
Spontaneous Learning of Face Identity in Expression-Trained Deep Nets

Emily Schwartz (schwarex@bc.edu)

Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA 02467

Kathryn O’Nell (kathryn.c.o’nell.gr@dartmouth.edu)

Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755. E.S. and K.O. contributed equally

Rebecca Saxe (saxe@mit.edu)

Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139

Stefano Anzellotti (stefano.anzellotti@bc.edu)

Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA 02467

Abstract

Recent neural evidence challenges the traditional view

that face identity and facial expressions are processed

by segregated neural pathways, showing that informa-

tion about identity and expression are encoded within

common brain regions. This article tests the hypoth-

esis that integrated representations of identity and ex-

pression arise naturally within neural networks. Deep

networks trained to recognize expression and deep net-

works trained to recognize identity spontaneously de-

velop representations of identity and expression, respec-

tively. These findings serve as a ªproof-of-conceptº that

it is not necessary to discard task-irrelevant information

for identity and expression recognition.
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recognition; deep neural networks; transfer learning.

Introduction

The classical view of face processing proposes that identity

and expression information are distinct mechanisms (Bruce &

Young, 1986; Haxby, Hoffman, & Gobbini, 2000): an identity-

specialized pathway (i.e. ventral temporal; Kanwisher, Mc-

Dermott, and Chun, 1997; Gauthier et al., 2000) discards

expression information, and an expression-specialized path-

way (i.e. lateral temporal; Haxby et al., 2000; Hoffman and

Haxby, 2000) discards identity information. However, recent

evidence weighs against this view. Identity can be decoded in

lateral temporal regions (Anzellotti & Caramazza, 2017; Dobs,

Schultz, BÈulthoff, & Gardner, 2018) and facial expression va-

lence can be decoded in ventral temporal regions (Skerry &

Saxe, 2014; Kliemann et al., 2018). An alternative hypothe-

sis suggests that identity and expression might not depend on

separate neural mechanisms (Duchaine & Yovel, 2015).

Here, we test whether learning to recognize facial expres-

sion necessarily requires discarding identity information (and

vice versa), or whether recognition of facial expression and

face identity might be mutually beneficial. To evaluate this, we

train deep convolutional neural networks (DCNNs) to recog-

nize expression and probe whether they spontaneously learn

identity information and, likewise, we train DCNNs to recog-

nize identity and probe whether they spontaneously learn ex-

pression information.

Methods

To understand if these face tasks must be implemented by

separate mechanisms, we test if discarding irrelevant task in-

formation is necessary for successful facial expression and

face identity recognition. If this is the case, identity information

should decline when learning expression information and vice

versa. Using Pytorch (Paszke et al., 2017), a deep DenseNet

was constructed for each model, consisting of 1 convolutional

(CONV) layer, 3 dense blocks, and 1 fully connected (FC) lin-

ear layer (Fig. 1). All networks described were trained 10

times with random weight initialization to test the consistency

of the results. For convenience, the 10 runs will be referred to

as a single DCNN.

Figure 1: Architecture. Top: Each network consist of a convo-

lutional layer, three dense blocks, and a fully-connected layer

(face images shown taken from KDEF, Lundqvist et al., 1998).

Bottom: Structure of a dense block.

Stimuli and Training

Expression and Identity DCNNs The expression DCNN

was trained to label facial expressions using images from

the Facial Expression Recognition 2013 (fer2013) dataset

(Goodfellow et al., 2013), containing 28,709 training images

and 3,589 testing images. The identity DCNN was trained to

label identities using the Large-Scale CelebFaces Attributes

(CelebA) dataset (Liu, Luo, Wang, & Tang, 2015). To match
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the dataset sizes for the two networks, a subset of CelebA

was used.

Untrained and Scene DCNNs To investigate if findings were

due to the architecture and did not depend on training, we

tested whether an untrained DCNN also supports identity and

expression recognition in later layers. To evaluate if findings

were face-specific, we probed a DCNN trained to label scenes

using UC Merced Land Use dataset (Yang & Newsam, 2010).

Testing

After training, network weights were fixed to prevent further

learning. To test identity and expression labeling, we used

an independent dataset of images: Karolinska Directed Emo-

tional Faces (KDEF) (Lundqvist et al., 1998). Accuracy was

evaluated for features from the initial CONV layer, and the last

layer of each dense block, after being summed with the in-

puts of the block. To accommodate differing output numbers,

layer features were extracted, run through batch normaliza-

tion, ReLU, and average pooling, followed by an FC linear

layer to produce output labels (‘readout layer’). A linear layer

trained directly on pixel values was used as a control. To con-

trol for low-level features, all readout layers were trained using

all but one of the viewpoints (frontal, 45 degree left, 45 degree

right). Accuracy was tested using the left-out viewpoint (as in

Anzellotti, Fairhall, and Caramazza, 2013), averaged across

the three conditions.

Results

Expression and Identity Classification

Expression-trained and identity-trained DCNNs perfor-

mances on an independent dataset Both networks gener-

alized to perform accurately their respective trained tasks on

KDEF. The expression DCNN labeled expression with a final

accuracy of 53.4% and the identity DCNN labeled identity with

a final accuracy of 48.35%.

Expression-trained and identity-trained DCNNs develop

identity and expression representations respectively

Features extracted from the CONV layer and each dense

block of the expression DCNN were used as inputs to a cor-

responding FC layer for identity readout: accuracies of 9.5%,

6.3%, 14.8% and 20.2% respectively (Fig. 2A, top). In a par-

allel analysis, identity DCNN features labeled expression with

accuracies of 17.6%, 17.1%, 21.5% and 42.1% (Fig. 2A, bot-

tom).

Expression and identity recognition using features from

an untrained DCNN and a scene-trained DCNN Features

extracted from the CONV layer and each dense block of the

untrained DCNN yielded accuracies of 16.5%, 16.2%, 15.5%

and 16.5%, respectively, for expression labeling (Fig. 2A,

bottom). For identity labeling, untrained features extracted

from each layer yielded accuracies of 7.9%, 7.1%, 13.6% and

6.1% (Fig. 2A, top). The untrained DCNN performed similarly

Figure 2: Comparisons with the Untrained Network. A)

Left: Classification performance using expression features for

identity labeling and identity features for expression labeling,

Right: Classification performance using untrained features.

B) Difference between trained and untrained networks. Error

bars in plots denote the SEM of the performance of network

instances.

within a task for all layers (close to chance level).

When using the scene DCNN to label expression, features

from each layer yielded accuracies of 15.9%, 16.0%, 23.5%

and 33.0%, respectively. For the scene DCNN when label-

ing identity, layer features yielded accuracies of 9.5%, 7.8%,

17.3% and 29.6%.

Discussion

We propose that recognition of facial expression and face

identity are ‘complementary’ tasks ± that representations op-

timized to recognize facial expression also contribute to the

recognition of face identity, and vice versa. This would account

for the observation that identity and expression information co-

exist within common brain regions (Anzellotti & Caramazza,

2017; Dobs et al., 2018). Features from an expression-trained

DCNN can support accurate identity recognition, and recip-

rocally, features from an identity-trained DCNN can support

accurate expression recognition. Our findings serve as an ex-

istence proof that in order to perform identity recognition, ex-

pression information does not need to be discarded (and vice

versa). In fact, within our models, networks trained to per-

form one task do not just retain information that can help solve

the other task: they enhance it. Surprisingly, findings were

not category-specific, contrasting with other transfer learning

studies (Yosinski, Clune, Bengio, & Lipson, 2014). However,

features did not simply arise in an untrained network either.

Ongoing work includes the application of these models to neu-

ral data.
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