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Abstract—3D models are widely used in computer graphics,
computer vision, and robotics applications. Multiple hardware
accelerators are used for running 3D model related applications,
since the computations required for models in 3D space are an
order of magnitude higher than the computations in 2D space.
Due to the high computation intensity of 3D model workloads,
using large 3D model datasets for performance characterization
is not a feasible choice during accelerator design. Representative
subsets are widely used to save the execution or simulation time,
e.g, ModelNet10, a subset of ModelNet40, is widely used in the
machine learning (ML) domain to save training and inference
time. However, this subset is picked by programmers from a
software and application perspective.

In this paper, we deploy statistical analysis based methodolo-
gies to guide the identification of hardware-aware representative
subsets, which can maintain higher performance accuracy and
achieve larger execution time savings with respect to subsets
picked by software programmers. We believe that the method-
ology proposed in this paper can help hardware architects and
engineers design efficient graphics or ML accelerators rapidly.

I. INTRODUCTION

3D models are widely used in today’s multi-media devices
and applications. In CAD (Computer Aided Design) domains,
3D models can be the input for devices like 3D printers. 3D
models can also be edited in CAD softwares like Autodesk
AutoCAD, for industry and architecture designs. Intensive
interactions between 3D models exist in video games, which
is a sub-discipline of computer graphics. Real scenes are
abstracted as 3D models in the field of AR (Augmented Real-
ity) and VR (Virtual Reality). In addition to these traditional
fields, 3D models are also used in ML (machine learning)
applications, including PointNet [19], PointNet++ [20], O-
CNN [25], and PointCNN [12]. These neural networks take
the points in 3D models as inputs and extract features of each
model for shape classification and segmentation.

In computer graphics and other solid modeling applications,
3D models are usually described as polygon meshes [4]. In a
polygon mesh, each point of the model is allocated with spe-
cific coordinates, resulting in intensive arithmetic operations
when processing large 3D models. Considering the potential
computations between pairs of points, the time complexity
could be O(|V'|?). |V| represents the number of points, and
modern 3D model could contain thousands of points, which is
an order of magnitude higher than 2D models [14]. As a result,
efficient hardware accelerators with high performance and low
energy consumption have been developed in a lot of domains,

including VR [28], 3D rendering [27], 3D perception [29],
and visualization [11].

Considering the high-intensity computations, when devel-
oping hardware accelerators, the time to run simulations on
the entire dataset can be prohibitively long, forcing a selection
of one representative subset [17]. In Tigris [29], only the first
11 sequences of the entire dataset were used in the evaluation
experiments. ModelNet10 [26], a subset of ModelNet40, is
also commonly used in the ML domain to save both training
and inference time. However, a dataset thus chosen may not
be the right dataset for hardware accelerator design because
the dataset may not exercise all hardware features like cache
behavior, compute unit utilization, etc, and may not expose
all the performance bottlenecks. For example, ModelNet10
is chosen by programmers from a software and application
perspective. This subset can maintain the recognition/classi-
fication/segmentation accuracy compared to ModelNet40 in
software applications but cannot guarantee representativeness
in hardware performance.

3D models cannot be selected arbitrarily when charac-
terizing workloads or designing hardware accelerators. For
example, in 3D video games (computer graphics domains),
when processing the collision detection between different
objects, the computing intensity for models with complicated
surface is higher than models with simple surface. In the field
of visualization [11] and 3D model recognition [25], octrees
are widely used to group adjacent nodes or extract the surface
of the model to shrink the computation. With a balanced
octree, it is easier to achieve better performance in hardware
accelerators like GPUs. Computations are evenly distributed
to each PE (Processing Engines) inside the accelerators,
which helps avoid hardware resource under utilization. To
guide selecting a hardware-aware representative subset of 3D
models, a rigorous methodology is required that would enable
rapid and efficient design of accelerators.

To that end, the following are the contributions of this
paper:

e« We characterize a popular graphics dataset used for
robotics, AR/VR and machine learning applications
called ModelNet40, and create a hardware-aware rep-
resentative subset, called ModelNet7H, for GPU explo-
rations.

o We characterize the performance on three existing GPU-
CPU hardware platforms that can help guide architects



and designers to efficiently design future architectures.

« We use multiple workloads (two non-ML based and two
ML based) to compare the difference between subsets
selected from a software/hardware perspective.

o Case studies are designed for the two ML workloads, to
show how batch size and hardware platform could affect
the performance.

« We compare the difference between ML and non-ML
workloads by analyzing the raw performance metric
values.

II. BACKGROUND

When applications expand from 2D space to 3D space,
the computing intensity increases by orders of magnitude.
The time for running such 3D applications also increases
due to the high memory and computation cost [26], [13].
Both prototyping on cycle-accurate hardware simulators and
characterization on real hardware platforms suffer due to the
single-thread execution limitation of simulators [3] and limited
numbers of hardware counters on real platforms. As a result,
in performance related studies, a subset is usually used to
reduce profiling or simulation time [17].

The methodology for identifying the representative subset
we use in this paper is different from the one used in
traditional benchmark suites, like SPEC [16], [17]. In SPEC,
the performance of each workload is either independent of the
input size or linearly correlated to input size. In other words,
if the input size is doubled, the execution time should increase
to 2x correspondingly, assuming the same cache and control
behaviors. As a result, prior works focus on the ‘hot’ regions
(‘hot’ regions are the representative sections of a program,
which could reveal bottlenecks with a shorter execution time,
e.g., simpoints [23]) of the program itself instead of the inputs.

In this paper, we focus on the ‘hot’ regions of the 3D
model input datasets instead of the complied binaries. Most
3D model based algorithms are heuristics and the program
runtime behaviors cannot be predicted without the input
information. The behavior of the branch predictor, prefetcher,
and cache could differ dramatically when facing different
inputs, like sparse models versus dense models, or models
with smooth boundaries versus irregular boundaries. We group
models from a hardware perspective and demonstrate how
each group differs from each other.

III. DATASETS AND WORKLOADS

To support 3D applications, large 3D datasets are developed.
ModelNet40 [26] is a comprehensive clean collection of 3D
CAD models developed by Princeton, which contains 12,311
3D CAD models belonging to 40 unique object categories.
In this paper, we focus on this dataset to demonstrate the
workflow of our methodology. We consider four (two non-
ML and two ML) open source workloads, which can take
ModelNet40 as inputs, to characterize the performance on
hardware.

Non-ML Workloads We use two workloads in the point
cloud library (PCL) [22]. PCL is a large scale, collaborative,

and open source project for 2D/3D processing, and is widely
used in the robotics community. In PCL, 3D models are
usually stored in kdtree or octree data structures for better
memory efficiency, query speed, and structural simplicity,
which are commonly used in graphics [8], machine learn-
ing [25], and HPC domains [5]. PCL has GPU support, and
we characterize the following two fundamental tree based
algorithms.

1) Radius Neighbor Search: Radius Neighbor Search is
a variant of the k-nearest neighbor search problem [2]. It
would require a target point array, a search radius, and
a maximum number of answers. The octree building and
neighbor searching are done by separate kernels. The tree
building kernel takes a point cloud (one pcd file) as input.

2) Segmentation: 3D point cloud segmentation is the pro-
cess of classifying one point cloud into multiple homogeneous
regions, the points in the same region will have the same
properties [15]. In PCL, the Segmentation takes a point cloud
as input and the computation kernels follow the same pattern
as the Radius Neighbor Search.

ML Workloads We also include two state-of-the-art 3D-
model based ML frameworks in our experiments. Different
from non-ML workloads, ML workloads usually have two
phases, training and inference. Inference is usually performed
on edge devices and is more common in daily life scenarios.
Unless otherwise specified, we consider only inference in
this paper. In Section VII-B, we enhance our evaluation by
considering Training in a case study.

3) PointNet: PointNet is a uniformed architecture that can
perform object classification, part segmentation, and scene se-
mantic parsing on 3D models. The basic PointNet architecture
consumes original point clouds as input and only uses multi-
layer perceptron (MLP) and max pooling layers for inference.

4) O-CNN: O-CNN is an octree based CNN for 3D shape
analysis [25]. O-CNN first abstracts the 3D models using
the octree data structure. Then back-end CNNs will only
perform operations on octrees, which depict boundaries of
each 3D model, rather than the entire model. Therefore, the
computations in O-CNN will shrink dramatically compared
with the voxel-based 3D CNNs [26].

IV. CHARACTERIZATION METHODOLOGY
A. Dataset Granularity

The ModelNet40 dataset has 12,311 models that are or-
ganized into 40 categories. In each category, a single model
can also be accessed arbitrarily. We will analyze the dataset
based on two levels of granularity, the coarser granularity
(one entire category is considered as one element) and the
finer granularity (one single 3D model is considered as one
element).

We use the coarser granularity in the two ML workloads,
since inputs are usually processed in batches in ML. For
example, 256 images are processed in one batch in ResNet [9]
and 32 3D models are processed in one batch in O-CNN [25].
As a result, GPU resources can be fully utilized since inputs



TABLE I: Characterization metrics

TABLE II: Hardware configurations

q q Normalized Platform Name Host Memory
Categories Metrics . -
Unit GPU GTX 1080Ti Xeon E5-2620 11GB GDDR5X
GPU Xeon Platinum
CPI Cycle per instruction Per instruction GPU Tesla P100 8160 16GM HBM2
Read Bytes, Read Transactions, Write Per 1K . Xeon Platinum
Memory Bytes, Write Transactions instructions GPU Tesla V100 8160 16GM HBM2
. Control Ins, Bit Convert Ins, Load/Store CPU Xeon E5-2620 N/A 128GB DDR4
Inst Mix . . Percentage -
Ins, Floating Point Ins, Integer Ins CPU Xeon Platinum N/A 192GB DDR4
Utilization Control Flow FUs, Double Precision FUs, 0~ 10 8160
et Half Precision FUs, DRAM
CPU . .
- : — TABLE III: Loading factors of the top 3 metrics on the four
CPI Cycle per instruction Per instruction .
. Kernel Ins, User Ins, Branch Ins, Memory prlnCIPal components (O-CNN, P100)
Inst Mix . Percentage
Load Ins, Memory Write Ins
L1-dcache Misses, L1-icache Misses, LLC PC1 (0.471) PC2 (0.225)
Cache&TLB |y ses. iTLB Misses, dTLB Misses MPKI Metric Load Metric Load
dTLB_mpki 0.308 inst_fp 0.419
L1_dcache_mpki 0.306 inst_bit_convert -0.396
. b h di lel. T . inst_kernel 0.305 inst_control -0.379
In a batch are processed 1n parallel. In .Olll‘ experiments, we PC3 (0.116) PC4 (0.071)
use 32 3D models as the default batch size. Metric Load Metric Load
We use both coarser and finer granularity in the two non- dram_write_transactiony ~ -0.455 gpu_cpi -0.640
. . . N dram_write_bytes -0.455 dram_read_bytes 0.376
ML workloads. The computation intensity in ML workloads, inst_compute_Id_st 0453 dram,_read transactions 0376

especially CNNs [21], is usually higher than non-ML work-
loads. When non-ML based workloads are deployed in real
time systems, the latency instead of throughput is a more
important factor and inputs are usually processed one by one,
which is the case of the finer granularity [10]. Besides the
finer granularity, the coarser granularity can also be applied
in non-ML based workloads by aggregating the results of all
3D models in one category.

B. Performance Metrics

We characterize the workloads on the CPU-GPU hetero-
geneous system on both ISA and microarchitecture events.
There is a trade-off in the performance metrics selection. The
more metrics we use, the more accuracy can be obtained
for performance modeling with a longer profiling time. In
addition, there are also some architecture specific metrics, e.g,
AVX instructions, which does not exist in other platforms.
Inspired by prior works [16], [18], [7], we measured 25
metrics in total (details metrics listed in Table I).

For ISA characterization, we examine the instruction mix,
considering the potential large variance between different
3D input models. More control instructions are contained
in spare 3D models with irregular boundaries and more
computation instructions are included in dense 3D models
with smooth boundaries. We also include the CPI (cycles
per instruction) and utilization in our metrics. The batch size
of ML workloads affects the resource utilization drastically
and so, we characterize the performance on different batch
sizes. The memory behaviors also need to be monitored,
since the on-chip memory capacity is not enough to store the
huge amount of intermediate results generated in 3D model
applications [11]. The data movement between DRAM and
on-chip memory in GPUs, and Cache & TLB behaviors in
CPUs can reflect the memory behaviors.

C. Hardware & Software Configuration

To characterize the performance of the workloads for the
next generation accelerator chips, simulators and existing

hardware platforms are two available options. It is very diffi-
cult to directly deploy these workloads on simulators because
of missing support of ML frameworks and other graphics
libraries on simulation platforms. Instead, we use three state-
of-the-art GPU platforms (Nvidia GTX 1080Ti, Tesla P100,
and Tesla V100) for characterising these workloads. The CPU
hosts are Intel Xeon E5-2620 v4 and Xeon Platinum 8160. The
hardware configuration details are listed in Table II.

The performance on the next generation hardware can be
predicted using current existing platforms [30]. In this case,
we consider the E5-GTX and Platinum-P100 platforms as
existing platforms and consider the Platinum-V100 platform
as the next generation hardware. We used the characterization
results on the Platinum-P100 (Platinum-P100 is the default
platform if we did not specify) system for selecting the subset
of ModelNet40. We cross validate the results and also perform
several case studies on the Platinum-V100 system. A relative
old platform, ES-GTX, is used as the baseline machine, which
serves the same function as the Sun reference machine in
SPEC to help normalize the execution time [24].

We use the Linux perf [1] tool for collecting CPU mi-
croarchitecture hardware performance counters, and Nvidia
nvprof [6] for collecting GPU related events. We use Python
3.7, and Pytorch 1.6.0 for ML based workloads, GCC 7.3.0,
and PCL 1.11 for non-ML based workloads, and CUDA 10.1
for both ML and non-ML workloads.

V. REDUNDANCY IN HARDWARE METRICS

In this section, we will discuss methodologies for finding
the potential redundancy of our defined characterization met-
rics. We will use the PCA (Principal Component Analysis)
technique similar to prior works [16], [18], [7] to find potential
redundancy within the 25 metrics in Table L.

Characterization metrics are supposed to be independent of
each other and able to cover the variances contributing to the



performance differences. However, in real cases, some metrics
are correlated to some extent, which means there are redun-
dancies. In other words, if the value of one metric changes,
the value of other metrics will change correspondingly. For
example, an increase in the percentage of control instructions
can lead to a reduction in other instructions.

High-dimension data, in which correlations exist between
different dimensions, can be down sampled to lower dimen-
sions with the PCA technique, as well as cover most of the
variance [18]. The same technique can be used to reduce
the redundancy in our characterization metrics. We pick the
top four PCs since four PCs can cover the majority of the
variance in benchmark suites [18]. The loading factors of the
first four PCs are listed in Table III in descending order with
the variance of each PC also listed. Some loading factors
are negative because we perform data standardization before
PCA. Due to space limitation, we use the O-CNN workload
deployed on the Platinum-P100 system as an example and
only list the top 3 factors. The top 4 PCs we selected cover
88.2% of the variance.

VI. REPRESENTATIVE SUBSETS

This section explains the methodology we used to identify
the representative model subsets with both coarser and finer
granularity.

To identify the hardware aware representative subsets, the
first step is to quantify the relationship between each catego-
ry/model in the ModelNet40 dataset. In this case, we use the
linkage distance between the first four PCs of each category/-
model in ModelNet40. Euclidean distance is used to generate
the linkage distance matrix. Once the similarity between
each category/model is quantified, hierarchical clustering can
be used to group the entire dataset into several clusters.
The representative subset can be obtained by selecting one
category/model from each cluster.

A. Subsets with the Coarser Granularity

When using a coarser granularity, we select an 8-category
subset out of the 40 categories in the entire ModelNet dataset
using hierarchical clustering [16], [17]. Considering Model-
Netl0 uses 10 categories, we intend to use a smaller number
of categories for this dataset, while maintaining a higher
hardware representative accuracy. The size of the subset is
flexible and it could be changed based on different demands.

Figure 1 shows the hierarchical clustering results. We
use the O-CNN deployed on the Platinum-P100 platform as
the example due to the space limitation. In Figure 1, each
leaf node represents one ModelNet40 category. Two nodes
with the shortest linkage distance merge into a parent node
recursively until the root node is generated. For example, a
2-element representative subset can be generated by selecting
one category out of the first 24 (from plant to bathtub) and
one out of the last 16 (from bench to person).

To identify a more representative subset among all 8-
category subsets, we introduce the variable score to quantify
the performance accuracy and representative of the selected
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Fig. 1: A dendrogram showing the similarity between different
categories in O-CNN (Platinum-P100)

subsets. The score is an execution time based metric [7], [16],
since the purpose of our subset is performance prediction dur-
ing the chip/accelerator design. In this case, the execution time
(could be throughput or other metrics on other workloads)
is the best metric to indicate the effectiveness of the subset
selection methodology. When using a subset, speedups can be
achieved on characterization machines and time savings can
be achieved in accelerator design simulations.

We use the execution time on the E5-GTX node as the
baseline machine to define the score. The score of machine
A is defined as

execution time on the baseline machine

Scorey = - - -
execution time on machine A

The same methodology is applied in other workloads, and
we list the 8-category ‘optimal’ subset for each workload in
Table IV, along with the commonly used ModelNet10 subset.
We define the ‘optimal’ subset as the one achieves the highest
performance accuracy, which is defined as

A ) |subset score — full set score|
ceuracy =1 —

full set score

B. Subset Validation

We observe that the ‘optimal’ subset for each workload is
not the same. In real cases, it is difficult to alter the optimal



TABLE IV: ‘Optimal’ subsets of the four workloads, along
with ModelNet10

0-CNN Pointnet | PCLSearch | ¢ POl | ModelNet10
egmentation
lamp bottle tv_stand sofa bathtub
bottle sink desk table bed
piano piano night_stand dresser chair
flower_pot radio keyboard sink desk
night_stand bowl bowl person dresser
bowl wardrobe guitar guitar monitor
tent car toilet night_stand night_stand
door chair lamp lamp sofa
table
toilet

subset based on different workloads. So, we pick a 7-category
subset [‘lamp’, ‘bottle’, ‘piano’, ‘night_stand’, ‘bowl’, ‘sink’,
‘guitar’] as our global representative subset with each one
appearing at least twice on the optimal subsets for the four
workloads. We name the 7-category subset ModelNet7H.

In this part, we verify the performance accuracy of the
7-category subset ModelNet7H. At first, we will compare
ModelNet7H with ModelNet10 to see if ModelNet7H is more
representative from a hardware perspective. In addition, we
will cross-validate ModelNet7H on the Platinum-V100 system
to prove the effectiveness of our methodology in identifying
subsets.

The upper part of Figure 2 lists the performance accuracy
results of the four workloads on two platforms. On the
two non-ML workloads, both ModelNet7H and ModelNet10
achieve more than 99% performance accuracy. For the two ML
workloads, ModelNet10 achieves a 93.7% and 99.4% perfor-
mance accuracy on the Platinum-P100 system. ModelNet7H
achieves a 95.9% and 99.7% performance accuracy on the
Platinum-P100 system, which is better than ModelNet10.

On the Platinum-V100 system, ModelNet10 only achieves
a 89.8% and 83.8% performance accuracy. The number for
ModelNet7H is 93.3% and 91.4% respectively, which is much
better than ModelNet10. These results confirm the effective-
ness of our methodology for selecting subsets for the next
generation hardware platforms.

We also want to clarify that the representative subset
ModelNet7H is hardware platform and workload dependent,
which means it might change when using other hardware
platforms, e.g, FPGAs, or other workloads (other graphics/ML
applications using ModelNet40). However, the methodology
remains the same. Representative subsets can be generated
with the profiling results on current existing chips. When
predicting the performance of the next generation chip, the
simulation time can be saved by using the representative
subset instead of the entire ModelNet40 dataset, with an
acceptable performance accuracy loss.

C. Runtime Savings Using Subsets

The motivation for a representative subset is to save the
execution/simulation time as well as maintaining the perfor-
mance accuracy. In this part, we will discuss the execution
time savings when using ModelNet7H and ModelNet10, with
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Fig. 2: Perf. accuracy (closer to 1 is better) and execution time
savings (larger is better) with respect to ModelNet40

respect to ModelNet40. Since the number of models in dif-
ferent categories is not the same, we still need to verify that
ModelNet7H achieves more time savings than ModelNet10 to
prove the efficacy of our methodology.

The lower part of Figure 2 shows the execution time
saving comparisons between ModelNet7H and ModelNet10
with respect to ModelNet40. When O-CNN is deployed on the
Platinum-P100 system, ModelNet7H achieves the best time
saving (1.91x) compared with ModelNet10. The worst case
is deploying PointNet on the Platinum-V100 system, while
ModelNet7H still achieves 1.22x time savings. Considering
the average results of the 8 cases, ModelNet7H achieves
1.52x time savings compared with ModelNet10. As a result,
our selected 7-category subset, ModelNet7H, achieves better
performance accuracy as well as better time savings than
ModelNet10.

D. Subsets with the Finer Granularity

In the two non-ML workloads, a finer granularity is also
supported since the input of two algorithms in PCL is one
single 3D model, which means the batch size is one. We
apply the same methodology which we use in identifying the
subset in a coarser granularity (Section VI-A). For example,
we picked a 7/8-category subset out of the 40 categories.
Inside each category, e.g., bowl, we can also pick a 8-model
([bowl_0048’,  ‘bowl_0021°, ‘bowl_0045°, ‘bowl_0050’,
‘bowl_0069’, ‘bowl_0037’, ‘bowl_0022°, ‘bowl_0031’]) sub-
set out of the 84 models, which achieves a 99.8% performance
accuracy on Platinum-P100 system and 99.9% on Platinum-
V100 system. The time savings on Platinum-P100 system and
Platinum-V100 system are 10.37x, and 10.33 %, respectively.

Tiny Subset To achieve a even better time savings, a tiny
subset can be created by picking 8 objects from each category
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Fig. 3: Subset performance accuracy on ML workloads.

of ModelNet7H, which is a combination of coarser and finer
granularity. The tiny subset achieves 219.27x, 220.09x time
savings compared with ModelNet40, and 88.03x, 88.98x
time savings compared to ModelNet10 on the two non-ML
workloads. This tiny subset can be used in cycle-accurate
micro-architecture behavioral performance simulations or even
circuit-level simulation during chip design.

VII. CASE STUDIES ON THE TWO ML WORKLOADS

As the results in Figure 2 suggest, the subset performance
accuracy for the two non-ML workloads is better than the
two ML workloads. In addition, there is less variance between
different hardware platforms in the two non-ML workloads.
So, we undertake a case study on the two ML workloads to
present more insights on the characterization results.

A. Batch Size

We use the batch size 32 as the default setting for both O-
CNN and PointNet. When using larger batch sizes, a higher
degree of parallelism can be achieved with the cost of a higher
CPU and GPU utilization. The increment of utilization rate
will also make the values of performance metrics change
accordingly. In this part, we discuss how batch size affects
the subset performance accuracy, since the subset generated
in batch size 32 may not be a representative one when the
batch size changes to 64.

Figure 3a lists the performance accuracy of our selected
7-category subset, ModelNet7H, and ModelNetl0 on both

TABLE V: PC value difference between batch size 32/64

Workload Euclidean Distance N{;l.nhattan
istance
Inference-P100 (fig. 4a) 0.692 0.801
Training-P100 (fig. 4b) 3.606 4.084
Training-V100 (fig. 4c) 1.771 2.080

Platinum-P100 and Platinum-V100 systems. When the batch
size changes from 32 to 64, ModelNet7H is more robust. The
average performance accuracy of ModelNet7H increases from
95.09% to 97.33%, while the average performance accuracy
of ModelNet10 decreases from 91.69% to 87.43%.

Takeaway: Our proposed subset is more representative than
ModelNet10 in both batch size 32 and 64, since our subset is
selected from a hardware perspective.

B. Training & Inference

Besides the batch size in the two ML workloads, we also
make comparisons between network training and inference.
We investigate the training and inference procedures of O-
CNN on both batch size 32 and 64 in this section. The similar
subset performance accuracy verification is also discussed in
the training and inference comparisons.

Figure 3b shows the performance accuracy of ModelNet7H
and ModelNet10 on both Platinum-P100 and Platinum-V100
systems. In the inference procedure, ModelNet7H achieves
an average performance accuracy of 94.6% when the batch
size is 32, and the performance accuracy is 98.5% when the
batch size increases to 64. On ModelNet10, the two values are
91.7% and 90.5%, respectively. In the training procedure, both
ModelNet7H and ModelNet10 achieves a higher performance
accuracy (all cases achieve a performance accuracy higher
than 98%). As a result, the training procedure is less sensitive
to the batch size change than the inference procedure.

Takeaway: Our proposed subset is more representative
in training than inference for both batch size 32 and 64.
Considering the long execution time of ML training, ML
training chip designer could also benefit from our proposed
subset.

C. Combined Effect

In this part, we discuss the combined effect of batch size
and hardware platforms on the performance of ML workloads.
Figure 4 shows the scatter-plot based on the first two PCs of
our defined metrics in Table I. Instead of the 40-category entire
dataset, ModelNet7H is used.

We investigate how PC values change if the batch size
increases from 32 to 64. The average difference of each one in
ModelNet7H is listed in Table V, considering both Euclidean
distance and Manhattan distance. The results show that in the
training procedure, the performance of each category changes
more than that in the inference procedure. In addition, the
Platinum-P100 changes more than the Platinum-V100 system.
The reason is that training consumes more hardware resources
than inference. The hardware resources are under utilized for
both batch size 32 and 64 in the inference procedure. Since the
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Fig. 4: Comparisons between different batch sizes on O-CNN. PC1/PC2 is dominated by CPU/GPU metrics
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Fig. 5: Raw metric values

Platinum-P100 is a less powerful system than Platinum-V100,
the performance wall is hit with a smaller batch size than
Platinum-V100 in the training procedure. That explains the
larger difference in the Platinum-P100 system than Platinum-
V100.

Takeaway: When using our methodology, the difference
in compute capability between the characterization machine
and next generation platform being designed should also
be considered (usually the next generation machine is more
powerful). The closer the resource utilization ratio, the higher
the performance prediction accuracy.

VIII. CASE STUDIES USING RAW METRICS NUMBERS

In this part, we study several raw metric values and show
the insights we observed from these data. We show the CPI
(cycle per instruction) in the GPU, CPU LLC-MPKI (last level
cache miss per 1k instruction), and memory read&write bytes
in the GPU of the four workloads in Figure 5. We choose
the three metrics since CPI indicates the GPU performance

directly, and LLC-MPKI, memory read&write bytes indicates
the memory behaviors on CPUs and GPUs.

Overall Analysis: The average CPI in the GPU for the
four workloads is 0.976, 1.534, 0.383, and 0.383, respectively.
The CPI of the two non ML workloads is lower than that
of the two ML workloads. The reason is that the two non-
ML workloads are less computing intensive. For the GPU Inst
Mix, there is no floating point instructions on the two non-ML
workloads, while the number for the two ML workloads are
20.926 and 13.220 (PKI). In addition, the PointNet workload
contains more integer instructions than the other 3 workloads
(the number is 4.048, 13.672, 7.972, and 7.972 for the four
workloads, respectively), which is the reason for the highest
CPL

The two ML workloads also show higher memory intensity
than the two non-ML workloads. The higher memory intensity
is also a factor leading to a higher CPI in the GPU. In
addition, one interesting insight on the two ML workloads
is that PointNet has a smaller number of memory read&write
bytes PKI (2.328) than O-CNN (4.642). However, the CPU
LLC-MPKI of PointNet (2.092) is larger than O-CNN (0.850).
The reason is that the octree data structure is used in O-CNN
for partitioning the model into small pieces and processing the
model piece by piece, which is more cache-friendly and results
in a lower LLC-MPKI in O-CNN. The cost of the octree data
structure is more memory transactions between on-chip and
off-chip memory [11] for data synchronization, which explains
the larger number of memory read&write bytes in O-CNN.

Unique data points and Takeaway: We observe that
the CPI behavior of lamp in ML, and memory behavior of
night_stand in non-ML workloads is different from other
workloads. Unique data points always exist in workload
characterization results, especially when using a representative
subset (datasets with similar behaviors are grouped together
and only one is selected and added to the representative
subset).

The night_stand is in ModelNet10 while lamp is not. If
ModelNet10 is used to drive accelerator design, some unique
data points, which are important for domain specific ASIC
accelerators, may be ignored. This is another reason for using



a hardware-aware subset.

IX. CONCLUSION

In this paper, we have demonstrated a methodology for
selecting hardware-aware subsets of large 3D model datasets.
We used ModelNet40 to illustrate the workflow, and a
7-category dataset ModelNet7H is generated. ModelNet7H
is 1.52x faster than the existing ModelNet10 subset and
achieves a performance accuracy of 97.5% with respect to
ModelNet40 (compared with 95.7% achieved by Model-
Net10). We characterize both ML and non-ML workloads
on three hardware platforms to cross-validate our result.
Case studies are undertaken to illustrate the efficacy of our
methodology. Subsets thus generated can be used during trade-
off evaluations for designing future accelerators.
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