Angular gyrus responses show joint statistical dependence with brain regions
selective for different categories

Mengting Fang (mtfang@sas.upenn.edu)
Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104

Aidas Aglinskas (aglinska@bc.edu)

Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA 02467
Yichen Li (yichenli@fas.harvard.edu)

Department of Psychology, Harvard University, Cambridge, MA 02138
Stefano Anzellotti (stefano.anzellotti@bc.edu)
Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA 02467

Abstract

Category-selectivity is a fundamental principle of organi-
zation of perceptual brain regions. Human occipitotem-
poral cortex is subdivided into areas that respond prefer-
entially to faces, bodies, artifacts, and scenes. However,
observers need to combine information about objects
from different categories to form a coherent understand-
ing of the world. How is this multi-category information
encoded in the brain? Studying the multivariate interac-
tions between brain regions with fMRI and artificial neural
networks, we found that the angular gyrus shows joint
statistical dependence with multiple category-selective
regions. Additional analyses revealed a cortical map of
areas that encode information across different subsets of
categories, indicating that multi-category information is
not encoded in a single stage at a centralized location,
but in multiple distinct brain regions.
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Introduction

Many tasks require integrating information about entities from
different categories. Mechanisms that integrate information
about people and artifacts are already at work in early stages
of development: infants are more willing to help individuals
who intended to give them a desirable toy over those who did
not (Dunfield & Kuhlmeier, 2010), and children observing re-
peated interactions between a person and an inanimate ob-
ject infer that the person has feelings of ownership towards
that object (Cleroux & Friedman, 2020). However, visual in-
formation about animate and inanimate entities is processed
by separate, specialized brain regions: using functional mag-
netic resonance imaging (fMRI), researchers have identified
regions responding selectively to faces, bodies, artifacts and
scenes (Hecaen & Angelergues, 1962; Sergent, Ohta, & Mac-
Donald, 1992; Kanwisher, McDermott, & Chun, 1997; Ep-
stein & Kanwisher, 1998; Downing, Jiang, Shuman, & Kan-
wisher, 2001; Martin & Chao, 2001). Investigating directly
how the brain integrates information across different object
categories is challenging. However, if a brain region inte-
grates information across multiple categories, we would ex-
pect it to also show joint statistical dependence with multi-
ple category-selective regions (note that the latter does not
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guarantee the former). In this study, we aim to identify brain
regions that show joint statistical dependence with multiple
category-selective regions.

Previous work studied joint statistical dependence with
regions encoding information about shape and color
(Coutanche & Thompson-Schill, 2015). A recent study im-
plicated the angular gyrus in the joint representation of facial
expressions and locations (Lanzoni et al., 2020).

Here, we expand on this previous work, investigating joint
dependence across multiple object categories (faces, bod-
ies, artifacts and scenes). Analyzing fMRI responses to com-
plex stimuli (Hanke et al., 2016) with multivariate pattern de-
pendence (Anzellotti, Caramazza, & Saxe, 2017; Anzellotti &
Coutanche, 2018) based on artificial neural networks (Fang,
Poskanzer, & Anzellotti, 2021; Poskanzer, Fang, Aglinskas, &
Anzellotti, 2021), we identify brain regions showing joint sta-
tistical dependence with multiple category-selective regions
(“multi-category dependence”). We find evidence for multi-
category dependence across all four categories in the angular
gyrus (AG), as well as a cortical map of areas showing joint
dependence with different subsets of categories.

Methods and Results
Data, preprocessing, regions of interest

We analyzed fMRI data from 14 participants watching the
2h movie stimulus ‘Forrest Gump’ (from the publicly available
studyforrest dataset: (Hanke et al., 2016)). Using the cat-
egory localizer provided with the dataset, in each individual
participant we identified: face-selective ROls (occipital face
area - OFA, fusiform face area - FFA, face-selective poste-
rior superior temporal sulcus - face STS), body-selective ROIls
(extrastriate body area - EBA, fusiform body area - FBA, body-
selective posterior superior temporal sulcus - body STS),
artifact-selective ROls (medial fusiform gyrus - mFus, middle
temporal gyrus - MTG), and scene-selective ROls (transverse
occipital sulcus - TOS, parahippocampal place area - PPA,
retrosplenial cortex - RSC). Each category-selective ROI con-
tains 80 voxels with the highest t-values for the contrast be-
tween the preferred category and the other categories, with
the restriction that they fall within a 9mm radius from the peak.
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MVPN: Multivariate pattern dependence network

Most research on the interactions between brain regions fo-
cuses on the mean response within each region, but important
information encoded in multivariate patterns could be lost by
spatial averaging. Multivariate pattern dependence (MVPD)
leverages multivariate patterns, achieving greater sensitivity
than univariate methods (Anzellotti et al., 2017). In this study
we used a recent, improved version of MVPD, based on artifi-
cial neural networks: MVPN (details in (Fang et al., 2021)).
The networks received multivariate patterns of response in
one or more sets of category-selective ROls as inputs, and
were trained with a leave-one-run-out procedure to predict the
patterns of response in the gray matter. The voxel-wise pro-
portion of variance explained between the predictor regions
and each voxel in gray matter was calculated as a measure-
ment of the multivariate statistical dependence.

Multi-category dependence

To better understand multi-category dependence, we aimed
to find brain regions where the responses are predicted signif-
icantly better by MVPN whose inputs including all category-
selective ROls, than just the ROIs for the one single best-
predicting category in isolation. Such regions reflect unique
contributions from multiple category-selective ROls to the
overall statistical dependence. We developed a three-step
“combined-minus-max” analysis: (1) we used MVPN to cal-
culate the variance explained in each gray matter voxel with
each of the four category-selective ROIs (face, body, artifact
and scene) individually (“single MVPN”); (2) we calculated
the variance explained using all four category-selective ROls
jointly as inputs (“combined MVPN”); (3) we calculated for
each voxel the difference in variance explained AvarExpl be-
tween the combined MVPN on hand, and of the single MVPN
of the best-predicting category on the other hand.
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Figure 1: Multi-category dependence. AG region show-
ing multi-category dependence across all categories (p<0.05
FWE corrected) in aqua, areas showing dependence for cate-
gory pairs (p<0.05 FWE corrected) shown as outlines.

To establish the robustness of results across network ar-
chitectures, we computed AvarExpl with three architectures:
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one-layer feedforward network (1Layer), five-layer feedfor-
ward network (5Layer), and five-layer feedforward network
with dense connections (5Layer Dense). For each network,
we used a group-level analysis to identify voxels in which
AvarExpl was greater than zero (p < 0.05 corrected with
SnPM). We also performed a control analysis with randomly
selected non-overlapping V1 voxels as ROls, to rule out the
possibility that positive values of AvarExpl might be driven by
the larger number of input voxels in the combined model.

We found that in a region within left AG (Fig.1B, peak MNI: -
57,-69, 21), AvarExpl was significantly greater than zero for all
MVPN architectures tested, while the control anaysis did not
show significant effects. AG has been previously found to inte-
grate information across multiple sensory modalities (Bonnici,
Richter, Yazar, & Simons, 2016), our results indicate that it
also encodes information across multiple object categories.

Further, we investigated brain regions that encode re-
sponses from specific subsets of categories, finding that left
AG region is surrounded by areas jointly encoding information
between scenes and each of the other three categories sep-
arately. A region in dorsal ATL showed multi-category depen-
dence for face-body, face-scene, and body-scene (Fig.1A).
Multi-category dependence was also observed in the left MTG
(Fig.1C) and in ventral occipitotemporal cortex (Fig.1D).

Discussion

Using MVPN, we identified multi-category dependence in
the left AG, as well as a cortical map of neighboring re-
gions encoding pairwise-category information. AG is a mul-
timodal integration area implicated in a variety of cognitive
processes - semantic and episodic memory, bottom-up atten-
tion, and combinatorial semantics. Our results directly demon-
strate the statistical dependence of AG responses on multiple
category-selective ROIls during movie watching. The cortical
map around AG is characterized by regions encoding scene-
selective responses with responses selective for one other
category — AG might integrate objects and their scene con-
texts to represent complex situations and events, in line with
the hypothesis that AG might contribute to event representa-
tion and might serve as a temporary buffer that integrates spa-
tiotemporal information (Humphreys, Ralph, & Simons, 2021).

Besides AG, we observed multi-category dependence in
other regions. Multi-category dependence does not occur at
a single centralized location, but at multiple cortical sites, that
might implement distinct mechanisms that contribute to dif-
ferent tasks. More work is needed to investigate what kind
of computations occur within these sites, and to determine
whether they use information about objects from different cat-
egories to generate representations of their relationships and
interactions.
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