Nearly Optimal Pseudorandomness from Hardness

DEAN DORON, Ben Gurion University of the Negev, Israel
DANA MOSHKOVITZ, JUST] N OH, and DAVID ZUCKERMAN, University of Texas at Austin,
USA

Existing proofs that deduce BPP = P from circuit lower bounds convert randomized algorithms into deter-
ministic algorithms with a large polynomial slowdown. We convert randomized algorithms into deterministic
ones with little slowdown. Specifically, assuming exponential lower bounds against randomized NP N coNP
circuits, formally known as randomized SVN circuits, we convert any randomized algorithm over inputs of
length n running in time ¢ > n into a deterministic one running in time t>*% for an arbitrarily small con-
stant & > 0. Such a slowdown is nearly optimal for ¢ close to n, since under standard complexity-theoretic
assumptions, there are problems with an inherent quadratic derandomization slowdown. We also convert
any randomized algorithm that errs rarely into a deterministic algorithm having a similar running time (with
pre-processing). The latter derandomization result holds under weaker assumptions, of exponential lower
bounds against deterministic SVN circuits.

Our results follow from a new, nearly optimal, explicit pseudorandom generator fooling circuits of size s
with seed length (1+a) log s, under the assumption that there exists a function f* € E that requires randomized
SVN circuits of size at least 2(1_0")", where « = O(a’). The construction uses, among other ideas, a new
connection between pseudoentropy generators and locally list recoverable codes.

CCS Concepts: « Theory of computation — Pseudorandomness and derandomization; Complexity
classes;

Additional Key Words and Phrases: Pseudorandom generators, pseudoentropy, quantified derandomization,
list recovery, local list decoding

ACM Reference format:

Dean Doron, Dana Moshkovitz, Justin Oh, and David Zuckerman. 2022. Nearly Optimal Pseudorandomness
from Hardness. 7. ACM 69, 6, Article 43 (November 2022), 55 pages.

https://doi.org/10.1145/3555307

Dean Doron work was done while at University of Texas at Austin, supported by NSF Grant CCF-1705028.

Dana Moshkovitz supported in part by NSF Grant CCF-1705028 and CCF-1648712.

Justin Oh supported by NSF Grant CCF-1705028.

David Zuckerman supported in part by NSF Grants CCF-1705028 and CCF-2008076 and a Simons Investigator Award
(#409864).

Authors’ addresses: D. Doron, Ben Gurion University of the Negev, Department of Computer Science, Beer-Sheva, Israel,
8410501; email: deand@bgu.ac.il; D. Moshkovitz, J. Oh, and D. Zuckerman, University of Texas at Austin, Department of
Computer Science, 2317 Speedway, Stop D9500, Austin, Texas, 78712; emails: {danama, sjo}@cs.utexas.edu, diz@utexas.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

0004-5411/2022/11-ART43 $15.00

https://doi.org/10.1145/3555307

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

https://orcid.org/0000-0003-1862-8341
https://orcid.org/0000-0002-4151-568X
https://orcid.org/0000-0002-4422-6365
https://orcid.org/0000-0002-4749-3223
https://doi.org/10.1145/3555307
mailto:permissions@acm.org
https://doi.org/10.1145/3555307

43:2 D. Doron et al.

1 INTRODUCTION
1.1 Pseudorandom Generators and Derandomization

Randomized algorithms can outperform deterministic algorithms. We know randomized polyno-
mial time algorithms for problems such as polynomial identity testing, factoring polynomials over
large fields, and approximating the number of perfect matchings, where the best-known determin-
istic algorithms take exponential time. For other problems such as primality testing and univari-
ate polynomial identity testing, randomized algorithms offer a polynomial speedup over the best-
known deterministic ones. Finally, property testing has problems that admit incredibly efficient
randomized algorithms [32], in fact sublinear, but provably require linear time deterministically.
Informally, randomization owes its success to the prevalence of a seemingly paradoxical phenom-
enon: Most courses of action for an algorithm may be good, yet it might be hard to pinpoint one
good course of action.

However, there are upper bounds on the power of randomization. Assuming plausible circuit
lower bounds, any randomized algorithm running in time ¢ on inputs of length n can be simulated
deterministically by an algorithm running in time polynomial in ¢ and n [51, 62]. In other words,
under plausible assumptions, BPP = P. Concretely:

THEOREM 1.1 (PREVIOUSLY KNOWN DERANDOMIZATION [51, 62]). Assume there exists a constant
0 < a < 1 and a function f € DTIME(2") such that f requires circuits of size 2*™ for all sufficiently
large n. Let L be a language decidable by a bounded-error probabilistic algorithm, that on inputs of
length n runs in time t = t(n). Then, there exists a deterministic algorithm that decides L and runs in
time poly(t, n).

Previous works [51, 62, 70, 85] proving Theorem 1.1 did not focus on optimizing the runtime
of the resulting polynomial-time deterministic algorithm. For reasons inherent to the proof tech-
niques of the above works, the runtime of the deterministic algorithm of Theorem 1.1 is a large
polynomial. Indeed, to the best of our knowledge, the best-known runtime of the resulting deter-
ministic algorithm is at least O(¢®) [85]. Our main theorem gives a derandomization with running
time ¢ - max {t, n}'*® for an arbitrarily small constant & > 0. However, our result relies on a few
changes to the statement of Theorem 1.1. Most significantly, we rely on a somewhat stronger as-
sumption than that of Theorem 1.1, namely, we require there are no small randomized single-valued
nondeterministic circuits for f. Our formal definition of randomized single-value nondetermin-
istic (SVN) circuits in Definition 2.4 has some technical subtleties, but for now it suffices to view
them as the nonuniform analogue of MA N coMA: the circuit is allowed to additionally take as
input a nondeterministic witness and use randomness to verify the witness.

THEOREM 1.2 (GENERAL DERANDOMIZATION, SEE THEOREM 9.4). Assume there exists a small con-
stant 0 < a < 1 and a function f € DTIME(2") such that f requires randomized single-value
nondeterministic circuits of size 20" for all sufficiently large n. Let L be a language decidable by
a bounded-error probabilistic algorithm, that on inputs of length n runs in time t = t(n). Then, there

exists a deterministic algorithm that decides L and runs in time t - max {t, n)+o@),

There are two main differences between the statements of Theorems 1.1 and 1.2.

(1) While Theorem 1.1 requires f € DTIME(2") that is hard for circuits of size 2*("™, we require
f that is hard for circuits of size 217", This type of strengthened, plausible, assumption
is fundamentally necessary in the hardness vs. randomness paradigm to achieve a small
polynomial running time. Moreover, previous proof techniques using our strengthened as-
sumption would still inherently yield a large polynomial running time.

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

Nearly Optimal Pseudorandomness from Hardness 43:3

(2) We require hardness against randomized single-value nondeterministic circuits, rather than
standard ones. The need for this stronger assumption stems from our techniques and will be
apparent later on. We discuss this in more detail in Section 1.7.

Our derandomized running time is nearly tight for some of the examples above, such as those
from property testing. To further illustrate the tightness, consider the problem of univariate poly-
nomial identity testing, in which we test the identity of two arithmetic circuits with one variable,
degree n, and O(n) wires, over a field of cardinality poly(n). Univariate polynomial identity test-
ing is solvable in 5(n) randomized time and 5(n2) deterministic time. Williams [92] showed that
an O(n'*%°)-time algorithm, even a nondeterministic one, would refute NSETH.! Interestingly,
the problem of multivariate identity testing also admits a randomized O(n)-time algorithm. Thus,
under the complexity-theoretic assumption of Theorem 1.2, and assuming NSETH, the time com-
plexity of both univariate and multivariate identity testing is settled at roughly quadratic.

While our hardness assumption is stronger than ideal,” related complexity-theoretic assump-
tions were used before to derandomize both deterministic and nondeterministic classes, as well
as to construct various pseudorandomness primitives. Specifically, hardness against randomized
SVN circuits was used in References [45, 72], and hardnesss against (non-randomized) SVN circuits,
which can be seen as the nonuniform analogue of NP N coNP, was used in References [59, 70]. Hard-
ness assumptions against nondeterministic circuits were used in References [9, 10, 21, 59, 71, 72],
against circuits with NP gates in References [35, 55] and even against circuits with PH gates in
References [5, 7, 8, 84].

Towards proving our main theorem, we first derandomize algorithms that err rarely, a scenario
known as quantified derandomization. First studied by Goldreich and Wigderson [33], in quantified
derandomization, the algorithm is assumed to err only on a small number of the possible random-
ness strings (their error probability is extremely small). Our derandomization of such algorithms
produces deterministic algorithms whose running time is similar to the runtime of the randomized
algorithm, up to a quadratic preprocessing step.®

THEOREM 1.3 (QUANTIFIED DERANDOMIZATION, SEE COROLLARY 5.3). There exists a constant
¢ > 1 such that the following holds: Assume there exists a constant « < 1 and a function
f € DTIME(2U0@)ny sych that f requires requires SVN circuits of size 20=%)" for all sufficiently
large n. Let L be a language decidable by a bounded-error probabilistic algorithm, that on inputs of
length n runs in time t = t(n) and for every input, errs on at most 2! randomness strings. Then,
there exists a deterministic algorithm that decides L and runs in time t - max {t, n}o("’) + tp, where
the tp = t**O(®) term corresponds to a step that can be precomputed for all algorithms with running
time t.

Unconditional quantified derandomization has been successful for restricted classes of computa-
tion, and also sufficiently good quantified derandomization has been shown to imply circuit lower
bounds [13, 33, 81, 82]. We stress that for quantified derandomization, we only assume hardness
against (non-randomized) SVN circuits, a seemingly weaker class.

Like Theorem 1.1, we take the black-box approach for derandomization and prove Theorem 1.2
by constructing a pseudorandom generator. A pseudorandom generator (PRG) with error ¢ is

!The Nondeterministic Strong Exponential-Time Hypothesis asserts that refuting unsatisfiable k-CNFs requires nondeter-
ministic 27~°(") time for unbounded k.

2Followup work of Shaltiel and Viola [73] shows that our techniques cannot be employed if we only assume hardness for
standard circuits. See Section 1.8.

3The preprocessing step involves encoding the truth table of the hard function f. Computing the truth table may take
quadratic time, but can be made efficient if f admits fast batch evaluation. Fast batch evaluation was also considered in a
followup work of Chen and Tell [14].

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

43:4 D. Doron et al.

a function that maps a short seed to a t-bit string that is indistinguishable from uniform random
bits by any time-¢ algorithm, up to error ¢ (see Definition 2.32). We can derandomize an algorithm
using a PRG by enumerating over all possible seeds and running the randomized algorithm on the
output of the generator on each seed. The number of possible seeds determines the slowdown* of
the deterministic algorithm, and this number was poly(t, n), for a large polynomial, prior to this
work.

Non-explicitly, there exists a pseudorandom generator against all algorithms running in time ¢
on inputs of length n that uses only O(max {t, n}) seeds, but it is not necessarily efficiently com-
putable. In this work, we construct an explicit PRG with only max {t, n}'*O(® seeds.

THEOREM 1.4 (PSEUDORANDOM GENERATOR, SEE THEOREM 10.4). Assume there exists a function
f € DTIME(2*O(@)") that requires randomized SVN circuits of size 21=¥™ for some constanta < 1
and all sufficiently large n. Then, there exists an explicit PRG

Ef: {0,1}(1+O(a))10gs_>{0’1}s

with error ¢ = n~%@, fooling circuits of size s = n'~9(®). The range of the PRG is computable in time
2+0(a)
s .

We consider f on roughly logs bits of input, so the truth table of f consists of roughly s
bits. The pseudorandom generator converts those s bits of (worst-case) hardness into s bits of
pseudorandomness.

Let us compare the parameters of Theorem 1.4 to the prior state-of-the-art PRG given by Umans
[85]. There, the seed is of length ¢y log n for a large constant ¢y > 1,and s = n'V for a small constant
yu < 1. Consequently, derandomization using Umans’ PRG would incur a slowdown of at least
s°U/YU in the running time, whereas in this article, we bring this factor down to s'+°(®), Roughly
speaking, we manage to transform almost all the hardness into pseudorandom bits (s = n!~9(®)),
and we manage to do so using a short seed. The downside of Theorem 1.4 compared to previous
works is that we assume f is hard for a seemingly stronger class of circuits.

An important milestone in constructing our PRG G is the construction of a pseudoentropy
generator (PEG) with an especially small seed, from which Theorem 1.3, our quantified derandom-
ization, follows. Informally, a distribution over {0, 1}" has pseudoentropy k if it is computationally
indistinguishable, up to some error, from some high min-entropy distribution. Thus, a PEG is a
function {0,1}¢ — {0,1}® such that its output distribution (when the input is uniform) has high
pseudoentropy (see Definition 2.33 for the formal definition).

THEOREM 1.5 (PSEUDOENTROPY GENERATOR, SEE COROLLARY 10.3). Assume there exists a function
f € DTIME(2(1*0@)ny that requires SVN circuits of size 20" for some constant a < % and all
sufficiently large n. Then, there is an explicit PEG

G 0,14 > {0,1)°

I—Sa)

with error e = n~%® d = 7alogn and s = O(n , outputting pseudoentropy k = n'=°% fooling

circuits of size s.
The fact that d is much smaller than log n is crucial for us (and a rare phenomenon in pseudo-
randomness), as will become apparent in Section 1.4. We mention that pseudoentropy generators

are analogous to randomness condensers in roughly the sense that pseudorandom generators are
analogous to randomness extractors, where the hard function plays the role of a high min-entropy

4We say a derandomization has slowdown of S = S(n) if tdet/trand = S, Where tyer = tger (1) and tand = trand (1) are the
running times of the relevant deterministic and randomized algorithms on inputs of length n.

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

Nearly Optimal Pseudorandomness from Hardness 43:5

source [79, 83]. The notion of pseudoentropy and pseudoentropy generators was first considered in
Reference [47]. Sudan, Trevisan, and Vadhan [77] also construct a pseudoentropy generator under
the same notion as in Reference [47]. We construct a pseudoentropy generator under a seemingly
weaker definition of pseudoentropy (following Reference [12]) that allows us to get a surprisingly
short seed, much shorter than the lower bound for pseudorandom generators.5

Our Model of Computation. We assume the standard, multi-tape, Turing machine model with
some fixed number of work tapes. In particular, there exists a constant C such that all our claimed
time bounds holds whenever we work with at most C work tapes. We conjecture that our results
would hold in other models, mainly the RAM model, by changing the hardness assumptions ac-
cordingly. As we do not study the RAM model explicitly, we concentrate on the t > n regime.
Also, throughout the article, languages (decision problems) can be replaced by other problems,
e.g., promise problems or functions with non-binary output.

In the remainder of the introduction, we describe the ideas behind the proofs of Theorems 1.4
and 1.5.

1.2 Beating the Hybrid Argument

Existing proofs of Theorem 1.1 can be viewed as first constructing a pseudorandom generator that
extends its seed by a single bit and then converting it into a pseudorandom generator that outputs
t bits. Interestingly, Sudan, Trevisan, and Vadhan [77] constructed PRGs with small seed as in
Theorem 1.4 for the single bit case. They did this by using binary locally list decodable codes to
encode the truth table of f (see Definition 2.12 for the definition of such codes). The pseudorandom
generator outputs a random bit of the encoding, and hence the number of seeds corresponds to the
length of the encoding. Since there are locally list decodable codes of linear length and a sub-linear
number of queries (e.g., codes obtained from Reed-Muller concatenated with Hadamard, or tensor
codes [94]), there are single bit PRGs with a small number of seeds.

The large loss in time in Theorem 1.1 originates from the extension of a single bit output to ¢ bits
of output. The loss has several manifestations in each of the existing proofs of Theorem 1.1. The
use of combinatorial designs in References [51, 62] inherently doubles the length of the seed. The
use of the Reed-Muller code in References [70, 85] inherently limits the length of the generator’s
output. Moreover, the analyses of these constructions go through the infamously hard-to-beat
hybrid argument [23]. For ¢ bits to be indistinguishable from uniform, it must be that each bit is
unpredictable given the previous bits, and the prediction errors add up across the ¢ bits.

More formally, suppose we wish to show that a distribution X on {0, 1} is e-indistinguishable
from uniform for circuits of size s via the hybrid argument. Proceeding with Yao’s next bit pre-
dictability argument, we must show that for every i € [t], no circuit C: {0, 1} = {0, 1} of size
roughly s can predict X; with probability greater than § + £ when fed with x ~ X{; ;_1]. Just as one
can bound the seed length of an optimal G: {0, 1}¢ = {0, 1} that fools circuits of size s using the
probabilistic method, one can calculate the seed length of a nonexplicit G: {0, 1}¢ > {0, 1) that is
e-unpredictable at all i-s. The calculation shows that such a G has seed length roughly log s+2 log %
Thus, for next bit unpredictability error £, the seed length requires at least an additional 2logt
bits.

Hence, to prove Theorem 1.4, we must beat the hybrid argument. We do that by first construct-
ing a pseudoentropy generator as in Theorem 1.5, later to be transformed into a pseudorandom
generator. Since we no longer require uniform-looking bits, we no longer need an error of % per

SIndeed, our notion of computational entropy allows the high min-entropy distribution to depend on the distinguishing
algorithm. See Section 2.5 for the precise details.

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

43:6 D. Doron et al.

bit. Instead, we output a large number of (imperfect) bits with constant error, which can evidently
be done with a small number of seeds. Indeed, Barak, Shaltiel, and Wigderson [12] suggested that
paradigm, of achieving pseudoentropy as a stepping stone towards pseudorandomness as a way
to bypass the weakness of the hybrid argument, and here we fulfill this vision.

Last, we note that requiring unpredictability error of ¢’ = ¢ does not only affect the seed length
of existing PRGs via the 2log § factor, but also via the “hardness to pseudorandomness” loss,
namely, the dependence between the function’s worst-case hardness assumption and the output
of the pseudorandom generator. A bit more formally, reconstructive (or, “black-box”) PRGs con-
structions from worst-case hardness (and most PRGs are such), employ a hardness amplification
step: They transform a function that cannot be computed by circuits of size s to a function such
that every circuit of size s’ fails to compute on at least % — ¢’ fraction of the inputs (see Reference
[77], and e.g., the overview in Reference [73]). Grinberg, Shaltiel, and Viola [37] proved that black-
box proofs for hardness amplification® require an inherent size loss factor of at least Q > —; (see
also relevant discussion in References [44, 88]). The fact that s’ = s/Q < s means we need to
choose the input length ¢ for the (original) hard function f to be larger, which in turn increases
the seed length of the PRG, which needs to be at least £.” We avoid this lower bound by com-
pletely forgoing a hardness amplification step and instead construct a PEG directly from worst-case
hardness.

1.3 Locally Decodable Codes All the Way Down

As explained above, it was known that single bit pseudorandom generators follow from binary
locally decodable codes [77]. The construction for obtaining a single bit of pseudorandomness is
simple: Apply the binary locally decodable code to the truth table of a hard function f and output a
random coordinate of the codeword. However, as discussed above, the method of extending single
bit to many bit pseudorandom generators incurs inherent losses in the seed length.

In our work, we propose a natural deviation from the above idea. Instead, we apply a code with
a large alphabet to f and output a random coordinate of this code. The hope is that the symbol
at this random coordinate (which, for a large alphabet, will be represented by a large number of
bits) will in fact have all the pseudorandom bits we need. However, we cannot guarantee that
the random symbol will have “perfect pseudorandomness,” i.e., will be computationally close to
uniform. Instead, we show that such a random coordinate will have high pseudoentropy, i.e., will
be computationally close to a distribution with at least as much min-entropy as the number of
pseudorandom bits we wish to output. In fact, our technique shows that pseudoentropy generators
that output many bits follow from certain locally decodable codes over a large alphabet. We point
out that there are several ways in which one can measure pseudoentropy (which are not known
to be equivalent), and we will discuss them soon (and more formally in Section 2.5).

More accurately, we consider locally list recoverable codes. In a list recoverable code C C %" for
agreement ¢, we are given oracle access to lists Sy,...,S, € = for which 37 |S;| < £, and we
are guaranteed that there are at most L codewords ¢ € C satisfying ¢; € S; for at least e-fraction
of the i-s. We say C admits local list recovery if there exist small circuits Ay, ..., Ar with oracle
access to the lists Sy, ..., Sy, each A; having at most Q oracle gates, such that for every codeword

®We omit the formal definition and only note that existing PRGs apply such hardness amplification, even if sometimes only
implicitly.

"The Q loss factor also appears in our construction of pseudoentropy generators from list recoverable codes in Theorem 1.6
and stems from the number of queries the local decoder makes. However, in our case, Q is much smaller.

8In the standard list recovery literature, £ usually bounds max; |S; | rather than };; |S; |, but the former is more convenient
for us. See Definition 2.13 and the discussion that follows it.

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

Nearly Optimal Pseudorandomness from Hardness 43:7

¢ = C(x) satisfying ¢; € S; for at least e-fraction of the i-s, there exists j € [L] such that x = A;(-).”

Initially, list recoverable codes were used as an intermediate step for constructing list decodable

codes (e.g., in References [36, 38, 39, 48, 56]) but have since gained independent interest, with

several applications and dedicated constructions (e.g., References [29, 30, 46, 48, 49, 52, 58, 69]).

Moreover, many of the recent list decoding algorithms are in fact algorithms for list recovery.
We prove that locally list recoverable codes give rise to pseudoentropy generators.

THEOREM 1.6 (PEGs FrRoM Locarry LisT RECOVERABLE CODES, SEE THEOREM 3.1). Assume [€
{0, 1} is a truth table of a function requiring SVN circuits of size t'~%, and let «’ > « be any constant.
Let C: {0,1}Y — =™ be a locally list recoverable code for agreement ¢ and input lists size {, for
which each decoding circuit has size sc < t'~% and makes at most Q oracle queries to the lists. Then,
G': [m] = = defined by
6/ (2) = C(f)z.
tl—o{

is a PEG with error ¢, outputting k = % pseudoentropy fooling circuits of size 0

To get a good PEG, the alphabet ¥ of the list recoverable code C must be large, and the lists size
¢ must be large as well. In fact, they both need to be exponential in t, while the decoder should run
in time smaller than ¢. It is atypical to require such a large £, and in standard literature, where the
decoder typically iterates over the lists, one requires £ < m to get a satisfactory bound on L. We
will soon briefly discuss the construction of C and how we facilitate efficient access to the lists.

We work with multiple definitions of pseudoentropy, which we now discuss. First, we show
a close relation between locally list recoverable codes and Yao pseudoentropy. Roughly speaking,
a random variable X ~ {0,1}" has high Yao pseudoentropy if there is no small, computation-
ally enumerable subset A of {0,1}" that “explains” too much of X, i.e., Pr[X € A] is significant
(see Section 2.5.1 for the formal definition). Now, if we apply a locally list recoverable code with
large alphabet to a hard function f and pick a random coordinate, then this random variable must
have high Yao pseudoentropy. Otherwise, there would be a small, efficiently computable subset of
{0, 1}" that explains a significant fraction of the codeword. This roughly corresponds to a small list
Sy U...US, that contains many symbols of the codeword. Hence, f can be efficiently recovered
from this list, which is a contradiction (see Theorem 3.1 for the complete argument).

For the purposes of converting pseudoentropy to pseudorandomness, and other applications, it
is convenient to consider other notions of pseudoentropy. The notion of metric pseudoentropy was
first studied by Barak, Shaltiel, and Wigderson et al. [12] and later in various works in cryptography
[17, 22, 25, 26, 74, 75, 91]. We say a random variable X ~ {0, 1}" has k metric pseudoentropy fooling
circuits of size s, up to ¢ error, if for every circuit D: {0, 1}" — {0, 1} of size s there exists Y ~ {0, 1}"
with min-entropy k such that | E[D(X)] — E[D(Y)]| < &.!° Metric pseudoentropy differs from the
widely used notion of HILL pseudoentropy [47] where the high min-entropy random variable does
not depend on the distinguishing circuit. Although seemingly weaker, as an additional application,
this definition allows us to derandomize algorithms that err rarely, as random variables with high
metric pseudoentropy cannot have large weight on small sets (see Section 5 for the details).

We prove Theorem 1.6 by formalizing the above connection between locally list recoverable
codes and Yao pseudoentropy [93]. We then utilize the fact that one can get the (more convenient)
metric pseudoentropy from Yao pseudoentropy if we allow the enumeration circuit to be an SVN
circuit (see Section 2.5.1). As a brief sketch of how to do so, we first mention that if a random

%Unlike in standard literature, where algorithmic aspects are crucial, we do not require (and will not achieve) uniform
generation of the A;-s. Also, each query we make to a list S; gives us a single element of S;, and we do not get to iterate
over the entire list. For the exact definition, refer to Section 2.2.

1A random variable Y ~ {0, 1}™ has min-entropy k if for every y € Supp(Y), Pr[Y = y] < 27%.

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

43:8 D. Doron et al.

variable X has high metric pseudoentropy, then for any efficient distinguisher D, the support of
D cannot disproportionately explain X (namely, Pr[D(X) = 1] is bounded). This is quite close to
the definition of Yao pseudoentropy; however, we must give a computationally efficient way to
enumerate the support of D. To do so, we follow Reference [12] and hash the support of D onto a
smaller universe. The preimage of the hash function is an enumeration of the support of D, pro-
vided we can use nondeterminism to guess a preimage (and use D itself to verify whether that
preimage is correct). By assuming a function f that is hard for SVN circuits, we get a metric pseu-
doentropy generator. The rest of the details are given in Section 3. We stress that in our analysis
of the PEG, nondeterminism is used only to convert Yao pseudoentropy to metric pseudoentropy.
Indeed, our PEG outputs high Yao pseudoentropy even under the assumption that f is only hard
for standard circuits.

It is interesting to draw an analogy between Theorem 1.6 and its information-theoretic coun-
terparts (which we formally define in Section 2.4). The work of Ta-Shma and Zuckerman [79],
following Trevisan [83], shows the equivalence between extractors with multiple output bits and
soft-decision decoding, which we will not define here. Roughly speaking, if such codes are equipped
with an efficient local decoding procedure, then they give rise to PRGs. Soft-decision decoding gen-
eralizes list recoverable codes, and so every extractor can be used to construct a list recoverable
code with suitable parameters. We argue that this result interpolates to lower min-entropies, too.
As Guruswami, Umand, and Vadhan [43] already observed using a somewhat different terminol-
ogy, every list recoverable code for agreement ¢ gives rise to a condenser condensing k = log%
min-entropy to k’ = log % min-entropy with error O(¢), and each such k — k’ condenser with
error ¢ implies a list recoverable code for agreement O(e) with £ = O(em2*') and L = 2. For the
formal statement and its proof, see Appendix A. Thus, in a way, Theorem 1.6 is a computational
manifestation of these connections.

1.3.1 Constructing the List Recoverable Code C. We construct our locally list recoverable code
C: {0,1}' — =™ over a large alphabet from locally decodable codes over a small alphabet via
folding. Specifically, let

Coc: {0,1} — F,

be some locally list decodable code having relatively high rate. We partition the # coordinates of
Cipc into m disjoint, contiguous blocks of size a so m - a = t for carefully chosen m and a. Namely,
we pick a = t'79@)_ For our final code C, we consider each block of a symbols as a single large
symbol. We note that this construction gives a large alphabet size and also implies that m can be
very small, roughly t°(®, which in turn implies that the seed length of our PEG G/ is very small.
But why does this construction admit a local list recovery procedure for exponential-sized lists?
Consider the task of decoding some entry x € [t] of f given lists Sy, ..., S,,, where we are
guaranteed that C(f), € S, for at least e-fraction of the z-s. Recall that Cipc is itself equipped
with a local list decoding procedure, so in particular there exists a randomized circuit A pc that
locally decodes f from a noisy version of it. How do we mimic a good enough noisy version of f?

e Run A|pc on the input x.

e Whenever A pc wishes to query a certain coordinate of C pc(f), say, coordinate i € [f],
find the index z of the block containing i.

e We now want to query the list S, for the correct value of C pc(f);, and we use a hardwired
advice string to pinpoint the specific entry in S, to be read. From the list’s entry, we can
deduce a guess for Cpc(f);, i.e., a coordinate in the noisy version of f.

e There are at least e-fraction of good lists for which the advice can point to the the correct
symbol C(f),. Since a folded symbol in the code C is correct if and only if every symbol in

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

Nearly Optimal Pseudorandomness from Hardness 43:9

the block is a correct symbol of C, pc, we have that A| pc must essentially be making queries
to a string with at least ¢ agreement with Cpc(f).

For the complete details, see Section 4. We stress that nonuniformity plays a crucial role here,
throughout the analysis. Also, since the lists Sy, . .., S, are fixed (and in fact, determined by Gf),
and Q ~ m < t, we are allowed to fix the advice describing the pointers to all lists, each pointer
is of length roughly log ¢, and we do not have to worry about the possibly different query indices
for different x-s and different randomness strings. As our only bound on ¢ stems from the bound
on the decoding circuit size, mlog ¢ ~ t and so ¢ can be exponentially large.

The above construction works for a large agreement ¢ (say, a constant or 1/ polylog(n)), which
due to Theorem 1.6 implies that our resulting PEG has constant error. The reason is that we inherit
the agreement parameter from the locally decodable code we use, and there ¢ must be rather high
for the other parameters of Ci pc to be small enough for our setting. In Section 1.5, we discuss how
we get the lower error stated in Theorems 1.4 and 1.5.

1.4 From Pseudoentropy to Pseudorandom Bits

We construct our pseudorandom generator éf from Theorem 1.4 by composing the pseudoentropy
generator G/ of Theorem 1.5 with a new construction of an extractor with seed length close to log n,
supporting n'~% min-entropy for any a < % (we formally define extractors in Definition 2.17).

THEOREM 1.7 (SHORT-SEED EXTRACTOR, SEE THEOREM 7.4). There exists a constant ¢ > 1 such

that the following holds: For every positive integer n, « < %, and any ¢ > cn~ %%, there exists an

2’
explicit extractor Ext: {0,1}" x {0,1}¢ — {0,1}™ with error ¢, supporting min-entropy k > n'~%,

whered = (1+ ca)logn +clog 1 and m = 1n'=2*.

This adds to the short list of extractors with almost the right dependence on n, currently in-
cluding References [80, 96] and one-bit extractors coming from good list decodable codes. Our
construction essentially follows a construction given in Reference [80]; however, there it was an-
alyzed for smaller min-entropies. The construction and its analysis are given in Section 7.

The seed of the pseudorandom generator consists of the (very short) seed of the pseudoentropy
generator, as well as the seed of the extractor, which still gives us (1 + O(a))logt.!! Tt is not
immediately clear why such a composition works and, indeed, we make quite a few modifications
for our argument to go through, which we will discuss shortly.

THEOREM 1.8 (COMPOSITION, SEE LEMMA 6.3). Let Ext: {0,1}"x{0,1}¢ — {0, 1} be an extractor
with error € supporting min-entropy k — log % computable by a circuit of size Sgxt.

LetX ~ {0, 1}" be a random variable with pseudoentropy k fooling circuits of sizes” = O(s+Sgxt), up
to ¢ error, where we allow the circuits to have oracle gates to the problem of additively approximating
the acceptance probability of a given circuit to within some fixed constant accuracy. Then, Ext(X, Uy)
fools (deterministic) circuits of size s, up to error O(e).

Note that as is typical with this type of argument, we require the PEG output distribution X to
fool circuits larger than s to conclude that the extracted output fools circuits of size s.

Previously, composition was known to work when the output of the PEG was indistinguishable
from a universal distribution with high min entropy; i.e., had high HILL pseudoentropy [12].!?
However, the definition of PEGs that we use allows for the high min-entropy random variable to
depend on the distinguisher, and the natural distinguisher for the composed construction invokes

Note that an extractor’s seed cannot be shorter than log n [64], so it is crucial for us that our PEG’s seed is of length
O(a)logn.

12 A notable example is Reference [77], where they show that the Nisan-Wigderson PRG [62] outputs pseudoentropy when
f is only mildly hard.

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

43:10 D. Doron et al.

the extractor. In this case, the high min-entropy random variable may depend on a specific seed
of the extractor, and some of the seeds of the extractors are destined to fail!

The above obstacle is where our stronger class of distinguishers enters the picture. Barak et al.
[12] showed that one can move from HILL pseudoentropy to metric pseudoentropy for real-valued
distinguishers. Unfortunately, their argument suffers from a considerable loss in circuits size that
we cannot afford and seems inherent.

The idea to overcome this loss is to use an oracle to approximate some averaging of the extractor
on all possible seeds. Specifically, assume towards a contradiction that Ext(X, Uy) is distinguishable
from the uniform distribution by a small circuit C. We show that in such a case, there exists a
large set B of x-s for which p, = E[C(Ext(x,Uy))] is far from p = E[C(U,,)]. The value p can be
hardwired. Using our oracle, p, can be approximated. Thus, B can be recognized by a small circuit.
Setting the parameters accordingly, this contradicts the fact that X has high pseudoentropy. We
defer the rest of the details to Section 6. In Section 9, we show how the above assumption, of having
oracle gates to a density approximation problem, can be replaced by randomized SVN circuits.

1.5 Reducing the Error

Recall that the construction presented in Section 1.3 only supports high error. Indeed, for deran-
domizing BPP and for quantified derandomization, a constant error ¢ for our PEGs and PRGs
suffice. Nevertheless, there are several reasons to reduce the error. First, a small error PRG can be
used to derandomize algorithms with error approaching % Second, often when PRGs are used as
components in other pseudorandomness constructions, it is necessary to have small error because
of other error losses. Third, it is a natural question on its own, and significant research effort has
been devoted to reducing the error of other PRGs. The best error we can hope for is ¢ = =),
since we wish to keep the seed length (1 + O(«)) log n. We manage to obtain this.

To get a PEG with a better dependence on ¢, we improve the construction of our locally list
recoverable code C to support e-fraction of good lists even when the underlying locally list de-
codable code Cipc supports only a constant fraction ¢y > ¢ of agreement. This is done via an
expander-based transformation, and the details are given in Section 10. Getting a PRG with ¢ error
almost readily follows, since the extractor of Theorem 1.7 works for such an error.

1.6 Better Derandomization Overhead from Stronger Assumptions

Can we get a better derandomization overhead for the extremely high-end hardness assumption,
namely, 2(=9" for subconstant a? We show that by using better locally list-decodable codes in
the construction presented in Section 1.3.1, we can construct PEGs having seed length O(«) logn

for 1
o~ (loglogn)4 .
logn

In our general paradigm for constructing PEGs, given a function f that is hard for circuits of
size s* and a locally list-decodable code using Q queries, we get a pseudoentropy generator for
circuits of size s as long as Q - s < s*. When « is constant, we can use any list-decodable code
that supports Q = n® queries, say, a Reed-Muller code [77]. When a = o(1), we utilize a locally
list-decodable code that indeed uses n* queries for subconstant & [57]. This allows us to get a
pseudoentropy generator for circuits of size n'~9(®) = n1=°M and consequently PRGs with seed
length (1 + 0(1)) log n (see Sections 5.1 and 9.1 for the complete details).

1.7 On Our Hardness Assumption

Finally, we discuss our hardness assumption. To obtain our result, there are two ways our assump-
tion is stronger than in previous works. First, we require that f must be hard for circuits of size

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

Nearly Optimal Pseudorandomness from Hardness 43:11

at least 279" for some small &, whereas previous constructions only required hardness at least
2P for some f < 1 (and generally B is thought of as small). The first strengthening of the as-
sumption seems necessary for a derandomization as efficient as ours, since the hardness should be
comparable to the size of circuits we wish to fool.

Second, we require a function f that is hard to compute for circuits that are allowed to use both
nondeterminism and randomness. One might argue that in the nonuniform model of circuits, one
can convert randomness into advice using an Adleman type argument and incur only a minor loss
in circuit size. However, the size blowup of Adleman’s theorem in the case of nondeterministic cir-
cuits is larger. This, combined with the fact that we require the size of our hardness to be 21"
makes such an argument impossible. Indeed, to convert a randomized SVN circuit into an SVN
circuit, one must union bound over all possible inputs and all possible witness strings. Generally,
the witness length can be nearly as large as the circuit itself. In other words, we would need an
error probability close to 27° where s is the size of the circuit. Achieving that requires repeating the
circuit nearly s times, incurring a quadratic blowup and making our hardness assumption infeasi-
ble, as we initially assume hardness against randomized SVN circuits of size 2(!=%", In summary,
previous works have similarly used assumptions in which the function f is hard against models of
computation that use nondeterminism and randomness. However, we work on the very “high-end”
of the hardness assumptions, i.e., assume hardness for very large circuits, and this seems necessary
for our proof. (See Section 1.8 below for a discussion about the necessity of using nondeterminism
in our hardness assumption.)

We now discuss the plausibility of our assumption. Our result relies on the assumption that
there exists a function f satisfying two competing properties. First, it should be computable by a
deterministic TM in time 2*®)" for some small constant a. Second, it should also be hard for cir-
cuits of size 201" that use nondeterminism, as well as randomness, to verify the nondeterministic
witness. We hence need a function that resides in E but is still “difficult enough” for a nonuniform
Merlin-Arthur proof system to verify (i.e., requiring Arthur to run in time at least 2(=®)"). Thus,
our assumption is plausible if random verification does not always achieve significant savings.

Sometimes, random verification does yield savings. For example, Williams [92] proved that a
variety of #P-complete problems have MA proof systems that run in time 2¢" for various ¢ < 1,
whereas the best-known deterministic algorithms solving these problems take time O(2"). He also
gave a 3-round interactive proof system running in time 2-’? time for QBF, a PSPACE-complete
problem. Even if these results make one worry about finding our desired f in PSPACE, it is widely
believed that there exists problems computable in time 20#®)" that require exponential space.
Given that such problems lack the structure that Williams exploits, it is plausible that there is
such an f where random verification does not achieve significant savings, making our hardness
assumption true.

1.8 Followup Work and Open Problems

Following our work, Chen and Tell [14, 15] continued the study of fast derandomization of algo-
rithms and addressed a few open questions that arose from this work. In Reference [14], Chen and
Tell achieve black-box derandomization in time n-t'*® and in some settings n'*@.t which matches
the runtime of Adleman’s nonuniform derandomization (and is especially significant in the t > n
regime for complexity-theoretic applications). They also show, that under a counting version of
the non-deterministic strong exponential-time hypothesis, a multiplicative factor of n is essential.
While their complexity-theoretic assumptions are somewhat milder than ours, they also use stan-
dard cryptographic assumptions to obtain their derandomization results. Additionally, they prove
that if one only aims for average-case derandomization, then a tiny derandomization overhead of

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

43:12 D. Doron et al.

n is possible! In Reference [14], they also give an alternative proof for our main derandomization
result, Theorem 1.2.

Our work, and Reference [14], attain fast derandomization based on nonuniform hardness as-
sumptions (i.e., assuming hardness against circuits, or algorithms that take advice). In Reference
[15], Chen and Tell studied fast derandomization from uniform assumptions. Very roughly, under
cryptographic assumptions and (uniform) complexity theoretic assumptions we do not state here,
they attain average-case derandomization (over polynomial-time samplable distributions) with n*
overhead. Interestingly, the techniques in Reference [15] are non-black-box and involve targeted
pseudorandom generators, modifying and expanding existing, black-box, derandomization tech-
niques from uniform assumptions.

Following our work, and Reference [14], Shaltiel and Viola [73] studied the hardness assump-
tions needed to obtain small overhead, specifically whether the extreme high-end hardness as-
sumption, for standard circuits, would suffice for the fast derandomization results of our work
and Reference [14]. Investigating limitations on “black-box” (or, reconstructive) proofs of PRGs
and PEGs, they show that PEG constructions starting only from a function that is (very) hard for
standard circuits cannot attain the short seed of Theorem 1.5. Thus, it seems that a hardness as-
sumption that involves nondeterminism is crucial for our approach of applying an extractor on
the output of a pseudoentropy generator.

Last, very recently, Chen and Tell [16] studied fast derandomization of proof systems rather than
algorithms. They obtain derandomization of MA and MA with overhead that is optimal under stan-
dard complexity theoretic assumptions. They also derandomize doubly efficient proof systems and
quite surprisingly, show that any constant-round doubly efficient proof system can be simulated
by a deterministic doubly efficient argument system, with essentially no time overhead. We re-
fer the reader to the paper itself for the precise definitions, results, and (fairly strong) hardness
assumptions.

Some challenges remain to be tackled.

(1) Can we achieve similar results assuming f is exponentially hard for SVN—rather than ran-
domized SVN—circuits?

(2) Can we achieve a nearly linear time quantified derandomization without any preprocessing?

(3) Can we get even better wost-case derandomization slowdown (say, matching Reference [14])
without resorting to cryptographic assumptions? In Reference [16], Chen and Tell succeed
in doing so, relying on hardness assumptions that are similar to ours, but slightly stronger.
It would be very interesting to weaken those assumptions.

1.9 Organization

In Section 2, we give standard definitions and results regarding circuits, error correcting codes, ex-
tractors, and condensers, as well as less-standard circuits definitions and various pseudoentropy
notions. In Section 3, we study the connection between list recoverable codes and pseudoentropy
generators, proving Theorem 1.6. In Section 4, we construct our list recoverable code, as described
in Section 1.3.1, and apply it to our PEG construction. In Section 5, we show that PEGs can be used
for quantified derandomization, establishing Theorem 1.3 and discussing improvements given bet-
ter codes and stronger hardness assumptions. In Section 6, we prove our extraction scheme from
pseudoentropy, establishing Theorem 1.8. In Section 7, we construct the required efficiently com-
putable extractors with near-optimal seed length. In Section 8, we compose the explicit PEGs and
extractors to get (high-error) PRGs from hardness assumptions against circuits with oracle access
to approximating circuit density. In Section 9, we trade the latter assumption with hardness against
randomized SVN circuits and establish our main theorem, Theorem 1.2. Finally, in Section 10, we

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

Nearly Optimal Pseudorandomness from Hardness 43:13

construct a list recoverable code that allows us to reduce the error of our PEGs and PRGs, proving
Theorems 1.4 and 1.5.

2 PRELIMINARIES

The density of a set B € Ais ua(B) = % (when A is clear from context, we shall omit it). For a
positive integer A, we denote by [A] the set {1,..., A}. For a set A, by x ~ A, we mean x is drawn
uniformly at random from the uniform distribution over the elements of A. For a function f: Q; —
Q,, we say f is explicit if there exists a deterministic procedure that runs in time poly(log |Q;])
and computes f. Finally, for f,g: N — N, we say that f(n) = O(g(n)) if there exists a constant k
such that f(n) = O(g(n) logk g(n)). All the logarithms are in base 2.

2.1 Circuits, Nondeterministic Circuits, and Worst-case Hardness

The size of a Boolean circuit is the number of its wires. We will extensively use the fact that
DTIME(t(n)) C SIZE(O(t(n)logt(n))), where SIZE(t(n)) is the set of languages L C {0,1}" for
which there exists a circuit family {C,},,, such that each C,, is of size t(n), and for every x € {0, 1}"
it holds that x € L if and only if C,(x) = 1 [63]."® For a Boolean-valued circuit C, we denote by
Supp(C) the set of all inputs x for which C(x) = 1.

We first define the notion of SVN circuits, where a circuit is allowed to use nondeterminism.
However, we allow for the possibility that for some inputs, there are no “good” witnesses that
can allow the circuit to compute a “correct answer,” i.e., we allow the circuit to compute partial
functions.

Definition 2.1 (Partial Function). A partial function mapping n bits to m bits is a function
f:{0,1}" — {0,1}™ U {L}. We say f is total if there is no input x € {0, 1}" for which f(x) = L.

We will most often work with total functions. For the rest of this article, a function f: {0,1}" —
{0, 1} with L omitted from the range denotes a total function.

Definition 2.2 (SVN Circuit, [70]). Let f: {0,1}" — {0,1}"™ U {L} be a partial function. A single-
valued nondeterministic (SVN) circuit computing f is a pair of circuits C: {0,1}" x {0,1}" —
{0,1}™ and Ceheck: {0,1}" X {0,1}" — {0,1} such that for input string x € {0,1}" and witness
string y € {0, 1}", the following holds:

(1) For every x € {0,1}", f(x) # L if and only if there exists y € {0,1}" such that

Ccheck(xv y) =1
(2) For every x € {0,1}" and y € {0, 1}" such that Cepeck(x, y) = 1, it holds that C(x,y) = f(x).

The size of an SVN circuit is the sum of the sizes of C and Cepeck-

When only considering SVN circuits that compute total functions with a single bit of output,
the above definition can be viewed as the non-uniform analogue of NP N coNP. We often refer
to Ceheck (¥, y) as the checking phase, or witness verification circuit, and refer to C(x,y) as the
computing circuit. Additionally, we often think of an SVN circuit as a single circuit combining
both C and Ccheck (With m + 1 output bits).

Definition 2.3 (Hardness against SVN Circuits). Let f: {0,1}" — {0, 1}. We let sizesy n (f) denote
the size of the smallest SVN circuit that computes f. We say f requires exponential-size SVN
circuits if sizesyn(f) > 29" for some constant § > 0.

13The Pippenger and Fischer result [63] indeed gives a blowup of log #(n) from time to size, when one measures the time
complexity in the oblivious TM model. Since we work in the multi-tape model, we can assume our TM is oblivious without
time overheads.

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

43:14 D. Doron et al.

Note that if f: {0,1}" — {0, 1} is computable by an SVN circuit, then = f is computable by an
SVN circuit of the same size.
We also consider SVN circuits where the checking phase may use randomness. When consider-

ing total functions with a single bit output, this model can be seen as the nonuniform analogue of
MA N coMA.™

Definition 2.4 (Randomized SVN Circuits). Let f: {0,1}" — {0, 1} U{L} be a partial function. A
randomized SVN circuit computing f with error0 < § < % is a pair of circuits C: {0, 1}" x{0,1}" —
{0, 1) and Ceheck: 10,1} x {0, 1}* x {0, 1}¢ — {0, 1} such that for input string x € {0, 1}", witness
string y € {0,1}" and randomness string r € {0, 1}¢, the following holds:

(1) For every x € {0,1}", f(x) # L if and only if there exists y € {0, 1}" such that

Pr [Ccheck(x’ Y, I") = 1] >1-96.
r~Ud

(2) For every x € {0,1}" such that f(x) # L, and y € {0,1}", either Pr,.y,[Ccheck (%, Yy, 7) =
1] 21 =6 or Prry, [Ceheck(x, y,7) = 1] < 4.

(3) For every x € {0,1}" and y € {0, 1}" such that Pr, .y, [Ccheck (%, y,7) = 1] > 1 =, it holds
that C(x,y) = f(x).

The size of a randomized SVN circuit is the sum of the sizes of C and Ccpeck-
We can now define hardness for randomized SVN circuits in the natural way.

Definition 2.5 (Hardness for Randomized SVN Circuits). We say f: {0,1}" — {0, 1} requires ran-
domized SVN circuits for error § = §(n) > 0 of size s = s(n) if the smallest randomized SVN circuit
that computes f with error § has size at least s.

It will be useful to consider a related model where the checking phase is deterministic but has
access to an oracle that gets a circuit and approximates the fraction of inputs the circuit accepts.

Definition 2.6 (DensityApprox, Gates). For a fixed error parameter n > 0, a DensityApprox,

1
oracle gate takes as input an encoding of a circuit C and outputs p € {0, 1} Mg 1 such that | E[C]-
pl < n.In words, the gate outputs an additive n-approximation to the fraction of accepting inputs
to C.

Definition 2.7 (DensityApprox, SVN Circuits). Let f: {0,1}" — {0,1}"" U {1} be a partial func-
tion. For fixed error parameter 7, a DensityApprox, SVN circuit computing f is a pair of circuits

C: {0,1}" x{0,1}* — {0,1}™ and CPh/ZCk: {0,1}" x{0,1}" — {0, 1} (with the superscript denoting

access to DensityApprox, gates) such that the following holds:

(1) For every x € {0,1}", f(x) # L if and only if there exists y € {0,1}" such that

ng’:ck(x, y) = 1.

(2) For every x € {0,1}" and y € {0, 1} such that CPA (x,y) = 1, it holds that C(x,y) = f(x).

check
The superscript in C2* = will be omitted when it is clear from context. The size of a DensityApprox
check n
SVN circuit is the sum of the sizes of C and C(I:)h/:ck’

Again, we can define hardness against DensityApprox, SVN circuits in a natural way.

4 An alternative definition for randomized SVN circuits was given in References [45, 72], corresponding to the nonuniform
analogue of AM N coAM. Although one can suspect these models to be equivalent, there are some subtleties that arise when
one cares about polynomial blowups in size.

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

Nearly Optimal Pseudorandomness from Hardness 43:15

Definition 2.8 (Hardness against DensityApprox, SVN Circuits). Let f: {0,1}" — {0,1}. We let
sizesy n; (f) denote the size of the smallest DensityApprox, SVN circuit that computes f. We say

[requires exponential-size DensityApprox, SVN circuits if sizesy (f) > 2°" for some constant
6> 0.

In Section 9, we prove the equivalence between this model and the randomized SVN model of
Definition 2.4.

2.2 Error Correcting Codes

Error correcting codes are families of well-separated strings in 2", called codewords. If one corrupts
a codeword in some (bounded number) of its coordinates, then the codeword is still the closest to
the corrupted string. This allows decoding of the original codeword.

Definition 2.9 (Relative Distance). For some alphabet X, let x, y € X". The relative distance of x, y,
denoted (x, y), is the fraction of coordinates on which x, y differ. That is, § (x, y) = Pri.[s)[x; # yi].

In a linear code the codewords form a linear subspace, which is a useful structure.

Definition 2.10 (Linear Code). Let n, k, q be positive integers with q a prime power and 0 < § < 1.
We say that C:]F’(; — FZ is an [n,k, 6]4 code if C is a linear transformation and for all x,y € Fk,
8(C(x),C(y)) = 8. By abuse of notation, we often use C to denote Im(C) C =",

List decoding is the idea of decoding after a large number of corruptions (close to the distance
of the code). In this case there can be many, but not too many, codewords closest to the corrupted
string. In this work, we consider codes over a large alphabet in which the relative distance is close
to 1.

Definition 2.11 (List Decodable Codes). A code C C 2" is (r, L) list decodable if for every w € 2",
[{ceC:6(w,c) <t}| <L

Next, we think of codes as encoding x € =¥ using a codeword in 3" (which can be done if there
are |2|¥ codewords in the code). The local decoding problem asks to only decode x; for i € [k]
given as input (as opposed to x € X¥ in its entirety). It should be possible to do that while only
inspecting a small number Q of symbols of the corrupted codeword.

Definition 2.12 (Locally List Decodable Code). Let C: ¥ — ", Let Q, L, s be positive integers
and 0 < ¢, < 1. We say that C is (Q, ¢,{,s,L) locally list decodable if there exist randomized
circuits Ay, . .., Ar, each of size s that satisfy the following:

e Each A; has oracle access to a received word r € £", and makes at most Q oracle queries to
coordinates in r.

e For every codeword ¢ = C(x) such that c agrees with r in at least ¢ fraction of the coordinates,
there exists j € [L] such that for every i € [k], we have A;(i) # x; with probability at most
{ over the randomness of A;.

For convenience, we often say in words that C is an LLDC using Q queries, handling agreement
of at least ¢, with failure probability ¢, circuit size s, and output list size L.

In list recoverable codes, a variant of list decoding, the decoder is given a list of symbols for every
coordinate where at least ¢ fraction of the lists contain the symbol of the encoded message (locally
decodable codes correspond to lists of size 1).

Definition 2.13 (List Recoverable Code). Let C: £¥ — %" For positive integers £, L and & > 0 we
say that C is (e, ¢, L) list recoverable if the following holds: For every sequence of sets Sy, ..., S, C

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

43:16 D. Doron et al.

Y so 31 ISi| < ¢ there are at most L codewords ¢ € C satisfying ¢; € S; for at least ¢ fraction of
the i-s.

We note that usually, when defining list recoverable codes, the quantity ¢ bounds the individual
lists’ size, max; |S;| (and some results can be extended to E;[|S;|]), rather than their sum. However,
the above definition is more natural when studying the connection to pseudorandomness, and also,
we work in the nonstandard regime where ¢ > n, so the difference between those two quantities
is very minor.

Locally list recoverable codes are analogous to locally list decodable codes. There is a variety of
ways to define them, and here we choose a form that is convenient for us.

First, we assume an oracle that given a coordinate i € [n] and an identifier j returns a unique
member of the list of the ith coordinate identified by j. The oracle may return L if the element is
undefined. Note that this definition is intended to assert that no matter what indexing scheme one
uses to access the lists, the decoder can correctly decode the message using that oracle. When the
lists are short, the decoder may read the lists in their entirety, however, in our context the lists are
huge and the decoder can only access individual entries in the lists.

Second, the decoder may depend on the lists. In particular, the sizes of the lists, or an identifier of
amember of each list, may be hard-wired into the decoder. Such unusual definition is common in the
context of PRGs [77], whereas in standard coding definitions, the same decoder should work for
all lists. This definition allows us to assume that the decoder does not make queries whose answer
is L. It also allows us to assume that the decoder is deterministic! This is because the number of
inputs to the decoder is k, the number of indices in [k] one may wish to decode. By repeating
the randomized decoder O(log k) times, it is possible to decrease the error probability below %,
and therefore there exists a fixed randomness string that leads to correct decoding for all i € [k]
(see References [1, 77] for a more detailed argument). Note that the actual queries the decoder
makes depend on i, and vary across [n] when i varies across [k].

Definition 2.14 (Locally List Recoverable Code). Let C: >k — > For positive integers ¢, L, Q,
and 0 < ¢ < 1 we say that C is (Q,¢,¢,s) locally list recoverable if the following holds: Let
S = (S1,...,Su) be any list of subsets, where each S, € ¥ and }.?_, |S,| < ¢, and let Og be any
oracle to S satisfying the following properties:

e O takes as input y € {0, 1}!°8¢ and outputs an element of % U {L}.
e For every z € [n] and every v € S, there exists a Yy,) € {0, 1}°8¢ such that O5(Y(z,0)) = .
Furthermore, each y; . is unique. That is, y(;) # y(,v) if (z,v) # (z/,2").

Then there exist circuits Ay, ..., Ay for some L, each of size s, that satisfy the following:

e Each A; takes as input i € [k] and uses at most Q oracle gates to Os.

e For every codeword ¢ = C(x) satisfying c, € S, for at least ¢ fraction of the i-s, there exists
Jj € [L] such that for every i € [k], we have A;(i) = x;. Moreover, A; never queries Og on an
input that yields L.

For convenience, we often say in words that C is a LLRC using Q queries, handling agreement at
least ¢, with circuit size s and input list size €.

We will use local list recoverability in a “non-uniform” nature, and specifically, we will fix some
message x in mind and only be interested in the existence of a decoding circuit for x. Thus, we
will not make an attempt to give a good bound on L, but note that it is always the case that L is at
most the number of size-s circuits.

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

Nearly Optimal Pseudorandomness from Hardness 43:17

2.3 Random Variables, Min-entropy

The support of a random variable X distributed over some domain Q is the set of x € Q for which
Pr[X = x] # 0, which we denote by Supp(X).

The statistical distance between two random variables X and Y on the same domain Q is defined
as |[X — Y| = maxacq(Pr[X € A] - Pr[Y € A]). If |X — Y| < ¢, then we say X is e-close to Y and
denote it by X =, Y. We denote by U, the random variable distributed uniformly over {0, 1}". We
say a random variable is flat if it is uniform over its support.

For a function f: Q; — Q, and a random variable X distributed over Q;, f(X) is the random
variable distributed over Q, obtained by choosing x according to X and computing f(x). For a
set A C Qy, f(A) = {f(x) : x € A}. For every f: Q; — Q, and two random variables X and Y
distributed over Q it holds that | f(X) — f(Y)| < |X - Y]|.

The min-entropy of a random variable X is defined by

1

Ho(X) = in log ———.
X) xeérulslrgl(X) 8 Pr[X = x]

For some ¢ > 0, we define the smooth min-entropy of X by

HL(X) = max Heo(X).

A random variable X is an (n, k) source if X is distributed over {0, 1}" and has min-entropy
at least k. When n is clear from the context, we sometimes omit it and simply say that X is a k-
source. Every k-source X can be expressed as a convex combination of flat distributions each with
min-entropy at least k.

Definition 2.15 (Average Conditional Min-entropy). Let X,Y be two random variables. The aver-
age conditional min-entropy is defined by

Ho(X|Y) = —log(Ey[z—Hw<X'Y=y>]) :
g~
LEMMA 2.16. Let X,Y be two random variables such that |Supp(Y)| < 2¢. Then, Ho,(X|Y) >
Hoo(X) = €.
2.4 Condensers, Extractors, Samplers, and Expanders

Definition 2.17 (Extractor). A function
Ext: {0,1)" x {0,1}% — {0,1}™

isa (k,) seeded extractor if the following holds: For every (n, k) source X, Ext(X,Y) ~, U,,, where
Y is uniformly distributed over {0, 1}¢ and is independent of X. We say Ext is a strong (k, ¢) seeded
extractor if (Ext(X,Y),Y) =, (Un, Y).

Indeed, whenever a source X has sufficient min-entropy and is independent of the seed Y, we
are guaranteed that a strong seeded extractor Ext gives us (Ext(X,Y),Y) =, (Up, Y). The following
lemma shows that (Ext(X,Y), Y) is nearly independent of any random variable #, such that X, Y
are independent conditioned on H and X|H has sufficient min-entropy.

LEMMA 2.18 ([18, 20]). Let Ext: {0,1}" x {0, 134 5 {0,1)" be a strong (k, €) extractor. Let X be
distributed over {0,1}" and let H be some random variable such that Ho(X|H) > k + log % LetY

be uniformly distributed over {0, 1}%, independent of X conditioned on HH. Then,
(EXt(X’ Y)’ Ya 7_{) X2e (Um’ Ya 7_{)

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

43:18 D. Doron et al.

Definition 2.19 (Condenser). A function
Cond: {0,1}" x {0,1}¢ — {0, 1}

is a (k,k’, €) condenser if the following holds: For every (n, k) source X, HS (Cond(X,Y)) > k’,
where Y is uniformly distributed over {0,1}¢ and is independent of X We say Cond is a strong
(k,k’, €) condenser if (Cond(X, Y), Y) is e-close to some (D, Y) having min-entropy d + k’.

We proceed by defining density samplers.
Definition 2.20 (Sampler). LetI': [N] x [D] — [M].

e We say x € [N] is e-bad for B € [M] if

Pr [T(x,y) € B] — u(B)| > e.
y~Upy
e We say I is a (, €) sampler if for every B C [M], we have that
[{x € [N] : x is e-bad for B}| < 6N.
LemMa 2.21 ([95]). Let Ext: {0,1}" x {0,1}¢ — {0, 1} be a (k,) extractor. Then, Ext is also a
(6 = 2k &) sampler.

Definition 2.22 (Expander Graph). We say that an undirected regular graph G is a A-expander
if all eigenvalues of the normalized adjacency matrix of G other than 1 are at most A in absolute
value.

The following theorem is implied by the constructions of References [27, 60, 68].

THEOREM 2.23. For every constant 0 < A < 1 there exists a constant integer d = d(A) such that
the following holds: For every positive integer n there exists a connected d-regular undirected graph
that is a A-expander. Given a vertex x € [n] and an edge label i € [d], the ith neighbor of x can be
computed in time polylog(n).

2.5 Pseudoentropy
Next, we discuss computational notions of min-entropy, or, (min-) pseudoentropy. We start with

the standard, widely used notion of pseudoentropy due to Hastad et al. [47].

Definition 2.24 (HILL Pseudoentropy). Let X be a random variable distributed over {0,1}", an
integer s, and ¢ > 0. We say that HEE‘L (X) > k if there exists a random variable Y ~ {0, 1}" with
Ho(Y) > k such that for every circuit D: {0,1}" — {0, 1} of size s, | E[D(X)] — E[D(Y)]| < e.

A weaker notion, given by Reingold [66] and by Barak, Shaltiel, and Wigderson [12] allows the
random variable having true min-entropy to depend on the distinguisher itself.

Definition 2.25 (Metric Pseudoentropy). Let X be a random variable distributed over {0, 1}", let s
be a positive integer, and ¢ > 0. We say that H;{*;“ic (X) = k if for every circuit D: {0,1}" — {0,1}
of size s there exists Y ~ {0, 1}" such that H(Y) > k and | E[D(X)] — E[D(Y)]| < e.

We record the following standard fact in pseudorandomness:

Cramm 2.26. IfX ~ {0,1}" is a random variable such that HS (X) > k then for every set D C {0, 1}"
it holds that Pr[X € D] < % + €.

Barak et al. also give such a result in the computational world when we use metric
pseudoentropy.

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

Nearly Optimal Pseudorandomness from Hardness 43:19

LEmMa 2.27 ([12]). Let X be a random variable distributed over {0,1}", let s be a positive integer,
and € > 0. Then, Hfff“ic(X) > k if and only if for every circuit D: {0,1}" — {0, 1} of size s it holds
that Pr[D(X) = 1] < |SUPZL’C(D)| + ¢. The same statement holds when we let D to come from a class of
circuits closed under complement, including circuits using DensityApprox, oracle gates.

2.5.1 Yao Pseudoentropy. A different definition for computational entropy was given by Yao
[93], who used compression rather than indistinguishability.

Definition 2.28 (Yao Set). For some positive integers s, n, £ and A C {0, 1}", we say that A € C;as"
if there exist circuits c: {0,1}"* — {0,1}¢ and d: {0, 1}’ — {0, 1}", each of size s, such that

A={x:d(c(x)) =x}.

We refer to c as the compressing circuit and to d as the decompressing one. We may refer to A in
words as the set of properly compressible strings for ¢ and d.

We extend Yao’s definition to circuits where the decompressor can be an SVN circuit.

Definition 2.29 (NYao Set). For some positive integers s,n, ¢, and A C {0, 1}", we say that A €
C;,\Iza" if there exists a circuit c: {0,1}" — {0, 1} and an SVN circuitd: {0,1}¢ x{0,1}*" — {0,1}"
computing a partial function f;: {0, 1} - {0,1}™ U {L}, both of size s, such that

A= {x: filc(x)) = x}.
We refer to ¢ as the compressing circuit and to d as the decompressing one.

Definition 2.30 (Yao Pseudoentropy and NYao Pseudoentropy). Let X be a random variable dis-
tributed over {0, 1}", let s be a positive integer, and ¢ > 0. We say that H{%°(X) > k if for every

{ <kand A € C}as" it holds that Pr[X € A] < 27 + ¢,
We say that Hi\gao (X) > k if we allow A € C?an in the above.

It is not clear whether H}f}o (X) > k implies H?%L (X) > k’ for some suitable k’, s’, ¢’.1> However,
Barak et al. [12] showed that if one is considering hardness against polynomial-sized circuits with
NP gates, then Yao pseudoentropy does imply metric pseudoentropy. We reprove their result, and
here we do it for SVN circuits.

LEmMA 2.31 (FOLLOWING [12]). There exists a constant 0 < y < 1 such that the following holds:
Let X be a random variable distributed over {0,1}" and ¢ > 0. There exists sy = O(n) such that for
everys > sy, nga"(X) > k implies H)‘,“sft;ic(X) > %

Proor. Assume towards a contradiction that H)‘,“;ftgic (X) < % for some universal constant y < 1
to be determined later. Thus, by Lemma 2.27, there exists a circuit D: {0,1}" — {0, 1} of size ys,

with [Supp(D)| < 2¥/2, for which

Supp(D)|

Pr[D(Y) =1] > =

(1)
Denote t = log |Supp(D)|, and note that t < % Let H C {0,1}" — {0,1}* be a two-universal
family of hash functions. We recall that a two-universal family of hash functions H satisfies that

Hsiao, Lu, and Reyzin [50] studied conditional versions of HILL and Yao pseudoentropies and proved that under these
definitions the above implication does not hold. Furthermore, they managed to extract more pseudorandom bits using Yao
pseudoentropy-based techniques than seems possible from HILL pseudoentropy. Wee gave an oracle under which the Yao
pseudoentropy is larger than the HILL pseudoentropy by a factor of roughly 2 [90].

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

43:20 D. Doron et al.

for every distinct x, y € {0,1}" and every oy, 03 € {0,1}*, we have

2
Pr) = oy ARG =) = ()
For an efficient implementation of HH, we can take it to be the set of all affine functions over
F = GF(2"), and so h(x) amounts to computing ax +b over F for some fixed a, b € F and truncating
the last n — 2t digits (see, e.g., Reference [86, Theorem 3.26]). Arithmetics in F can be done by
circuits of size sy = O(n).

For a random h ~ H and distinct x,y € {0, 1}", let I,y be the indicator random variable that is
1if and only if h(x) = h(y). By the properties of H,

2! 2!
E Z Ly| < (Z)Pr[lx,y =1] < (2)2‘“ <1,

{x.y}cD

so there exists some h* € H that is one-to-one on Supp(D).

Set ¢ = 2t, and consider the following compressing circuit and decompressing SVN circuit: First,
we let ¢: {0,1}" — {0, 1}¢ simply compute h*. For the decompressing circuit, we aim for the SVN
circuit d: {0,1}¢ x {0,1}"* — {0,1}" to compute the partial function that maps every element in
the image of Supp(D) under h* to its unique preimage in Supp(D) (and maps everything else to
1). This can be done by the circuit that simply computes d(z, x) = x and outputs dcheck(z, x) = 1
if and only if both D(x) = 1 and h*(x) = 2.!° Evaluating c simply requires evaluating h*(x), which
can be done by a circuit of size sy = O(n). Evaluating d requires both computing h*(x) and D(x),
and so the size of d is sy + ys. Now observe that

Supp(D) = {x : Ay € {0, 1}" s.t. deheck(c(x),y) = 1 and d(c(x),y) = x} € CNY*©

C,so+ys”

Moreover, recall from Equation (1) that

Pg([x € Supp(D)] > 2% pe> 20K 4,
m

Since the constant y can be set so both ¢ and d are of size s, this contradicts the fact that
HYY(X) > k. O

2.6 Pseudoentropy Generators and Pseudorandom Generators

We say that a distribution X ~ {0, 1}" e-fools a circuit D with n inputs if D(X) ~, D(U,). A pseu-
dorandom generator against a class C is a function whose output distribution fools any function
from C.

Definition 2.32 (PRG). Let C C {0,1}" — {0, 1} be a class of functions. We say that G: {0,1}" —
{0, 1} e-fools C (or, is an e-PRG against C) if for every C € C,

|E[C(G(Ua))] = E[C(Un)]| < e.

When C is the class of functions computable by circuits of size s, we say that G e-fools circuits of
size s.

16The definition of SVN circuits computing partial functions seems crucial here to make the argument from Reference [12]
complete. We wish for d to only output elements of Supp(D). However, since Supp(D) is of size 27, and the input space
for d is of larger size, there are inputs with no well defined answer.

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

Nearly Optimal Pseudorandomness from Hardness 43:21

In this work, we will also construct weaker variants. When the output of a generator is not
pseudorandom but does have high pseudoentropy, we say that the generator is a pseudoen-
tropy generator. Our pseudoentropy generators will output random variables having high metric
pseudoentropy.

Definition 2.33 (Metric PEG). We say that G: {0,1}¢ — {0,1}" is a (k, s, £) metric pseudoentropy
generator (PEG) if
HZE™(G(Y)) 2 k,
where Y is the uniform distribution over d bits. We say that G is a strong (k, s, ¢) metric pseudoen-
tropy generator if H"S"¢(Y o G(Y)) > k.

One can show that for k = n the above definition coincides with the standard definition of PRGs

[11].
3 A PSEUDOENTROPY GENERATOR FROM WORST-CASE HARDNESS

In this section, we show how to construct a metric pseudoentropy generator from a function f that
is hard for SVN circuits. The idea is to show that if a code C is locally list recoverable, then the
symbol at a random coordinate of C(f) has high Yao pseudoentropy, where we identify f with
its truth table in {0, 1}". This then implies that it must also have high metric pseudoentropy by
Lemma 2.31.

Let f: {0, 198" _ {0, 1} be such that every SVN circuit computing f has size at least n=% for
some constant oy < é That is, sizesyn (f) = n!~%. Let

C: {0,1}" - 3™
be some error correcting code. Define G : [m] — X = {0, 1}loeg 1l g0
& (2) = C(f)..

THEOREM 3.1. Keeping the above notation, let ¢, be constants such thate > 0 and ap < o <

nl—a

1
5

Assume C is (Q,¢,¢,sc) locally list recoverable so sc = O(n'"%), and > so for some sy

5(10g [2]), where the precise o) dependence is determined by Lemma 2.31. Then G/ is a strong

(k, s,) metric PEG fork = el onds = o(%).
2 Q

PrOOF. Let Z be the uniform distribution over [m]. We first show that
HY (oGl (2)) 2 K

nl—af

5 and kK’ = log .
Assume towards a contradiction that Hyiao(Z oG/ (Z)) < k’. Then there exists aset A C [m] X2,
with A € CNY2° such that

ks’

fors’ =

Pr(Z oG/ (Z) € A] > .
As A € C]ij‘,", there exist a compressing circuit and a decompressing SVN circuit ¢: [m] X X —
0,1} and d: {0,1}* x {0,1}" — [m] X X of size s’, with d computing a partial function
fa: {0, 1}¥ = ([m] x =) U {1} such that for every (z,6) € A, we have that fale(z,0)) # L
and fy(c(z,0)) = (z,0).
Consider the sets Sy, ...,S,;, € X defined as follows:
S,={oceX:(z,0) € A}.

Notice that 3, e IS2] < 2K = ¢ Let fd’ : {0, l}k/ — XU {L} be the partial function that computes
fa but omits the element of [m] from the output. We claim that f behaves exactly like an oracle

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

43:22 D. Doron et al.

for S = (Si,...,Sm) as in Definition 2.14. This is because for every (z,0) € A, we know that
f é (¢(z,0)) = 0. Furthermore, every c(z, o) is unique, since c is one to one on A.

Moreover, for at least ¢ fraction of z-s, we know that C(f), € S,. Thus, by considering f as
an oracle gate for S, our definition of locally list recoverable codes implies there exists a circuit A
computing f that is of size at most s¢, and uses at most Q oracle queries to f.

We can replace each oracle query in A with a circuit that computes the SVN decompressor
circuit d on the appropriate witness string in {0, 1} and outputs the resulting symbol in ¥. In all,
the final SVN circuit will use a witness string in {0, 1}*<, where each block of w bits serves as the
witness to d for one of the Q oracle queries. The resulting circuit will output 1 as the check bit if
and only if the check bits of all Q copies of the decompressing circuit d is 1. Since the size of the
decompressing circuit is at most s’, we have a final circuit of size

O(sc +Q-s") = 0(n'™*)

that computes f, which is a contradiction of the hardness of f.
Knowing that Hyiao(Z 0 Gf(Z)) = k', and s’ = Q(log|2|), applying Lemma 2.31 proves the
theorem.]

Note that if we only wanted G/ to output Yao pseudoentropy, then the nondeterminism in the
hardness assumption would not be necessary and we could assume f is hard for standard circuits
rather than for SVN ones.

4 A LOCALLY LIST RECOVERABLE CODE FROM LOCAL LIST DECODING

In this section, we construct locally recoverable codes useful for constructing a pseudoentropy gen-
erator. Theorem 3.1 suggests that to construct a metric pseudoentropy generator as in Theorem 1.6,
we must construct, for sufficiently small constant @, alocally list recoverable code C: {0, 1}* — =™
with alphabet size |Z| = 2n""%“ that can recover from ¢ agreement using roughly n* queries. This
gives pseudoentropy against circuits of size s = n!~(®),

For our ultimate goal of constructing a PRG, we would like the number of pseudorandom bits
obtained after extraction to be comparable to the hardness s, and so we would also like the input
lists size ¢ to be approximately on'= Expecting the extractor to use (1 + O(a)) log n bits for its
seed, we can only afford the seed of the PEG to be of length O(«) logn, i.e., m = nO@),

One way to achieve these parameters is to take a locally list decodable code having relatively
large rate, namely, having blocklength O(n). Dividing the codeword into roughly n” blocks of n'~#
symbols each, for f = O(«), and treating each block as a single symbol yields the right parameters
for m and |3|. We show that such a construction in fact yields the locally list recoverable code we
need."’

Towards proving correctness of such an approach to construct locally list recoverable codes, we
utilize our nonuniform definition of list recovery. Specifically, we construct a circuit that takes as
advice a pointer for each list Sy, ...,S,,, as these are independent of the specific coordinate we
wish to decode. These pointers then naturally induce a string for the original locally list decodable
code, to which the circuit has oracle access. Thus, the circuit we construct needs to only efficiently
list decode the induced string.'® Let y be an upper bound on the length of the advice pointer for a
given list S,. To address the fact that the size of the decoding circuit sc must be at most n'~%, we

7We note that to use Theorem 3.1, we need the hardness s to satisfy s = Q(log |2|). We choose our constants below
carefully (hidden in the f = O(«) above) to address this issue.

181n the uniform setting, this amounts to “trying all possible £ options” We leave it as an open problem whether we can
do substantially better in our regime of parameters.

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

Nearly Optimal Pseudorandomness from Hardness 43:23

need to satisfy m - y < n'~%. This puts an upper bound on y, which implies that we can handle
lists of size £ = 2" 7.

Following Reference [77], we employ the list decoding properties of the Reed-Muller code. More
specifically, we use the following theorem:

THEOREM 4.1 ([77]). Let Crpm denote the [qt, (t;d), 1- %]q Reed-Muller code. That is, the code

consisting of all t-variate polynomials of total degree d over F4. Then for any constant1 > { > 0,
Crum is locally list decodable using Q = O¢ (¢*) queries, handling ZVE\/gfraction of agreement, with

failure probability {, circuit size s = poly(t, q), and output list size L = O(q"). For a constant t, one
can achieve s = O;(q*).

To see why one can achieve s = O, (q*), we briefly touch upon the details in Reference [77].
The decoding circuit for the Reed-Muller code works by performing list decoding for univariate
polynomials along g lines in]Ff]. The latter can be done by first solving a system of at most O(q)
linear equations in O(q) unknowns over F, (which takes time O(q?)) to find a certain bivariate
polynomial over F,. Next, the algorithm finds roots of the bivariate polynomial [76]. Finding such
roots requires at most O(q) applications of factoring univariate polynomials, which takes time at
most O(g?) by fastest known results [6, 54]. Thus, overall, for constant ¢, the size of the decoding
circuit s is at most O(q(q® + ¢%)) = O(g*).

4.1 The Construction

Our construction is a simple “folding” of the Reed-Muller code, where we increase the alphabet size
by concatenating the symbols of multiple coordinates into larger symbols. (The folding technique
has been widely used in coding theory, ever since Guruswami and Rudra’s capacity-achieving
list-decoding algorithm for folded Reed-Solomon codes [41].)

Given a positive integer n and constants 0 < ¢ < 1and 0 < a < 1 we construct C: {0,1}" — =™

that is locally list recoverable by a small circuit using n®(®) queries, with input lists size £ = on' =,
The construction goes as follows:
e In Theorem 4.1, set { = %, t= é and g = % -d with d chosenson = (t:ld) log q. Working out

the parameters, one can see that d = 5£,a(n“) and q = 55,0:(71“) (here, the ¢, a subscripts
hide a é and g% factor, respectively). The resulting code

Crm: {0,1)" — Fy=<"
isa .
(Q = Ona(r), 6,7 = %50 = O(1'), L = O(n))

locally list decodable code for ¢ = (%)i log n.

e Seta=n!"% letm = % = 5g,a(n5“), and define
C: {0,1}" - 3™,
where X = F;, so for every f € {0,1}" and z € {0, ...,m — 1},
C(f)z = Crm(f)az © - - 0 Crm([)az+a-1-

Above, for convenience, indices for C(f) start at 0. In words, we simply divide the codeword
Crm(f) into m contiguous blocks of size a and treat each block as a single symbol.’* Note that the

9For simplicity, we assume that 7 is divisible by a. To address this issue in full technicality, we can simply add at most
a — 1 dummy symbols to Crm (f). This will have negligible effect on the parameters of our list recoverable code.

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

43:24 D. Doron et al.

rate of C is #gq = va“(m;+n) and is equivalent to the rate of Crm as indeed folding preserves
rate.

We note that we do not make use of any special property of the Reed-Muller code, and in fact
any efficient locally list decodable code that has relatively high rate and handles arbitrarily small
fraction of agreement will work just as well. In particular, we made no further attempt to reduce
the alphabet size q or the decoding runtime, which dictates how small we must take « to be and
may improve the constant terms in O(ar). Moreover, improving the dependence of Q on ¢ may lead

to better results for nonconstant . We discuss it further below in Section 4.4.

4.2 Analysis

We can now prove that our code is locally list recoverable. As mentioned above, we construct a
circuit that takes as advice a pointer for each list Sy, .. ., S, and the pointers then induce a string
in 3™ to which the circuit has oracle access. Thus, given oracle access to S = (S, . . ., Sy), we run
the local decoder for the Reed-Muller code and answer its queries by querying the appropriate S,
using the advice pointer. We also need to show that the induced codeword for the Reed-Muller code
has at least e-fraction of correct symbols, which would arise from the fact that we have e-fraction
of good lists for which the advice can point to the correct folded symbol.

THEOREM 4.2. For any positive integer n and any constants 0 < ¢ < 1 and 0 < a < é the code C

constructed above is (Q, ¢, ¢, s¢) locally list recoverable for Q = O(n?®), € = 27" andsc = n'™®,

Proor. To describe our local list recovery algorithm, we give a family of circuits with oracle ac-
cess to S, indexed by advice, one of which successfully decodes the desired codeword. We describe
our decoding algorithm when given the correct advice, which shows that one circuit successfully
decodes f.

Towards this end, fix any codeword C(f) for f € {0,1}" satisfying C(f), € S, for at least
e-fraction of z € [m]. We begin by describing a randomized circuit for computing C(f). Consider

A (521
which takes as input x € [n], uses randomness string r, has access to some fixed oracle O; for
lists S = Si,. .., Sm, and aims to compute f. The decoder circuit A?jv implements the following
procedure:

(1) We first set up some preliminaries.

° A(jjv is hardwired with advice adv = (yi, . . ., Yym, RM), where each y, € {0, 1}log? points
to some list entry in the zth list. We assume the correct advice is given. Specifically, for
each z such that C(f), € S, let the correct y, be such that Os(y,) = C(f),, otherwise
let y, be an arbitrary string such that Os(y,) # L. Note that the size of the advice is
mlog¢ = O(n'~2%) and only depends on f and § and not on the input x.

o The rest of the advice RM points to a decoding circuit for the Reed-Muller code, and we
assume the correct circuit is given. That is, let Agm be the randomized circuit that computes
fx for every x, with probability at least % when given oracle access to a word in]FZ with
at most 1 — ¢ fraction of errors from Crm (f).

(2) Run the decoding circuit Arm(x, 7). For every j € [Q], supply the answer to the jth oracle
query that Agm makes to some coordinate i € [72] as follows:
(a) Letz = Lé], observing that the ith coordinate of Crpm is a part of the zth of C.
(b) Use the advice string y, and the oracle access to S to query the element & = O5(y.) € Fj.

c) Return the appropriate symbol 0, € F, (for h € [a]) that corresponds to the symbol for
the ith coordinate of Agym. That is, return oy, for h = i (mod a).

(3) Return the output of Agm(x, 7). O

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

Nearly Optimal Pseudorandomness from Hardness 43:25

First, we claim:
CLAIM 4.3. Agjv can be computed by a circuit of size
5(nl—2a)’
which makes at most Q = 5(n2“) oracle queries to Og.

Proor. First, the number of queries is at most the number of queries of the local decoding
algorithm Agm. The inputs to the circuit are x € {0, 1987 and the randomness r. Let |r| denote
the length of the randomness used. Since Reed-Muller decoding is the only place our algorithm
uses randomness, |r| is subsumed by the size of Agp. The advice that we hardwire to the circuit
has length O(n!~2%).

Next, the size of Arp itself is 5(n4"‘), and for each of the Q = 5(n2“) queries, we perform some
simple modular arithmetic to compute the appropriate indices of C and ©. Such arithmetic can be
done in O(a) = O(n'~5%). Overall, the total size of the circuit is

logn + O(n'™%%) + O(n**) + O(n'™°%) = O(n'~%%),

where we used the fact that o < é. |

We shall now prove the correctness of Agjv.

LEMMA 4.4. Fix f and oracle Og for S = Sy, ..., Sm as above. Then for every x € [n],

Pr (4%,) = f(0)] 2 2.

Proor. We show that the queries performed by Apm are essentially queries to a word with
agreement at least ¢ with Cpm(f). Define w €]P'Z as follows:

w; = Og (yU/aJ)(imoda) :

Note that, since all advice points to a symbol that is not L, we indeed have w € Pg. In words, w is
simply the “unfolded” version of the concatenation of all the oracle calls to the y-s. Observe that,
by construction, Agm essentially queries symbols from w. Let Gppm be the set of all i € [72] such
that w; = Crm(f);.

Now, by assumption, for at least ¢ fraction of z € [m], we have Os(y,) = C(f).. Let G denote
the set of all such z-s. For every z € G, and every h € [a], we know that

Wa.z+h = CRM (f)a-z+h:

Ze,wehavethat'GL_'V‘| > IGla O
n m-a

thus, since %
So far, we constructed a randomized circuit that computes C(f) with high probability, so what

remains is constructing a deterministic counterpart. This follows from a standard amplification
argument. Lemma 4.4 tells us that the randomized circuit Agjv is incorrect with probability at
most % We can thus construct a new circuit that makes M = O(log n) repeated runs of Afjv with
independent randomness and takes the majority vote. By Chernoff, the error probability of the new
amplified circuit is at most ﬁ and so there is a fixing of the randomness string so the amplified
circuit computes f on all indices. Since the size of the unamplified circuit was O(n'"2%), the final
circuit is of size 5(n1_20‘ - M) < n'~%. Moreover, the number of queries is 5(n2“ -M) = 5(n20‘).

We finish this section with a calculation of the time required to compute a given coordinate of
our code C, which relates directly to the runtime of our final PRGs.

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

43:26 D. Doron et al.

Cramm 4.5. Givenz € [m] and f € {0,1}", computing C(f), can be done in time O(n). Moreover,
given f € {0,1}", computing the entire codeword C(f) can be done in time O(n) as well.

Proor. For any z, computing C(f), (as well as computing all of C(f)) only requires computing
the Reed-Muller encoding Crm(f) at multiple points. To do so, we utilize the following result
(which we state informally) on fast multivariate interpolation and multipoint evaluation due to
van der Hoeven and Schost:]

THEOREM 4.6 (FoLLows FROM [87]). For some positive integers t and d, and a subset H C F, let

I C H' be any subset such that |I| < (d;rt

degree at most d (alternatively, one can take I = H' and P having individual degree at most |H| — 1).
Then, one can compute the representation of P (coefficients in the monomial basis) in time

O(t|H'|log® |[H|loglog |H'| - M),

). Let P be a t-variate interpolation polynomial on I, of total

where M = 5(log |F|) is a bound on the the time complexity (or, bit complexity) of addition and
multiplication in F.2° Moreover, given such a representation of P, we can evaluate the values of P on
any H' in the same amount of time.

Recall that in our setting, t = é To compute both C(f), for fixed z (and all of C(f)), we first
interpolate the message f to a representation of a polynomial. The interpolation set I is of size
O(n). By the above theorem, this takes time O(n). Next, we compute the values of the polynomial
on all O(n) points of F'. We then return all of these values (in the case of computing the entire
range) or a certain subset of these values of size 5(n1_5“) in the case of computing C(f), for

fixed z.

4.3 Applying Our Code for Pseudoentropy Generators

Combining Theorem 4.2 with Theorem 3.1 gives the following:
THEOREM 4.7. For any constant ¢ > 0 and every positive integer n the following holds: Assume
f110,1)°¢" — {0, 1)
is such that sizesy N (f) > n'=% for some constant aty < %.Leta be any constant such thatay < a < %
Then, there exists a function
¢ 10,117 - (0,1)°
that is a (k, s, €) metric PEG fork = ”ja ,s > n'™* d =5qlogn + O(loglogn) and a = O(n'~5%).
Given oracle access to f, the range of G takes O(n) time to compute. Moreover, if f € DTIME(n®r)
for some cy > 1, then the range of GI' can be computed in time O(n°/*1).

Sa

PROOF. Let C: {0,1}" — 2™ with = = F1 ", ¢ = O(n®) and m = O(n), be the (Q.e,¢,5¢)
locally list recoverable for Q = O(n?®), ¢ = 27" and sc = O(n'™%) that is guaranteed to us by
Theorem 4.2. We note that "ga = Q(n'™**) > 5(10g [Z]) = O(n'~5%) for a large enough n. Thus,
by applying Theorem 3.1, we get that

G 0,1)¢ = {0,1)¢

is a (k, s, £) metric PEG with d = logm = 5alogn + O(loglogn) and a = log || = O(n'5%) for

k=Qn""*)and s = "1% > nl™ie,

20See, e.g., References [28, 89]. This bound holds for both prime fields and extensions of prime fields, and in fact sharper
bounds are known, but we will not need them.

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

Nearly Optimal Pseudorandomness from Hardness 43:27

Finally, to compute the range of the PEG, we can first compute f at every point in time O(n/*1).
We then essentially have oracle access to f, and so by Claim 4.5, we can compute the range in time
O(n). Thus, overall the time to compute the range is O(n%*1). O

4.4 General Application of Our Paradigm

To conclude this section, we lay out possible settings of parameters for our paradigm for pseu-
doentropy via list recovery. In the construction of our code, we take a locally list decodable code
using Q queries and divide it into m blocks of size a so m - a = n. Denoting s* as the hardness of
f, then using the idea of decoding via advice pointers, we get that the amount of pseudoentropy
is roughly log ¢ = % and the pseudoentropy is for circuits of size roughly % The seed length of a
PEG constructed this way is log m, and the output length is a. We chose our specific m and a along
with the Reed-Muller code for convenience in nailing down specific details (s* slightly larger than
a, linear encoding time, efficient decoding time as a specific polynomial in Q, etc.). We note that
= % This means that the pseudoentropy rate is
governed by the rate of the LDC, and its relation to the hardness of the message (the hardness of
the pseudoentropy, however, is governed by the number of queries of the LDC).

Other regimes of m and a may also be of interest. We record the following theorem relating all
the parameters above:

THEOREM 4.8. For a positive integer n, let C: {0,1}" — (ZLDC)E be a code that is

(Q, & = %,SLDc,L = O(n))

locally list decodable. That is, it is decodable from ¢ agreement, with error probability %, using
Q queries. Let s* = s*(n) be some function of n such that for every n, there exists a function
£ {0,1}°8" — (0,1} with sizesyn(f) > s*. Finally, let m, a be positive integers.

There exists sy, with so = 5(a -log |2pcl), such that if the following conditions hold:

om>l
e m:- a—n

® 5 < 2Q’ and
e sipc < &

then there exists a function
G/ : {0, 1)°8™ — {0, 1) 108 Proc]

that is a (k, s, €) metric PEG fork = @(%) ands = (losgon =0(

) 21
Q log n

In Section 5.1, we discuss an instantiation of the above theorem with parameters for improved
quantified derandomization.

To understand the limits of the above theorem, we consider some extreme settings of parameters.
In our general paradigm of splitting an LDC into m blocks of size a, we see that the seed length
of the resulting generator is log m, and that the pseudoentropy is k = ©(3;). This suggests that
decreasing m can only improve our result. In the extreme case, we may try to set m = 1. This would
yield a PEG that requires no seed and outputs ©(s*) bits of pseudoentropy. However, examining the
analysis, we see this means that for decoding f, we must hardwire as advice a single compressed
string that correctly decompresses via some circuit to all of C(f). In other words, we get a list

2The log n factor loss in hardness here comes from the fact that we derandomize the original decoding circuit via an
Adleman-type argument, as seen in the proof of Theorem 4.2.

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

43:28 D. Doron et al.

recoverable code that can only handle 100% agreement. This yields a trivial error of ¢ = 1, and
indeed, such a choice does not satisfy the conditions of the above theorem. The slightly less extreme
example of setting m = 1/¢ is also problematic, but for a different reason. In this case, we would
supposedly get a seed length of log % and about ¢ - s* bits of metric pseudoentropy. However, here

the third condition of the theorem, namely, that s, < %, cannot be satisfied. This is because we
%. At the very least, this would require the
hardness s* to be at least Q(n), and any function can be computed by circuits of that size.

have a = €7, and so we require 5(£ﬁ -log [Zipcl) <

5 DERANDOMIZING ALGORITHMS THAT ERR RARELY
In Theorem 4.7, we proved that G/ is a metric PEG. This is already useful by itself, e.g., since it
allows us to derandomize algorithms that err rarely.

Cramm5.1. LetC: {0,1}" — {0, 1} be a circuit of size s for which there exists b € {0, 1} such that C
evaluates to b on at most B = B(n) of its possible inputs. Let X ~ {0, 1}" be such thatH;’jgt:riC/S(X) >k
fork > logB + 3. Then,

1
Pr[C(X)=1-0b] > 3
Proor. By Lemma 2.27,
prc(X)=b] < 2 1+ <]
r = — 4+ -< -,
T2k 87 4
so the claim follows immediately.]

Quite surprisingly, since our PEG has a very short seed, we are able to derandomize with almost
no slowdown.

LEMMA 5.2. There exists a constant ¢ > 1 such that the following holds: For positive integers n and
t>n%2letL C {0,1}" and let A: {0,1}" x {0,1}' — {0,1} be a probabilistic algorithm running in
time t for which there exists B = B(t) such that for every x € {0,1}",

B
Pr [A(x,y) # L < —.
P [AGey) # L] < 3

LetG: {0,1}% — {0,1}! be a (k,s, e = 1/8) metric PEG fors = ctlogt and k > log B + 3.

Then, there exists a deterministic algorithm Ap: {0,1}" — {0, 1} that accepts L and runs in time
2%t + tp, where tp is for computing Supp(G) and can be precomputed for all algorithms with running
time t.

Proor. Fix some x € {0,1}" and let C,: {0,1}" — {0, 1} be the circuit that computes A(x, -), of
size s. By our assumption on A, C, outputs 1 — L(x) on at most B of its inputs. By Claim 5.1, we
know that

1
Pr{C(G(U)) = L(x)] > =
Hence, the standard way of constructing Ap would be to first compute the set
I= {G(z) 1z €40, l}d} ,

which is independent of C so can be thought of as a preprocessing step for all circuits of a certain
size, and then run A(x, y) for every y € I. Ap would then return the majority vote.]

22From here onwards, we assume ¢ > n only for simplicity. When ¢ < n, the circuit that computes A(x, -) is of size
O(nlog n) rather than O(# log t) and s is chosen accordingly.

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

Nearly Optimal Pseudorandomness from Hardness 43:29

Combining Lemma 5.2 and Theorem 4.7, we get the following corollary:

COROLLARY 5.3. There exists a constant ¢ > 1 such that the following holds for all positive integers
n and t > n: Assume that for every positive integer w there exists a function f: {0,1}* — {0,1}
computable in deterministic time 2°/™ for some ¢y > 1, for which sizesyn(f) > 2020w for some
universal constant ag < % Fix any a such that oy < a < %

Let L € {0,1}" and let A: {0,1}" x {0,1}" — {0, 1} be a probabilistic algorithm running in time t
such that for every x € {0, 1}",

Pr [A(x,y) # L(x)] < 2777
y~U;

Then, there exists a deterministic algorithm Ap: {0,1}" — {0, 1} that accepts L and runs in time
1% 4 tp, where the tp = t'*r*O®) term corresponds to a step that can be precomputed for all
algorithms with running time t.

That is, the derandomization slowdown of every randomized algorithm running in time t that errs

t+¢170(@) +0(a).

with probability at most 2~ , under our complexity-theoretic assumptions, is at most

ProOF. Set w = log(t!*¢%) for ¢ > 1 soon to be determined, W = 2%, and let f: {0,1}" — {0,1}
be the guaranteed hard function. Let
G {0,114 > {0, 1)

be the (k,s,e = 1/8) metric PEG given in Theorem 4.7 with d < 6a logn. By Theorem 4.7, we

know the output of the PEG is of length O(W'5¢), so we set ¢ such that O(W'™5¢) = ¢, which
5

gives5 < = <c¢ < ﬁ, where we assume a < é Set & = 8¢ and set B = 2! °“. Note that
W1—7a 1
k== Et7c"‘2 e L3> Jog B+ 3.
Also,
s= Wit > t1+(c—4)a—4ca2 > tl+0{—4ClX2 — a)(tlog 1),
since 4ca? = %2 < ¢. Finally, observe that d < calogn and so the corollary follows from
Lemma 5.2. O

5.1 Improved Results from Better Codes and Stronger Assumptions

As mentioned in Section 4.4, our general paradigm allows us to use different LDCs and parameters
for stronger results. We show here that a constant rate LDC that uses n°) queries, together with
an even stronger hardness assumption, can give improved results for quantified derandomization.
Specifically, we assume a function that is hard for randomized SVN circuits of size n'~°") and use
the code below due to Kopparty et al., based on multivariate multiplicity codes.

THEOREM 5.4 ([57], THEOREM 6.1). For any constant e > 0, there exists a code C: {0,1}" —
(Eioc)V =Y with |Zipc| = 0.(1) and ¢ = 0,(1) that is

3 1 1
(0 = exp (0 (1og* (W) (loglog(W))})) e, = 2. 510 = poly(©). L = O(W))
locally list decodable. That is, it is decodable from e agreement, with error probability %, using Q =
WM queries. Moreover, C can be encoded in time O(W?)

Remark 5.5. InReference [57, Theorem 6.1], the encoding time is stated to be polynomial in W. A
close inspection of their construction gives a runtime of O(W?), which is useful for an improved de-
randomization under stronger assumptions (see Theorem 9.5). Indeed, their construction involves

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

43:30 D. Doron et al.

concatenating several constant rate folded Reed-Solomon codes, a constant rate multivariate mul-
tiplicity code, and some codes found via brute force. The brute force step takes O(W?) time. One
can also verify that encoding both constant rate folded Reed-Solomon codes and constant rate
multivariate multiplicity codes (with parameters set as in Reference [57]) can be done in O(n?)
time, for n being the respective code’s message length. Overall, the concatenation of these codes
can be computed in time O(W?).

Using the above code, and Theorem 4.8, we can get for any W, a new PEG with wi-o() bits of
pseudoentropy against circuits of size W1~°(), using only o(1) - log W bits of seed. We can use this
PEG for a stronger quantified derandomization.

THEOREM 5.6. Let ¢ > 0 and let w be a positive integer and set W = 2%. Let Q and c be as in
Theorem 5.4. Set & = a(w) to be such that W* = Q. That is,

1

1 E 1
ogw) s logw
w w

a:@E(

Setm=Q*anda = X = ¥
Assume that for every w there exists a function f: {0,1}" — {0, 1} computable in deterministic
time 27" for some ¢y > 1, for which sizesyn(f) > 20=@)W Then, there exists a function

G’ {0, 1)°e™ — {0, 1)@ o8 [Pioc]
that is a (k,s,) metric PEG for k = ©(*2") = @(W'=%) = w'=W and s = ©(157) =
Wlea _ _
O(¥—) = w0,

Proor. Let W be the length of a truth table of a function that is hard for randomized SVN
circuits of size W% for @« = (W) > 0 for a soon to be determined. Our general paradigm (see
Theorem 4.8) of splitting the LDC into m blocks of size a (for m soon to be determined) gives a
metric pseudoentropy generator with

e Pseudoentropy O(W:n_a)s

e Hardness @(%), and,

w

e Output length (in bits) a’ = - - log [Zipcl®

Recall that Theorem 4.8 only holds if the hardness is at least 5(a’). Thus, we get the constraint

1-a w w l-a
Vg—w > % log [Z1pcl -polylog(% log |21 pcl). The constraint is satisfied if vgw > % log |2 pc|w®
for some constant c. In other words, we need m > O,(1) - QW*w€. Since « is such that W& = Q,
and m = Q*, the constraint is satisfied.?* |

Using this PEG, we immediately get an analogue of Corollary 5.3.

COROLLARY 5.7. Let W, w,a be as in Theorem 5.6. Assume for every w there exists a function
f:10,1}" — {0, 1} computable in deterministic time 2™ for some cy > 1, for which sizesyn(f) >
2(1—!1)14/.

For positive integersn and t > n, let L C {0,1}" and let A: {0,1}" x {0, 1}’ — {0,1} be a proba-
bilistic algorithm running in time t such that for every x € {0,1}",

P{] [A(x,y) # L(x)] < gt
Yy~Ur

23The size of the decoding circuit must also be smaller than W!~%. Since the size of the decoding circuit is poly(Q), and
0 = WO, the condition is met as long as if « is also subconstant.
24We note that smaller m such as Q? also suffices, however, we take Q* here for convenience in the following corollary:

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

Nearly Optimal Pseudorandomness from Hardness 43:31

Then, there exists a deterministic algorithm Ap: {0,1}" — {0, 1} that accepts L and runs in time
t1+°() 4 tp, where the tp term corresponds to a step that can be precomputed for all algorithms with
running timet.

PROOF (SKETCH). Just as in Corollary 5.3, to fool a circuit Cy: {0,1} — {0, 1} of size O(t log t)
that errs only on some small set B, we first set W such that t = W!™** (note that « is 0(1) both as
a function of W and as a function of ¢). This ensures that the output length of the PEG (with error
£=1/8)is

w
o
Padding the length so it is exactly ¢ yields a distribution with pseudoentropy

log [Zipcl < wite = ¢,

1-a
w —> wi-6a — 4555 > 416

fooling circuits of size

wi- 1-3 1-3a 1-3a)(1+4 140
= WD = i > (U-3@(Ha) 5 4140@) 5 4 (tlogt),

Ow
where the last inequality follows from the fact that Q > log ¢. Thus, we can indeed fool the circuit
Cy provided the set B is such that log B + 3 < t'7°(), o

As a final note, we mention that we can also use multiplicity codes in our original construction,
however, no parameters besides the hardness of the PEG output will improve unless we also as-
sume a function that is hard for circuits of size n!=°() as above. We used Reed-Muller mainly for
simplicity.

6 EXTRACTING RANDOMNESS FROM PSEUDOENTROPY

To derandomize general algorithms, and not just algorithms that err rarely, we need to convert
pseudoentropy to pseudorandomness (i.e., to bits that are indistinguishable from uniform). When
the pseudoentropy is HILL pseudoentropy, one can do this conversion using an extractor [12]. In
this section, we show how to use an extractor even when the pseudoentropy is metric by requiring
indistinguishability by DensityApprox, SVN circuits (see Definition 2.7). A more detailed explana-
tion follows.

Let X be a distribution over {0, 1}" whose pseudoentropy is at least k. Let Ext: {0, 1} x{0, 119 >
{0, 1}'" be an extractor, and let y € {0, 1}%be a typical seed for the extractor. If X has high HILL
pseudoentropy, then there exists a random variable X, over {0, 1}" whose min entropy is at least k,
and X is indistinguishable from X. If Ext(X, y) were not indistinguishable from uniform, then there
would have been a distinguisher C: {0,1}"" — {0, 1} that distinguishes Ext(X,y) from uniform.
But then D(x) = C(Ext(x,y)) is a distinguisher that distinguishes X from X, (because Ext(Xy,y)
is nearly uniform for almost all y-s). Hence, Ext(X, y) must be pseudorandom when X has HILL
pseudoentropy.

If X only has metric pseudoentropy, then there no longer exists a canonical Xj. Instead, for every
distinguisher D: {0,1}" — {0, 1} for X, there is a different variable X, of min entropy k that is
indistinguishable for D. When D(x) = C(Ext(x, y)), the distinguisher, and hence the source of the
extractor, depend on the seed y, and so we have no guarantee on the output of the extractor.

To circumvent this problem, we give a different distinguisher that estimates E[C(Ext(x, Uy))]
rather than use the actual seed y. We remark that this yields a real-valued (rather than Boolean)
distinguisher. However, we can in fact still use a simple Boolean distinguisher: hard-wire E[C(U,,)]

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

43:32 D. Doron et al.

and output 1 iff E[C(Ext(x, Uy))] deviates from E[C(U,,)] (using DensityApprox,, to estimate the
former).
Several comments are due:

e Barak et al. [12] show how one can get high HILL pseudoentropy from a random variable
having high metric pseudoentropy, but their argument has two disadvantages. First, it loses
quite a bit in parameters, which we cannot afford here. Second, it implicitly assumes met-
ric pseudoentropy for real-valued distinguishers. Unlike HILL pseudoentropy, different no-
tions of metric pseudoentropy (randomized/deterministic distinguishers, {0, 1}/[0, 1]-valued
distinguishers) do not seem to be equivalent. A number of works address this issue ex-
plicitly and distinguish between each notion of metric pseudoentropy (see, e.g., References
[17, 25, 26, 75]).

e Barak et al. also show how to extract from Yao pseudoentropy, but only if the extractor is
reconstructive. Although our pseudoentropy generator from Section 3 does output bits with
high Yao pseudoentropy, we do not know of a construction of a reconstructive extractor
having nearly optimal seed length.

Recall the definition of DensityApprox, gates from Definition 2.6. We now formally define metric*
pseudoentropy.
Definition 6.1 (Metric* Pseudoentropy). Let X be a random variable distributed over {0, 1}", let

metric},

s be a positive integer, and n,¢ > 0. We say that H; , "(X) > k if for every circuit D of size s
over inputs of length n, having oracle gates to DensityApprox,, there exists Y ~ {0, 1}" such that
Ho(Y) > kand | E[D(X)] - E[D(Y)]| < e.

For our purposes, taking n = ¢ will suffice, in which case, we denote H???trici (X) = Hsnfgt'ic* (X).

We can then naturally define the notion of a metric* pseudoentropy generator.

Definition 6.2 (Metric* PEG). For integers k,s, and error parameters ¢,7, we say that
G: {0, l}d — {0,1}" is a (k, s, €) metric’,‘7 pseudoentropy generator (PEG) if

metric,

H. "(G(Y)) 2 k,

where Y is the uniform distribution over d bits. We say that G is a strong (k, s, ¢) metric) pseu-

metric},

doentropy generator if H; ., "(Y o G(Y)) > k.
For our purposes, taking n = ¢ will suffice, in which case, we simply say G is a (k, s, ¢) metric”
pseudoentropy generator (PEG).

We now prove that one can extract pseudorandomness from metric* pseudoentropy.

LEMMA 6.3. For all positive integerss, t,n, k,d, m and a constant ¢ > 0 the following holds: Suppose
Ext: {0,1}" x {0,1}¢ — {0,1}™ is a (k —log %, €) extractor computable by a circuit of size t. Let X
be a random variable distributed over {0, 1}" so H;‘,‘e:m* (X) 2k fors’ = O(s + t). Then, Ext(X, Uy)

10e-fools circuits of size s.

Proor. Towards a contradiction, assume there exists a distinguisher C: {0, 1}"" — {0, 1} of size
s SO
|[E[C(Ext(X,Uy))] — E[C(Up)]| > 10e.
We define D¢: {0,1}" — {0, 1}, a circuit having a single DensityApprox, gate as follows:

e D¢ is hardwired with p = E[C(U,,)], truncated to [log %'I bits, denoted by p.
e On input x, D¢ computes the description of the circuit for C(Ext(x, -)), having size s + ¢.

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

Nearly Optimal Pseudorandomness from Hardness 43:33

o The latter description is fed to the DensityApprox, gate; let p, be the gate’s output.
e D¢ returns 1iff [p — py| > 3e.

The size of D¢ is 5(s + t). This is because we can hardwire the description of Ext (along with C),
from which, on input x, we can easily compute the description of a circuit computing C(Ext(x, -)).
Let px = E[C(Ext(x, Uy))]. By our assumption on C, we have that E,.x |[px — p| > 10¢, so there
exists a set B C {0, 1}" satisfying Pr[X € B] > 5¢ so for every x € B it holds that |p, — p| > 5¢, and
so0 also [py — p| > 5¢ — 2¢ = 3¢ (where we have 2¢ instead of ¢ due to the truncation of p above).
Hence, E[D¢(X)] > 5e.
Now, by Lemma 2.21, we know that

[{x € {0,1)" : Ipy — pl > e}] < 2¢ - 2F
and so |Supp(D¢)| < 2¢ - 2k Altogether,

|Supp(Dc)!
- >
ok
contradicting the fact that H;f‘efmc* (X) > k. O

Pr[Dc(X) = 1]

i

7 EXTRACTORS WITH NEAR-OPTIMAL SEED LENGTH

We give an explicit strong seeded extractor with near-optimal (in n) seed that supports min-entropy
n'=% for every a < % Specifically, for ¢ = n=°), our seed length is (1 + O(a)) log n, which gives a
left-degree of n'+9(®)_ A very similar construction was given in Reference [80], but there the anal-
ysis was only done for a constant entropy rate. For our construction, we will use three ingredients
given in the following theorems:

The first theorem, due to Ta-Shma, Zuckerman, and Safra gives an extractor that achieves seed
length very close to log n; however, it only outputs a small portion of the min-entropy.

THEOREM 7.1 ([80]). For all positive integers n, k, m and ¢ < % such that 3m/nlog 2 < k < n,

there exists an explicit strong (k,) extractor TZS: {0,1}" x {0, 114 5 {0, 1}80m ford = logn +
O(log %) + O(log m).

The next extractor is Trevisan’s, with improved analysis due to Raz, Reingold, and Vadhan. We
use it to output a constant fraction of the min-entropy.

THEOREM 7.2 ([65, 83]). There exists a constant crre > 1 such that following holds: For all positive
integers n, k and ¢ > 0 there exists an explicit strong (k, €) extractor Tre: {0,1}" X {0, 134 - {0,1}™
ford = crre Iog2 Landm = %.

Last, we will need the following condenser by Reingold, Shaltiel, and Wigderson, whose purpose
is to output a shorter string than the input source with the same entropy rate, using a very short
seed.

THEOREM 7.3 ([67]). There exist constants cpsw = 1 and 0 < yrsw < 1 such that the following
holds: For all positive integersn, k,r and e > cst\/% there exists an explicit strong (k, k' = }/sté, €)
condenser RSW: {0,1}" x {0,1}¢ — {0, 1} ford = cpsw(loglogn +logr + log %) andm = 7.

Our construction, following Reference [80], proceeds along a familiar paradigm. The extrac-
tor TZS uses a short seed but extracts relatively few bits, whereas the extractor Tre outputs a
constant fraction of the min-entropy but requires a long seed. We are able to utilize both ad-
vantages without suffering the drawbacks by using RSW, with a very short seed, to condense
the source X. The output length of RSW will be only half the min-entropy, enabling us to use

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

43:34 D. Doron et al.

TZS to extract (from the same X) a seed for Tre. Namely, our extractor outputs Ext(X,Y; o
Y;) = Tre(RSW(X, Y1), TZS(X,Y,)), where Y; and Y, are independent uniform seeds. Note that
RSW(X, Y;) and TZS(X, Y3) can be dependent, however, we will argue that they are close to being
independent, and, therefore, we can apply Tre.

We are now ready for the details. We are given a positive integer n, ¢ > 0, a < % and k > n'~¢.
As promised, we will make use of the following ingredients:

e The strong (k, ysté,s) condenser RSW: {0,1}" x {0,1}¥ — {0,1}™ for r = 2n%, where

m; = n!'"% and d; = cgsw(loglog n+log(2n%) +log %). We require ¢ > CRSW\/% =Q(—).

2 n;—a
e The strong (k’,¢) extractor TZS: {0,1}" x {0, 1}% - {0,1}% where K’ = A—llnl_“, dy =
cre log? 2= O(log? 2) and d, = logn + O(log %) + O(log ds). Note that indeed k’ is large
enough.

e The strong (k”, ¢) extractor Tre: {0, 1}™ x {0, 1}% - (0,1} for k" = yk%nl_za and m =
kK _ WRSW 1-2a

£~ 8
Given x € {0,1}", y; € {0, 1}% and Y, € {0, 1}%, we output
EXt(x’ Y1 © yz) = Tre(RSW(x’ yl)’ TZS(X’ yz))
THEOREM 7.4. There exists a constant ¢ > 1 such that the following holds: The function
Ext: {0,1}" x {0, l}d — {0, 1}™ above is an explicit strong (k,) extractor for any positive integer n,

1
0<a<i,k>n"%andcn 2% << 1 whered = (1+ca)logn+clog(l) and m = 1n'2%.
& c

n
Note that « is not assumed to be constant and may be sub constant (as a function of n).

Proor. The proof will mimic block-source extraction techniques, but is self-contained. Denote
A =RSW(X,Y;) and B = TZS(X, Y>). By the properties of TZS, we know that

(B5 YZ) Xe Ud3 X YZ‘
By the properties of RSW, there exists A’, which is e-close to A, for which Ho(Y; 0 A”) > k" + d;
(note that A’ depends on Y;). By Lemma 2.16, and since X and Y; are independent,
- 1 1 1
Hoo(X|Y; 0 A”) > Ho(X) —my = Enl’“ > anfa + log -.
€

Since X and Y, are independent of each other and of Y;, and since A’ is independent of Y, we
know that X, Y, are also independent conditioned on Y; o A’. Applying Lemma 2.18 on the strong
extractor TZS, we get that

(A’7Ba Yla YZ) X2e (Al, Ud3’ Yl’ YZ)'
Applying Tre, we deduce that

(Tre(A/7B)7 Yla YZ) X2e (Tre(A/a Ud;)a Y17 YZ)'

Now, Tre(A’, Ug,) =, Uy, so by the triangle inequality,

(Tre(A', B), Y1, Y2) ~3¢ (Um, Y1, Y2).
Accounting for the distance between A and A’, we finally get that

(EXt(X’ Yl ° YZ)’ Y) R4e (Um, Y),

as desired. To conclude, observe that
1
d=di+dy = (1+0(a))logn +0 (Iog—).
£

The explicitness follows from the explicitness of each component.]

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

Nearly Optimal Pseudorandomness from Hardness 43:35

7.1 Computing the Extractor by a Small Circuit

Usually, when constructing extractors, we require the computation to be done in polynomial time
or in linear space. In this work, we must exercise a more fine-grained analysis, since the size it
takes to compute Ext corresponds to the minimal circuit size we will be able to fool with a nearly
optimal small slowdown (see Lemma 6.3 for the precise parameters). We prove that there exists a
circuit of nearly linear size that computes Ext. But before doing so, we will need to argue that a
few basic pseudorandomness primitives are also computable in nearly linear size.

7.1.1 Efficient Asymptotically Good Codes. An asymptotically good code is a family of binary
codes having a constant rate and a constant relative distance. An example is Justesen’s code [53].

LEMMA 7.5 (FOLLOWING [53]). There exists a constant 0 < § < 1 such that the following holds: For
every positive integer n there exists an explicit [7, n, 8], code Cjys: {0,1}" — {0, 1} of rate 229,

Moreover, for every positive integer n there exists a circuit C,, of size O(n) so for every x € {0,1}",
C(x) computes Cjys(x).

ProoF. The code is constructed as follows: For some 2 = O(n) and m = O(logn), let F, be a
finite field of cardinality g = 2™. Set k = %, k= # and let {a, ..., oz} be some distinct elements
of Fg. Given x € {0, 1" = Fg, let py be the univariate polynomial py(a) = Zé:ol x;a’. Then, the
encoding is given by

Clus(x) = (px(@1), @1Px (@), - - -, (P (@), @apsc(@n))) € (0, 1)F,

where we interpreted each element of F; as a string in {0, 1}"*. The fact that the Justesen’s code
is asymptotically good (i.e., that one can take such parameters and maintain a constant relative
distance) is by now standard [42, 53], but we still need to justify that fact that the encoding can be
done via a small circuit.

For simplicity, consider hardwiring {«y, . .., oz}, which takes mk +O(1) = O(n) bits. Each bit of
Cjus(x) is obtained by evaluating p, on some «;, either multiplying by a; or not, and then taking a
specific coordinate in the resulting element’s binary encoding. For the evaluation step, we can use
fast univariate multi-point evaluation that can be done by a circuit of size k - poly(log q) = O(n)
(see, e.g., Reference [89, Section 10]). All other operations can be done, per output bit, by a circuit
of size poly(log q), so overall computing Cj,s(x) can be done by a circuit of size O(n). O

7.1.2 Efficient List-decodable Codes. Good binary list-decodable codes are implied by explicit
construction of small e-balanced codes close to the Gilbert-Varshamov (GV) bound. We will not
define these objects explicitly and just say that they give rise to (3 — ¢,¢72) list-decodable codes
of length % for some constant ¢ > 2. The constant c, as well as achieving small rate with non-
optimal dependence on n, has been subject to an important research. Naor and Naor [61] obtain
¢ = 3, and Ta-Shma [78] recently achieved a near-optimal ¢ = 2 + « for every constant ¢ > 0.
For our construction, we use the following code having ¢ = 4 + « for every constant « > 0 (for
simplicity, we state it for ¢ = 5). The construction, based on distance amplification via expander
walks, is given in Reference [78] and was inspired by an unpublished result by Rozenman and
Wigderson.

LEMMA 7.6 (FOLLOWING [78]). For every positive integer n and ¢ = e(n) there exists a binary error
correcting code C: {0,1}" — {0,1}" that is (% — ¢, e72) list-decodable, forn = O(E%), computable by
a circuit C, of size 5(r'l)

Proor. Let Cps: {0,1}" — {0,1}" be Justesen’s code, given to us in Lemma 7.5, for some
constant ¢ > 1. Let G = (V = [cn], E) be a Ramanujan A-expander of degree D, where we take D to

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

43:36 D. Doron et al.

be a large enough constant so A is half the bias of Cj,s.>> We think of every vertex v € V as being
labeled with some row of the cn X n generating matrix Aj,s of Cj,s. We refer to that labelling by
l(v) € {0,1}".

We now describe how one obtains each row of the 7 X n generating matrix A of C. For t =
5logp % each such row is the sum, modulo 2, of the codewords that appear along a length-t walk
over G. That is, each row out of the i = n - D' = & possible rows is indexed by some path
pi =vp ~ ...~ v} inG and its value is

t
Zl(u;i) € {0,1)".

j=0
Thus, given x € {0, 1}", computing C(x) is done by outputting
Pl
Ax = . Ajus - X,
P,

where P; is the vector of length cn in which P;(v) = 1 wherever v € p; and 0 elsewhere.

For simplicity, consider hardwiring the encoding of each of the 7 possible paths. That is, for every
i € [n], we keep a string of length (¢ + 1) log(cn) storing the vertices along p;. This hardwiring
takes O(7) bits overall. Now, given x € {0, 1}", computing A,s - x = Cjus(x) is done once, which
by Lemma 7.5 can be computed with a circuit of size O(n). To get C(x) from Cjys(x), we need to
sum, for each i € [71], the t + 1 coordinates in Cjys(x) that corresponds to the path p;. As we have
those coordinates hardwired, it takes only O(t71) = O(7) size, and overall the lemma follows. O

We note that if we insist on a uniform computation of C, then we can still work with good
enough explicit expanders and compute the vectors p; instead of fixing them (see Theorem 2.23).
This would take O(7%) time and possibly deteriorate the constant ¢ by a bit.

7.1.3 Almost k-wise Independent Sample Spaces.

Definition 7.7 (Almost k-wise Distribution). A distribution (Xi,...,X,) over {0,1}" is (k,¢,p)
independent if for every subset {iy,...,ix} C [n], (Xj....,X;) is e-close to the distribution
over k-bit strings where all bits are independent and each of them takes the value 1 with
probability p.

Constructing almost k-wise distribution with optimal support size, at least for the p = % case, is

well-known. In what follows, we argue that sampling from the support of such a distribution can
be done by a small circuit. For simplicity, we restrict ourselves to the case of k = 2.

LEmMMA 7.8. For every positive integer n, ¢ = ¢(n) and q = q(n) the following holds: Set { =
2 2 _~
qu. Then, there exists a circuit Cp: [£] — {0, 1}" of size O(gn + 29 logn) such that for every
£

2

y € [£], C,(y) computes the yth element of a (2, ¢,279) independent sample space in some fixed order.

Proor. Constructing almost k-wise sample spaces for p = % is done by combining truly k-

wise independence and small-bias sample spaces. Following, e.g., Reference [67], we unfold the
extension to a general p = 277 and argue that it can be done efficiently. Set & = 2qlog(gn), and so
€= (L) for ¢ = 279/%¢. We use the following two ingredients:

%5By Ramanujan, here we mean that A is optimally related to the degree D, ie, A ~ \/% We do not insist on having

Aszi\/g

=1 and do allow some slackness, and such graphs exist for every n [24].

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

Nearly Optimal Pseudorandomness from Hardness 43:37

e Let B C {0, 1}" be an ¢’-biased sample space.?’ Alon et al. [4] gives us a simple construction
with support size £.

e Let A be the ng x h generator matrix of a (2¢,0, 1) independent sample space. The matrix A
is some suitable Vandermonde matrix, converted to F; in a canonical way.

Then, given y € [(], we output the yth element of the almost k-wise sample space as follows:

(1) Let x € {0, 1}" be the yth element of B. As B is small (and of course, independent of y), we
can hardwire B into our circuit, and it takes only O(¢h) bits.

(2) Compute w = Ax € {0,1}"9. The matrix-vector multiplication can be done efficiently, ex-
ploiting the special structure of A. Specifically, one can use discrete Fourier transform to
compute w by a circuit of size O(ng).

(3) Partition w into n consecutive blocks Wy, ..., W,, each of length q. Output z € {0, 1}" such
that z; = 1 if and only if all the bits in W; are 1. This step can be implemented by a circuit of
size O(ng).

Overall, the three steps above can be implemented by a circuit of size 5(nq) + O(th) = 5(qn +
29 logzn
£

), as required. O

Again, a note about uniform computation is in order. Here, too, we have an algorithm running
in time O(n + 27) - poly($) by explicitly computing the yth element of B. We skip the details.

7.1.4 Efficiently Computing Ext. Finally, we are ready to prove that Ext can be computed by a
small circuit.

LEMMA 7.9. There exists a constant ¢ > 1 such that the following holds: Let Ext: {0, 1}" x{0, 119 >
{0,1}™ be the (k = n'~%, ¢) strong extractor given in Theorem 7.4. For any fixed x € {0,1}", the
function

Ext(x,-): {0,1}¢ — {0,1}™
can be computed by a circuit Cy of size 5(5%), and it takes a circuit of size 5(8%) to compute the
encoding of Cy. Hence, in particular, computing Ext: {0,1}" x {0, 139 > {0,1}™ can be done by a
circuit of size 5(%).

Proor. We keep the same notation as in our construction.

e The extractor TZS: {0,1}" x {0,1}% — {0,1}% from Theorem 7.1 is computed as follows:
For x € {0,1}" and y, € {0,1}%, we view x as a bivariate polynomial f,: F> — F of total
degree h ~ y/n where |F| = h - poly(ds/¢). Then, for each i € [d3],

TZS(x,y2)i = C(fx(a1 +1,a2));,
where y, is interpreted as (a;, az,j) € F2x [(]and C: F — [£] is (% - p, p71) list decodable
for p = Q(sz/di). Given x € {0,1}", evaluating f; on ds inputs can be naively done by
a circuit of size ds - h% - polylog(|F|) = Oo(n log %). Applying C, by Lemma 7.6 takes size
o(#) = 5(770)' Thus, 5(8%) is also the size it takes to prepare the encoding of the circuit
that computes TZS(x, -).

e The condenser RSW: {0,1}" x {0,1}*" — {0,1}™ from Theorem 7.3 can be computed as
follows: Let Cyys: {0,1}" — {0, 1)=9() be Justesen’s code from Lemma 7.5. Let

i d
{Sy € 10,1)" sy € {0, 1)}
26Namely, for any nonempty S C [h], we require that ‘Prb~3[@ies bi=1]- %’ <e.

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

43:38 D. Doron et al.

be a (2, ¢, p) independent sample space for p = ©(%), where we identify each S, as a subset
of [7i]. We also require that |S,| = pn for every y. Although it is not guaranteed by the
construction of Lemma 7.8, Reference [67] shows that enforcing this constraint by adding or
removing arbitrary indices from each set is good enough. For x € {0,1}" and y; € {0, 1}%,
the construction is given by

RSW(x,y1) = C(x)s,, -
Computing the encoding of a circuit that computes RSW(x, -) starts by computing C(x),

which can be done in size 5(n) using Lemma 7.5. On input y;, computing C(x)s,, can be

l;’izﬁ) = 5(5_”2)’ by Lemma 7.8. Thus, it takes 5(5%) size to

compute the encoding of the circuit RSW(x, -), which is also an upper bound on its size.

e The extractor Tre: {0,1}™ x {0,1}% — {0, 1} goes as follows: Let C: {0,1}™ — {0,1}"™
be a (% — p, p~2) list decodable code, for p = Q(e/m). Let

{Si € [ds]: i€ [m])

implemented in size O(7 log 117 +

be a weak design, wherein each [S;| = log(m;) and for all i # j, };; 218:08;1 < 2m. Then,
given x € {0,1}"™ and y € {0, 1}d3, for each i € [m], we have that

Tre(x,y)i = X(yls,),

where we denoted x = C(x). Givenx € {0,1}™ andy € {0, 1}d3, a circuit outputting Tre(x, y)
can be constructed as follows: The sets Sy, ..., S,, can be hard-coded to the circuit, which
takes m - d5 = O(n) bits. As my is large, we should not compute X in full, but rather compute
yls,, ..., yls,, at first and then proceed to computing x(yls,). . . ., X(yls,,)-

Computing yls,, . .., yls,, is immediate once we have Si,...,S,, and can be done in size
O(mds) = O(n). For computing X(yls,), X(yls,,), we revisit the proof of Lemma 7.6. We
see that we can first compute Cjys(x), by a circuit of size 5(m1) = O(n) and then for every
z =yls, € {0, 1}°80m) | we interpret z as a walk p, of length t = O(log) over an expander
with fully explicit neighborhood function (see Theorem 2.23). This takes size polylog(n, %)
From p,, we can compute x(z) as described in the proof of Lemma 7.6. We conclude that a
circuit of size O(n) suffices to compute Tre.

Overall, accumulating the sizes, the lemma follows: |

Our extractor is also time-efficient.

LEMMA 7.10. Let Ext: {0,1}" x {0,1}¢ — {0,1}™ be the (k = n=%,¢) strong extractor given in
Theorem 7.4. Then, given x € {0,1}" andy € {0, l}d, Ext(x,y) is computable in time O, (n).

We skip the details, and just note that to derive Lemma 7.10 from the above discussion, it is left to
verify that computing the weak design can be done efficiently. Indeed, inspecting the construction
of Reference [65], this can be done in time m - polylog(n) = O(n).

8 PRGS WITH NEARLY OPTIMAL SLOWDOWN
8.1 A Pseudoentropy Generator for Stronger Distinguishers

From Section 6, we see that to obtain pseudorandomness via extraction, we need pseudoentropy
against a stronger model of circuits. Namely, we need metric* pseudoentropy. We now show
that under a stronger hardness assumption on f (namely, hardness against SVN circuits with
DensityApprox gates), we can construct a PEG for metric* pseudoentropy. Before, we showed
that we can generate a random variable with high metric pseudoentropy by first generating a

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

Nearly Optimal Pseudorandomness from Hardness 43:39

random variable with high NYao pseudoentropy and applying Lemma 2.31. We follow the same
framework of going through Yao pseudoentropy via list recoverable codes, and we slightly change
the hardness assumptions and definitions to handle SVN circuits with DensityApprox gates.

Definition 8.1 (NYaof] Sets). For positive integers s, n,and ¢, a constant 0 < n < 1,and A C {0, 1}",

NYao’,
we say that A € C, Sao", if there exists a circuit c: {0,1}" — {0,1} and a DensityApprox, SVN
circuit d: {0,1}¢ x {0,1}™¢ — {0, 1}" computing a partial function f;: {0, 1}¢ = {0,1}" U {1},
both ¢ and d are of size at most s, and

A={x: fylc(x)) =x}.
We refer to ¢ as the compressing circuit and to d as the decompressing one.

Definition 8.2 (NYao, Pseudoentropy). Let X be a random variable distributed over {0,1}", a

NYao? NYao?
positive integer s, and ¢, 7 > 0. We say that Hs,gao" (X) > kifforeveryl <kand A€ C, Sao",

Pr[X € Al <207 4 &
NYao? .
For our purposes, taking n = ¢ will suffice, in which case, we denote Hj, ga "(X) = HEZ” (X).

It is easy to verify that, just as before, high NYao, pseudoentropy still implies high metric*
pseudoentropy (with a nearly identical proof).

LEmMA 8.3. There exists a constant 0 < y < 1 such that the following holds: Let X be a ran-
dom wvariable distributed over {0,1}" and ¢ > 0. There exists s = O(n) such that for every s > sy,
HYY'(X) > k implies HPSW (X) > £,

Ys,e

Proor. We only point out the slight changes to the proof of Lemma 2.31.

Assuming towards a contradiction that H)r,“sftgric* (X) < %, we invoke Lemma 2.27 to conclude
that there exists an SVN circuit using oracle gates to DensityApprox,, with small support, that
distinguishes X from uniform. Using the same hash function construction as in Lemma 2.31, this
implies that there exist compressor and decompressor circuits ¢, d, where ¢ simply computes the
hash function, and d uses nondeterminism to guess the inverse of the hash function and then
uses D to check if the inverse is in Supp(D). Noting that d is a DensityApprox, SVN circuit gives

HYY'(X) < k. |

We can now construct a PEG for metric* pseudoentropy by following the same steps as in
Section 3. For some fixed ¢ > 0, let f: {0, 187 5 {0, 1} be such that every SVN circuit with
oracle gates to DensityApprox, computing f has size at least n!~* for some constant & < %. That
is, sizesy Nz (f) = n'~*. Let

C: {0,1}" - 3™

be some error correcting code. Define G [m] - X ={o, 1}IOg Pl go
G (2) = C(f).
where we identify f by its truth-table in {0, 1}".

THEOREM 8.4. Keeping the above notation, let ¢, o« be constants such thate > 0 and oy < o < %
Assume C is (Q,¢,¢,sc) locally list recoverable so s¢ = O(n'~%), and "1% > so for some sy =

5(10g |2]), where the precise o() dependence is determined by Lemma 2.31. Then, G/ is a strong

(k, s, €) metric* PEG fork = logf ands = O("lQ_a).

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

43:40 D. Doron et al.

The proof of the above theorem is identical to that of Theorem 3.1, but at the final step, we
invoke our newly proven Lemma 8.3 instead of Lemma 2.31. Again, combining Theorem 4.2 with
the above result gives the following:

THEOREM 8.5. For a constant € > 0 and every positive integer n the following holds: Assume
f:10,1)%8" — {0,1)

is such that sizesy n= (f) > nl=% for some constant ay < é Let a be any constant such that oy < o <
é. Then, there exists a function

G {0,134 - {o, 1}
that is a (k, s, ¢) metric* PEG fork = "I;M ,s > n'"% d = 50logn+O(loglogn) and m = O(n'~5%).

Given oracle access to f, the range of G/ takes O(n) time to compute. Moreover, if f € DTIME(n‘r)
for somecy > 1, then the range of GI' can be computed in time O(n°*1).

8.2 Constructing the PRG
Allingredients are now in place for our PRG transforming almost all the hardness to pseudorandom

bits using a nearly optimal seed length.

THEOREM 8.6. There exists a constant ¢ > 7 such that the following holds for every positive integer

. . logn . . . 1-a
n and a constant ¢ > 0: Assume f: {0,1} — {0, 1} satisfies snzeSVNS/lo(f) > n for some

universal constant oy < % Let a be any constant such that oy < a < % Then, there exists a function

éf: {0,1}(1+ca)10gs_>{0’1}8

that is an e-PRG against circuits of size s = n!7¢%,

The range ofa‘f can be computed in time stea given oracle access to the truth table of f. Moreover,

if f € DTIME(s“) for some ¢y > 1, then the range ofaf can be computed in time sTew forl =
max{2 + ca, cy + 1}.

PRrOOF. Set ¢/ = % Let

G+ {0, 1)=se(1r3@)logs” _, 4o qym

be the (k,s’, ¢") metric* PEG guaranteed by Theorem 8.5, where s’ = nl=i

k =n'"3 Let

,m; = n'™% and

Ext: {0,1}™ x {0,1}% — {0, 1}

be the (k—log ﬁ, ¢’) extractor guaranteed to us by Theorem 7.4,%7 so for every x € {0, 1}"™, Ext(x, -)
is computable by a circuit of size t = 5g(m1) = 0(s"). By Theorem 7.4, d; = (1+cza) logmy + O,(1)

11— .
| 2% for some universal constant c; > 1. Let

andm=m
7 qo,1)4= 4w S g0, 1y
be such that for (y;, y2) € {0, 1% x {0, 1}%,
& (g1 92) = Bxt(GT (). o).

270ne can achieve this by invoking Theorem 7.4 with, for example, k&’ = n'~(6-000

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

Nearly Optimal Pseudorandomness from Hardness 43:41

Denote X = G/ (Uy,). By the properties of the PEG, HmetrIC (X) = k. Thus, by Lemma 6.3, there

existsac’ = O(l) (where the O hides factors of log(s + t)) such that Ext(X, Ug,) 10¢’-fools circuits
of sizes = L5’ -1t > L' > %nl‘(%J"OOl)“. Note that m = n(1740)(-2a) < ¢ and that

d=d +d,
7
= 6a (1 + Ea) logs” + (1 + coa) logm; + O.(1)
7 7
< 6a (1 + 50{) logs + (1 + c2a) (l — 50{) (1-4a)(1+ 7a)logs + O.(1)

< (6(x + %az) logs + (1 + 3a + 4acz) logs + O.(1)

< 10alogs + (1 + 3a + 4ac,) logs

< (14 13a + 4acy) log s,
where we use the fact that ¢ < = The first part of the theorem then holds by taking ¢ = max{4c, +
13,1 +.001} = 4c; + 13.

Finally, we address the time it takes to compute the range of G . 1f we are given oracle access
to f, it requires O(n) = O(sﬁ) time to compute the range of the PEG G/. If we assume f €
+1

. . °r . .
DTIME(s), then it takes time n *! = sT-ez to compute f at every input and so overall it takes
time
—_ Cf+1
O (s l-ca)

to compute the range of the PEG. By Lemma 7.10, the extractor takes time O, (m;) on a single seed.

To compute the range of 5/‘, we compute the range of the PEG, and for every element of the range,
we run the extractor on every seed. This takes time

O(nSa) od2 O (my) = (nSam2+c‘2a) _ 56 (n5a+(l—4a)(2+02a)) < sfjgg.

Thus, overall, if we have oracle access to f, then computing the range of G’ takes time s 255 1
. . <
we assume f € DTIME(s%), then it takes time sTca for { = max{2 + ca, cf + 1} O

Indeed, PRGs allow for a black-box derandomization, and ours allow for a black-box derandom-
ization with only an almost linear slowdown.

THEOREM 8.7. There exists a constant ¢ > 1 such that the following holds: Let L € {0,1}" and
A: {0,1}" x {0,1}} — {0,1} be a probabilistic algorithm running in time t = t(n) > n such that for
every x € {0, 1}",

1
Pr [A(x,y) # L(x)] < - —¢
~U; 2
for some constant ¢ > 0. Assume for every positive integer m there exists a function f: {0,1}"

{0,1} computable in deterministic time 2°/™ for some cf, for which sizegw\;;/10 (f) > 20-@m for

some universal constant ay < 7. Let & be such that oy < & < z.
Then, there exists a determmzstic algorithm Ap: {0,1}" — {0, 1} that accepts L and runs in time

t2+6a + tp,

where the term tp = tY(17¢®) fory = max{2+éa, cr+1} corresponds to a step that can be precomputed
for all algorithms with running time t. That is, the slowdown of every randomized algorithm running
in time t, under our complexity-theoretic assumptions, is at most t'*0().

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

43:42 D. Doron et al.

PROOF. Let ¢ be the constant guaranteed to us by Theorem 8.6 and set ¢/ = —<tL > 0. Set

1-c2a
= log(t'*'®), M = 2™ and let f: {0, 1}"°¢ — {0, 1} be the guaranteed hard function. Let

t1+(_ a

éf: {O’l}d:(1+ca)logs N {0,1}5

be the &-PRG fooling circuits of size s guaranteed to us by Theorem 8.6, with s = M™%, We
note that s > t'7* = w(tlogt). Furthermore, we can see that d < (1 + ¢’a)logt, since d =
(1+ca)(1—ca)logM < logM, and (1 + c’a) logt = log M.

Consider truncating the output length of éf down to length t. Fix some x € {0,1}" and let
Cyx: {0,1}' — {0,1} be the circuit that computes A(x, -), of size s. By the properties of the PRG,

Pr[Cy(U) = 1] - Gf(Ud))—l‘

soforx €L, Pr[Cx(a‘f(Ud)) =1] > % and for x ¢ L, Pr[Cx(af(Ud)) =1] < % Hence, the standard
way of constructing Ap would be to first compute the set

1=-{d@:ze 00},

which is independent of Cy so can be thought of as a preprocessing step for all circuits of a certain
size, and then run A(x, y) for every y € I. Ap would then accept if and only if the majority of runs
returned 1. The parameters immediately follow.

The time tp represents the time it takes to compute the range of the PRG. As Theorem 8.6 states,

computing the range of the PRG takes time sTes = ' +c’a) for Y ={2+ca, cr+1}. The theorem
holds by setting ¢ = max({c?, ¢/, 7}.]

9 ASSUMING HARDNESS FOR RANDOMIZED SVN CIRCUITS

Having access to true randomness, we can solve DensityApprox, efficiently by randomly sam-
pling inputs to the circuit whose density we wish to approximate. This motivates using a hardness
assumption for randomized SVN circuits (see Definition 2.4).

LEMMA 9.1. Let f: {0,1}" — {0, 1} be computable by an SVN circuit of size s = s(n) having oracle
gates to DensityApprox, for some fixed constantn > 0. Then, for any 0 < § < %, f is computable by

a randomized SVN circuit with error §, and size O(s log s log %)

Proor. Let C: {0,1}" x {0,1}" — {0, 1} be the SVN circuit of size s that computes f and uses

10g(Q/fS)

Q oracle queries to DensityApprox, . Set d = c—==5—s for a constant ¢ > 0 to be determined later,

andletC’: {0,1)"x{0,1}"¥x{0,1}¢ {0,1}bethec1rcu1tthatgetsasmputxe {0,1}",y € {0, 1}V
andr = (ry,...,rg) € {0, l}d and is constructed as follows:

The circuit C’ acts like C (both the check phase and the compute phase), however, the ith
DensityApprox, gate g; is replaced with the following circuit G;. Let Z; be the input circuit to
gi. Notice that };¢(o) size(Z;) < s.

We let r; = (ril, e rl.T) be the randomness to G;, for T = cmg(n#g). Note each Ir{I < |z;].On ry,

G; computes Zl-(rl.i) for j € [T] and computes the average over outputs, truncated to [log % + 1]
bits. Note that the size of G; is at most T - size(Z;) + size(Z;) and so the size of C’ is at most T -s +s.
Using the fact that Q < s, we get that the total size of C’ is at most O(s log s log %)

For correctness, fix some input x. As C is an SVN circuit, there exists some y € {0, 1}"* for which
C(x,Y)check = 1, and whenever C(x, Y)check = 1 it holds that C(x,y) = f(x). Fix any y such that

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

Nearly Optimal Pseudorandomness from Hardness 43:43

C(x,Y)check = 1. By the Chernoff bound, there exists a constant ¢ > 0 for which

T
1 i n)
P ij:;Z,-(r{)—E(Z,-) >31%3

for every i € [Q]. Thus, by a union bound, we are guaranteed that with probability at least 1 — §
over r ~ Uy, all G;-s return an p-approximation of E(Z;).

Let G¢ be the set of all y-s for which C(x,y)check = 1. Let G¢r be the set of all y-s for
which Pr,.y,[C'(x,y,7)check = 1] = 1 — &. First, suppose y € Gc. Then, we know that if
all Gi-s return an p-approximation of E(Z;), then C’ must behave exactly like C. Therefore,
Pr, .y, [C’(x,Y,")check = 1] = 1 — & and so y € G¢r. Next, suppose y ¢ G¢. Then C(x, Y)check = 0.
Again, if all G;-s return an p-approximation of E(Z;), then C’ must also output 0 as the check flag.
Thus, Pr,.y,[C'(x, Y, 7)check = 0] = 1 —=6. Since § < %, this means that on witness y, the circuit C’
cannot also output 1 as the check flag with probability at least 1 — §, soy ¢ G¢.

The argument above shows that G¢ = G¢r. Moreover, it shows that for every x,y, either
Pr v, [C'(x,y,")check = 1] = 1 =8 or Pr,.y, [C'(x,y,")check = 1] < 6. Thus, C’ is a proper
randomized SVN circuit computing f(x). O

Observing that our definition of randomized and DensityApprox SVN only has the checking
circuit use the randomness or oracle gates (with the compute phase only using the witness), we
can show that the converse also holds.

LEMMA 9.2. Let n > 0 be any constant, and let % —-n >0 > 0. Let f: {0,1}" — {0,1} be
computable by a randomized SVN circuit C of size s = s(n) with error 8. Then, f is also computable
by a DensityApprox SVN circuit of size O(s) using one DensityApprox, gate.

Proor. Consider the following DensityApprox SVN circuit C”: The “compute” circuit of C’
is identical to that of C. The “check” circuit of C’, on input x,y, computes a description of
C(x, Y, *)check, and feeds that description into a DensityApprox, . The check outputs 1 if the out-
put of the DensityApprox, gate is at least 1. and outputs 0 otherwise.

Since for every y we have Pr,.y,[C(x, Y, 7)check = 1] = 1 =& or Pr,_y, [C(x, Y, T)check = 1] < 6,
the DensityApprox, gate is accurate enough to distinguish between the two. Since the description

of C(x, Y, *)check is at most 5(5), the overall size of C’ is 5(5). O

Utilizing Lemma 9.1, we can rephrase Theorems 8.6 and 8.7 with our new hardness assumption.
Note that by inspecting Lemma 9.1, we can take the error of the randomized SVN circuit to be

quasi-polynomially small in the input length (e.g., § = o-log” n for any constant ¢’).%

THEOREM 9.3. There exists a constant ¢ > 7 such that the following holds for every positive integer
n and a constant ¢ > 0: Assume f: {0, 1}1°g" — {0, 1} requires randomized SVN circuits for error §,

. — . — C .
of size n!~% for some universal constant ay < %, and § = 271°8° " for an arbitrary constant ¢’. Let
be any constant such that oy < o < % Then, there exists a function

a\f: {0’1}(1+ca)10gs_>{0,1}s

that is an e-PRG against circuits of size s = n1=%,

’
281n fact, we can even choose & to be 2~ for a small y = y(a), but for simplicity, we state the theorem for § = 2~ log® n

where ¢’ can be an arbitrary constant.

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

43:44 D. Doron et al.

The range of@f can be computed in time stea given oracle access to the truth table off Moreover,

if f € DTIME(s*) for some ¢y > 1, then the range of Gf can be computed in time sTem fory =
max{2 + ca, cy + 1}.

THEOREM 9.4. There exists a constant ¢ > 1 such that the following holds: For anyn, let L C {0, 1}"
and A: {0,1}" x {0,1} — {0, 1} be a probabilistic algorithm running in timet = t(n) > n such that
for every x € {0, 1}",

yPB [A(x,y) # L(x)] < % —€

~Utr

for some constant ¢ > 0. Assume for every positive integer m there exists a function f: {0,1}" —
{0, 1} such that:

o f is computable in deterministic time 2°/™ for some cf, and,

e For§ = 27'°8" " for an arbitrary constant ¢’ > 0, f requires randomized SVN circuits for error

é of size at least 2(-a)m \uhere oy < % is some universal constant.
Then, there exists a deterministic algorithm Ap: {0,1}" — {0, 1} that accepts L and runs in time
t2+5a +tp

where the term tp = tY17¢®) fory = max{2+éa, cr+1} corresponds to a step that can be precomputed
for all algorithms with running time t. That is, the slowdown of every randomized algorithm running
in time t, under our complexity-theoretic assumptions, is at most t'+0(®).

9.1 A PRG from Better Codes and Stronger Assumptions

The results in Section 5.1 give a PEG using o(log n) seed that outputs n!=°() bits of metric pseu-
doentropy against circuits of size n'~°!) assuming hardness against SVN circuits of size n'~°(.
In the same way that we obtained Theorem 9.3 by strengthening the assumption to randomized
SVN circuits and applying the extractor from Theorem 7.4, we can get a PRG with seed length
(1 + 0(1)) log n that outputs n'~°(!) bits of pseudorandomness against circuits of size n'~°().

THEOREM 9.5. Let n be a positive integer n and let ¢ > 0 be constant. There exists a constant c,
such that ifa = c, - (loglog")4 then the following holds:
Assume for every n there exists f: {0,1}1°6" — {0, 1} that requires randomized SVN circuits for

,and 8 = 271°6° " for an arbitrary constant ¢’. Then, for some constant c,

1-a
error 8, of sizen'™ % < 5 g

there exists a function
éf: {0’1}(1+ca’)logs - {0’1}5

that is an e-PRG against circuits of size s = n1=%,

The range oféf can be computed in time O(s%) given oracle access to the truth table off

Moreover, if f € DTIME(s*) for some ¢y > 1, then the range ofo can be computed in time sTca =
fory = max{2 + ca, cy + 1}.

10 LOWER ERROR PEGS AND PRGS

In this section, we show how to get PEGs and PRGs with error n™ for a small constant y. Overall,
our PEG and PRG have seed lengths O(y) log n and (1 + O(y)) log n, respectively. Such an error is
optimal, up to the constant multiplicative factors, as the seed length must be at least log(1/¢) (and
for PRGs, at least log(n/¢)).

As the extractor presented in Section 7 already achieves n™" error for a sufficiently small y, the
main challenge is to construct a list recoverable code that can handle n™Y agreement. As before, we

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

Nearly Optimal Pseudorandomness from Hardness 43:45

take the length-n truth table of a hard function f, encode it via a locally list decodable code, and
consolidate the symbols of the code into n®(® larger symbols of size n!~9(® each. Previously, in
Section 4, we showed that by simply concatenating consecutive symbols (or, “folding”), an ¢ agree-
ment in the consolidated symbols implies an ¢ agreement in the original LDC symbols. The same
technique does not work when ¢ = n™Y, as current locally decodable codes have bad dependence
on ¢ and so we incur a large blowup in parameters.

The idea is to instead consolidate symbols in such a manner that wherever the small n™" fraction
of good larger symbols might be, at least 1/3 fraction of the original symbols are contained in at
least one of the good larger symbols. Samplers with n™Y error naturally satisfy such a requirement
(in fact, even their one-sided version, called hitters, suffices). For this to make sense, we need the
decoder circuit to be hardwired with information about which lists are good. This is yet another
place where we leverage the non-uniform nature of our decoding, recalling that the good lists are
only a function of the hard function itself.

We note that using expander- (or sampler-) based transformations in coding theory is quite
common and can be found in several other works, e.g., in References [2, 3, 19, 38, 40, 56].

10.1 A New Locally List Recoverable Code

For the reader’s convenience and continuity with the previous result, we once again start with the
Reed-Muller code. However, as before, other locally list decodable codes are viable. Viewing [7],
the set of coordinates of the RM code, as a set of vertices, we consolidate symbols according to the
bipartite graph of a sampler I': [i] X [D] — [m].

10.1.1 The Construction. We first state the existence of an explicit sampler. We defer the proof
to Appendix B.

THEOREM 10.1 (FOLLOWING [34]). There exists a constant b > 1 such that the following holds for
every positive integer N and any constants 6, € (0,1) and 0 < y < %: There exists an explicit

bi-regular (8,¢ = N7V) sampler
T: [N]x[D] = [M = N*]

for D = NP, and a circuit C: [N] — [M]P of size 5(D) that on input x € [N] outputs
I'(x,1),...,T'(x,D).

Moreover, T is bi-regular and the function T™': [M] X [a] — [N] fora = % = N'0v=F s fully
explicit, i.e., givenv € [M] and i € [a], T™ (v, 1) can be computed in polylog(N) time.

Now, let @ be a small constant, which we again think of as the exponent of our hardness as-
sumption. Let = 6a, and let y = % for the constant b given in Theorem 10.1. Assume & < %, so
the condition @ < 1—6a = 1— f is met. The locally list recoverable code is constructed as follows:

t+d

Lt=2Landg = £%~dwithdchosenson=(d)logq'

3
Again, working out the parameters, one can see that d = Ou (n*) and q = Oq (n%) (here, the
a subscripts hide a é factor). The resulting code

e In Theorem 4.1, set { = % e =

Crm: {0,1}" —> FZ:CH

(Q = 5a(n2“),£ = %,{ = %,SRM = 5(n4a),L = O(”))

locally list decodable code for ¢ = (773) z log n. Note that this time, while ¢ is set to be constant,
we aim at a non-constant error for our PEG.

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

43:46 D. Doron et al.

fefo1}" Crm(f) € Fp C(f) e (Fg)m
| Cam [I(z,1) |
_ al |
[|| | z

Fig. 1. The construction of our locally recoverable code.

e Let m = if = 0, (n®*) and let
I': [a] X [D] — [m]

be a biregular (%, 7Y = Ou(n7")) sampler guaranteed to us by Theorem 10.1. The right-
degree of the sampler is a = A'*?Y~F = O, (n'~5%). The left-degree is D = Y = O4(n%).
e Define
C: {0,1}" - =™
where X =]Ff;, so for every f € {0,1}" and z € [m],

C(f)z = Crm(fr-1(z1) © - - © CRM(fr-1(z,0)-

See also Figure 1.

10.1.2 The Analysis. We prove the following theorem about C:

THEOREM 10.2. Letb > 1 be as in Theorem 10.1. For any positive integer n and constant0 < a < %,

setting y = %, the code C constructed above is (Q, ¢, ¢, s¢) locally list recoverable for Q = 5(n2“),

1-8a
e=2,0=2"""andsc=n

1-a
ny? .

Proor. We describe a similar decoding algorithm to that of Theorem 4.2, using advice. The main
observation for the new decoder is that the advice can also encode which lists contain a correct
symbol. In other words, the advice can tell the recovery circuit that specific lists are in agreement
with the encoded message. This means that for any query to the RM code, it is still efficient to
brute force over all neighbors of the queried coordinate (as long as the left degree of the samplers
is at most n!~9(®)). Thus, we can answer the query with the correct symbol for a large fraction of
queries if a large fraction of coordinates have at least one neighbor that has a good list—a property
that the sampler guarantees.

Towards this end, fix any codeword C(f) for f € {0,1}" satisfying C(f), € S, for at least
e-fraction of z € [m]. We describe a randomized circuit for computing C(f). Consider
Os

adv

A

(x,r),

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

Nearly Optimal Pseudorandomness from Hardness 43:47

which takes as input x € [n], uses randomness string r, has access to some fixed oracle Og for

lists S = Sy, ..., S, and aims to compute fy. The decoder circuit Afjv implements the following
procedure:

(1) We first describe the advice.

° Agjv is hardwired with advice adv = (y1,.-.,Ym>91>- - - » Gm» RM), where each y, €
{0, 1}°8¢ points to some list entry in the zth list. We assume the correct advice is given.
Specifically, for each z such that C(f), € S, let the correct y, be such that Os(y,) = C(f).,
otherwise, let y, be an arbitrary string such that Os(y,) # L. Note that the size of the ad-
vice is mlog ¢ = O(n'~2%) and only depends on f and S and not on the input x.

e Each gy,...,gm is a single bit. In the correct advice, g, = 1 if and only if C(f), € S..

e The rest of the advice RM points to a decoding circuit for the Reed-Muller code, and we
assume the correct circuit is given. That is, let Agpm be the randomized circuit that computes
fx for every x, with probability at least % when given oracle access to a word in]Fg with
at most % fraction of errors from Crm(f).

(2) Run the decoding circuit Agm(x, 7). For every j € [Q], supply the answer to the jth oracle
query that Agy makes to some coordinate i € [72] as follows:
(a) Compute I'(i, 1), ..., T'(i, D).
(b) Check if any of the gr(; 1), ..., gr(;,p) are 1. If none of them are, then return an arbitrary
symbol in Fy.
(c) Otherwise, pick an arbitrary d € [D] such that gr(; 4y = 1. Let z = I'(i, d). Use the advice
string y, and the oracle access to S to query the element o = Og(y,) € Fg.
(d) Return the appropriate symbol 05, € F, (for h € [a]) that corresponds to the symbol for
the ith coordinate of Agy. That is, return oy, for h such that T=!(z, h) = i.
(3) Return the output of Agm(x, r).

First, we argue that the size of such a circuit is small. The inputs to the circuit are x € {0, 1}log ™ and
the randomness r. Since Reed-Muller decoding is the only place our algorithm uses randomness,
the length of r is subsumed by the size of Agm. The advice that we hardwire to the circuit, excluding
RM, has length O(n'~2%) + O(n®?). Next, the size of Agy itself is O(n**), and for each of the
0 = O(n*®) queries, we compute T'(i,1),...,T(i, D) and compare the results to the advice bits
915 - - -»9m- This will add Q - O(D) = O(n*¥) to the size of the circuit. For each query, we also
compute a single inverse I'"!(z, k) that adds another polylog(#) additive factor. Overall, the size of
the circuit is at most

logn + O(n'™%%) + 0(n°%) + O(n**) + O(n**) = O(n'~2%).

The derandomized circuit obtained via repeated amplification, as we did in Section 4.2, incurs
another log n factor, so overall the deterministic circuit will have size at most n'~%.

It is left to show that the randomized circuit described above errs with probability at most % As
before, we show that the Reed-Muller decoder essentially queries a word with % agreement with
Crm(f).Let G C [m] be the set of density at least ¢ = n% of all z-s such that S, contains the correct
symbol C(f),.

Consider the induced Reed-Muller word w obtained by setting w; = Cpm(f); if T'(i,d) € G for
some d, and w; is set arbitrarily otherwise. By the properties of the sampler T, at least % of the
Reed-Muller code coordinates have at least one neighbor in G, and so w has at least % agreement
with Crm(f). By construction, the Reed-Muller decoder essentially makes queries to w. O

This list recoverable code immediately implies a pseudoentropy generator with small error.

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

43:48 D. Doron et al.

COROLLARY 10.3. Let b > 1 be as in Theorem 10.1. For any positive integer n, assume
£ 10,17 — {0,1)
is such that sizesy n (f) > n'~% for some constant ay < é.Leta be any constant such thatoy < a < %
and lety = 7. Then, there exists a function

G {0,114 - {0,1}°

1-8a

that is a (k,s, e) metric PEG for e = nly k =2—, s >n""* d = 6alogn + O(loglogn) and
a = 0(n'™5%). N
Given oracle access to f, the range of G takes O(n) time to compute. Moreover, if f € DTIME(n®/)

Cf+1+0!).

for some cy > 1, then the range of GI' can be computed in time O(n

The correctness proof is identical to the proof of Theorem 4.7. For the computation time, all
that is changed is the way we consolidate the symbols, and Theorem 10.1 tells us we can do it
efficiently.

10.2 Low-error PRG

Just as before, if we now assume hardness against randomized SVN circuits, then we can combine
our new low-error PEG with the previous extractor to obtain a low-error PRG, now instantiating
the extractor with a smaller error.

THEOREM 10.4. There exists a constant ¢ > 7 such that the following holds for every positive integer
n: Assume f: {0,1}°8™ — (0,1} requires randomized SVN circuits for error 8, of size n'~® for some
universal constant oy < %, and § = 271o¢" n for an arbitrary constant ¢’. Let a be any constant such
thatay < a < % Lety = %, and lete = c - n™". Then, there exists a function

(_;f: {0’1}(1+ca)10gs_){0’1}s

that is an e-PRG against circuits of size s = n'~%.

The range of@f can be computed in time stea given oracle access to the truth table of f. Moreover,

if f € DTIME(s”) for some cy > 1, then the range oféf can be computed in time ST for{ =
max{2 + ca,cy + 1}.

PrOOF (SKETCH). First fix o and let y = ¢ for the b as in Theorem 10.1. As before, we can
first prove the result assuming hardness for DensityApprox gates. This is simply repeating the
arguments of Theorem 8.6. To do so, we want to instantiate our extractor Ext from Theorem 7.4
with error n7" and use Lemma 6.3 that guarantees pseudorandomness from high metric pseudoen-
tropy. However, unlike previous sections, we now must work with DensityApprox, gates with non-
constant 7 = n”. This gives us a PRG from hardness against SVN circuits with DensityApprox,
gates. For the seed length of our PRG, we add a factor of

(1 + cext - O(a)) log n + cgxt log(n?),

to the seed length of the PEG, where cgy; is the constant guaranteed by Theorem 7.4. Choosing ¢
large enough to subsume constants relevant to « (such as cgy and b) yields the result.

Next, to get a result for randomized SVN circuits, we once again replace our DensityApprox,
gates with random sampling. First, instantiate our just now proven result for low error PRGs as-
suming hardness against DensityApprox, circuits of size n'=2¢=2Y That is, a distinguisher for the
PRG implies a DensityApprox, circuit of size s = n'~**~?' computing f. Tracing the parameters
of Lemma 9.1, we see that a DensityApprox, SVN circuit of size s is computable by a randomized

SVN circuit of size O(s - n?') = O(n!~2%) < nl~¢. o

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

Nearly Optimal Pseudorandomness from Hardness 43:49

APPENDICES
A CONDENSERS AND LIST RECOVERABLE CODES

In this section, we continue the discussion of Section 1.3, proving the equivalence between strong
condensers and list recoverable codes.

Definition A.1. Given a function E: {0, 1}% X [n] — X, we denote Cg: {0,1}* — X" as the code
mapping x € {0,1}¢ to
Cg(x) = E(x,1) o...0 E(x,n).

Note that the rate of Cr is m.

THEOREM A.2. Let Cond: {0,1}? X [n] — X be some function so Ccond is (&, {, L) list recoverable.
Then, Cond is a strong

L ¢
k =log —, k" =log —,2
(og . og " e)
condenser. Recall that % = 2K is the average size of a list Ccond can handle.

Proor. Assume towards a contradiction that Cond is not such a condenser, so there exists an
(a, k) source X for which Cond(X, Y) oY is not e-close to having min-entropy k’ +log n, where Y is
uniformly distributed over [n]. By Claim 2.26 there exist sets Sy, ..., S, C ¥ satisfying } 7, |S;| <
n- 2K = ¢ such that

P Cond(X,i) € S;]= P i €Si] > 2e.
XX {~[n][ond(X, i) il XX, {N[n][CCond (x); il 3
By an averaging argument, there exists a set G € {0,1}* of density larger than ¢ such that for
every x € G,
Pr [C(X), (S S,] > E.

i~[n]
By the list recovery properties of Ccong it must hold that |G| < L, however, |G| > ¢ - [Supp(X)| >
¢-2K > L in contradiction. O

We note that the above theorem is not readily applicable for extractors. Indeed, choosing k’
log |3], we would get 5 = |2, which is moot. However, for k’ = log 3| — log(1/¢) — O(1), one
can show that list recoverable codes supporting % = 2K do exist (moreover, the next theorem
will show that extractors do give rise to such codes). For the construction of extractors from soft-
decision decoding, which can be seen as a generalization of list recovery, see Reference [79].

THEOREM A.3. Let Cond: {0,1}? X [n] — X be a strong (k,k’,) condenser. Then, Ccond is
<4€,€ = 2¢en - 2k,,L = Zk)
list recoverable.

Proor. Let Sy,...,S, C ¥ satisfy)}, |S;| < €. Define the test T € X X [n] so (z,i) € T if and
onlyif z € S;. Let

L= {u € Ccond : 'P[r] [u; € S;] > 45}
iI~n

and assume towards a contradiction that |£| > 2% = L. Note that the set £ is in one-to-one
correspondence with the set

¢
A= {x € {0,1}*: Pr [Cond(x,i) € S;] > -+ 25}.
i~[n] n-2k

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

43:50 D. Doron et al.

Let Y be uniformly distributed over [n]. Then, on the one hand, H;, (Cond(Ug, Y)oY) > k’+logn
so by Claim 2.26,

Pr[Cond(Ua,Y)oY € T] < e+ |T|- 27K 718" < ¢ 4 5
n .

On the other hand,

1 ¢ ¢
Pr[Cond(Uz, V)oY € T] = — Z Pr [Cond(x,i) € §;] > —— +26 > —— +¢,
[Al we A n-2 n-

i~[n] 2k
in contradiction. |

B THE GOLDREICH-WIGDERSON SAMPLER

In this section, we show that the Goldreich-Wigderson sampler given in Section 10 is indeed effi-
ciently computable. For convenience, we use the extractor terminology (see Lemma 2.21).

THEOREM B.1 (FOLLOWING [34]). For any positive integers n and ¢ < n, and every ¢ > 0 and
m < n—O0(c + log %) there exists a (k = n — c, €) extractor Ext: {0,1}" x {0,1}¢ — {0,1}™ where
{ =0(c+log %)

Furthermore, there exists a circuit C: {0,1}" — ({0, 1}’")26 of size polynomial in n and log % that
on input x € {0, 1}" outputs the evaluation of Ext on x and all possible seeds.

To implement Ext, we need efficient constructions of expanders of arbitrary degree.

CrLamm B.2. For every positive integern and 0 < A < 1 there exists a connected d-regular undirected
graph with n vertices that is a A-expander, ford = poly(%). Given a vertex x € [n] and an edge label
i € [d], the ith neighbor of x can be computed in time log% - polylog(n).

Proor. Let G be a Ay = i expander over [n] with degree dy = O(1) guaranteed to us by
Theorem 2.23. For ¢t = [% log %], consider the graph G’ wherein each edge corresponds to tak-
ing a walk of length ¢ on G. The graph G* has the same vertex set, has degree dj = poly(%), and
it is known that A(G") < A} < A.

Given x € [n] and an edge label i = (iy, .. .,i;) € [dy]’, computing the ith neighbor of x amounts
to taking a walk on G of length ¢ from x according to the labels iy, . . ., i;, which can be done in
time ¢ - polylog(n).]

Proor or THEOREM B.1. Ext is constructed as follows: Given positive integers n, ¢, and ¢ > 0,
we use the following primitives:

o Let G be a A-expander over the vertex set {0,1}", where 1 < #z/z By Claim B.2, such a
graph exists with degree d = (%)“ for some constant a > 1. Furthermore, the neighborhood
function of G, I : {0,1}™ X [d] — {0,1}™, can be computed in time poly(m, log %, c).

e Let H C {0,1}"™ — [d] be a two-universal family of hash functions. In Lemma 2.31,
we took H to be the set of all affine functions, and here, to get a smaller family, we use
affine transformations with Toeplitz matrices (see, e.g., Reference [31, Section 3]). This gives
log|H| = n—m + 2logd — 1. Computing the linear transformation can be done in time

O(n —m).
Given x € {0,1}" and h € H, we output

Ext(x, h) = T (x(1,m)» h(X{m+1,n))) -

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

Nearly Optimal Pseudorandomness from Hardness 43:51

The correctness follows from Reference [34, Theorem 4.2]. For it to hold, we need to verify that

8
2—(n—m—c) < g_

T o64d’
and indeed choosing n —m = (a + 8) log % + 6ac satisfies the above. This choice of m puts a bound
on log |H|:

1
log|H|=n—-—m+2logd -1 < 8alog; + 8ac,

and so our seed length does satisfy ¢ > log [#{|. To output less than m bits, we can simply truncate
the output.
Given x € {0,1}" and h € H, computing Ext(x, h) takes time

O(n + log |H|) + O(n—m) + poly(m,log(1/¢),c) = poly(n,log(1/¢))

and so can be done by a circuit of size poly(n,log(1/¢)) as well. Thus, iterating over all seeds can
be done by a circuit of size

|H |- poly(n,log(1/e))+O(1) = poly (n, %, 20) . O

—C :

We instantiate Theorem B.1 as a sampler in the slightly unusual setting, where § = 27¢ is

constant and § > ¢. We then get the following corollary:

CoROLLARY B.3. There exists a constant b > 1 such that the following holds for every positive
integer N and any constants 5, € (0,1) and 0 < y < %: There exists an explicit bi-regular
(8,6 = N7Y) sampler

I: [N]x [D] — [M = Nf]
for D = NP, and a circuit C: [N] — [M]P of size 5(D) that on input x € [N] outputs
I'(x,1),...,T'(x,D).

Moreover, T is bi-regular and the function T™': [M] X [a] — [N] fora = % = N'*0r=F s fully

explicit, i.e., givenv € [M] and i € [a], T™ (v, i) can be computed in polylog(N) time.

Proor. The first part of the corollary follows from applying Lemma 2.21 to Theorem B.1. Prov-
ing that I' is bi-regular and establishing its running time can be done together. Assume I'; outputs
m bits, i.e., before we truncate it to log M bits, as the truncation changes neither the bi-regularity
nor the running time. We use the notation of the proof of Theorem B.1. Given v € {0,1}™ and
i € [a], interpret i = (i,iz), where iy € [d] and i, € {0,1}" ™. Then, outputting I'""(v, i) is
computed as follows:

o Let u € {0,1}™ be such that I'5(u, i1) = v. Working with expanders suitable edge labelings,
this can be done in poly(m) time.
e Return the x € {0, 1}" for which x[1,] = v and x[m+1,n] = iz

For correctness, note that H is also one-universal, so in particular there exists h € H such that
h(iz) = i1.” Thus, indeed, T (u, h(i;)) = v and also distinct i-s give rise to distinct x-s.]
ACKNOWLEDGMENTS

We are deeply thankful to Ronen Shaltiel for pointing out an error in a previous version, for sug-
gesting an elegant way of significantly simplifying the contents of Section 6, and for very useful
discussions about hardness assumptions. We are also grateful to Noga Ron-Zewi for valuable dis-
cussions on list-recoverable codes that led to a simpler construction and for suggesting to consider

2Here, we need to slightly modify 7 so the linear transformations act only on nonzero vectors.

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

43:52 D. Doron et al.

the very high-end regime. We thank Roei Tell for detailed comments and suggestions on a prelim-
inary version of this article. Finally, we thank Scott Aaronson and Lijie Chen for suggesting open
problem (3) and Omer Reingold, Amnon Ta-Shma, and Ryan Williams for helpful and interesting
discussions.

REFERENCES

[1] Leonard Adleman. 1978. Two theorems on random polynomial time. In Proceedings of the 19th Annual IEEE Symposium
on Foundations of Computer Science (FOCS’78). IEEE, 75-83.

[2] Noga Alon, Jehoshua Bruck, Joseph Naor, Moni Naor, and Ron M. Roth. 1992. Construction of asymptotically good
low-rate error-correcting codes through pseudo-random graphs. IEEE Trans. Inf. Theor. 38, 2 (1992), 509-516.

[3] Noga Alon, Jeff Edmonds, and Michael Luby. 1995. Linear time erasure codes with nearly optimal recovery. In Pro-
ceedings of the 36th Annual IEEE Symposium on Foundations of Computer Science (FOCS’95). IEEE, 512-519.

[4] Noga Alon, Oded Goldreich, Johan Hastad, and René Peralta. 1992. Simple constructions of almost k-wise independent
random variables. Rand. Struct. Algor. 3, 3 (1992), 289-304.

[5] Benny Applebaum, Sergei Artemenko, Ronen Shaltiel, and Guang Yang. 2016. Incompressible functions, relative-error
extractors, and the power of nondeterministic reductions. Computat. Complex. 25, 2 (2016), 349-418.

[6] Sigal Ar, Richard J. Lipton, Ronitt Rubinfeld, and Madhu Sudan. 1998. Reconstructing algebraic functions from mixed
data. SIAM 7. Comput. 28, 2 (1998), 487-510.

[7] Sergei Artemenko, Russell Impagliazzo, Valentine Kabanets, and Ronen Shaltiel. 2016. Pseudorandomness when the
odds are against you. In Proceedings of the 31st Annual Conference on Computational Complexity (CCC’16). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik.

[8] Sergei Artemenko and Ronen Shaltiel. 2017. Pseudorandom generators with optimal seed length for non-boolean
poly-size circuits. ACM Trans. Computat. Theor. 9, 2 (2017), 6.

[9] Vikraman Arvind and Johannes Kobler. 1997. On resource-bounded measure and pseudorandomness. In Proceedings
of the International Conference on Foundations of Software Technology and Theoretical Computer Science. Springer, 235—
249.

[10] Boaz Barak, Shien Jin Ong, and Salil Vadhan. 2007. Derandomization in cryptography. SIAM J. Comput. 37, 2 (2007),
380-400.

[11] Boaz Barak, Anup Rao, Ronen Shaltiel, and Avi Wigderson. 2012. 2-source dispersers for n°() entropy, and Ramsey
graphs beating the Frankl-Wilson construction. Ann. Math. 176, 3 (2012), 1483-1544.

[12] Boaz Barak, Ronen Shaltiel, and Avi Wigderson. 2003. Computational analogues of entropy. In Approximation, Ran-
domization, and Combinatorial Optimization—Algorithms and Techniques. Springer, 200-215.

[13] Lijie Chen and Roei Tell. 2019. Bootstrapping results for threshold circuits “just beyond” known lower bounds. In
Proceedings of the 51st Annual ACM Symposium on Theory of Computing (STOC’19). ACM, 34-41.

[14] Lijie Chen and Roei Tell. 2021. Simple and fast derandomization from very hard functions: Eliminating randomness
at almost no cost. In Proceedings of the 53rd Annual ACM Symposium on Theory of Computing (STOC’21). ACM.

[15] Lijie Chen and Roei Tell. 2022. Hardness vs randomness, revised: Uniform, non-black-box, and instance-wise. In Pro-
ceedings of the IEEE 62nd IEEE Annual Symposium on Foundations of Computer Science (FOCS’22). IEEE, 125-136.

[16] Lijie Chen and Roei Tell. 2022. When Arthur has neither random coins nor time to spare: Superfast derandomization
of proof systems. In Proceedings of the Electronic Colloquium on Computational Complexity (ECCC).

[17] Kai-Min Chung, Yael Tauman Kalai, Feng-Hao Liu, and Ran Raz. 2011. Memory delegation. In Proceedings of the Annual
Cryptology Conference. Springer, 151-168.

[18] Gil Cohen and Leonard J. Schulman. 2016. Extractors for near logarithmic min-entropy. In Proceedings of the 57th
Annual IEEE Symposium on Foundations of Computer Science (FOCS’16). IEEE, 178-187.

[19] Irit Dinur, Prahladh Harsha, Tali Kaufman, Inbal Livni Navon, and Amnon Ta Shma. 2019. List decoding with double
samplers. In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’19). SIAM, 2134-
2153.

[20] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. 2008. Fuzzy extractors: How to generate strong
keys from biometrics and other noisy data. SIAM J. Comput. 38, 1 (2008), 97-139.

[21] Andrew Drucker. 2013. Nondeterministic direct product reductions and the success probability of SAT solvers. In
Proceedings of the 54th Annual IEEE Symposium on Foundations of Computer Science (FOCS’13). IEEE, 736-745.

[22] Stefan Dziembowski and Krzysztof Pietrzak. 2008. Leakage-resilient cryptography. In Proceedings of the 49th Annual
IEEE Symposium on Foundations of Computer Science (FOCS 08). IEEE, 293-302.

[23] Bill Fefferman, Ronen Shaltiel, Christopher Umans, and Emanuele Viola. 2013. On beating the hybrid argument. Theor.
Comput. 9, 26 (2013), 809-843. DOI : https://doi.org/10.4086/toc.2013.v0092026

[24] Joel Friedman et al. 2003. Relative expanders or weakly relatively Ramanujan graphs. Duke Math. J. 118, 1 (2003),
19-35.

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

https://doi.org/10.4086/toc.2013.v009a026

Nearly Optimal Pseudorandomness from Hardness 43:53

[25]
[26]
[27]
(28]
[29]

(30]

—
w
=D

—

(39]
(40]
[41]
[42]
[43]
[44]
[45]

[46]

Benjamin Fuller, Adam O’Neill, and Leonid Reyzin. 2015. A unified approach to deterministic encryption: New con-
structions and a connection to computational entropy. J. Cryptol. 28, 3 (2015), 671-717.

Benjamin Fuller and Leonid Reyzin. 2012. Computational entropy and information leakage. IACR Cryptology ePrint
Archive 2012 (2012), 466.

Ofer Gabber and Zvi Galil. 1981. Explicit constructions of linear-sized superconcentrators. J. Comput. Syst. Sci. 22,
3 (1981), 407-420.

Sergey B. Gashkov and Igor S. Sergeev. 2013. Complexity of computation in finite fields. 7. Math. Sci. 191, 5 (2013),
661-685.

Anna C. Gilbert, Yi Li, Ely Porat, and Martin J. Strauss. 2017. For-all sparse recovery in near-optimal time. ACM Trans.
Algor. 13,3 (2017), 1-26.

Anna C. Gilbert, Hung Q. Ngo, Ely Porat, Atri Rudra, and Martin J. Strauss. 2013. €3 /{;-foreach sparse recovery
with low risk. In Proceedings of the 40th International Colloquium on Automata, Languages, and Programming (ICALP).
Springer, 461-472.

Oded Goldreich. 1997. A sample of samplers: A computational perspective on sampling. In Proceedings of the Electronic
Colloquium on Computational Complexity (ECCC).

Oded Goldreich, Shafi Goldwasser, and Dana Ron. 1998. Property testing and its connection to learning and approxi-
mation. J. ACM 45, 4 (July 1998), 653-750.

Oded Goldreich and Avi Widgerson. 2014. On derandomizing algorithms that err extremely rarely. In Proceedings of
the 46th Annual ACM Symposium on Theory of Computing (STOC’14). ACM, 109-118.

Oded Goldreich and Avi Wigderson. 1997. Tiny families of functions with random properties: A quality-size trade-off
for hashing. Rand. Struct. Algor. 11, 4 (1997), 315-343.

Oded Goldreich and Avi Wigderson. 2002. Derandomization that is rarely wrong from short advice that is typically
good. In Proceedings of the International Workshop on Randomization and Approximation Techniques in Computer Sci-
ence. Springer, 209-223.

Sivakanth Gopi, Swastik Kopparty, Rafael Oliveira, Noga Ron-Zewi, and Shubhangi Saraf. 2018. Locally testable and
locally correctable codes approaching the Gilbert-Varshamov bound. IEEE Trans. Inf. Theor. 64, 8 (2018), 5813-5831.
Aryeh Grinberg, Ronen Shaltiel, and Emanuele Viola. 2018. Indistinguishability by adaptive procedures with advice,
and lower bounds on hardness amplification proofs. In Proceedings of the 59th IEEE Annual Symposium on Foundations
of Computer Science (FOCS’18). IEEE, 956-966.

Venkatesan Guruswami and Piotr Indyk. 2002. Near-optimal linear-time codes for unique decoding and new list-
decodable codes over smaller alphabets. In Proceedings of the 34th Annual ACM Symposium on Theory of Computing
(STOC’02). ACM, 812-821.

Venkatesan Guruswami and Piotr Indyk. 2003. Linear time encodable and list decodable codes. In Proceedings of the
35th Annual Symposium on Theory of Computing (STOC’03). ACM, 126-135.

Venkatesan Guruswami and Piotr Indyk. 2003. Linear time encodable and list decodable codes. In Proceedings of the
35th Annual ACM Symposium on Theory of Computing (STOC’03). ACM, 126-135.

Venkatesan Guruswami and Atri Rudra. 2008. Explicit codes achieving list decoding capacity: Error-correction with
optimal redundancy. IEEE Trans. Inf. Theor. 54, 1 (2008), 135-150.

Venkatesan Guruswami, Atri Rudra, and Madhu Sudan. 2019. Essential coding theory. Retrieved from https://cse.
buffalo.edu/faculty/atri/courses/coding-theory/book.

Venkatesan Guruswami, Christopher Umans, and Salil Vadhan. 2009. Unbalanced expanders and randomness extrac-
tors from Parvaresh-Vardy codes. 7. ACM 56, 4 (2009), 20.

Dan Gutfreund and Guy N. Rothblum. 2008. The complexity of local list decoding. In Approximation, Randomization
and Combinatorial Optimization. Algorithms and Techniques. Springer, 455-468.

Dan Gutfreund, Ronen Shaltiel, and Amnon Ta-Shma. 2003. Uniform hardness versus randomness tradeoffs for Arthur-
Merlin games. Computat. Complex. 12, 3-4 (2003), 85-130.

Iftach Haitner, Yuval Ishai, Eran Omri, and Ronen Shaltiel. 2015. Parallel hashing via list recoverability. In Proceedings
of the Annual Cryptology Conference. Springer, 173-190.

[47] Johan Héstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. 1999. A pseudorandom generator from any

(48]
(49]

(50]

one-way function. SIAM J. Comput. 28, 4 (1999), 1364-1396.

Brett Hemenway, Noga Ron-Zewi, and Mary Wootters. 2019. Local list recovery of high-rate tensor codes and appli-
cations. SIAM J. Comput. 49, 4 (2019), FOCS17-157-FOCS17-195.

Brett Hemenway and Mary Wootters. 2018. Linear-time list recovery of high-rate expander codes. Inf. Computat.
261 (2018), 202-218.

Chun-Yuan Hsiao, Chi-Jen Lu, and Leonid Reyzin. 2007. Conditional computational entropy, or toward separating
pseudoentropy from compressibility. In Proceedings of the Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques. Springer, 169-186.

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

https://cse.buffalo.edu/faculty/atri/courses/coding-theory/book

43:54 D. Doron et al.

[51]
[52]
[53]
[54]
[55]
[56]

[57]

[58]

[59]

[60]

[61]
[62]
[63]
[64]
[65]

[66]
[67]

[68]
[69]
[70]
[71]
[72]

[73]

[74]
[75]
[76]
[77]

[78]

Russell Impagliazzo and Avi Wigderson. 1997. P = BPP if E requires exponential circuits: Derandomizing the XOR
lemma. In Proceedings of the 29th Annual ACM Symposium on Theory of Computing (STOC’97). ACM, 220-229.

Piotr Indyk, Hung Q. Ngo, and Atri Rudra. 2010. Efficiently decodable non-adaptive group testing. In Proceedings of
the 21st Annual Symposium on Discrete Algorithms (SODA’10). SIAM, 1126-1142.

Jorn Justesen. 1972. Class of constructive asymptotically good algebraic codes. IEEE Trans. Inf. Theor. 18, 5 (1972),
652-656.

Kiran S. Kedlaya and Christopher Umans. 2011. Fast polynomial factorization and modular composition. SIAM 7.
Comput. 40, 6 (2011), 1767-1802.

Adam R. Klivans and Dieter van Melkebeek. 2002. Graph nonisomorphism has subexponential size proofs unless the
polynomial-time hierarchy collapses. SIAM J. Comput. 31, 5 (2002), 1501-1526.

Swastik Kopparty, Or Meir, Noga Ron-Zewi, and Shubhangi Saraf. 2017. High-rate locally correctable and locally
testable codes with sub-polynomial query complexity. . ACM 64, 2 (2017), 11.

Swastik Kopparty, Noga Ron-Zewi, Shubhangi Saraf, and Mary Wootters. 2018. Improved decoding of folded Reed-
Solomon and multiplicity codes. In Proceedings of the 59th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’18). IEEE, 212-223.

Kasper Green Larsen, Jelani Nelson, Huy L. Nguyén, and Mikkel Thorup. 2016. Heavy hitters via cluster-preserving
clustering. In Proceedings of the 57th IEEE Annual Symposium on Foundations of Computer Science (FOCS’16). IEEE,
61-70.

Peter B. Miltersen and N. Vinodchandran Variyam. 2005. Derandomizing Arthur-Merlin games using hitting sets.
Computat. Complex. 14, 3 (2005), 256-279.

Jack Murtagh, Omer Reingold, Aaron Sidford, and Salil Vadhan. 2019. Deterministic approximation of random
walks in small space. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM’19). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 42:1-42:22.

Joseph Naor and Moni Naor. 1993. Small-bias probability spaces: Efficient constructions and applications. SIAM .
Comput. 22, 4 (1993), 838-856.

Noam Nisan and Avi Wigderson. 1994. Hardness vs randomness. J. Comput. Syst. Sci. 49, 2 (1994), 149-167.

Nicholas Pippenger and Michael J. Fischer. 1979. Relations among complexity measures. J. ACM 26, 2 (1979), 361-381.
Jaikumar Radhakrishnan and Amnon Ta-Shma. 2000. Bounds for dispersers, extractors, and depth-two superconcen-
trators. SIAM J. Discr. Math. 13, 1 (2000), 2—24.

Ran Raz, Omer Reingold, and Salil Vadhan. 2002. Extracting all the randomness and reducing the error in Trevisan’s
extractors. J. Comput. Syst. Sci. 65, 1 (2002), 97-128.

Omer Reingold. 2003. Personal Communication.

Omer Reingold, Ronen Shaltiel, and Avi Wigderson. 2006. Extracting randomness via repeated condensing. SIAM j.
Comput. 35, 5 (2006), 1185-1209.

Omer Reingold, Salil Vadhan, and Avi Wigderson. 2002. Entropy waves, the zig-zag graph product, and new constant-
degree expanders. Ann. Math. 155, 1 (2002), 157-187.

Atri Rudra and Mary Wootters. 2018. Average-radius list-recoverability of random linear codes. In Proceedings of the
29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’18). SIAM, 644-662.

Ronen Shaltiel and Christopher Umans. 2005. Simple extractors for all min-entropies and a new pseudorandom gen-
erator. J. ACM 52, 2 (2005), 172-216.

Ronen Shaltiel and Christopher Umans. 2006. Pseudorandomness for approximate counting and sampling. Computat.
Complex. 15, 4 (2006), 298-341.

Ronen Shaltiel and Christopher Umans. 2007. Low-end uniform hardness vs. randomness tradeoffs for AM. In Pro-
ceedings of the 39th Annual ACM Symposium on Theory of Computing (STOC’07). ACM, 430-439.

Ronen Shaltiel and Emanuele Viola. 2022. On hardness assumptions needed for “Extreme High-End” PRGs and fast
derandomization. In Proceedings of the 13th Innovations in Theoretical Computer Science Conference (ITCS’22). Schloss
Dagstuhl-Leibniz-Zentrum fiir Informatik.

Maciej Skorski. 2015. Metric pseudoentropy: Characterizations, transformations and applications. In Proceedings of
the International Conference on Information Theoretic Security. Springer, 105-122.

Maciej Skorski, Alexander Golovnev, and Krzysztof Pietrzak. 2015. Condensed unpredictability. In Proceedings of the
International Colloquium on Automata, Languages, and Programming. Springer, 1046—-1057.

Madhu Sudan. 1997. Decoding of Reed-Solomon codes beyond the error-correction bound. J. Complex. 13, 1 (1997),
180-193.

Madhu Sudan, Luca Trevisan, and Salil Vadhan. 2001. Pseudorandom generators without the XOR lemma. J. Comput.
Syst. Sci. 62, 2 (2001), 236-266.

Amnon Ta-Shma. 2017. Explicit, almost optimal, epsilon-balanced codes. In Proceedings of the 49th Annual ACM Sym-
posium on Theory of Computing (STOC’17). ACM, 238-251.

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

Nearly Optimal Pseudorandomness from Hardness 43:55

[79] Amnon Ta-Shma and David Zuckerman. 2004. Extractor codes. IEEE Trans. Inf. Theor. 50, 12 (2004), 3015-3025.

[80] Amnon Ta-Shma, David Zuckerman, and Shmuel Safra. 2006. Extractors from Reed—Muller codes. J. Comput. Syst. Sci.
72 (2006), 786-812.

[81] Roei Tell. 2018. Quantified derandomization of linear threshold circuits. In Proceedings of the 50th Annual ACM Sym-
posium on Theory of Computing (STOC’18). ACM, 855-865.

[82] Roei Tell. 2019. Improved bounds for quantified derandomization of constant-depth circuits and polynomials. Com-
putat. Complex. 28, 2 (2019), 259-343.

[83] Luca Trevisan. 2001. Extractors and pseudorandom generators. 7. ACM 48, 4 (2001), 860-879.

[84] Luca Trevisan and Salil Vadhan. 2000. Extracting randomness from samplable distributions. In Proceedings of the 41st

Annual IEEE Symposium on Foundations of Computer Science (FOCS’00). IEEE, 32-42.

Christopher Umans. 2003. Pseudo-random generators for all hardnesses. J. Comput. Syst. Sci. 67, 2 (2003), 419-440.

Salil Vadhan. 2012. Pseudorandomness. Found. Trends® Theoret. Comput. Sci. 7, 1-3 (2012), 1-336.

[87] Joris Van Der Hoeven and Eric Schost. 2013. Multi-point evaluation in higher dimensions. Applic. Algeb. Eng., Commun.
Comput. 24,1 (2013), 37-52.

[88] Emanuele Viola. 2003. Hardness vs. randomness within alternating time. In Proceedings of the 18th IEEE Annual Con-
ference on Computational Complexity (CCC’03). IEEE, 53-69.

[89] Joachim von zur Gathen and Jirgen Gerhard. 2013. Modern Computer Algebra. Cambridge University Press.

[90] Hoeteck Wee. 2004. On pseudoentropy versus compressibility. In Proceedings of the 19th Annual IEEE Conference on
Computational Complexity (CCC’04). IEEE, 29-41.

[91] Daniel Wichs. 2013. Barriers in cryptography with weak, correlated and leaky sources. In Proceedings of the 4th Con-
ference on Innovations in Theoretical Computer Science. ACM, 111-126.

[92] Ryan Williams. 2016. Strong ETH breaks with Merlin and Arthur: Short non-interactive proofs of batch evaluation.
In Proceedings of the 31st Annual Conference on Computational Complexity (CCC’16). 2:1-2:17.

[93] Andrew C.Yao. 1982. Theory and application of trapdoor functions. In Proceedings of the 23rd Annual IEEE Symposium
on Foundations of Computer Science (FOCS’82). IEEE, 80-91.

[94] Sergey Yekhanin. 2012. Locally decodable codes. Found. Trends® Theoret. Comput. Sci. 6, 3 (2012), 139-255.

[95] David Zuckerman. 1997. Randomness-optimal oblivious sampling. Rand. Struct. Algor. 11, 4 (1997), 345-367.

[96] David Zuckerman. 2007. Linear degree extractors and the inapproximability of Max Clique and Chromatic Number.
Theor. Comput. 3 (2007), 103-128.

— =
®©
[* N

—

flan)

Received 28 May 2021; revised 17 June 2022; accepted 2 August 2022

Journal of the ACM, Vol. 69, No. 6, Article 43. Publication date: November 2022.

