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1 Introduction

Topography is a fundamental three-dimensional observable phenomenon for Earth and
environmental science and engineering. These data are collected from satellite, airborne, and
terrestrial platforms with technologies such as lidar, radar, sonar, and photogrammetry, with
increasingly finer resolutions, greater accuracy, and shorter repeat times. Understanding Earth-
surface processes requires the ability to discover, manage, share, and process this ever-growing
volume of topographic data. OpenTopography (OT—www.opentopography.org) democratizes
access to topographic data, processing tools, and knowledge, enabling discoveries and applica-
tions in surface processes andmany other disciplines. OT focuses on improved topographic data
access using best practices in cyberinfrastructure and geoinformatics. In this chapter, we review
scientific motivations for OT, focusing on geomorphology and surface processes and associated
broader impacts facilitated by open access to topographic data (especially high-resolution topog-
raphy (HRT); defined here as data <1 m/pixel) based on our experiences over the last decade
leading the OpenTopography project. Built originally to address challenges related to airborne
lidar point cloud data, OT, by fall of 2018, had more than a trillion points available on-demand,
and continues with regular additions of new data. In addition, OT also enables access to global
topographic data. Over the past decade, the OT community has grown to nearly 86,362 unique
users, who have run over 700,000 custom jobs, processing over 5 trillion points.

2 Scientific motivations for open access to topographic data

The availability of HRT and shallow-water bathymetry has been revolutionary for Earth
and environmental sciences and engineering (e.g., Carter et al., 2007; Glennie et al., 2013;
Meigs, 2013; Tarolli, 2014; Harpold et al., 2015; Jordan, 2015; Passalacqua et al., 2015;
Donnellan et al., 2017). These data are powerful tools for studying the Earth’s surface, its
vegetation cover, and the built environment. Typical surface processes act at fine spatial
scales (<1 m) to produce intricate landforms. HRTmeasures the three-dimensional geometry
of the Earth’s surface and overlying features at the appropriate resolution. Surface changes
due to erosion, transport, and sedimentation, as well as displacements due to earthquakes,
landslides, and volcanoes are often <1–10 m in magnitude. Temporal comparisons of HRT
enable scientists to quantify such changes in unprecedented ways that inform our under-
standing of surface processes.

The Landscapes on the Edge study (NRC, 2010) provides a clear articulation of research
needs in surface processes research. It presented a number of challenges, at least three of
which require HRT:

• How do geopatterns on Earth’s surface arise and what do they tell us about processes?—requires
that we can measure landforms (e.g., Perron et al., 2008; Ewing and Kocurek, 2010;
Fryirs, 2013; Pelletier, 2013) (Fig. 1). HRT enables measurements of these patterns at the
meter and finer scale over kilometers of length spurring the use of landscape metrics
to understand process (e.g., Passalacqua et al., 2010; Milodowski et al., 2015).

318 11. Zero to a trillion

http://www.opentopography.org


FIG. 1 Data holdings in OpenTopography (Fall 2018) include high-resolution lidar and photogrammetry point
clouds and rasters (above) and global rasters including SRTM and ALOS World 3D datasets available from both
browser and API/web services.
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• How do landscapes influence and record climate and tectonics?—requires access to HRT to
assess the balance between tectonic displacements and erosion and deposition (e.g.,
Frankel et al., 2007; Hilley and Arrowsmith, 2008).

• What are the transport laws that govern the evolution of the Earth’s surface?—needs topographic
parameters as rate controls (e.g., Dietrich et al., 2003; Roering, 2008; Hurst et al., 2013).
Differencing repeat measurements of topography helps to test predictions of erosion,
deposition, and mass transport rates (e.g., Young and Ashford, 2006; Wheaton et al.,
2010; Wang et al., 2011; DeLong et al., 2012) especially in the face of human landscape
impacts (e.g., Walter and Merritts, 2008).

Understanding how faults slip, meter-scale fault geometry, the balance between on-and-
off, fault deformation, and the initial modifications to rupture by surface processes are
informed by immediate post-earthquake mapping and differencing of topographic data
spanning the events (e.g., Hudnut et al., 2002; Borsa and Minster, 2012; Haddad et al.,
2012; Nissen et al., 2012, 2014; Oskin et al., 2012; Clark et al., 2017; Scott et al., 2018)
(Fig. 1). Our understanding of slip along the San Andreas Fault (SAF) system was
transformed studying B4 lidar topography data (Bevis et al., 2005) processed by OT (Zielke
et al., 2010, 2015; Salisbury et al., 2012; Gold et al., 2015). Photogrammetric analysis refined
the SAF slip history (Salisbury et al., 2018). Spectral and wavelet-based approaches offer
significant potential for scaling up across OT’s extensive active fault coverage (e.g.,
DeLong et al., 2010, Hilley et al., 2010, Sare et al., 2019).

The Critical Zone Observatories (CZO) study the Earth’s surface from the top of the canopy
to the bottom of the tree roots (Brantley et al., 2006; NRC, 2010, 2012). HRT motivates new
models that incorporate hydrology, sediment transport, and land cover at scales over which
the relevant processes are acting.

3 Broad impacts from openly available topographic data

Open access broadens the impact of increasing investments in topographic data by
expanding access and enhancing usability for communities beyond academic research
(e.g., educators, public agencies, and commercial sector) and applications (e.g., infrastructure,
sustainability, and hazards).

HRT data in the classroom address science standards (e.g., NRC, 2013) and enable Earth as
a system and technology/geodesy to be taught via active learning (Robinson et al., 2017). Data
cover places familiar to students, encouraging place-based learning (Semken, 2012), and 3D
remote sensing is of great interest to students (e.g., Reed et al., 2014). Fig. 1D shows how the
easily discoverable and accessible Indiana Statewide lidar data were used to 3D print amodel
of the Indiana School for the Blind & Visually Impaired campus for tactile exploration (3D,
2017). In January 2018 alone (!2000 total point cloud jobs) more than 200 were executed as
part of student tutorials, laboratory exercises, practicals, and self-teaching. Culminating sev-
eral years exploring HRT as an educational tool, Robinson et al. (2017) have demonstrated its
significant value for teaching Earth-science concepts. Motivated by undergraduate geosci-
ence textbooks, the US Next Generation Science Standards, and the Earth Science Literacy
Initiative, activities using HRT improve novice students’ ability to evaluate topography for
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geologic features and come to accurate conclusions about landscape evolution. The GETSI—
GEodesy Tools for Societal Issues (SERC, 2018) curriculum directs students to OT resources
for lessons on imaging the signal of tectonics in the landscape.

Increasingly, national and regional governments are investing in large-scale HRTmapping
efforts. These programs are motivated by the proven return on investment that comes from
applications of HRT to infrastructure and civil engineering, urban planning, hazard mitiga-
tion, and public safety, and use in the private sector. In the United States, the US Geological
Survey 3DEP Program (USGS, 2018) partners with state and local agencies with a goal to col-
lect consistent HRT data across the whole lower 48. The US Interagency Elevation Inventory
(NOAA, 2018) shows growing HRT coverage for the United States, achieved through the
3DEP program as well as efforts by other state and local agencies. Similar national invest-
ments in HRT data collection are occurring across the globe. Numerous European countries
are engaged in national HRT mapping programs (e.g., Environment Agency UK, 2015; Swiss
Office of Topography, 2018), as well as Asia (e.g., PHiL-LIDAR 1, 2018), and Oceania (e.g.,
LINZ, 2018). A considerable challenge related to this large scale, HRT mapping effort is
the variable access to these datasets (Isenberg, 2016). In many cases, point cloud data and/
or derivative products are available for online download via simple ftp or http file servers.
In very few cases, tools to make data easier to discover, access, download, and process are
provided.

Lidar is also recognized as an essential element of remote sensing of ecosystems with
fundamental value in characterizing their 4D changes and applications to sustainability.
The National Ecological Observatory Network’s (NEON) Airborne Observing Platform
(AOP) is collecting data annually over NEON field sites to “... build a robust time series of
landscape-scale changes in numerous physical, biological and biochemical metrics” (NEON,
2018). Similarly, the Carnegie Airborne Observatory measures and monitors tropical forests
and their exploitation (CAO, 2018).

HRT data are also essential for responding to, and mitigating natural disasters, with
specific applications including hazard mapping and identification, and the rapid character-
ization of landscapes following landslides, earthquakes, volcanic eruptions, wildfires, and
floods. This includes the use of rapidly accessible, pre-event data and immediate collection
and dissemination of post-event data (e.g., Cowgill et al., 2012; Ekhtari and Glennie, 2017).
The data have great value for structural engineering in assessment and simulation of
collapsed buildings (Elberink et al., 2011; Ma et al., 2015) and liquefaction effects on critical
infrastructure (Bray et al., 2013).

4 OpenTopography overview and impact

OpenTopography focuses on improving topographic data access through best practices in
cyberinfrastructure and geoinformatics. This approach democratizes access to topographic
data and has enabled discoveries and applications in surface processes and many other dis-
ciplines (Figs. 1–6). An early tenet of OT was the colocation of data and processing services to
streamline access for nonexpert users ( Jaeger-Frank et al., 2006; Crosby et al., 2011). This “big
data” approach to data distribution began with airborne lidar data, but we now also include
topographic data from radar and photogrammetry at a range of scales.
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FIG. 2 OpenTopography global and high-resolution rasters. Shuttle Radar Topography (https://doi.org/10.5069/
G9445JDF) 30m per pixel hillshade on the left showing the eastern Transverse Ranges, Mojave Desert, and southern
Sierra Nevada of California. Inset at right shows high-resolution (0.5m/pixel) digital elevation model colored by
elevation (B4 project—https://doi.org/10.5069/G97P8W9T; the site is the Dragon’s Back Pressure Ridge—Hilley
and Arrowsmith, 2008). Fig. 3 location is the red box at the lower right.

FIG. 3 Log10 contributing area in the San Gabriel Mountains, California (see Fig. 2 for location) computed using
TauDEM in OpenTopography on the ALOSWorld 3D data (https://doi.org/10.5069/G94M92HB) (Tadono et al.,
2014; Takaku et al., 2014).
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The underlying cyberinfrastructure platform that powers OpenTopographywas originally
prototyped as part of the National Science Foundation (NSF)-funded GEON Project (Seber
et al., 2003) as an R&D application called the GEON LIDARWorkflow (GLW) ( Jaeger-Frank
et al., 2006; Crosby et al., 2011). The success of the GLW illustrated the need for a production-
quality online portal to serve the rapidly growing community of Earth science.

Now a decade old, OT is an example of early investment in domain cyberinfrastructure
(Keller et al., 2005; Crosby et al., 2011) evolving to become a production data facility upon
which rely researchers, educators, and many others (Fig. 7). On the cyberinfrastructure side,
OT works in a “development and production” mode rather than in pure research and devel-
opment. This enables the deployment of stable and reliable systems as well as their regular
enhancement and renovation to meet the evolving demands of the user community.

Today, OT supports a broad interdisciplinary user base in academia and beyond. As of fall
2018, over 28,300 users have registeredwith OT, and 86,362 unique users have processed data

FIG. 4 AucklandNewZealandhillshadedDSMabove and point cloud visualized in aweb browser below (https://
doi.org/10.5069/G9KW5CZ5) with approximately the same extent and with the point cloud viewed from the south
(bottom edge of DSM). OT provides interactive 3D visualization of point cloud data powered by Potree (2018) and
Entwine (2018) open-source tools.
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via OT. OT holds 283 lidar point cloud datasets covering 236,364km2. More than a trillion
points are available for on-demand processing and download. In 2017, 66,061 browser-based
jobs were run with another 33,344 jobs via API calls. These computations and analyses
support substantial academic, educational, and applied use and reuse of the OT data hold-
ings. At least 290 peer-reviewed articles along with numerous theses and other publications
have been produced using OT resources (Fig. 8). These include academic works in Earth
science, ecology, hydrology, geospatial and computer science, and engineering.

OT’s hosting policy requires that data be Earth science-related, research-oriented, in the public
domain without restriction on use or redistribution, and fully documented and meaningfully

FIG. 5 View of SfM photogrammetry-derived (UAS platform) drone point cloud from Tecolote Volcano, Pinacate
Volcanic Field, Sonora, Mexico (https://doi.org/10.5069/G9028PFR;"113.360278° long, 31.877148° lat). The data are
visualized usingOT’s Potree and Entwine-enabled point cloud viewer. (A) Colored point cloud by elevation. (B) Point
cloud colored by RGB of the photogrammetric point cloudwith a topographic profile drawn (below) using the Potree
viewer.

324 11. Zero to a trillion

https://doi.org/10.5069/G9028PFR
https://doi.org/10.5069/G9028PFR


FIG. 6 SfM-derived point cloud delivered from the OpenTopography Community Dataspace. (A) Location of
the survey: Faraglione rock outcropping, Vulcano Island, Italy (https://doi.org/10.5069/G9WD3XPD). (B) Single
UAS-derived image used as part of the photogrammetry and downloaded from the OT community dataspace.
(C) Point cloud rendered using CloudCompare (https://www.danielgm.net/cc/).
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FIG. 7 OpenTopography system architecture consists of three tiers—application, middleware services, and
infrastructure (Krishnan et al., 2011).
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organized. OT hosts data collected by many partners. OT is the official distribution pathway
for all US NSF-funded data collected by the National Center for Airborne Laser Mapping
(NCALM), including EarthScope (Prentice et al., 2009), the B4 southern SAF dataset (Bevis
et al., 2005), and the CZO. Of the 196 NCALM datasets hosted by OT, many are graduate
student seed awards, covering many geologic domains and landscapes. OT services are iden-
tified in NSF proposal Data Management Plans, and as online repositories (e.g., Geophysical
Research Letters).

As a cyberinfrastructure-enabled facility with a large set of users, it is possible to measure
the growth and style of access to the various OT assets. We have seen exponential growth in
users and jobs.We averaged 425 new registrations per month, and the total number of unique
users (including unregistered guests) doubled from 31,291 to over 62,971 from 2015 to 2017
(Fig. 9). With the growth in OT users and data, a corresponding increase has occurred in
processing service use (Fig. 9). Since 2009, users have run 330,232 custom, point cloud,
and raster jobs via the portal, processing over 5 trillion points. An additional 394,369 jobswere
invoked via global dataset APIs (OT, 2018).

While the greatest computational and data discovery challenges arewithHRT point clouds
and derived data, OT’s global raster services have seen considerable use. We made available
the workhorse 30 and 90m/pixel Shuttle Radar Topography Mission (SRTM) (Fig. 2; Farr
et al., 2007), the ALOS Global Digital Surface Model (Fig. 3; Takaku et al., 2014, Tadono
et al., 2014), and the Global Multiresolution Topography Data Synthesis (Ryan et al., 2009).
These datasets have been accessed more than 927,000 times. Their ease of access has been
valuable for InSAR topographic correction (Baker et al., 2014), base maps for study context,
and topographic analyses examining questions such as drainage basin disequilibrium
(e.g., Beeson et al., 2017).

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

Cumulative publications

Remote sensing/GIS Total publications by Earth Science discipline
Geography

Hydrology
Earthquakes
and faulting

Ecology

Geomorphology

Computer science/
Cyberinfrastructure
Earth/Natural sciences

100 200 300

FIG. 8 Cumulative publications produced by OpenTopography users through the first quarter of 2018. The 291
publications include Earth/Natural sciences (breakdown by subdiscipline in the pie chart) as well as remote sens-
ing/GIS and computer science/cyberinfrastructure attesting to the value of the easily accessible data products.Y-axis
is the calendar year.
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The OT cyberinfrastructure is a robust and highly scalable, multitiered, service-oriented
architecture for efficient access to topography data and processing tools (Krishnan et al.,
2011). It includes an infrastructure tier, a middleware services tier, and an application
tier (Fig. 7). The infrastructure tier comprises the data management systems for managing
the HRT data and compute resources for processing and visualization. The modular
services-oriented nature of the cyberinfrastructure also enables integration of distributed,
high-performance computing systems (e.g., NSF XSEDE resources) that ensures that the
growing demands of the research community are met—including demands for more
compute-intensive algorithms (e.g., spectral analysis of topography, effective energy and
mass transfer, extraction and analysis of hydrologic information); growth in overall dataset
sizes and individual job sizes; and the growth of the user community itself. Access to the
infrastructure tier is provided to users via the middleware services tier which primarily
comprises the workflow orchestration, application program interfaces (APIs), and other data
discovery services, among others. The scientific applications running on both dedicated OT
commodity clusters and HPC resources are wrapped as web services and made accessible
within the OT workflow as data and processing resources. External projects can also access
data and processing tools via themiddleware services tier. For example, the CyberGIS project
(Wang et al., 2013) uses OT web services in its Viewshed Analysis application. Similarly,
the NASA-supported Seamless SAR Archive system (SSARA, Baker et al., 2014), as well as

FIG. 9 OpenTopography usage sta-
tistics as of the end of 2017. Over 62,971
unique users have run custom jobs
(20,621 registered users+guests) (top
plot). 2016 and 2017 saw more than
4700 new registrations per year (bars).
Some 66,061 processing jobs were run
via the web portal (browser) in 2017
(bottom plot bars left axis scale). The
year 2016 was an unusual time for
API access with heavy use of global
rasters. Dataset growth has been
steady and was nearly 400 (right axis
scale).
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third-party applications like TopoToolbox (Schwanghart and Scherler, 2014), access global
topographic data in OT via RESTful API. Most users access data and processing via the
OT portal in the application tier. A robust interface guides users through data selection,
processing, and parameterization. The portal also includes the capability for users to perform
in browser visualization of their subsetted point cloud data. OT has developed a “Community
Dataspace,” a service built on a low-cost storage cloud to make it easy for researchers to
upload, curate, annotate, and distribute their datasets (e.g., Fig. 6). The system’s ingestion
workflow will extract metadata from data uploaded; validate it; assign a digital object iden-
tifier (DOI); and create a searchable catalog entry, before publishing via the OT portal.

OT also employs a number of tools and technologies to ensure the broad discovery of its data
holdings. Datasets in OT enforce the ISO 19115 (Data) metadata standard and are assigned
DOIs for persistence and citation. OT also implements an Open Geospatial Consortium
(OGC)CSW interface (Catalog Service forWeb) that allowsmetadata to be easily federatedwith
other geoscience catalog services like Data.gov and Thompson Reuters Web of Science. Addi-
tionally, the schema.org metadata standard implementation at the dataset level improves the
discovery of datasets on the internet. The combination of federated catalogs and schema.org
markup standards enables wider discovery of the OpenTopography data catalog (including
the Community Dataspace datasets), making these data an asset that can be used and reused.

5 OpenTopography partnerships

OT is built on strong partnerships with data providers who value OT’s cyberinfrastructure
and community to increase the impact of their HRT data investments. As a testament to OT’s
success, numerous entities (inc. NCALM, the CZOs, and state and regional agencies) rely
solely on OT for online data distribution. Many of these partnerships are codified as
Memoranda of Understanding, or through Service Agreements (SA).

In addition to data funded by the US NSF Directorate for Geosciences, data in the OT
catalog have been collected by NEON, NOAA, NASA, US Bureau of Reclamation, USGS,
BLM, USFS, National Park Service, Oregon Department of Geology and Mineral Industries,
the states of Utah and Indiana, Tahoe Regional Planning Authority, Teton Conservation
District, the World Bank, Land Information New Zealand, Geological Survey of Israel,
Sonoma County, and Pacific Gas & Electric.

One key to OT’s successful partnerships with data providers is ensuring that each dataset
is appropriately “branded,” giving full credit to the dataset funder, collector, and project part-
ners. A dashboard allows providers to report real-time usage statistics for OT hosted datasets
including a number of unique users, jobs submitted, points processed, and user domain
(e.g., ucsd.edu).

6 Lessons learned and challenges for supporting open access to topographic data

Advancing research in geomorphology requires strong coupling between the development
of underlying process rules and testing them with observations in an open scientific ap-
proach. Innovation in process understanding and in observational constraints can come from
the exploration of patterns in easily accessible data. As OpenTopography has evolved and
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contributed to geomorphic research by enabling access to a range of topographic data prod-
ucts for a broad community, we have monitored and responded to the user needs to refine
OT. As a consequence, a number of lessons and challenges of potentially wide interest
associated with science infrastructure are evident.

By the late 1990s, lidar technology for airborne, mobile, and terrestrial scanning had ad-
vanced sufficiently that it becomes widely available to industry and academia (Glennie
et al., 2013). The oldest datasets in the OT holdings were collected in 2003: Northern San
Andreas Fault, CA (https://doi.org/10.5069/G9MW2F2H) and West Rainier Seismic Zone,
WA (https://doi.org/10.5069/G9CC0XMC) with USGS and NASA support. The 2005 collec-
tion of the B4 dataset (Bevis et al., 2005) which scanned the southern SAF system (Figs. 1 and
2) built on another fault scanning, for example, of the 1999 Hector Mine earthquake rupture
(Hudnut et al., 2002). Distribution of the B4 dataset with on-demand point cloud subselection
and computation of DEMs and other derived products was an immediate need addressed by
OT (as of this writing, nearly 2200 unique users had run 8800 custom point cloud processing
jobs on the B4). The enthusiasm for airborne laser-scanning data and the facility for its col-
lection and use in Earth science research in the United States were largely addressed by
the National Center for Airborne Laser Mapping (e.g., Carter et al., 2007; Glennie et al.,
2013). As the primary data distribution pathway for NCALM data, OT has been able to help
make these data broadly accessible and the OT holdings and usage grew, tracking a boom in
data acquisition. Important additional partnerships are reviewed below.

The emergence of structure-from-motion (SfM) photogrammetry and low-cost, unmanned
aerial systems (UAS) (James andRobson, 2012;Westoby et al., 2012; Fonstad et al., 2013; Bemis
et al., 2014; Johnson et al., 2014) has enabled researchers to produce their ownHRT data (Figs.
5 and 6). This explosion in researcher-generated, “longtail” (Heidorn, 2008) topographic
datasets poses a new set of data management and curation challenges. These valuable data
must be archived for reproducible science and broader reuse. We have begun to address this
need with the OT Community Dataspace (http://opentopo.sdsc.edu/dataspace/datasets),
which is a service built on the low-cost academic storage cloud at San Diego Supercomputer
Center (SDSC). It allows researchers to upload, curate, annotate, publish, and distribute point
and raster data products produced from small aerial and terrestrial lidar and photogramme-
try surveys (see Fig. 6 as an example). These data are thus published and receive a DOI for
data citation.

The distribution, processing, and analysis of topographic data (HRT in particular) are com-
putationally challenging given their heterogeneity and broad utility in science and engineer-
ing, yet the problem is tractable given their semantic simplicity. OpenTopography developed
early on to fill a need to make HRT datasets such as those along the SAF discoverable,
subsettable, and available in common usable formats (DEMs and point clouds). While easing
the technical burden and thus contributing significantly early on to studies of the topography
along the SAF, this service also helped to make OT (and its prototype the GLW) visible to a
growing and engaged user community.

Having a genuine connection between domain scientists (in particular, geomorphologists)
and computer scientists helped to ensure that what was built was immediately useful. For
example, lidar data provide dense, heterogeneous point clouds sampling the terrain, vegeta-
tion, and the built environment. However, many geomorphologists need to analyze topogra-
phy as rasters (DEMs). Efficient computation of DEMs from lidar point clouds in 2005
was challenging so our geomorphologist team prototyped a local gridding algorithm that
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was then adapted by the computer science team into a stable, scalable software application
that ran for many years in the OT productions system (Kim et al., 2006; P2G, 2018), now
available as an open-source tool described at https://opentopography.org/otsoftware/
points2grid. We also realized that users were interested in multiple levels of data products:
some wanted access to the point clouds and detailed metadata, whereas others wanted stan-
dard DEM products. Further, imagery derived from the lidar data, such as hillshades that are
easily browsable as kmz files in Google Earth enables easy exploration (Crosby, 2012). In
another example, drainage network extraction on DEMs is computationally intensive and
adding them to a processing chain in OT that was already running on high-performance
computing resources made sense (e.g., Fig. 3). Adapting research software to production-
computational environments is challenging.Wewere also successful in implementing hydro-
logic terrain analysis on high-resolutionDEMs by deploying the hydrology package TauDEM
(Fig. 3; Tarboton, 2005) on SDSC’s Gordon-Simons supercomputer (dedicated I/O node and
16 compute nodes) (Youn et al., 2014; Gordon, 2018). This service now runs in production
mode on SDSC’s latest Comet supercomputer cluster. Since its release in June 2014, the
TauDEM suite of hydrology tools on the Gordon-Simons HPC system has been used 18,830
times.

The strong domain–cyberinfrastructure partnershipwith a priority on user-friendly imple-
mentation has enabled broad access to the OT platform. This infrastructure has benefited
from the SDSC production environmentwith its relative low-cost hosting, robust and fast net-
work, and storage infrastructure. OT is a highly scalable and well-instrumented system. We
are aware of technical problems and outages before our users are. We maintain frequent
“agile” software releases and quickly resolve problems and enhance functionality via regular
system updates. This approach has made a difference between a satisfied user community
and one that is delighted to use the system and eager to support it.

OT maintains high standards for metadata and best practices in data management proce-
dures to ensure that the OT collection has persistent value and is useful for the long term. The
OT data-ingestion process includes file-level checks on data quality, coordinate systems, and
attributes. Where possible, we recognize separately the funders, collectors, and providers of
datasets. Data publication through the use of DOIs ensures that the record of the data is per-
sistent. It also allows us to expose the dataset as an entry in the OT OGC Catalog Service
(CSW—ISO 19115 Data metadata standard)—the CSW endpoint (CSW, 2018) is federated
by Data.gov, EarthCube CINERGI, and Thomson Reuters Web of Science. Thus, these open
data are widely discoverable and citable.

Cultivating and supporting a user community for OpenTopography has been a priority.
Although we have not directly interacted with the 86,362 unique users running jobs over
the last decade, OT provides “helpdesk” support via email and social media, and we have
taught many short courses and contributed to numerous workshops. Social media, and
regular News and Blog posts on the OT website engage the OT community. OT’s social
media presence is a key pathway to users globally, promoting our activities to the commercial
sector and the public. OT was an early geoscience leader in the use of social media (for
example, we joined twitter in 2009).We found that the different platforms addressed different
audiences. For example, our Twitter followers are a wide range of academic and industry
users and collectors of HRT data. Our OT social media experience was an inspiration for
other large-scale science community efforts (e.g., EarthScope, Bohon et al., 2013). OT short
courses focus on undergraduate and graduate students and early career professionals
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(https://opentopography.org/community/workshops). Our first short courses were in 2007.
Sharing practical skills and knowledge for how tomakeHRT data useful for numerous Earth-
science applications was attractive to the participants. Numerous participants in the early
course andworkshops are now influential in academia and industry. All short course training
materials are available online and are a valuable knowledge base resource. In 2017 alone,
11,182 unique users downloaded 70,594 workshops and educational resources. In 2017, 7
courses engaged over 125 participants. The top 5 video tutorials have been viewed nearly
140,000 times on OT’s YouTube channel which has over 1000 subscribers (YouTube, 2018).

Uncertainties in funding levels and competition for tight funds with other large-scale re-
search infrastructure in the United States have been a major challenge for OT. Given the open
data ethos and Earth-science applications, OT’s support by the US NSF has been greatly ap-
preciated. In times of sustained flat government budgets for science, renewal proposals, and
steady funding have been possible. However, we also recognize the wide global interest and
the broad applications beyond Earth science and into education and commercial realms.
Balancing open access with the real costs of maintaining the cyberinfrastructure, data storage
and transport, supporting staff, providing quality user support, and new developments are
difficult. Open access to datameans free data tomany. At a basic user level that is sensible, but
as mentioned above in the partnerships section, SA with data providers have generated ad-
ditional revenue and have enabled OT to deliver specific large data collections by leveraging
NSF’s investments to build and refine the platform (e.g., Indiana Statewide data—https://
doi.org/10.5069/G9959FHZ). Moving forward, we are exploring a diversified sustainability
model for OT that we hope will include ongoing academic funding from NSF, as well as
expanded collaborations with data partners, sponsorship, and potentially a fee-for-use for
specific new data access and processing features.

7 Outlook

Addressing the numerous evident opportunities in topographic data that we have
presented demonstrates an enhanced need for high-performance computing and services.
Plans for future development in OpenTopography can be described in two themes:

Theme 1: A cloud and HPC platform for scalability and sustainability

OpenTopography is a technology-driven data facility leveraging proven commercial
cloud platforms (e.g., Amazon Web Services—AWS) and the US NSF’s investments in
HPC resources via XSEDE to advance data and compute-intensive HRT-based, Earth science
research. The HPC-based implementation of Terrain Analysis Using Digital Elevation
Models—TauDEM and its popularity (17,054 jobs; Youn et al., 2014) demonstrate the power
of direct integration of HPC resources and data facility environments, as envisaged in the
National Strategic Computing Initiative (NSCI, 2015). By continuing to leverage XSEDE re-
sources, OT makes more compute-intensive algorithms (e.g., spectral analysis, differencing)
available to the user community. Cost-effective and scalable data management in the cloud
will be enabled by migrating our core OT infrastructure to the AWS cloud platform
where we can leverage capabilities such as auto scaling, elastic load balancing, and service
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offerings like AWS batch. OT data will be stored on the AWS S3 object storage cloud, where
it will be available via OT APIs for rapid access, experimentation, and large-scale computa-
tion. Researchers will have the ability to run custom computations, and test prototype
implementations of algorithms by spinning up an AWS EC2 compute instance or launching
their custom docker images on AWS batch and accessing OT datasets via OT’s S3 APIs. An-
other use case is a large one-time, Big Data computation. For example, the derivation of hy-
drologic channel representations for the entire state of Indiana, as part of the National Flood
Interoperability Experiment (Maidment, 2017) could be done from dedicated AWS EC2 in-
stances processing Indiana lidar data hosted on OT’s S3 storage. And, computations such
as that made possible by tools like scarplet (Sare and Hilley, 2018) run in the cloud achieving
important science results from large-scale analyses.

Theme 2: Enabling community innovation

Algorithm and tool development to extract information from large volumes (billions to tril-
lions) of point cloud data is an area of active research in academia and in the open-source
community. We expect to integrate new processing and analysis capabilities and provide
foundational infrastructure such as cloud-hosting and API-based data access to enable re-
searchers to more directly process and analyze the ever-growing collection of data available
via OT. Multitemporal topography allows us to quantify surface change and deformation
from earthquakes, volcanic eruptions, landslides, and flooding events from topographic data
spanning the event of interest. We are implementing topographic differencing—both vertical
(e.g., raster-based subtraction—running in OT production in Fall 2018) and 3D deformation
calculations performed with the Iterative Closest Point algorithm (Besl and McKay, 1992; see
alsoNissen et al., 2012, 2014; Scott et al., 2018).With newer datasets being delivered in the LAS
1.4 specification, we plan to migrate to the PDAL (Point Data Abstraction Library; https://
pdal.io/) open-source project for data read and write, filtering operations, and more
processing options. API-based data access and tools such as PDAL’s filters allow users to
compose custom operations, enabling large-scale fan-out processing across OT data holdings.
We also recently implemented web browser-based visualization of point cloud datasets
utilizing Entwine (built on PDAL) and Greyhound open-source libraries. Public APIs exist
for global datasets in OT, but access to high-resolution data and software services are
limited to collaborative projects like CyberGIS (Padmanabhan et al., 2013) and SSARA
(Baker et al., 2014).

IncreasedAPI-based access to data and processing tools will provide a flexible platform for
researchers to design complex data access and processing workflows. Workflow capability
enables researchers to independently create custom processing pipelines without relying
on OT software developers to produce these tools for them. We plan to support scientific
workflow tools starting with Kepler (2018) and Apache Taverna (2018). Kepler is an open-
source scientific workflow application designed to help researchers create, execute, and share
models and analyses across a broad range of scientific and engineering disciplines. Kepler
provides a graphical user interface that allows users to select and connect pertinent analytical
components and data sources called “actors” to create a scientific workflow, an executable
representation of the steps required to generate results. We plan to develop custom actors
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for OT data and processing services. These actors can be combined with existing GIS actors
built with open-source libraries, e.g., GeoTools (2018) and GDAL (2018), to construct analyt-
ical pipelines for OT datasets. The growing popularity of open-source computational note-
books and their widespread adoption by the academic community is driven by the ability
to easily document and share reproducible analysis. They can be implemented to access
OT data and services via enhanced APIs.

8 Conclusions

We are moving into a period of ubiquitous point clouds and 3Dmodels (Oskin et al., 2015).
Autonomous navigation produces massive 3D data. Many cities, regions, and countries are
working to produce and use 3D data for a vast array of applications, including understanding
surface processes and anticipating and recovering from natural hazards. Along with orga-
nized mapping and data collection, more haphazard 3D data are collected and produced
(e.g., using internet photo collections for SfM analysis, Snavely et al., 2008). Such 3D data have
hardly been exploited for surface processes and hazard assessment and offer a significant op-
portunity. However, to capitalize on the opportunity, we need open access and cyberinfras-
tructure such as OpenTopography to support appropriate data management including
archive, discovery, rapid query, data handling, preprocessing, and differencing.

We envision a near future in which the global coverage of 3D point clouds (topography,
vegetation, built environment, and some bathymetry) meter or finer resolution from many
heterogeneous sources (Schumann and Bates, 2018) can be made discoverable, queryable,
and processable, including differencing, making it 4D. Such a federation of data distribution
into a single interface will enable a wide range of surface-process science. Not only will it
allow for the 3D characterization of surface features (see science motivations above) but also
directly measuring surface change will provide important new constraints process rates and
enable event-driven investigations.
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