, Figure 5¢ shows the
strong correlations of the ACE-GCN predicted average
binding energies with unrelaxed structures and the

corresponding DFT energies with relaxed structures for
*OH on Pt(221) at both 1/3 ML and 5/12 ML coverages.
The application of *OH adsorption on different surfaces
demonstrates the possibility to employ the transfer
learning approach to utilize multiple datasets with a
moderate number of different configurations to describe
the vast configurational spaces for the complex and low
symmetry surfaces. The model can serve as a starting
point for rational design of catalysts and potentially
provide the structurally and chemically governing factors
of heterogeneous catalysis.

Prospects and future challenges

Although ML of lateral adsorbate interactions has
proved to be useful in modeling surface reaction ki-
netics, there are important challenges toward the de-
velopment of highly accurate, data-driven models that
can be flexibly generalized across the chemistry and
materials space. For surface reactions involving simple
adsorbates, for example, monatomic or diatomic species,
CEs are highly promising for parameterizing interaction
energies of effective clusters with limited training data.
However, the use of deep learning as a generic frame-
work in modeling complex surface interactions is clear
for moving the catalysis field forward. The challenge of
data generation can be partially alleviated by strategic
sampling algorithms, for example, active learning [58]. In
this aspect, uncertainty quantification of model predic-
tions [59] is particularly important for not only refining
model predictions but also providing meaningful statis-
tics in kinetic modeling. While the purely data-driven
models have advantages when tackling diverse surface
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(a) The ACE-GCN algorithm to encode adsorbate configurations, which undergoes generating subgraphs, subgraph featurization, subgraph
convolutions, fingerprints and NN layers to predict the target property [56¢]. (b) *OH adsorption on two surface structures (Pt(100) and Pt(221)) with
possible sites (top and bridge) [56¢]. (c) Parity plots show the average *OH binding energies of unrelaxed configurations for coverages of 1/3 ML and 5/
12 ML, as predicted by ACE-GCN (x-axis), with DFT-relaxed energies of the corresponding structures (y-axis) [56¢].

configurations, they lose interpretability of ad-
sorbate—adsorbate interactions which are valuable for
rationally designing catalysts with promoters or surface
modifiers. In this aspect, physical models have some
merits by considering the electronic structure of ad-
sorbates and adsorption sites to obtain an analytic ex-
pression, which can reduce the number of data samples
needed for parameterization [60]. Physical under-
standing of adsorbate—adsorbate interactions often starts
from the change of surface #-band characteristics upon
the perturbation from adsorbate frontier orbitals [61].
Xin and Linic [5] interpreted complex interactions on
metal surfaces in terms of tractable energy contributions,
that is, one-electron interaction, electrostatic interaction,
and polarization, all of which can be evaluated in-
dependently to identify the dominating mode of inter-
actions that governs surface reactivity trends. Hoffmann
et al. [60] developed a general framework that predicts
the magnitude of adsorbate-adsorbate interactions based
on the precalculated electronic structure properties, such

as the #-band center and the Bader charge. The frame-
work is able to predict differential adsorption energies of
adsorbate at different coverages without explicitly sam-
pling a large amount of surface configurations, which
makes the kinetic studies feasible even with multiple
adsorbate species. Although these studies provide valu-
able insights toward understanding lateral interactions,
physical models have limited accuracy and typically
need electronic structure information that adds to the
computational overhead. Improving the interpretability
of purely data-driven models by the consideration of
physically meaningful interactions [62¢] could be a po-
tential solution to accurately predict lateral adsorbate
interactions in surface reaction kinetics. Leveraging
physics-based models and knowledge in deep learning
might prove to be fruitful but appears difficult at this
stage because of the complexity of adsorbate-adsorbate
interactions across the chemistry and materials space. Its
realization will likely need new developments of the
high-level featurization of surface configurations [63],
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integrated architecture design of deep neural networks
[62¢], and theoretical advances of chemical interactions
at solid surfaces [64].
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