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ABSTRACT

With the advent of ALMA, it is now possible to observationally constrain how discs form around deeply embedded protostars.
In particular, the recent ALMA C3H; line observations of the nearby protostar L1527 have been interpreted as evidence for the
so-called ‘centrifugal barrier,” where the protostellar envelope infall is gradually decelerated to a stop by the centrifugal force in
aregion of super-Keplerian rotation. To test the concept of centrifugal barrier, which was originally based on angular momentum
conserving-collapse of a rotating test particle around a fixed point mass, we carry out simple axisymmetric hydrodynamic
simulations of protostellar disc formation including a minimum set of ingredients: self-gravity, rotation, and a prescribed
viscosity that enables the disc to accrete. We find that a super-Keplerian region can indeed exist when the viscosity is relatively
large but, unlike the classic picture of centrifugal barrier, the infalling envelope material is not decelerated solely by the centrifugal
force. The region has more specific angular momentum than its surrounding envelope material, which points to an origin in
outward angular momentum transport in the disc (subject to the constraint of disc expansion by the infalling envelope), rather
than the spin-up of the envelope material envisioned in the classic picture as it falls closer to the centre in order to conserve
angular momentum. For smaller viscosities, the super-Keplerian rotation is weaker or non-existing. We conclude that, despite
the existence of super-Keplerian rotation in some parameter regime, the classic picture of centrifugal barrier is not supported by
our simulations.
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1 INTRODUCTION

Discs play a central role in the formation of both stars and planets.
How they form and evolve remain hotly debated. Part of the difficulty
is that disc formation is strongly affected by magnetic fields, which
are known to permeate molecular clouds and their star-forming cores
but difficult to quantify (Hull & Zhang 2019; Pattle & Fissel 2019).
Theoretical calculations have shown that discs formed in strongly
magnetized molecular cloud cores depend on a number of factors,
including non-ideal MHD eftects, turbulence, and rotation-magnetic
field misalignment (for reviews, see e.g. Li et al. 2014; Zhao et al.
2020). However, it has been challenging to observationally constrain
these calculations, because deeply embedded protostellar discs are
still in active formation and their connection to the protostellar
envelopes are difficult to characterize through observations.

The observational situation has improved drastically with the
advent of ALMA. In particular, Sakai et al. (2014) traced the gas
kinematics in the transition zone between the infall envelope and the
rotationally supported disc in the well-studied L1527 protostellar
system. They found that the position—velocity (PV) diagram of
cyclic-C3H; along the equator of the system can be fitted remarkably
well by a simple analytic model first introduced by Ulrich (1976)
and Cassen & Moosman (1981). This model describes the motion of
a test particle in the gravity field of a central stellar object of a fixed
mass M, under the constraint of energy and angular momentum
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conservation. It is characterized by two special locations: the so-
called ‘centrifugal radius’ (rcr) and ‘centrifugal barrier’ (rcg). The
former is reached when the rotational speed vy of the test particle
reaches the (local) Keplerian speed vx = (GM,/r)"?, where r is the
distance of the particle from the star. Outside the centrifugal radius
rcr, the gravity dominates the centrifugal force, leading to a faster
and faster collapse towards the central object and a maximum infall
speed at the centrifugal radius. Inside rcg, the rotation becomes
super-Keplerian, with the centrifugal force dominating the gravity,
which leads to a deceleration of the infall motion. The infall comes
to a complete stop at the centrifugal barrier rcg (which is located at a
radius half of that of the centrifugal radius, i.e. rcg = rcr/2), where
the rotation speed is +/2 times the local Keplerian speed.

The apparent agreement between the analytic model and the
gas kinematic data was taken as evidence for the existence of a
centrifugal barrier (Sakai et al. 2014, 2017), where the envelope infall
is completely stopped by the centrifugal force from a super-Keplerian
rotation. If true, it would be evidence that the infall in the envelope
comes to a stop gradually over an extended radial zone (between rcr
and rcg) rather than abruptly at an accretion shock where the rapidly
infalling envelope material slams into the rotationally support disc,
which would have far reaching consequences on the structure and
dynamics of the envelope-to-disc transition zone, particularly its
temperature structure and chemistry.

However, the concept of centrifugal barrier is based on the
assumption that the envelope material moves as (non-interacting)
test particles. The lack of gas pressure under this assumption means
that the infall of the material on the equatorial plane can be stopped
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only by super-Keplerian rotation; those from above and below the
equatorial plane are presumed to terminate on the equatorial plane
(see fig. 2 of Cassen & Moosman 1981 for an illustration) before
they are stopped by the super-Keplerian rotation, so that the concept
of centrifugal barrier is not directly applicable for them. Even for
the material moving on the equatorial plane, the centrifugal barrier is
not an equilibrium location, since the inward gravitational pull is too
weak to balance the outward centrifugal force associated with the
super-Keplerian rotation. Indeed, it is maximally out of equilibrium.
Under the idealization on which the centrifugal barrier is based, the
(non-interacting) test particles would move outwards after reaching
the centrifugal barrier. The expanding material is expected to collide
with the material that continues to fall inwards, leading to (gas
pressure-mediated) modifications that cannot be captured by the test-
particle approach. Whether the classic picture of centrifugal barrier
can survive in a more realistic fluid approach is unclear. It is the main
topic of our investigation.

The rest of the paper is organized as follows. We start with problem
setup in Section 2. It is followed by numerical results in Section 3,
where we find that super-Keplerian rotation indeed exists in the outer
part of the disc that separates the Keplerian part of the disc from the
infall envelope when the viscosity is relatively high, although its
physical origin is distinct from the centrifugal barrier, and that it
weakens with decreasing viscosity. The classic picture of centrifugal
barrier is not supported by our simulations. We discuss the results
and conclude in Section 4.

2 PROBLEM SETUP

2.1 Governing equations

As mentioned in Section 1, protostellar disc formation in dense cores
of molecular clouds is a complex process involving turbulence and
magnetic fields (and associated non-ideal MHD effects). To check
whether the centrifugal barrier plays a role in disc formation in
the fluid approach, we have decided to limit our investigation to
the simplest case of the collapse of a rotating core without any
magnetic field or turbulence; these neglected effects will be discussed
in Section 4. The core collapse and disc formation is governed by
the continuity equation

% 1Y (owy=0 1)
_— . v) =20,
a1 r
and the momentum equation
d
paf]:+p(v~V)v=—VP—pV<Dg+V~H, 2)

where the gravitational potential is evaluated using the Poisson
equation

Vzcbg =4nGp 3)

and the tensor II is determined by the coefficient of shear viscosity
pv (see e.g. equation 7 of Stone et al. 2020). We include a non-zero
shear viscosity so that a disc rather than a ring is formed (e.g. Kuiper
et al. 2010) and the formed disc can evolve even in the absence
of a magnetic field. Following Kuiper et al. (2010), we will adopt
the standard S-prescription for the kinematic viscosity v (not to be
confused with the velocity v):

v = BQk(r)R?, 4)

where R is the cylindrical radius and Q(r) = \/GM((r)/r3, with
M(r) denoting the mass enclosed within a sphere of radius r. For
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a rotationally supported disc, the quantity Qg would be the orbital
angular velocity and the dimension-less parameter 8 would be related
to the standard a-viscosity parameter by 8 = a(H/R)?, where H is the
disc scale height. The viscosity is applied throughout the simulation
domain. It has relatively little effect at large radii well beyond the
disc formation region.

2.2 Numerical method

The governing equations are solved with the athena++ code
(Stone et al. 2020) under the assumption of (2D) axisymmetry around
the rotation axis in a spherical polar coordinate system (r, 6, ¢).
We adopt a computation grid with logarithmic spacing in the radial
direction and constant spacing in the theta direction. Logarithmic
spacing has the advantage of providing higher resolution at smaller
radii relevant to disc formation, at the expense of producing larger
cells at larger radii, which are not as critical for our analysis.

There are four boundaries where boundary conditions need to be
imposed in the simulation. The inner and outer radial boundaries
are treated the same, with a semi-outflow boundary condition where
material is allowed to exit the computational domain but not enter
back in. The standard reflective boundary condition is imposed at the
poles.

3 RESULTS

3.1 Reference model

We will start our discussion with a reference model that shows
prominent super-Keplerian rotation that allows us to analyse its
origin. This is followed by a set of simulations that illustrate its
dependence on model parameters, especially the viscosity.

Our reference model has an initial uniform density profile with
an enclosed mass of 4.2 Mg, an isothermal sound speed of ¢; =
0.2 kms™!, and a B-viscosity parameter of 0.077. The inner and
outer radii of this model are, respectively, 2 and 10 000 AU. The polar
angle 6 ranges from 0 to 7. An initial solid body rotation of 2 =
5.945 x 10~'* rad s~! was used, corresponding to a dimension-less
ratio of rotational and gravitational energies of B & 0.7 per cent.
As often done in disc formation simulations (e.g. Tomida et al. 2017),
we change the isothermal equation of state to a stiffer, adiabatic,
equation of state (with an adiabatic index of 5/3) around a critical
mass density of p. = 1073 gcm™"), namely,

2/3
- (ﬁ) } , s)
Pe

where c; is the isothermal sound speed.

The reference simulation was carried out on a 512 x 256 (r—0)
grid, which ensures that the cells are roughly square-shaped. We have
also experimented with lower and higher resolution simulations, with
similar results.

The dynamic evolution of the system can be divided into two
phases, as illustrated in Fig. 1. In the first, pre-stellar, phase, the
slowly rotating dense core material collapses towards the centre, with
aflat distribution of density that increases with time. By t = 91 000 yr
after the start of the collapse, the density in the central region becomes
high enough that a thermally supported first core with a radius of
20 AU forms (see the top-middle panel). Following the first core, a
rotationally supported disc forms which grows in radius with time for
the remainder of the simulation. At the last frame shown (r = 96 000
yr), we form a disc with the radius on the order of 120 AU. This

P=pc§
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Figure 1. Evolution of the density distribution of our reference model showing the formation and growth of a disc. The units for the time and density are,

respectively, years and gcm™3.

progression within our reference model can also be seen within the
time sequence of the spatial distributions of the density, infall and
rotation speeds on the equatorial plane in Fig. 2. It shows clearly
the outward propagation of the transition region from the infall-
dominated lower density envelope to the rotation-dominated denser
disc.

To address the question of whether a centrifugal barrier exists in
our reference model or not, we plotin Fig. 3 the ratios of the rotational
speed vy and the local Keplerian speed vk' on the equatorial plane
at different times, which allows us to search for super-Keplerian
rotation that is a key ingredient of the centrifugal barrier. It is clear
that during the pre-stellar collapse phase the rotation remains sub-
Keplerian, as illustrated by the curve for r = 90000 yr. Inside the
thermally supported first core, the rotation remains sub-Keplerian,
although it is fast enough to flatten the first core significantly (see
Fig. 1,1 = 91000 yr). Before the thermally supported sub-Keplerian
first core evolves into a rotationally supported Keplerian disc, super-
Keplerian rotation develops right outside the first core (see the curve
for t+ = 91400 yr). It persists as the first core spins up to the
Keplerian speed and evolves into the rotationally supported disc

IThe local Keplerian speed is defined as the rotation speed that yields a
centrifugal force that balances the local gravitational force exactly.

(see the curve for + = 91500 yr). As the disc grows in time, it
continues to be surrounded by a super-Keplerian region that expands
with the disc. Once a well-defined disc has formed at 100 AU, the
location of maximum super-Keplerian rotation (i.e. the peak of the
curve of rotation speed normalized by the local Keplerian speed in
Fig. 3 or super-Keplerian peak hereafter) is expanding outwards at
a velocity on an order of 4 x 10* cms™!, which is faster than the
speed with which the material at the super-Keplerian peak is moving
(inwards), which is of order 2 x 10* cm s~!. This difference between
the expansion velocity and the local infall velocity is evidence that the
super-Keplerian feature acts as a relatively fast outward-propagating
wave against a slowly inward-drifting material.

The question that next naturally arises is: is this super-Keplerian
region the centrifugal barrier that was introduced by Ulrich (1976)
and Cassen & Moosman (1981) and described in the introduction
section?

As discussed in Section 1, at the heart of the concept of centrifugal
barrier lies the question of how the rapid, supersonic infall motion is
decelerated. If the infall speed reaches a maximum at the centrifugal
radius rcg wWhere the gravitational acceleration is balanced by the
centrifugal acceleration and the deceleration inside rcg is dominated
by the centrifugal force (rather than, say, pressure gradient), then the
concept of centrifugal barrier would remain broadly valid. To address
this question quantitatively, we will focus on two representative
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Figure 2. Evolution of the infall and rotation speeds and density on the
equatorial plane for the frames shown in Fig. 1.

times, ¢ = 91500 and 94 000 yr, when a well-defined rotationally
supported disc has formed. In the lower panels of Fig. 4, we plot as
a function of radius (on a linear scale) the distributions of the radial
velocity v, and rotational velocity vy, the difference between the
centrifugal acceleration and the gravitational acceleration, and the
acceleration due to pressure gradient on the equatorial plane.

The locations where the centrifugal acceleration balances the
inwards gravitational acceleration are visible by the intersection of
their respective difference, illustrated by the red dotted line in the
upper panels of Fig. 4, with the x-axis (the horizontal dashed black
line). At time t = 94000 yr (right-hand panels), the first location
of this intersection is r &~ 7 x 10 cm while the second occurs
at r ~ 1.3 x 10" cm. The second location is where the infalling
material reaches the Keplerian rotation for the first time, and can
thus be identified as the centrifugal radius rcg. The deceleration
region at this time is where the term —v, (dv,/9r) (plotted as the blue
dashed line in the upper panel) becomes negative, which ranges from
1.15 x 10" cm to 1.6 x 10" cm. Clearly, the radial deceleration
started at a radius outside the Keplerian radius rcg, indicating that
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the deceleration is not initiated by the centrifugal force overtaking
the gravity, unlike the classic picture of centrifugal barrier formation.

In addition to the centrifugal force, there are two new forces absent
in the classic (test-particle) picture that can decelerate the infalling
material. The more obvious one is the gas pressure gradient, which
is shown in the upper panels of Fig. 4 as a dot-dashed purple line.
Although its value is somewhat less than the excess of the centrifugal
acceleration over the gravitational acceleration (dotted red line) at
t = 94000 yr (see the upper right-hand panel), this is not the case at
the earlier time # = 91 5000 yr (see the upper left-hand panel; see also
the animated version of Fig. 4 in the supplementary material. At early
times, the gas pressure gradient dominates the excess centrifugal
force. As time progresses, the maximum excess centrifugal force
over the gravity remains relatively unchanged as the peak location
moves outwards with the growing disc, while the contribution of the
gas pressure gradient decreases as time progresses. The presence of
a significant pressure gradient makes it difficult to identify the super-
Keplerian rotation found in the simulation as the classic centrifugal
barrier.

A second new ingredient that is absent from the classic picture
is a means to redistribute or remove angular momentum, which is
required to drive disc accretion. The most widely discussed mecha-
nisms include magnetorotational instability (MRI; Balbus & Hawley
1991), magnetically driven-disc winds (Blandford & Payne 1982),
and gravitational torques for self-gravitating discs (Kratter & Lodato
2016), although the exact mechanism for driving the protostellar disc
accretion remains unclear. For simplicity, in our exploratory (non-
magnetic) axisymmetric simulation, we have adopted the standard
B-prescription for the effective viscosity to drive the disc accretion
(the viscosity is applied throughout the simulation domain). This
viscosity introduces a force in the radial direction, which gives rise
to an acceleration that helps us to decelerate the infalling material
in the envelope-to-disc transition zone (see the dot-dashed brown
line in Fig. 4 and the Appendix on how this force is computed).
Indeed, at both times shown in the figure, the effective viscosity
plays a more important role than the excess centrifugal force
(over gravity) and pressure gradient in the initial deceleration of
the infalling envelope outside the rotationally supported disc. The
(outward) excess centrifugal force and pressure gradient become
more important closer to the outer edge of the disc, where the bulk
of the infall deceleration has completed and the force associated
with the effective viscosity becomes negative (pointing inward). It
appears that both the excess centrifugal force and pressure gradient
play arole in slowing down the envelope infall, but in a complex way
mediated by the viscosity. This complexity is evidence that the super-
Keplerian rotation in our simulation is different from that envisioned
in the classic picture of centrifugal barrier.

Additional support for the above conclusion comes from a
comparison of centrifugal radius rcg and the radius of maxi-
mum super-Keplerian rotation rg. At the representative time ¢ =
94000 yr shown in the right-hand panels of Fig. 4, we have rcg =
1.253 x 10" cm and r = 1.097 x 10" cm, which yield a ratio
rsk/rcr of 0.8754 that is substantially larger than the ratio of the
classic centrifugal barrier to the centrifugal radius rcg/rcg = 0.5. The
same is true at the earlier time # = 91 500 yr shown in the left-hand
panels of Fig. 4, where r/rcg = 0.8900. Therefore, the maximum
super-Keplerian rotation is reached closer to the centrifugal radius in
our simulation compared to the classic (test-particle) picture, which
casts a strong doubt on identifying the radius r, as the classic
centrifugal barrier rcg.

Another doubt on identifying r as rcg comes from the distribu-
tion of specific angular momentum on the equatorial plane. In the
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Figure 3. Ratio of the rotational speed to the Keplerian speed at the representative times shown in Figs 1 and 2, showing the existence of super-Keplerian

rotation.

classic picture, the specific angular momentum of the test particle
is conserved between the centrifugal radius rcg and the centrifugal
barrier rcg. However, this is not the case between rcg and r in
our simulation. As illustrated by the green dotted line in the lower
panels of Fig. 4, the specific angular momentum is variable between
rcr and rg, with the value at ry significantly higher than that at
rcr. This would be surprising if the super-Keplerian region is part
of the infalling envelope, which is expected to lose specific angular
momentum as it collapses closer to the central object and spins up
because the effective viscosity tends to remove angular momentum
from the faster spinning material closer in and transfer it to the
more slowly rotating material further out. This apparent dilemma
disappears if the super-Keplerian is (the outer) part of the disc, where
the angular momentum must be transported outward by the effective
viscosity in order for the disc to accrete in the first place. In this case,
the question becomes: why does the outer disc rotate at a super-
Keplerian speed, unlike the rest of the disc?

The exact answer to the above question is unclear. It is likely
related to the fact that the outer disc is in direct contact with
the rapidly infalling envelope. One possibility is that the pressure
gradient and the radial force associated with the effective viscosity
are not strong enough to bring the rapid infalling envelope material
to a complete stop in the radial direction when it enters the disc
so that a super-Keplerian rotation is needed to give the material
an extra outward push. This possibility was in fact anticipated by
Cassen & Moosman (1981), who estimated the centrifugal force
needed to balance the ram pressure generated by the infalling
envelope (see their Appendix). The amount of extra centrifugal force

(and associated super-Keplerian rotation) needed is controlled by
complex interplay between angular momentum redistribution and
radial force balance that is difficult to quantify. One thing we know
for sure is that it depends on the magnitude of the viscosity, as
discussed in Section 3.2. We will return to a discussion of the origin
of the super-Keplerian rotation towards the end of Section 3.2.

3.2 Dependence of super-Keplerian rotation on viscosity

To explore the dependence of the super-Keplerian rotation on
viscosity, we adopt an initial singular isothermal density profile
following a 1/r2 power law. The simulation domain is the same as the
reference model, but with an enclosed mass of 1.25 Mg, an initial
solid body rotation of Q = 1.189 x 10~'3 rads~! corresponding to
aratio of rational and gravitational energies S, ~ 3.2 per cent. The
following range of viscosity parameters were explored: § = 0.001,
0.003, 0.01, 0.03, 0.1, 0.3, 1.0.

We start the discussion in the middle of the parameter range, with
the B = 0.03 viscosity model. This run is broadly similar to the
previously described reference run, as illustrated in Fig. 5, where
we plot the evolution of the ratio of the rotation speed to the local
Keplerian speed on the equatorial plane at different times (top panel),
accelerations due to various forces (middle panel, as in the upper
panels of Fig. 4) and the same four quantities as in the lower panels
of Fig. 4 (bottom panel) at a time when the disc radius is about 100 au
(or 1.5 x 103 cm).

The top panel shows the similarities between this model with
an initial singular isothermal sphere density distribution and our
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Figure 4. The top panels illustrate the gravitational acceleration (green), centrifugal acceleration (orange), pressure gradient (purple), difference between the
centrifugal acceleration and the gravitational acceleration (red) in the radial direction, acceleration due to viscosity (brown) and y = 0 (dashed black) at 91 500
(left-hand panels) and 94 000 yr (right-hand panels). The lower panels display the rotational velocity (orange), infall velocity (blue), and Keplerian velocity
(green) in kms~!. The specific angular momentum (red) is displayed containing dots which mark the radius with the maximum rotational velocity (black, inner
dot) and the centrifugal radius, where the gravitational acceleration is balanced by the centrifugal acceleration (blue outer dot). On the upper panel, these dots

are on the excess centrifugal force line. The specific angular momentum curve is in units of 10> cm? s

reference run in terms of the evolution of super-Keplerian rotation.
Early on in the model gas spins up faster at smaller radii, until
around 27 000 yr where a maximum rotational velocity is reached,
corresponding to a ratio value of 1.28 followed immediately by disc
formation. The maximum rotational speed towards the outer edge
of the disc starts with a ratio value of 1.26, but decreases as the
disc propagates outwards to a final value of 1.15 in the last time
frame shown. It has an excess centrifugal acceleration (over gravity)
that is not dominant in decelerating the infalling envelope and a
specific angular momentum that is significantly higher than that
in the envelope, both of which point to an origin other than the
centrifugal barrier. Our conclusions from the reference case are thus
strengthened.

To illustrate the effects of viscosity on super-Keplerian rotation, we
plot in Fig. 6 the ratios of rotation speed to the local Keplerian speed
around the time when the disc radius is about 100 au for different
values of the viscosity parameter 8. A clear trend can be seen within
Fig. 6 — increased viscosity tends to lead to a faster rotation speed
compared to the local Keplerian speed near the disc outer edge up
to the B = 0.1 model. Lower viscosity models are able to form discs
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2 .—1

with rotation speeds closer to the Keplerian speed. A visible super-
Keplerian region starts to appear at 8 = 0.01. It grows in magnitude
as the B viscosity increases, forming a prominent super-Keplerian
rotating region with the 8 = 0.1 model. We have explored models
with even higher viscosities, such as g = 0.3, 1.0, but they do not
form discs, likely because angular momentum is redistributed too
quickly in the rotating collapsing envelope to allow the disc to form.
With these sets of models, we once again find that the location of
the peak super-Keplerian rotation moves outwards while the material
at this location travels inwards, confirming the wave nature of the
super-Keplerian region discussed in the reference model.

The fact that the super-Keplerian rotation becomes more promi-
nent with increasing viscosity suggests the following thought exper-
iment that may shed light on its origin. Imagine a viscous disc in
mechanical equilibrium that is contained within a fixed radius (say
by the infalling envelope). If the viscosity is zero, the disc would
remain in equilibrium without the need for adjustment. However, the
presence of a viscosity would allow the faster rotating inner part of the
disc to lose angular momentum (and accrete) and the more slowly
rotating outer part of the disc to gain angular momentum, which
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for the singular isothermal sphere initial density profile with a viscosity
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gravitational acceleration (green), centrifugal acceleration (orange), pressure
gradient (purple), difference between the centrifugal acceleration, and the
gravitational acceleration (red) in the radial direction, acceleration due to
viscosity (brown) and y = 0 (dashed black) at a time of 35000 yr. The lower
panel displays the rotational velocity (orange), infall velocity (blue), and
Keplerian velocity (red) in kms ™.

would normally lead to expansion in the absence of any external
confinement. In the limit that the disc is confined to a fixed radius,
angular momentum would accumulate near the outer edge of the disc,
eventually leading to a solid-body rotation (with vk o r rather than
r~12) that minimizes the frictional force between adjacent disc annuli
and thus the rate of angular momentum redistribution. The time-scale
to reach such a (super-Keplerian, asymptotic) solid-body rotation
depends on the value of viscosity: it decreases as viscosity increases.
This thought experiment leads us to the conjecture that the super-
Keplerian rotation is caused by the outward angular momentum
transport in the disc while the disc expansion is constrained by the
infalling envelope. Specifically, it results from the disc not being
able to expand fast enough to accommodate the angular momentum
transported to the outer disc.
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Figure 6. Ratios of rotational speed to the local Keplerian speed for selected
viscosity values, showing that the super-Keplerian rotation becomes more
prominent with increasing viscosity.

4 CONCLUSION AND DISCUSSION

Motivated by recent ALMA kinematic observations of the embedded
disc L1527 and their interpretation as evidence for the classic
centrifugal barrier (Sakai et al. 2014, 2017), we have carried
hydrodynamic simulations of protostellar disc formation including
a minimum set of ingredients: rotation, self-gravity and an effective
viscosity to ensure disc accretion. The focus was on super-Keplerian
rotation, which is a key characteristic of the centrifugal barrier. We
indeed find a super-Keplerian region surrounding the Keplerian part
of the disc (see Figs 3, 5, and 6), with a maximum ratio of the
rotation speed to the local Keplerian speed that can approach /2
(see the black curve in Fig. 6), the value predicted for the classic
centrifugal barrier. However, unlike the classic picture, the infalling
envelope is decelerated by a combination of the pressure gradient,
centrifugal force, and the radial component of the force due to the
effective viscosity (see the upper panels of Fig. 4) rather than the
centrifugal force alone. The maximum super-Keplerian rotation rg
is located significantly closer to the Keplerian radius rcg (wWhere the
rotating infall envelope material first reaches the local Keplerian
speed) than the centrifugal radius rcg (see the lower panels of
Fig. 4). Furthermore, the specific angular momentum at the location
of maximum super-Keplerian rotation (k) is substantially higher
than at the centrifugal radius rcg, indicating that the super-Keplerian
region is a result of the (outward) angular momentum transport inside
the disc (subject to the constraint imposed by the infalling envelope
on the disc expansion), rather than simply a consequence of the
envelope material spinning up to conserve angular momentum as it
falls closer in. This interpretation is supported by simulations with
different values of viscosity, where we find that the super-Keplerian
rotation becomes more prominent with increasing viscosity. We
conclude that super-Keplerian rotation can exist in protostellar disc
formation, but it differs substantially from the classic picture of
centrifugal barrier.

We note that an enhanced rotation (and surface density) was
also found by Saigo & Hanawa (1998) near the outer edge of the
rotationally supported structure in their self-similar solutions of the
collapse of rotating, thin (sheet-like), isothermal clouds (see their
Figs 4 and 6). However, it is unclear whether the enhanced rotation
near the disc outer edge is super-Keplerian or not, because the
Keplerian speed could also be enhanced due to the enhanced surface
density. Furthermore, their solutions did not include any angular
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momentum removal or redistribution mechanism, which yields a
zero mass for the central stellar object, which, in turn, complicates a
direct comparison with our simulations. Nevertheless, this idealized
work highlights an important conceptual point: the location of the
accretion shock that separates the rotationally supported (disc)
structure and the infalling envelope (and the flow properties near the
shock) is determined globally. Specifically, in a similarity solution, it
is determined by matching at the (initially unknown) shock location
an inner (disc) solution to the governing ordinary differential equa-
tions obtained by outward shooting from near the origin and an outer
(envelope) solution obtained from inward shooting from the infinity.
This global nature of the solution is in line with our conjecture that
viscosity can change the disc properties near the outer edge (including
super-Keplerian rotation) by controlling the inward mass accretion
and outward angular momentum transport in the inner (disc) solution.
This global nature of the problem, involving a complex interplay
between the disc dynamics (particularly accretion and spreading) and
the need for mechanical balance in the envelope-disc transition zone,
makes it difficult to interpret the numerical results with certainty.

Obvious future refinements of our exploratory work include the
treatment of magnetic fields (and the associated non-ideal MHD
effects) and extension to 3D. Magnetic fields will enable the disc
to accrete through the physical processes of magnetorotational
instability and/or disc-wind without a prescribed effective viscosity
and 3D simulations are needed to capture the angular momentum
transport through spiral density waves. Whether the super-Keplerian
rotation found in our simulation persists when these and other
physical effects are included remains to be determined. There is
some anecdotal evidence that this may be true in at least some cases.
For example, in one of the models presented in Zhao, Caselli &
Li (2018) that includes a relatively strong magnetic field (with a
dimension-less mass-to-flux ratio of 2.4) and ambipolar diffusion in
the absence of small grains, the outer part of the disc is rotating at
a speed well above the Keplerian speed based on the central stellar
mass (see their fig. 15, left-hand panel), although it is unclear whether
the region remains super-Keplerian when the disc mass is included in
the computation of the Keplerian speed. Additional work is needed
to determine how common super-Keplerian rotation exists in well-
resolved simulations that include more detailed physics (e.g. Xu &
Kunz 2021). There are also examples where the discs formed in
magnetized cores are clearly Keplerian or slightly sub-Keplerian
(see e.g. fig. 5 of Hirano et al. 2020, bottom panels). Additional work
is needed to determine how common super-Keplerian rotation exists
in well-resolved simulations that include more detailed physics. If
our interpretation is correct, the super-Keplerian rotation is expected
to occur most likely in fastest accreting youngest (Class 0) discs
where angular momentum is transported outward most quickly and,
at the same time, the disc expansion is most constrained by the infall
of a massive envelope.

Ultimately, whether super-Keplerian rotation exists in a disc
should be decided based on observations. This will not be an easy
task, especially for deeply embedded protostellar discs that are still
in active formation because it is difficult to determine the stellar
mass (and the disc mass) needed for evaluating the Keplerian speed
independent of the rotation speed (from line observations). It is easier
to determine the mass of the optically visible central star of the more
evolved protoplanetary disc, but such a disc is less likely to have
super-Keplerian rotation if such a feature comes from the interplay
between the outward angular momentum transport and the constraint
of disc expansion by the infalling envelope.

One implication of the potential super-Keplerian rotation is that it
would complicate the mass determination of protostars based on the
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disc rotation measurement. In particular, the rotation data in regions
that rotate up to +/2 times faster than the local Keplerian speed could
lead to an overestimate of the stellar mass by up to a factor of 2.
Another implication is on the dynamics of dust grains, which tend to
orbit at the local Keplerian speed and are thus expected to experience
a tail-wind in the super-Keplerian region that may lead to an outward
migration rather than the commonly expected inward radial drift.
The difference may lead to modification to dust concentration and
growth that deserves future investigations.
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APPENDIX A: RADIAL ACCELERATION FROM
THE VISCOSITY TERM IN MOMENTUM
EQUATION

Here we provide the formulae to compute the radial acceleration
on the equatorial plane from the viscosity term in the momentum
equation (2), V - I1. From equation (7) from Stone et al. (2020), we
have

Bv,- 8Uj 2
H,’jZPUﬁ % + £ —E(SUVD ETij—PﬂSij,
J i

where

2
PIS = E,OUISV - v

is an effective pressure term associated with the viscosity tensor
and 7;; denotes the viscosity tensor excluding the effective pressure
term.

In a spherical polar coordinate system under the assumption of
axisymmetry, the radial component of the momentum equation (2)
becomes:

ov,  dv. v 9, v; +v; IP 9P
v, — — - _ 'k
P o ar - 90 r ar  or
1 3(r’z,,) 1 9(tersind)  Top + T4
+ {72 ar +rsin9 00 r t P8,
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where

1  Ovgsinf
vsind 96

2 1o
Pﬂ=§(pvﬁ) 725(” V) +

and vy is the kinematic viscosity that depends on 8, €2, and R through
equation (4).
The relevant elements of the tensor 7; ; are

v,
rr = 2
T [ovsl ( or >

1 /0v v,
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This paper has been typeset from a TEX/IATEX file prepared by the author.
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