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A B S T R A C T 

With the advent of ALMA, it is now possible to observationally constrain how discs form around deeply embedded protostars. 

In particular, the recent ALMA C 3 H 2 line observations of the nearby protostar L1527 have been interpreted as evidence for the 

so-called ‘centrifugal barrier,’ where the protostellar envelope infall is gradually decelerated to a stop by the centrifugal force in 

a region of super-Keplerian rotation. To test the concept of centrifugal barrier, which was originally based on angular momentum 

conserving-collapse of a rotating test particle around a fixed point mass, we carry out simple axisymmetric hydrodynamic 

simulations of protostellar disc formation including a minimum set of ingredients: self-gravity, rotation, and a prescribed 

viscosity that enables the disc to accrete. We find that a super-Keplerian region can indeed exist when the viscosity is relatively 

large but, unlike the classic picture of centrifugal barrier, the infalling envelope material is not decelerated solely by the centrifugal 

force. The region has more specific angular momentum than its surrounding envelope material, which points to an origin in 

outward angular momentum transport in the disc (subject to the constraint of disc expansion by the infalling envelope), rather 

than the spin-up of the envelope material envisioned in the classic picture as it falls closer to the centre in order to conserve 

angular momentum. For smaller viscosities, the super-Keplerian rotation is weaker or non-existing. We conclude that, despite 

the existence of super-Keplerian rotation in some parameter regime, the classic picture of centrifugal barrier is not supported by 

our simulations. 

K ey words: dif fusion – hydrodynamics – methods: numerical – protoplanetary discs – circumstellar matter – stars: formation. 

1  I N T RO D U C T I O N  

Discs play a central role in the formation of both stars and planets. 

How they form and evolve remain hotly debated. Part of the difficulty 

is that disc formation is strongly affected by magnetic fields, which 

are known to permeate molecular clouds and their star-forming cores 

but difficult to quantify (Hull & Zhang 2019 ; Pattle & Fissel 2019 ). 

Theoretical calculations have shown that discs formed in strongly 

magnetized molecular cloud cores depend on a number of factors, 

including non-ideal MHD effects, turbulence, and rotation-magnetic 

field misalignment (for re vie ws, see e.g. Li et al. 2014 ; Zhao et al. 

2020 ). Ho we ver, it has been challenging to observationally constrain 

these calculations, because deeply embedded protostellar discs are 

still in active formation and their connection to the protostellar 

envelopes are difficult to characterize through observations. 

The observational situation has impro v ed drastically with the 

advent of ALMA. In particular, Sakai et al. ( 2014 ) traced the gas 

kinematics in the transition zone between the infall envelope and the 

rotationally supported disc in the well-studied L1527 protostellar 

system. They found that the position–velocity (PV) diagram of 

cyclic-C 3 H 2 along the equator of the system can be fitted remarkably 

well by a simple analytic model first introduced by Ulrich ( 1976 ) 

and Cassen & Moosman ( 1981 ). This model describes the motion of 

a test particle in the gravity field of a central stellar object of a fixed 

mass M ∗ under the constraint of energy and angular momentum 

� E-mail: dylanjonesc@gmail.com (DCJ); kl4sf@virginia.edu (KHL); 

zl4h@virginia.edu (Z-YL) 

conservation. It is characterized by two special locations: the so- 

called ‘centrifugal radius’ ( r CR ) and ‘centrifugal barrier’ ( r CB ). The 

former is reached when the rotational speed v φ of the test particle 

reaches the (local) Keplerian speed v K = ( GM ∗/ r ) 1/2 , where r is the 

distance of the particle from the star. Outside the centrifugal radius 

r CR , the gravity dominates the centrifugal force, leading to a faster 

and faster collapse towards the central object and a maximum infall 

speed at the centrifugal radius. Inside r CR , the rotation becomes 

super-Keplerian, with the centrifugal force dominating the gravity, 

which leads to a deceleration of the infall motion. The infall comes 

to a complete stop at the centrifugal barrier r CB (which is located at a 

radius half of that of the centrifugal radius, i.e. r CB = r CR /2), where 

the rotation speed is 
√ 

2 times the local Keplerian speed. 

The apparent agreement between the analytic model and the 

gas kinematic data was taken as evidence for the existence of a 

centrifugal barrier (Sakai et al. 2014 , 2017 ), where the envelope infall 

is completely stopped by the centrifugal force from a super-Keplerian 

rotation. If true, it would be evidence that the infall in the envelope 

comes to a stop gradually o v er an e xtended radial zone (between r CR 

and r CB ) rather than abruptly at an accretion shock where the rapidly 

infalling envelope material slams into the rotationally support disc, 

which would have far reaching consequences on the structure and 

dynamics of the envelope-to-disc transition zone, particularly its 

temperature structure and chemistry. 

Ho we ver, the concept of centrifugal barrier is based on the 

assumption that the envelope material mo v es as (non-interacting) 

test particles. The lack of gas pressure under this assumption means 

that the infall of the material on the equatorial plane can be stopped 
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only by super-Keplerian rotation; those from abo v e and below the 

equatorial plane are presumed to terminate on the equatorial plane 

(see fig. 2 of Cassen & Moosman 1981 for an illustration) before 

they are stopped by the super-Keplerian rotation, so that the concept 

of centrifugal barrier is not directly applicable for them. Even for 

the material moving on the equatorial plane, the centrifugal barrier is 

not an equilibrium location, since the inward gravitational pull is too 

weak to balance the outward centrifugal force associated with the 

super-Keplerian rotation. Indeed, it is maximally out of equilibrium. 

Under the idealization on which the centrifugal barrier is based, the 

(non-interacting) test particles would mo v e outwards after reaching 

the centrifugal barrier. The expanding material is expected to collide 

with the material that continues to fall inwards, leading to (gas 

pressure-mediated) modifications that cannot be captured by the test- 

particle approach. Whether the classic picture of centrifugal barrier 

can survive in a more realistic fluid approach is unclear. It is the main 

topic of our investigation. 

The rest of the paper is organized as follows. We start with problem 

setup in Section 2 . It is followed by numerical results in Section 3 , 

where we find that super-Keplerian rotation indeed exists in the outer 

part of the disc that separates the Keplerian part of the disc from the 

infall envelope when the viscosity is relatively high, although its 

physical origin is distinct from the centrifugal barrier, and that it 

weakens with decreasing viscosity. The classic picture of centrifugal 

barrier is not supported by our simulations. We discuss the results 

and conclude in Section 4 . 

2  PROBLEM  SETUP  

2.1 Go v erning equations 

As mentioned in Section 1 , protostellar disc formation in dense cores 

of molecular clouds is a complex process inv olving turb ulence and 

magnetic fields (and associated non-ideal MHD effects). To check 

whether the centrifugal barrier plays a role in disc formation in 

the fluid approach, we have decided to limit our investigation to 

the simplest case of the collapse of a rotating core without any 

magnetic field or turbulence; these neglected effects will be discussed 

in Section 4 . The core collapse and disc formation is go v erned by 

the continuity equation 

∂ρ

∂t 
+ ∇ · ( ρv ) = 0 , (1) 

and the momentum equation 

ρ
∂ v 

∂t 
+ ρ ( v · ∇ ) v = −∇P − ρ∇� g + ∇ · � , (2) 

where the gravitational potential is e v aluated using the Poisson 

equation 

∇ 
2 � g = 4 πGρ (3) 

and the tensor � is determined by the coefficient of shear viscosity 

ρν (see e.g. equation 7 of Stone et al. 2020 ). We include a non-zero 

shear viscosity so that a disc rather than a ring is formed (e.g. Kuiper 

et al. 2010 ) and the formed disc can e volve e ven in the absence 

of a magnetic field. Following Kuiper et al. ( 2010 ), we will adopt 

the standard β-prescription for the kinematic viscosity ν (not to be 

confused with the velocity v ): 

ν = β
K ( r) R 
2 , (4) 

where R is the cylindrical radius and 
K ( r) = 
√ 

GM( r) /r 3 , with 

M ( r ) denoting the mass enclosed within a sphere of radius r . For 

a rotationally supported disc, the quantity 
K would be the orbital 

angular velocity and the dimension-less parameter β would be related 

to the standard α-viscosity parameter by β = α( H / R ) 2 , where H is the 

disc scale height. The viscosity is applied throughout the simulation 

domain. It has relatively little effect at large radii well beyond the 

disc formation region. 

2.2 Numerical method 

The go v erning equations are solv ed with the athena ++ code 

(Stone et al. 2020 ) under the assumption of (2D) axisymmetry around 

the rotation axis in a spherical polar coordinate system ( r , θ , φ). 

We adopt a computation grid with logarithmic spacing in the radial 

direction and constant spacing in the theta direction. Logarithmic 

spacing has the advantage of providing higher resolution at smaller 

radii rele v ant to disc formation, at the expense of producing larger 

cells at larger radii, which are not as critical for our analysis. 

There are four boundaries where boundary conditions need to be 

imposed in the simulation. The inner and outer radial boundaries 

are treated the same, with a semi-outflow boundary condition where 

material is allowed to exit the computational domain but not enter 

back in. The standard reflective boundary condition is imposed at the 

poles. 

3  RESULTS  

3.1 Reference model 

We will start our discussion with a reference model that shows 

prominent super-Keplerian rotation that allows us to analyse its 

origin. This is followed by a set of simulations that illustrate its 

dependence on model parameters, especially the viscosity. 

Our reference model has an initial uniform density profile with 

an enclosed mass of 4.2 M �, an isothermal sound speed of c s = 

0 . 2 km s −1 , and a β-viscosity parameter of 0.077. The inner and 

outer radii of this model are, respectively, 2 and 10 000 AU. The polar 

angle θ ranges from 0 to π . An initial solid body rotation of 
 = 

5 . 945 × 10 −14 rad s −1 was used, corresponding to a dimension-less 

ratio of rotational and gravitational energies of βrot ≈ 0 . 7 per cent . 

As often done in disc formation simulations (e.g. Tomida et al. 2017 ), 

we change the isothermal equation of state to a stiffer, adiabatic, 

equation of state (with an adiabatic index of 5/3) around a critical 

mass density of ρc = 10 −13 g cm 
−1 ), namely, 

P = ρc 2 s 

[ 

1 + 

(

ρ

ρc 

)2 / 3 
] 

, (5) 

where c s is the isothermal sound speed. 

The reference simulation was carried out on a 512 × 256 ( r –θ ) 

grid, which ensures that the cells are roughly square-shaped. We have 

also experimented with lower and higher resolution simulations, with 

similar results. 

The dynamic evolution of the system can be divided into two 

phases, as illustrated in Fig. 1 . In the first, pre-stellar, phase, the 

slowly rotating dense core material collapses towards the centre, with 

a flat distribution of density that increases with time. By t = 91 000 yr 

after the start of the collapse, the density in the central region becomes 

high enough that a thermally supported first core with a radius of 

20 AU forms (see the top-middle panel). Following the first core, a 

rotationally supported disc forms which grows in radius with time for 

the remainder of the simulation. At the last frame shown ( t = 96 000 

yr), we form a disc with the radius on the order of 120 AU. This 
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Figure 1. Evolution of the density distribution of our reference model showing the formation and growth of a disc. The units for the time and density are, 

respectively, years and g cm −3 . 

progression within our reference model can also be seen within the 

time sequence of the spatial distributions of the density, infall and 

rotation speeds on the equatorial plane in Fig. 2 . It shows clearly 

the outward propagation of the transition region from the infall- 

dominated lower density envelope to the rotation-dominated denser 

disc. 

To address the question of whether a centrifugal barrier exists in 

our reference model or not, we plot in Fig. 3 the ratios of the rotational 

speed v φ and the local Keplerian speed v K 
1 on the equatorial plane 

at different times, which allows us to search for super-Keplerian 

rotation that is a key ingredient of the centrifugal barrier. It is clear 

that during the pre-stellar collapse phase the rotation remains sub- 

Keplerian, as illustrated by the curve for t = 90 000 yr. Inside the 

thermally supported first core, the rotation remains sub-Keplerian, 

although it is fast enough to flatten the first core significantly (see 

Fig. 1 , t = 91 000 yr). Before the thermally supported sub-Keplerian 

first core evolves into a rotationally supported Keplerian disc, super- 

K eplerian rotation de velops right outside the first core (see the curve 

for t = 91 400 yr). It persists as the first core spins up to the 

Keplerian speed and evolves into the rotationally supported disc 

1 The local Keplerian speed is defined as the rotation speed that yields a 

centrifugal force that balances the local gravitational force exactly. 

(see the curve for t = 91 500 yr). As the disc grows in time, it 

continues to be surrounded by a super-Keplerian region that expands 

with the disc. Once a well-defined disc has formed at 100 AU, the 

location of maximum super-Keplerian rotation (i.e. the peak of the 

curve of rotation speed normalized by the local Keplerian speed in 

Fig. 3 or super-Keplerian peak hereafter) is expanding outwards at 

a velocity on an order of 4 × 10 4 cm s −1 , which is faster than the 

speed with which the material at the super-Keplerian peak is moving 

(inwards), which is of order 2 × 10 4 cm s −1 . This difference between 

the e xpansion v elocity and the local infall velocity is evidence that the 

super-Keplerian feature acts as a relatively fast outward-propagating 

wave against a slowly inward-drifting material. 

The question that next naturally arises is: is this super-Keplerian 

region the centrifugal barrier that was introduced by Ulrich ( 1976 ) 

and Cassen & Moosman ( 1981 ) and described in the introduction 

section? 

As discussed in Section 1 , at the heart of the concept of centrifugal 

barrier lies the question of how the rapid, supersonic infall motion is 

decelerated. If the infall speed reaches a maximum at the centrifugal 

radius r CR where the gravitational acceleration is balanced by the 

centrifugal acceleration and the deceleration inside r CR is dominated 

by the centrifugal force (rather than, say, pressure gradient), then the 

concept of centrifugal barrier would remain broadly valid. To address 

this question quantitatively, we will focus on two representative 
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Figure 2. Evolution of the infall and rotation speeds and density on the 

equatorial plane for the frames shown in Fig. 1 . 

times, t = 91 500 and 94 000 yr, when a well-defined rotationally 

supported disc has formed. In the lower panels of Fig. 4 , we plot as 

a function of radius (on a linear scale) the distributions of the radial 

velocity v r and rotational velocity v φ , the difference between the 

centrifugal acceleration and the gravitational acceleration, and the 

acceleration due to pressure gradient on the equatorial plane. 

The locations where the centrifugal acceleration balances the 

inwards gravitational acceleration are visible by the intersection of 

their respective difference, illustrated by the red dotted line in the 

upper panels of Fig. 4 , with the x -axis (the horizontal dashed black 

line). At time t = 94 000 yr (right-hand panels), the first location 

of this intersection is r ≈ 7 × 10 14 cm while the second occurs 

at r ≈ 1.3 × 10 15 cm. The second location is where the infalling 

material reaches the Keplerian rotation for the first time, and can 

thus be identified as the centrifugal radius r CR . The deceleration 

region at this time is where the term −v r ( ∂ v r / ∂ r ) (plotted as the blue 

dashed line in the upper panel) becomes ne gativ e, which ranges from 

1.15 × 10 15 cm to 1.6 × 10 15 cm. Clearly, the radial deceleration 

started at a radius outside the Keplerian radius r CR , indicating that 

the deceleration is not initiated by the centrifugal force o v ertaking 

the gravity, unlike the classic picture of centrifugal barrier formation. 

In addition to the centrifugal force, there are two new forces absent 

in the classic (test-particle) picture that can decelerate the infalling 

material. The more obvious one is the gas pressure gradient, which 

is shown in the upper panels of Fig. 4 as a dot-dashed purple line. 

Although its value is somewhat less than the excess of the centrifugal 

acceleration o v er the gravitational acceleration (dotted red line) at 

t = 94 000 yr (see the upper right-hand panel), this is not the case at 

the earlier time t = 91 5000 yr (see the upper left-hand panel; see also 

the animated version of Fig. 4 in the supplementary material. At early 

times, the gas pressure gradient dominates the excess centrifugal 

force. As time progresses, the maximum excess centrifugal force 

o v er the gravity remains relatively unchanged as the peak location 

mo v es outwards with the growing disc, while the contribution of the 

gas pressure gradient decreases as time progresses. The presence of 

a significant pressure gradient makes it difficult to identify the super- 

Keplerian rotation found in the simulation as the classic centrifugal 

barrier. 

A second new ingredient that is absent from the classic picture 

is a means to redistribute or remo v e angular momentum, which is 

required to drive disc accretion. The most widely discussed mecha- 

nisms include magnetorotational instability (MRI; Balbus & Ha wle y 

1991 ), magnetically driven-disc winds (Blandford & Payne 1982 ), 

and gravitational torques for self-gravitating discs (Kratter & Lodato 

2016 ), although the exact mechanism for driving the protostellar disc 

accretion remains unclear. For simplicity, in our exploratory (non- 

magnetic) axisymmetric simulation, we have adopted the standard 

β-prescription for the ef fecti ve viscosity to drive the disc accretion 

(the viscosity is applied throughout the simulation domain). This 

viscosity introduces a force in the radial direction, which gives rise 

to an acceleration that helps us to decelerate the infalling material 

in the envelope-to-disc transition zone (see the dot-dashed brown 

line in Fig. 4 and the Appendix on how this force is computed). 

Indeed, at both times shown in the figure, the ef fecti ve viscosity 

plays a more important role than the excess centrifugal force 

(o v er gravity) and pressure gradient in the initial deceleration of 

the infalling envelope outside the rotationally supported disc. The 

(outward) excess centrifugal force and pressure gradient become 

more important closer to the outer edge of the disc, where the bulk 

of the infall deceleration has completed and the force associated 

with the ef fecti ve viscosity becomes negative (pointing inward). It 

appears that both the excess centrifugal force and pressure gradient 

play a role in slowing down the envelope infall, but in a complex way 

mediated by the viscosity. This complexity is evidence that the super- 

Keplerian rotation in our simulation is different from that envisioned 

in the classic picture of centrifugal barrier. 

Additional support for the abo v e conclusion comes from a 

comparison of centrifugal radius r CR and the radius of maxi- 

mum super-Keplerian rotation r sK . At the representative time t = 

94 000 yr shown in the right-hand panels of Fig. 4 , we have r CR = 

1.253 × 10 15 cm and r sK = 1.097 × 10 15 cm, which yield a ratio 

r sK / r CR of 0.8754 that is substantially larger than the ratio of the 

classic centrifugal barrier to the centrifugal radius r CB / r CR = 0.5. The 

same is true at the earlier time t = 91 500 yr shown in the left-hand 

panels of Fig. 4 , where r sK / r CR = 0.8900. Therefore, the maximum 

super-Keplerian rotation is reached closer to the centrifugal radius in 

our simulation compared to the classic (test-particle) picture, which 

casts a strong doubt on identifying the radius r sK as the classic 

centrifugal barrier r CB . 

Another doubt on identifying r sK as r CB comes from the distribu- 

tion of specific angular momentum on the equatorial plane. In the 
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Figure 3. Ratio of the rotational speed to the Keplerian speed at the representative times shown in Figs 1 and 2 , showing the existence of super-Keplerian 

rotation. 

classic picture, the specific angular momentum of the test particle 

is conserved between the centrifugal radius r CR and the centrifugal 

barrier r CB . Ho we ver, this is not the case between r CR and r sK in 

our simulation. As illustrated by the green dotted line in the lower 

panels of Fig. 4 , the specific angular momentum is variable between 

r CR and r sK , with the value at r sK significantly higher than that at 

r CR . This would be surprising if the super-Keplerian region is part 

of the infalling envelope, which is expected to lose specific angular 

momentum as it collapses closer to the central object and spins up 

because the ef fecti v e viscosity tends to remo v e angular momentum 

from the faster spinning material closer in and transfer it to the 

more slowly rotating material further out. This apparent dilemma 

disappears if the super-Keplerian is (the outer) part of the disc, where 

the angular momentum must be transported outward by the ef fecti ve 

viscosity in order for the disc to accrete in the first place. In this case, 

the question becomes: why does the outer disc rotate at a super- 

Keplerian speed, unlike the rest of the disc? 

The exact answer to the abo v e question is unclear. It is likely 

related to the fact that the outer disc is in direct contact with 

the rapidly infalling envelope. One possibility is that the pressure 

gradient and the radial force associated with the ef fecti ve viscosity 

are not strong enough to bring the rapid infalling envelope material 

to a complete stop in the radial direction when it enters the disc 

so that a super-Keplerian rotation is needed to give the material 

an extra outward push. This possibility was in fact anticipated by 

Cassen & Moosman ( 1981 ), who estimated the centrifugal force 

needed to balance the ram pressure generated by the infalling 

envelope (see their Appendix). The amount of extra centrifugal force 

(and associated super-Keplerian rotation) needed is controlled by 

complex interplay between angular momentum redistribution and 

radial force balance that is difficult to quantify. One thing we know 

for sure is that it depends on the magnitude of the viscosity, as 

discussed in Section 3.2 . We will return to a discussion of the origin 

of the super-Keplerian rotation towards the end of Section 3.2 . 

3.2 Dependence of super-Keplerian rotation on viscosity 

To explore the dependence of the super-Keplerian rotation on 

viscosity, we adopt an initial singular isothermal density profile 

follo wing a 1/ r 2 po wer law. The simulation domain is the same as the 

reference model, but with an enclosed mass of 1.25 M �, an initial 

solid body rotation of 
 = 1 . 189 × 10 −13 rad s −1 corresponding to 

a ratio of rational and gravitational energies βrot ≈ 3 . 2 per cent . The 

following range of viscosity parameters were explored: β = 0.001, 

0.003, 0.01, 0.03, 0.1, 0.3, 1.0. 

We start the discussion in the middle of the parameter range, with 

the β = 0.03 viscosity model. This run is broadly similar to the 

previously described reference run, as illustrated in Fig. 5 , where 

we plot the evolution of the ratio of the rotation speed to the local 

Keplerian speed on the equatorial plane at different times (top panel), 

accelerations due to various forces (middle panel, as in the upper 

panels of Fig. 4 ) and the same four quantities as in the lower panels 

of Fig. 4 (bottom panel) at a time when the disc radius is about 100 au 

(or 1.5 × 10 15 cm). 

The top panel shows the similarities between this model with 

an initial singular isothermal sphere density distribution and our 
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Figure 4. The top panels illustrate the gravitational acceleration (green), centrifugal acceleration (orange), pressure gradient (purple), difference between the 

centrifugal acceleration and the gravitational acceleration (red) in the radial direction, acceleration due to viscosity (brown) and y = 0 (dashed black) at 91 500 

(left-hand panels) and 94 000 yr (right-hand panels). The lower panels display the rotational velocity (orange), infall velocity (blue), and Keplerian velocity 

(green) in km s −1 . The specific angular momentum (red) is displayed containing dots which mark the radius with the maximum rotational velocity (black, inner 

dot) and the centrifugal radius, where the gravitational acceleration is balanced by the centrifugal acceleration (blue outer dot). On the upper panel, these dots 

are on the excess centrifugal force line. The specific angular momentum curve is in units of 10 21 cm 2 s −1 . 

reference run in terms of the evolution of super-Keplerian rotation. 

Early on in the model gas spins up faster at smaller radii, until 

around 27 000 yr where a maximum rotational velocity is reached, 

corresponding to a ratio value of 1.28 followed immediately by disc 

formation. The maximum rotational speed towards the outer edge 

of the disc starts with a ratio value of 1.26, but decreases as the 

disc propagates outwards to a final value of 1.15 in the last time 

frame shown. It has an excess centrifugal acceleration (o v er gravity) 

that is not dominant in decelerating the infalling envelope and a 

specific angular momentum that is significantly higher than that 

in the envelope, both of which point to an origin other than the 

centrifugal barrier. Our conclusions from the reference case are thus 

strengthened. 

To illustrate the effects of viscosity on super-Keplerian rotation, we 

plot in Fig. 6 the ratios of rotation speed to the local Keplerian speed 

around the time when the disc radius is about 100 au for different 

values of the viscosity parameter β. A clear trend can be seen within 

Fig. 6 – increased viscosity tends to lead to a faster rotation speed 

compared to the local Keplerian speed near the disc outer edge up 

to the β = 0.1 model. Lower viscosity models are able to form discs 

with rotation speeds closer to the Keplerian speed. A visible super- 

Keplerian region starts to appear at β = 0.01. It grows in magnitude 

as the β viscosity increases, forming a prominent super-Keplerian 

rotating region with the β = 0.1 model. We have explored models 

with even higher viscosities, such as β = 0.3, 1.0, but they do not 

form discs, likely because angular momentum is redistributed too 

quickly in the rotating collapsing envelope to allow the disc to form. 

With these sets of models, we once again find that the location of 

the peak super-Keplerian rotation mo v es outwards while the material 

at this location travels inwards, confirming the wave nature of the 

super-Keplerian region discussed in the reference model. 

The fact that the super-Keplerian rotation becomes more promi- 

nent with increasing viscosity suggests the following thought exper- 

iment that may shed light on its origin. Imagine a viscous disc in 

mechanical equilibrium that is contained within a fixed radius (say 

by the infalling envelope). If the viscosity is zero, the disc would 

remain in equilibrium without the need for adjustment. Ho we ver, the 

presence of a viscosity would allow the faster rotating inner part of the 

disc to lose angular momentum (and accrete) and the more slowly 

rotating outer part of the disc to gain angular momentum, which 
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Figure 5. The top panel shows the evolution of super-Keplerian rotation 

for the singular isothermal sphere initial density profile with a viscosity 

parameter β = 0.03 for selected time frames. The middle panel illustrates the 

gravitational acceleration (green), centrifugal acceleration (orange), pressure 

gradient (purple), difference between the centrifugal acceleration, and the 

gravitational acceleration (red) in the radial direction, acceleration due to 

viscosity (brown) and y = 0 (dashed black) at a time of 35 000 yr. The lower 

panel displays the rotational velocity (orange), infall velocity (blue), and 

Keplerian velocity (red) in km s −1 . 

would normally lead to expansion in the absence of any external 

confinement. In the limit that the disc is confined to a fixed radius, 

angular momentum would accumulate near the outer edge of the disc, 

eventually leading to a solid-body rotation (with v K ∝ r rather than 

r −1/2 ) that minimizes the frictional force between adjacent disc annuli 

and thus the rate of angular momentum redistribution. The time-scale 

to reach such a (super-Keplerian, asymptotic) solid-body rotation 

depends on the value of viscosity: it decreases as viscosity increases. 

This thought experiment leads us to the conjecture that the super- 

Keplerian rotation is caused by the outward angular momentum 

transport in the disc while the disc expansion is constrained by the 

infalling envelope. Specifically, it results from the disc not being 

able to expand fast enough to accommodate the angular momentum 

transported to the outer disc. 

Figure 6. Ratios of rotational speed to the local Keplerian speed for selected 

viscosity v alues, sho wing that the super-K eplerian rotation becomes more 

prominent with increasing viscosity. 

4  C O N C L U S I O N  A N D  DI SCUSSI ON  

Moti v ated by recent ALMA kinematic observations of the embedded 

disc L1527 and their interpretation as evidence for the classic 

centrifugal barrier (Sakai et al. 2014 , 2017 ), we have carried 

hydrodynamic simulations of protostellar disc formation including 

a minimum set of ingredients: rotation, self-gravity and an ef fecti ve 

viscosity to ensure disc accretion. The focus was on super-Keplerian 

rotation, which is a key characteristic of the centrifugal barrier. We 

indeed find a super-Keplerian region surrounding the Keplerian part 

of the disc (see Figs 3 , 5 , and 6 ), with a maximum ratio of the 

rotation speed to the local Keplerian speed that can approach 
√ 

2 

(see the black curve in Fig. 6 ), the value predicted for the classic 

centrifugal barrier. Ho we ver, unlike the classic picture, the infalling 

envelope is decelerated by a combination of the pressure gradient, 

centrifugal force, and the radial component of the force due to the 

ef fecti ve viscosity (see the upper panels of Fig. 4 ) rather than the 

centrifugal force alone. The maximum super-Keplerian rotation r sK 

is located significantly closer to the Keplerian radius r CR (where the 

rotating infall envelope material first reaches the local Keplerian 

speed) than the centrifugal radius r CB (see the lower panels of 

Fig. 4 ). Furthermore, the specific angular momentum at the location 

of maximum super-Keplerian rotation ( r sK ) is substantially higher 

than at the centrifugal radius r CR , indicating that the super-Keplerian 

region is a result of the (outward) angular momentum transport inside 

the disc (subject to the constraint imposed by the infalling envelope 

on the disc expansion), rather than simply a consequence of the 

envelope material spinning up to conserve angular momentum as it 

falls closer in. This interpretation is supported by simulations with 

dif ferent v alues of viscosity, where we find that the super-K eplerian 

rotation becomes more prominent with increasing viscosity. We 

conclude that super-Keplerian rotation can exist in protostellar disc 

formation, but it differs substantially from the classic picture of 

centrifugal barrier. 

We note that an enhanced rotation (and surface density) was 

also found by Saigo & Hanawa ( 1998 ) near the outer edge of the 

rotationally supported structure in their self-similar solutions of the 

collapse of rotating, thin (sheet-like), isothermal clouds (see their 

Figs 4 and 6 ). Ho we ver, it is unclear whether the enhanced rotation 

near the disc outer edge is super-Keplerian or not, because the 

Keplerian speed could also be enhanced due to the enhanced surface 

density. Furthermore, their solutions did not include any angular 
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momentum removal or redistribution mechanism, which yields a 

zero mass for the central stellar object, which, in turn, complicates a 

direct comparison with our simulations. Nevertheless, this idealized 

work highlights an important conceptual point: the location of the 

accretion shock that separates the rotationally supported (disc) 

structure and the infalling envelope (and the flow properties near the 

shock) is determined globally . Specifically , in a similarity solution, it 

is determined by matching at the (initially unknown) shock location 

an inner (disc) solution to the go v erning ordinary differential equa- 

tions obtained by outward shooting from near the origin and an outer 

(envelope) solution obtained from inward shooting from the infinity. 

This global nature of the solution is in line with our conjecture that 

viscosity can change the disc properties near the outer edge (including 

super-Keplerian rotation) by controlling the inward mass accretion 

and outward angular momentum transport in the inner (disc) solution. 

This global nature of the problem, involving a complex interplay 

between the disc dynamics (particularly accretion and spreading) and 

the need for mechanical balance in the envelope-disc transition zone, 

makes it difficult to interpret the numerical results with certainty. 

Obvious future refinements of our exploratory work include the 

treatment of magnetic fields (and the associated non-ideal MHD 

effects) and extension to 3D. Magnetic fields will enable the disc 

to accrete through the physical processes of magnetorotational 

instability and/or disc-wind without a prescribed ef fecti ve viscosity 

and 3D simulations are needed to capture the angular momentum 

transport through spiral density waves. Whether the super-Keplerian 

rotation found in our simulation persists when these and other 

physical effects are included remains to be determined. There is 

some anecdotal evidence that this may be true in at least some cases. 

F or e xample, in one of the models presented in Zhao, Caselli & 

Li ( 2018 ) that includes a relatively strong magnetic field (with a 

dimension-less mass-to-flux ratio of 2.4) and ambipolar diffusion in 

the absence of small grains, the outer part of the disc is rotating at 

a speed well abo v e the Keplerian speed based on the central stellar 

mass (see their fig. 15, left-hand panel), although it is unclear whether 

the region remains super-Keplerian when the disc mass is included in 

the computation of the Keplerian speed. Additional work is needed 

to determine how common super-Keplerian rotation exists in well- 

resolved simulations that include more detailed physics (e.g. Xu & 

Kunz 2021 ). There are also examples where the discs formed in 

magnetized cores are clearly Keplerian or slightly sub-Keplerian 

(see e.g. fig. 5 of Hirano et al. 2020 , bottom panels). Additional work 

is needed to determine how common super-Keplerian rotation exists 

in well-resolved simulations that include more detailed physics. If 

our interpretation is correct, the super-Keplerian rotation is expected 

to occur most likely in fastest accreting youngest (Class 0) discs 

where angular momentum is transported outward most quickly and, 

at the same time, the disc expansion is most constrained by the infall 

of a massive envelope. 

Ultimately, whether super-Keplerian rotation exists in a disc 

should be decided based on observations. This will not be an easy 

task, especially for deeply embedded protostellar discs that are still 

in active formation because it is difficult to determine the stellar 

mass (and the disc mass) needed for e v aluating the K eplerian speed 

independent of the rotation speed (from line observations). It is easier 

to determine the mass of the optically visible central star of the more 

ev olved protoplanetary disc, b ut such a disc is less likely to have 

super-Keplerian rotation if such a feature comes from the interplay 

between the outward angular momentum transport and the constraint 

of disc expansion by the infalling envelope. 

One implication of the potential super-Keplerian rotation is that it 

would complicate the mass determination of protostars based on the 

disc rotation measurement. In particular, the rotation data in regions 

that rotate up to 
√ 

2 times faster than the local Keplerian speed could 

lead to an o v erestimate of the stellar mass by up to a factor of 2. 

Another implication is on the dynamics of dust grains, which tend to 

orbit at the local Keplerian speed and are thus expected to experience 

a tail-wind in the super-Keplerian region that may lead to an outward 

migration rather than the commonly expected inward radial drift. 

The difference may lead to modification to dust concentration and 

growth that deserves future investigations. 
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Figure 4. The top panels illustrate the gravitational acceleration 

(green), centrifugal acceleration (orange), pressure gradient (purple), 

difference between the centrifugal acceleration and the gravitational 

acceleration (red) in the radial direction, acceleration due to viscosity 

(brown) and y = 0 (dashed black) at 91 500 (left-hand panels) and 

94 000 yr (right-hand panels). 
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APPENDIX  A :  R A D I A L  AC C E L E R AT I O N  F RO M  

T H E  VISCOSITY  TERM  IN  M O M E N T U M  

EQUATION  

Here we provide the formulae to compute the radial acceleration 

on the equatorial plane from the viscosity term in the momentum 

equation ( 2 ), ∇ · � . From equation (7) from Stone et al. ( 2020 ), we 

have 

� ij = ρνβ

{

∂v i 

∂x j 
+ 

∂v j 

∂x i 
−

2 

3 
δij ∇ · v 

}

≡ τij − P βδij , 

where 

P β ≡
2 

3 
ρνβ∇ · v 

is an ef fecti ve pressure term associated with the viscosity tensor 

and τ ij denotes the viscosity tensor excluding the ef fecti ve pressure 

term. 

In a spherical polar coordinate system under the assumption of 

axisymmetry, the radial component of the momentum equation ( 2 ) 

becomes: 

ρ

{ 

∂v r 

∂t 
+ v r 

∂v r 

∂r 
+ 

v θ

r 

∂v r 

∂θ
−

v 2 φ + v 2 θ

r 

} 

= −
∂P 

∂r 
−

∂P β

∂r 

+ 

{

1 

r 2 

∂ ( r 2 τrr ) 

∂r 
+ 

1 

r sin θ

∂( τθr sin θ ) 

∂θ
−

τθθ + τφφ

r 

}

+ ρg r , 

where 

P β = 
2 

3 
( ρνβ ) 

[

1 

r 2 

∂ 

∂r 
( r 2 v r ) + 

1 

v sin θ

∂v θ sin θ

∂θ

]

and νβ is the kinematic viscosity that depends on β, 
, and R through 

equation ( 4 ). 

The rele v ant elements of the tensor τ i , j are 

τrr = [ ρνβ ] 

(

2 
∂v r 

∂r 

)

τθθ = [ ρνβ ]2 
(1 

r 

(

∂v θ

∂θ

)

+ 
v r 

r 

)

τφφ = [ ρνβ ]2 
(v θcot( θ ) 

r 
+ 

v r 

r 

)

τθr = [ ρνβ ] 
(

r 
∂ 

∂r 

(v θ

r 

)

+ 
1 

r 

∂v r 

∂θ

)

This paper has been typeset from a T E X/L A T E X file prepared by the author. 
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