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Abstract—Autonomous industrial assembly relies on the
precise measurement of spatial constraints as designed by
computer-aided design (CAD) software such as SolidWorks.
This paper proposes a framework for an intelligent industrial
robot to understand the spatial constraints for model assembly.
An extended generative adversary network (GAN) with a 3D
long short-term memory (LSTM) network was designed to
composite 3D point clouds from a single RGB-D scan. The
spatial constraints of the segmented point clouds are identified
by a neural-logic network that incorporates general knowledge
of spatial constraints in terms of first-order logic. The model was
designed to comprehend a complete set of spatial constraints
that are consistent with industrial CAD software, including
left, right, above, below, front, behind, parallel, perpendicular,
concentric, and coincident relations. The accuracy of 3D model
composition and spatial constraint identification was evaluated
by the RGB-D scans and 3D models in the ABC dataset. The
proposed model achieved 57.23% intersection over union (IoU)
in 3D model composition, and over 99% in comprehending all
spatial constraints.

Index Terms—spatial constraints, neural-logic learning, logic
rules

I. INTRODUCTION

With the recent advancement of machine-learning and
sensing technologies, there are increasing needs on automated
planning of industrial robots on assembly lines recently [1],
[2]. Traditional industrial robots are typically programmed to
be deployed in well-constructed assembly lines, where they
can assemble and operate precisely with familiar objects [3].
It may, however, take significant manual effort to reprogram
robots to work with new objects or work in a new envi-
ronment [4]. As compared to confined, immobile, and non-
interactive industrial robots in structured environments [5],
autonomous robotic systems would need to understand the
spatial constraints on parts to achieve automated assembly
under unfamiliar unstructured situations [6]. Autonomous
robotic systems have potential to be agile, flexible, adaptive,
and flexibility without explicit programming [7].

In this paper, we propose a method that enables industrial
robots to understand spatial constraints by neural logic learn-
ing. According to CAD software such as SolidWorks, spatial
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(a) A sample RGB-D scan.
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(b) Comprehended spatial con-
straints.

Figure 1: Comprehended spatial constraints between parts
of an IKEA table during autonomous robotic assembly. The
left image shows the RGB-D scan of a table leg and a table
surface, and the right image shows the spatial constraints
comprehended by the robot between the leg and the surface.

constraints are useful in assembly. The proposed model can
learn the complete set of spatial constraints defined in CAD
software, which are left, right, above, below, front, behind,
parallel, perpendicular, concentric, and coincident. Compared
with our previous work [8], the new model can learn the set
of spatial constraints by incorporating eight logic rules into
the model structure. In this paper, a 3D composition model is
designed to approximate point clouds of 3D models from an
RGB-D scan. In contrast to approximated bounding volumes
of objects [8], the composited 3D shapes are represented
in point clouds that allow precise identification of spatial
constraints. A result of spatial constraint understanding by
using the proposed approach is illustrated in Fig. 1, where
the left one is the RGB-D scan of the scene, and the right
one is the robot comprehended spatial constraints.

Following [9], we propose a 3D composition model by
extending the generative adversarial network (GAN) with
3D convolutional Long Short-Term Memory (LSTM) units
to fulfill scanned object shapes. We further register the
3D composited shapes of objects with RGB-D scans of
objects to prevent missing geometrical information such as
distance, coordination. After the 3D shapes of objects are
composited, a neural-logic network is designed to identify
objects’ spatial constraints based on the high-level features
that are extracted by a grounding block. Spatial constraints
are symbolic, and it is challenging to use raw point-cloud
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Figure 2: Structure of the Neural-Logic Network. It contains three part, which are 3D filling block, grounding block, and
symbolic learning block.

data to represent. Integrating knowledge with data-driven
methods such as neural network can help learn and represent
knowledge. The proposed neural-logic network can learn the
spatial constraints of objects represented by point clouds by
using pre-defined logic rules. The rich knowledge that is
presented by logic rules can improve learning performance.
The logic operators such as “AND” and “OR” are mapping
to numerical space by using fuzzy logic.

The major contributions include: 1) We proposed a 3D
composition model extends the GAN with the 3D LSTM unit
to composite the point clouds of objects from a single RGB-D
input. 2) We designed a neural-logic learning model that can
learn comprehensive spatial constraints using raw point cloud
data. This paper focuses on the problem of understanding
spatial constraints on constructed models from an RGB-D
scan, while assuming that the point clouds corresponding to
the models are segmented.

II. SPATIAL CONSTRAINTS UNDERSTANDING

The proposed model of spatial constraints understanding
contains two parts: the first part is a 3D composition network,
and the second part is a neural logic network, as shown in
Fig. 2. The 3D composition model takes a single RGB-D
scan of the objects to generate approximated 3D shapes of
objects, and the neural logic learning network takes a pair of
objects in as input to determine their spatial constraints.

A. 3D Composition Network

Completed point cloud of objects, which contains vol-
umetric information, is essential for understanding spatial
constraints. A single scan from an RGB-D sensor can only
acquire the depth of objects from one point-of-view. There-
fore, 3D volumetric information is missing. As shown in
Fig. 3, there is missing volumetric information in RGB-D
scan of the object. To address that problem, we propose
a 3D model composition network with an extended GAN
network to compose the missing point cloud of the object.
Conventional GAN networks randomly generates data from
latent distributions. In contrast, the proposed GAN model
used RGB-D scans as input. The proposed GAN network
formulates a smooth function f to map the 2.5D input x to
the 3D composed model y = f(x) where x ∈ Z64×64×64 and
Z = {0, 1}. The 2.5D input is presented in a 643 occupied

grid. The 3D composited model is represented in the format
of a 2563 occupied voxel grid.

To minimize the difference between the 3D composited
model y and the ground truth y′, multiple-viewed RGB-D
scans of a same object can be used as a sequence of data
x0 . . . xn to train the model to increase the fineness of the
3D composited model. To implement this idea, we extended
the GAN network with 3D LSTM units [10]. To keep the
original coordinations of objects in the scene, we register the
composed 3D model to the RGB-D scan of objects with ICP
[11].

RGB-D Scan 3D Model 

Figure 3: Comparison between a RGB-D scan and a complete
point cloud of the same object in the view.

The 3D model composition network contains a generator
and discriminator. The generator can produce a composited
3D shape of an object, and the discriminator can differ-
entiate how realistic is the composited 3D shape against
the 3D CAD model (ground truth) of an object [12]. The
generator network takes a single RGB-D scan of the object
x ∈ Z64×64×64 as the input, then create the composited 3D
model y ∈ Z256×256×256 of the object. We introduced an
encoder-decoder architecture into the GAN network to extract
the features from RGB-D scan. The structure of the generator
part of the 3D composition model is shown in Fig. 4.

Both the composited 3D model and the real CAD model
are embedded as inputs for the discriminator. The composited
3D model is mapped into a 643 voxel grid, and the 3D
model is mapped into a 2563 voxel grid. There are six 3D
convolutional layers in the discriminator, and each of the first
five 3D convolutional layer has a ReLU activation function,
and the last layer takes the sigmoid function as the activation
function. The learning rate for the generator network is 1e−4,
and that of the discriminator network is 5e−5. Generator and
discriminator were optimized by the Adam optimizer. There
are four different categories, which contain objects that are
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Figure 4: Structure of the generator network.

most commonly used in assembly, are selected to train the 3D
model composition network. Each category has four objects,
and another two objects in the category is selected to test,
and another two objects are selected for validation. The RGB-
D scans were generated by Blender, where each object was
scanned 125 times with 2.88◦ angle difference along Z-axis.
The field of view (FOV) for the simulated RGB-D camera is
49.2◦, and RGB-D camera is placed 1.6 meters away from
the object.

B. Neural Logic Network
We assumed the point clouds are perfectly clustered.

Rather than manually designing features from 3D models,
this paper seeks to learn a high-level representation from the
training data. The training time can be reduced by using these
high-level features. A five-layered fully-connected neural
network is proposed in this paper to extract features from
the raw point-cloud data. The input of the grounding block
is from the 3D filling block’s output. The generated 3D filling
model is down-sampled and the sample factors are 600. There
are 600 neurons in the first layer for the pairwise input, The
ReLU were the activation functions for each layer. The mean
and standard deviation of each layer are initialized using a
random normalization method. The mean equals to zero, and
the standard deviation equals to one.

The logic rules of spatial constraints are learned by using
neural network with the pair-wise point clouds of objects
in the scene. We designed a fully connected feed-forward
neural network, which has four layers to enable robots to
understand spatial constraints. We take extracted features
from the ground block as input, and we instantiate the
features that are extracted from the 3D fulfilled models into
variables in the spatial rules to translate spatial rules to
numerical space [13]

I(p) = σ(µT
Ptanh(xTW

[1:k]
P x)) (1)

where W [1:k]
P is the weight of the network, and it is a tensor

in Rmn×mn×k, σ is the sigmoid function. I(p) is the output of
one network. The x is the extracted features from the ground-
ing block. The µ was t-norm the conjunction of the neural
network. This encoding enables a network to determine the
grounding of a clause (e.g. above(θ1, θ2)→ below(θ2, θ1))
by calculating the literals (e.g. above(θ1, θ2)) of the clause
and then combine those results to calculate the final result.
Two networks are combined to map whole spatial rules to
numerical space.

The proposed method can learn the logic rules. The spatial
constraints include left (L), right (R), above (A), below (B),
front (F), behind (Bh), parallel (Para), perpendicular (Perp),
concentric (Conc), and coincident (Coin) The rules which are
regulated for logic learning are based on these logic rules:

∀θ1, θ2 : λ̇(θ1, θ2)→ λ̇(θ1, θ2) (2)

∀θ1, θ2 : ¬λ̇(θ1, θ2)→ ¬λ̇(θ1, θ2) (3)

∀θ1, θ2 : λ(θ1, θ2)→ λ̄ (θ2, θ1) (4)
∀θ1, θ2 : λ(θ1,θ2)→ ¬λ(θ2, θ1) (5)

where θ1, θ2 denote objects. Both λ̇ and λ denote spatial con-
straints, λ̇ ∈ {L,R,A,B,F,Bh,Para,Perp,Conc,Coin}
and λ ∈ {L,R,A,B,F,Bh}.
� The rule (2) denotes that if the spatial constraints

between two objects θ1 and θ2 is λ, then the spatial
constraints between two objects θ1 and θ2 is λ.

� The rule (3) denotes that if the spatial constraints
between two objects θ1 and θ2 are not λ, then it infers
the spatial constraints of these two objects are not λ.
In rule (4), the {λ, λ} is contrasting spatial constraints,
such as {left, right}, {front, behind}, {above, below},
and {contact, non-contact}.

� The rule (4) denotes if the relation between two objects
θ1 and θ2 is known, then the object θ2 and the object
θ2 has the contrasting spatial relation such as left and
right.

� The rule (5) denotes that if the spatial constraints
between the object θ1 and the object θ2 is known, then
the constraints between the object θ2 and the object θ1
cannot be the same.

These logic rules described as spatial constraints such as
“left”, “right”, “above”, “below”, “front”, and “behind” for
the neural-logic learning network. For the spatial constraints
such as “parallel”, “perpendicular”, “concentric”, and “coin-
cident” both the positive rule (2) and the negative rule (3)
are applied. The concatenation of the rules C =

∑n

i
I(λ)

where I(λ) is the instantiation of each rule regarding to ten
different spatial constraints. The optimization for the learning
is to minimize the loss L = argmin

C
(
∑m

j
C), where C is

the concatenation of each logic rule, and m is number of
logic rules. The minimum of the loss L has been optimized
with an adaptive gradient optimizer with a starting learning
rate equal to 1e−3. The weights of the spatial logic network
are randomly initiated with the mean equals to zero, and
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the standard deviation equals to one. There are totally four
layers in spatial logic network block, which the first three
layers have 600 neurons and choose the Tanh function as
activation function. The last layer has eight neurons and the
activation function is the sigmoid function. The spatial logic
block is a parallel structure, which each one translate logic
atom into numerical space. The fuzzy semantic logic conjunct
each atom in the logic sentence to represent the semantic of
each logic sentence.

III. EXPERIMENT

We performed simulation and experiments to evaluate the
proposed method including the accuracy of the spatial con-
straint understanding, and the agreement of the composited
3D models in each category with the ground truth.

A. Accuracy of 3D Composition Model

Some of the sample results of 3D composition based on
RGB-D inputs were shown in Fig. 5. As compared with the
ground truth (CAD model) of each object, the composited 3D
model can represent the 3D shape of objects. By comparing
the third row and the fourth row, the more the shape of objects
the RGB-D scan have covered, the better the 3D composition
of the objects was.

RGB-D Scan 3D Model Composition Ground Truth
piston sealing

nut washer

button-headed screw

flat-headed bolt

Figure 5: Results of the 3D composition model. The first
column is the RGB-D scan of objects, the second column is
the composited 3D model of objects, and the last column is
the ground truth of objects.

We evaluated our 3D fulfilling results by computing the
intersection over union (IoU), the composition error, and
the missing voxel. The IoU was calculated between the
3D fulfilling models that were generated based on RGB-D
scans and the CAD models of objects. IoUs are computed
as IoU = (

∑N

i=0
1e(yi) ∩ ŷi)/(

∑N

i=0
1e(yi) ∪ ŷi) where

yi was the ith voxel in the 3D fulfilling model, and the ŷi
was the ith voxel in the 3D CAD model. was the indicator
function where the ε is the threshold.

Figure 6: The evaluation of the 3D composition model in
terms of IoU, the composition error, and the missing voxel.
The view angle was along the Z-axis.

The composition error (IoU) and the missing voxel were
evaluated in five different view angles along the Z-axis for
each category, and the mean of each category is shown in
the Table 6. There were 125 RGB-D scans acquired from
different angles for each object in each category in the
Blender environment. As shown in the table, an observation
can be found that the “brakes, clutches, and coupling”
category achieved better IoU in the oblique viewing angles
(71◦, 143◦, 297◦, 360◦), because objects in this category are
thin and flat. Therefore, RGB-D scans can only acquire few
data points from an oblique viewing angle. For objects in
the second category (“casters, wheels, handling trolleys”)
achieved less composition error, because the objects in this
category contain hollow structures. RGB-D scans that were
taken from sides were not able to observe the hollow struc-
ture. For objects in the third, and fourth category (“fasteners”
“linear and rotary motion”) achieve better performance with
the 215◦ viewing angle, since objects in these two categories
are solid, and compounds with regular shape. So, the RGB-
D scans can obtain the general shape of objects from 215◦.
In conclusion, the more data points, more complicated shape
of objects that were observed by RGB-D scans can achieve
better IoU, less error composition, and less missing values.

Another experiment has been done to compare the projec-
tion overlapping between the composited point cloud and the
ground truth. The point cloud of 3D composited model and
the ground truth of objects have been projected orthogonally
on X-Y plane, Y-Z plane, and Z-X plane. An example of
results was shown in the Fig. 7, where the blue colored
points are the ground truth, and the green colored points
are the composited 3D model. The projection overlapping
on each plane are shown in Table I. In Table I, objects
in the second category (casters, wheels, handling trolleys)
that contain hollow structures achieved better performance
in X-Y direction. In contrast to that, objects in the third
category (fasteners), and objects in the fourth category (linear
and rotary motion), that are solid, and compounds with
regular shapes achieved better performance in Y-Z and Z-
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Figure 7: The orthogonal projection example.

Table I: Projection overlap between the 3D composited model
and ground truth on different planes. Taxonomy of the
categories were based on the Traceparts.

Category X-Y Y-Z Z-X

Brakes, clutches and couplings 60% 47% 86%
Casters, wheels, handling trolleys 79% 12% 46%
Fasteners 43% 82% 72%
Linear and rotary motion 66% 77% 87%

X directions.
The evaluation results for both experiments were consid-

ered reasonable, since both experiment results were shown
that the more data points were acquired by RGB-D scans,
the more accurate the 3D composition model is. It is same
for human beings, most scenarios that human can not guess
the completed shape of an object by only observing a part
of it.

An comparison results has been done between the pro-
posed method with 3DR2N2 [10], the comparison results
were shown in the Table II. In the experiment, a single scan
of objects has been used as input for both models. In table II,
the proposed 3D shapes composition of objects outperformed
3DR2N2 in IoU. Objects were divided based on the shapes
for 3DR2N2 method. Based on the results of comparison, the
generation of missing points in point clouds by using depth
features were better than generating randomly from latent
distribution.

Table II: Accuracy of the 3D composition (IoU).

Category This Paper 3DR2N2 [10]

Brakes, clutches and couplings 70.48% 64.2%
Casters, wheels, handling trolleys 68.39% 59.3%
Fasteners 67.12% 53.3%
Linear and rotary motion 76.46% 73.85%

B. Evaluation of the Spatial Constraints Understanding

There were ten spatial constraints evaluated in this exper-
iment, which were “left”, “right”, “above”, “below”, “front”,

“behind”, “parallel”, “perpendicular”, “concentric”, and “co-
incident”. We randomly selected 500 pairs of objects from the
pre-formed dataset to evaluate the model, and the prediction
accuracy of the proposed method is provided in Table III.

Some sample results of understanding spatial constraints
are shown in Fig. 8. The inputs of the model were RGB-
D scans of objects in different categories. We randomly
selected CAD models of objects [14] to form pairs to
train the proposed method. There were 535,760 pairs of
objects that hold each of those ten spatial constraints are
generated. Objects were randomly selected from the pre-
formed dataset to formulate spatial constraints such as “left”,
“right”, “above”, “below”, “front”, and “behind” objects,
and the angle differences between two objects’ center points
were less than 15◦. The cylindrical objects such as tubes,
screws, and nuts were selected to formulate the “concentric”
relations. Objects with large flat surfaces were selected for
formulating the “parallel”, “perpendicular”, and “coincident”
relations.

Table III: Comparison study for the prediction accuracy of
the spatial constraint

This Paper RANSEM [15] CPN [16]

Left 99.7% 86.8% 79%
Right 99.5% 88.9% 79%
Above 99.6% - 82%
Below 99.4% - 79%
Front 99.5% - -
Behind 99.5% - -
Coincident 99.3% - -
Parallel 99.7% - -
Perpendicular 99.4% - -
Concentric 99.1% - -

The comparison of the prediction accuracy and the spatial
constraints among the proposed method, RANSEM [15], and
CPN [16] is shown in Table III. The proposed method’s pre-
diction accuracy outperformed previously approaches [16],
[17]. Our method is more comprehensive because all spatial
constraints used in the CAD software for assembly are con-
sidered. One limitation for the proposed method is that our
method is suitable to comprehend precise spatial constraints.
Some blurred spatial constraints such as “near” and “far”
cannot be learned because these blurred spatial constraints
are subjective and not able to define in logic constraints
exhaustively.

The pioneered CPN [16] utilized k-nearest neighbors
method to classify features that were extracted from the
projected point clouds. That method can recognize four
spatial constraints, and they chose 128 images of working
space and split 95 of them as training images and 33 of
them as testing images. Instead of extracting features from the
projected point cloud, this paper directly extracted features
from point clouds, which were considered containing rich
information.

The RANSEM [15] extracted relevant spatial features
face-centric geometric descriptors (FGDs) to classify spatial
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Right
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Concentric Coicident

ParallelPerpendicular
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Figure 8: Experiment results of spatial constraints under-
standing of object: flat-head bolt, piston sealing, nut washer,
rebar, gear, and supporting block.

constraints that are held between objects. The proposed paper
using spatial symbolic knowledge, which was described by
logic rules to enhance the network training. In contrast to
the synthetic bounding volume of objects, the 3D shape of
objects were composited by the proposed extended 3D GAN
model. The composited 3D shape of objects has higher res-
olution and contains more features than synthetic bounding
volumes, especially for complex objects.

IV. CONCLUSION

This paper has presented a method that takes a single RGB-
D scan of the objects and learn the spatial constraints of
objects. The proposed approach can recognize ten different
spatial constraints, which are left, right, above, below, front,

behind, parallel, perpendicular, concentric, and coincident
relations. The overall accuracy spatial constraint understand-
ing is 99%, demonstrating state-of-the-art performance. The
intersection over union (IoU) has achieved 57.23% overall
for objects in four different categories.

REFERENCES

[1] H. He, Z. Shao, and J. Tan, “Recognition of car makes and models
from a single traffic-camera image,” IEEE Transactions on Intelligent
Transportation Systems, vol. 16, no. 6, pp. 3182–3192, 2015.

[2] H. He, Y. Li, Y. Guan, and J. Tan, “Wearable ego-motion tracking
for blind navigation in indoor environments,” IEEE Transactions on
Automation Science and Engineering, vol. 12, no. 4, pp. 1181–1190,
2015.

[3] V. V. Unhelkar, P. A. Lasota, Q. Tyroller, R.-D. Buhai, L. Marceau,
B. Deml, and J. A. Shah, “Human-aware robotic assistant for collab-
orative assembly: Integrating human motion prediction with planning
in time,” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp.
2394–2401, 2018.

[4] C. Paxton, A. Hundt, F. Jonathan, K. Guerin, and G. D. Hager, “Costar:
Instructing collaborative robots with behavior trees and vision,” in 2017
IEEE International Conference on Robotics and Automation (ICRA),
2017, pp. 564–571.

[5] V. V. Unhelkar, S. Dörr, A. Bubeck, P. A. Lasota, J. Perez, H. C. Siu,
J. C. Boerkoel, Q. Tyroller, J. Bix, S. Bartscher et al., “Mobile robots
for moving-floor assembly lines: Design, evaluation, and deployment,”
IEEE Robotics & automation magazine, vol. 25, no. 2, pp. 72–81,
2018.

[6] O. Mees, N. Abdo, M. Mazuran, and W. Burgard, “Metric learning
for generalizing spatial relations to new objects,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2017, pp. 3175–3182.

[7] H. Li, J. Tan, and H. He, “Magichand: Context-aware dexterous
grasping using an anthropomorphic robotic hand,” in 2020 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2020, pp. 9895–9901.

[8] F. Yan, D. Wang, and H. He, “Robotic understanding of spatial rela-
tionships using neural-logic learning,” in 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2020,
pp. 8358–8365.

[9] B. Yang, S. Rosa, A. Markham, N. Trigoni, and H. Wen, “Dense 3d
object reconstruction from a single depth view,” IEEE transactions on
pattern analysis and machine intelligence, vol. 41, no. 12, pp. 2820–
2834, 2018.

[10] C. B. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese, “3d-r2n2: A
unified approach for single and multi-view 3d object reconstruction,”
in European conference on computer vision. Springer, 2016, pp. 628–
644.

[11] P. J. Besl and N. D. McKay, “Method for registration of 3-d shapes,”
in Sensor fusion IV: control paradigms and data structures, vol. 1611.
International Society for Optics and Photonics, 1992, pp. 586–606.

[12] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford,
X. Chen, and X. Chen, “Improved techniques for training gans,” in
Advances in Neural Information Processing Systems, vol. 29, 2016.

[13] L. Serafini and A. S. d. Garcez, “Learning and reasoning with logic
tensor networks,” in Conference of the Italian Association for Artificial
Intelligence. Springer, 2016, pp. 334–348.

[14] S. Koch, A. Matveev, Z. Jiang, F. Williams, A. Artemov, E. Burnaev,
M. Alexa, D. Zorin, and D. Panozzo, “Abc: A big cad model dataset
for geometric deep learning,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2019, pp. 9601–9611.

[15] J. Li, D. Meger, and G. Dudek, “Learning to generalize 3d spatial
relationships,” in 2016 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2016, pp. 5744–5749.

[16] B. Rosman and S. Ramamoorthy, “Learning spatial relationships
between objects,” The International Journal of Robotics Research,
vol. 30, no. 11, pp. 1328–1342, 2011.

[17] S. Fichtl, A. McManus, W. Mustafa, D. Kraft, N. Krüger, and F. Guerin,
“Learning spatial relationships from 3d vision using histograms,” in
2014 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2014, pp. 501–508.

9013

Authorized licensed use limited to: WICHITA STATE UNIVERSITY LIBRARIES. Downloaded on December 23,2022 at 18:35:30 UTC from IEEE Xplore.  Restrictions apply. 


