Current Biology

Rational engineering of a synthetic insect-bacterial mutualism -- Manuscript Draft--

Manuscript Number:	CURRENT-BIOLOGY-D-22-00695R2
Full Title:	Rational engineering of a synthetic insect-bacterial mutualism
Article Type:	Research Article
Corresponding Author:	Colin Dale University of Utah Salt Lake City, UT UNITED STATES
First Author:	Yinghua Su
Order of Authors:	Yinghua Su
	Ho-Chen Lin
	Li Szhen Teh
	Fabienne Chevance
	lan James
	Clara Mayfield
	Kent G Golic
	James Gagnon
	Ofer Rog
	Colin Dale
Abstract:	Many insects maintain mutualistic associations with bacterial endosymbionts, but little is known about how they originate in nature. In this study, we describe the establishment and manipulation of a synthetic insect-bacterial symbiosis in a weevil host. Following egg injection, the nascent symbiont colonized many tissues, including prototypical somatic and germinal bacteriomes, yielding maternal transmission over many generations. We then engineered the nascent symbiont to overproduce the aromatic amino acids, tyrosine and phenylalanine, that facilitate weevil cuticle strengthening and accelerated larval development, replicating the function of mutualistic symbionts that are widely distributed among weevils and other beetles in nature. Our work provides empirical support for the notion that mutualistic symbioses can be initiated in insects by the acquisition of environmental bacteria. It also shows that certain bacterial genera, including the Sodalis spp. used in our study, are predisposed to developing these associations due to an ability to maintain benign infections and undergo vertical transmission in diverse insect hosts, facilitating the partner fidelity feedback that is critical for the evolution of obligate mutualism. These experimental advances provide a new platform for laboratory studies focusing on the molecular mechanisms and evolutionary processes underlying insect-bacterial symbiosis.
Additional Information:	
Question	Response
Standardized datasets A list of datatypes considered standardized under Cell Press policy is available here . Does this manuscript report new standardized datasets?	Yes
Reviewers must have anonymous access to these standardized datasets that is	Raw Illumina sequence data is deposited in the NCBI sequence read archive (SRA) under accession SAMN26947704, SAMN26947705 and SAMN26947706 for the MC1,

free-of-cost. Please provide dataset ΔpheA-tyrA and ΔtyrR strains, respectively. locations and instructions for access here. If applicable, include accession numbers and reviewer tokens. Please consult these Author's guides for more information: Standardized datatypes, datatype-specific repositories, and general-purpose repositories recommended by Cell Press" and "How standardized datasets and original code accompany Cell Press manuscripts from submission through publication" or email us at current-biology@cell.com. as follow-up to "Standardized datasets A list of datatypes considered standardized under Cell Press policy is available here. Does this manuscript report new standardized datasets? **Original Code** No Does this manuscript report original code?

Dear Christine,

In accordance with our correspondence, here is our revised submission whose main text was condensed to 5000 words via careful editing, without compromising content!

The original cover letter follows:

Please consider our paper "Rational engineering of a synthetic insect-bacterial mutualism" for publication as an article in *Current Biology*. It was originally submitted to Cell and editor Dr. Scott Behie recommended transfer to Current Biology following consultation with Dr. Christine Cosma, who is already familiar with this work. It details the establishment and characterization of a synthetic insect-bacterial symbiosis involving a grain weevil host (*Sitophilus zeamais*) and *Sodalis praecaptivus*, a free-living relative and putative progenitor of the *Sodalis*-allied symbionts that are found in a diverse range of insect hosts where they often perform mutualistic (nutritional) functions.

To our knowledge this is the first description of a synthetic, laboratory engineered, insect-bacterial symbiosis, sustained over many insect generations by maternal (transovarial) transmission. It represents a major technical breakthrough that will facilitate molecular studies of symbiotic processes, advances in paratransgenic insect control and establish a platform for long term study of adaptation and genome degeneration in symbiosis, akin to Richard Lenski's LTEE. Our work exploits the utility of the system in several important ways, providing answers

to key questions relating to the origin and establishment of these associations and the subsequent evolution of mutualistic functions. The origins of mutualistic symbiosis have long been debated by evolutionary biologists highlighting a causality dilemma, framed by the basic Darwinian notion that free-living organisms operate selfishly and should not surrender their resources or reproductive fate to another organism. Our work addresses this important question by obtaining an understanding of the factors that enable a bacterium to become intimately associated with an insect host and then adapt metabolic processes to facilitate nutrient provisioning.

Importantly, our work provides an empirical validation of the longstanding theory/notion that insect-bacterial symbioses arise as a function of infection by free-living bacteria. It shows that a free-living relative of the widespread *Sodalis*-allied insect symbionts has an intrinsic ability to maintain benign infection in an insect host and propagate in concert with insect developmental processes to achieve transovarial transmission. This leads to the rationalization that transovarially-transmitted symbioses (including many mutualisms) can only arise from bacterial partners that have these special capabilities, which likely arise as a consequence of vectorial relationships. This fits with the observation that certain bacterial genera, including *Sodalis*, are highly represented among mutualistic associates of insects, in spite of the fact that they often have distinct nutritional functions. Their ability to establish transovarially transmitted associations provides a critical foundation for mutualistic functions to evolve under the control of partner-fidelity feedback. In addition, our work also shows that a new symbiont can establish and co-exist along with a long-established native symbiont in grain weevils, exploiting adaptations that exist to facilitate bacterial maintenance. This challenges several observations

published in a paper focusing on the weevil symbiosis in Science in 2011

(https://www.science.org/doi/10.1126/science.1209728), further highlighting the value of this experimental approach in delineating interactions *in vivo*. Moreover, it validates longstanding notions that symbiosis has an autocatalytic quality, explaining observations of symbiont augmentation and replacement events in nature that are known to lead to integrative functionality (e.g. Bublitz et al., 2019, Cell 179, 703–712).

Further, we explore the nature of adaptation to mutualism by engineering the *Sodalis* protosymbiont to modulate its aromatic amino acid (AAA) biosynthetic capabilities. Symbiont AAA provisioning has recently been shown to fuel insect cuticular sclerotization; enhancing strength, desiccation tolerance and resistance to predation and pathogen attack. Its widespread occurrence in two of the most specious and diverse groups of insects on our planet (beetles and ants) indicates that it has played a key role in their extraordinary niche expansion. To date, investigations focusing on this trait have relied on comparative genomic inferences, symbiont elimination and treatment with drugs (e.g. glyphosate) that block the microbial shikimate pathway. Our work, for the first time, employs the "gold standard" of microbial genetics to validate the functionality of this trait in symbiosis, further highlighting the power of this experimental system. It shows that nutrient overproduction can arise from single null mutations in the symbiont, leading to enhancement of fitness on the part of the insect host and yielding what we believe to be the first synthetic inter-kingdom mutualism.

We propose the following reviewers for the paper:

Field Code Changed

Abdelaziz Heddi, University of Lyon, France – expertise focusing on grain weevil symbiosis

Joel Sachs, UC Riverside, USA – evolutionary genomics and origins of symbiosis

Martin Kaltenpoth, Max Planck Institute for Chemical Ecology, Jena, Germany – ecology and evolution of symbiosis

Gordon Bennett, UC Merced, USA – evolution, genomics and ecology of insect-bacterial symbioses

Naomi Pierce, Harvard University, USA – ecology and evolution of symbiosis

We request reviewer exclusions for **Elad Chiel** (U Haifa, Israel) and **John McCutcheon** (Arizona State University) due to ongoing collaborations.

Thanks for considering our paper!

Crystal Su, Colin Dale and co-authors

Dear Christine and Maddie,

Here is our revised manuscript. The responses to editorial and reviewer comments are as follows:

From an editorial perspective, the paper is in great shape. My colleague Maddie Wilson and I have gone over the paper and we have some items for your attention.

PRODUCTION POINTS

- Please download a copy of our Inclusion and Diversity form, fill it out electronically, and upload the completed form as a submission item along with your final submission. For more information, please see our Author Guidelines and FAQ page. This form will not be included in the combined PDF, but it will come through to us with your submission.
- If you have chosen to publish an Inclusion and Diversity statement, we also ask that any statements selected on the form be included in the manuscript in a section titled "Inclusion and Diversity" following the Declaration of interests section. For more information, please see our <u>Author Guidelines</u> and <u>FAQ page</u>.

Response:

The Inclusion and Diversity statement has been added into the manuscript

- in your supplemental data PDF, please move each item legend to below it's related item.

Response:

Done

- Please make the page with Table S1 landscape.

Response:

Done.

- If possible, please align all panel letters to the top left of their sub-panels in all figures.

Response:

Done

- There are some unformatted characters on line 1346.

Response:

This was an MS word version incompatibility that only appears on certain word versions. As far as we can tell, it is fixed.

The text should be:

72. Flórez, L.V., Scherlach, K., Gaube, P., Ross, C., Sitte, E., Hermes, C., Rodrigues, A., Hertweck, C., and Kaltenpoth, M. (2017). Antibiotic-producing symbionts dynamically transition between plant pathogenicity and insect-defensive mutualism. Nat. Commun. *8*, 1-9.

STAR METHODS POINTS

- Please review the Data Availability instructions in the STAR Methods guidelines. There are three required statements in this section.

Response: Added

- misformatted reference on line 686, 857; please check the manuscript thoroughly

Response: Corrected

-Section on bacterial strains: how were these cultured/maintained?

Response: Modified to:

"This study involved the use of *Sodalis praecaptivus* strain HS, which is a close relative of insect-associated *Sodalis* spp. symbionts that was isolated from an infected human^{24,34}, and has been previously deposited in the American Type Culture Collection (ATCC) as product BAA-2554. For all experiments outlined in the study, it was cultured in LB liquid media and plated on LB agar with appropriate antibiotics as outlined in method details, presented below, at 30 °C, under atmospheric air. Strains were preserved at -80 °C in LB media with 15% (w/v) glycerol."

- lines 713, 756, etc. These sections should not be numbered. It's fine to have this level of subheading--just remove the numbers please. Please revise throughout the STAR Methods to remove the numbers from the subheadings

Response:

Corrected as suggested. We also did this for the section on microinjection in STAR method (which you may have missed and had the same problem)

-Similarly, please revise the QUANTIFICATION AND STATISTICAL ANALYSIS section to remove numbered lists.

KEY RESOURCES TABLE

-When there are more than 10 oligos, we request that they instead be reported in a separate supplemental table. This can be labeled as Table S2 and be included in the supplemental information PDF. In the KRT, then please just write "See Table S2, Oligonucleotides used in this study" (or some such language).

Response:

Corrected as suggested

- for *Sitophilus zeamais*, is there a link that you can include in case someone would like to obtain them or get more information?

Response:

Added the link to KRT:

"https://www.ars.usda.gov/plains-area/mhk/cgahr/"

Responses to review comments:

Reviewer #1: The authors have made a major revision of the manuscript based on the comments of reviewers including mine. I am happy with the revision and would like to recommend the acceptance of the article for publication in Current Biology.

Reviewer #2:

While going through the manuscript (thanks for the line numbers!), I noted a few minor issues in intro and discussion that the authors may want to consider: I. 34: "beetles and weevils": weevils are beetles...

Response:

Changed to "weevils and other beetles"

I. 52: introducing the weevil here seems a bit odd and too early, especially if you place it as the only example here

Response:

Changed to reduce this emphasis:

"Acquisition of nutritional symbionts allows many insects (including the grain weevils, *Sitophilus* spp., highlighted in this study) to persist on diets that are nutritionally imbalanced or incomplete and has facilitated substantial niche expansion in insects, contributing greatly to the ecological success¹². "

I. 54-55: in my view, there are substantial issues with the paper that the authors cite here. I strongly suggest toning down the claim. It is well-supported that symbioses allows insects to invade novel ecological niches, but the effect on radiations, while very plausible, remains poorly substantiated by actual data. If you want, you can keep the "ecological success", since this is fuzzier and certainly supported by the tremendous body of literature on insect symbioses. (same in I. 363)

Response:

Changed as shown in the previous response and in line 363:

"Insects have served as important models for study because symbiosis has made an exceptional contribution to their ecological success⁵⁰."

I. 56: Sorry, I just noticed this now, and not in the original version: As stated, this is not correct. There are definitely insect endosymbionts that derive from already host-associated bacteria, e.g. plant or insect pathogens (the latter of which, depending on the definition, you may or may not be including in the term endosymbiont. Regardless of this, there are other routes to insect endosymbiosis than from environmental bacteria). Please specify or narrow down.

Response:

Changed as follows:

"Insect endosymbionts are often derived from environmental progenitors with large gene inventories and capability to synthesize myriad nutrients (e.g. essential amino acids and vitamins) that many eukaryotes cannot synthesize de $novo^{13-15}$."

I. 81: Given that they are usually considered absent (but I agree with reviewer 3 to be careful here), I suggest to say "Further, these bacteriomes are absent or markedly reduced in size..."

Response:

Corrected as suggested.

I. 440/1: Please streamline to say "Together, this provides a genetic validation of ..."

Response:

Corrected as suggested.

I. 443: ref 58 does not seem to fit (is not on beetles at all), and refs 62 and 63 do not provide results that support such a broad claim. Please tone down, as the impact of tyr-provisioning symbioses on beetle and ants radiations remains speculative.

Response:

ref 58 was removed. Statement toned down as follows:

"Together, this provides a genetic validation of the role of symbionts in Tyr/Phe production and cuticular sclerotization, which is thought to have played an important role in the radiation of beetles⁶² and ants⁶³ by enhancing strength, desiccation tolerance and predator/pathogen resistance^{64,65}."

Reviewer #3:

The manuscript has been appropriately revised, except for the following minor issues.

L. 318: broader

Response:

Corrected.

L. 443: ref. 58 probably does not apply here.

Response:

Ref 58 is removed.

CELL PRESS DECLARATION OF INTERESTS POLICY

Transparency is essential for a reader's trust in the scientific process and for the credibility of published articles. At Cell Press, we feel that disclosure of competing interests is a critical aspect of transparency. Therefore, we require a "declaration of interests" section in which all authors disclose any financial or other interests related to the submitted work that (1) could affect or have the perception of affecting the author's objectivity or (2) could influence or have the perception of influencing the content of the article.

What types of articles does this apply to?

We require that you disclose competing interests for all submitted content by completing and submitting the "declaration of interests" form below. We also require that you include a "declaration of interests" section in the text of all articles even if there are no interests to declare. Some article types may be exempt; please consult your paper's handling editor with any questions.

What should I disclose?

We require that you and all authors disclose any personal financial interests (examples include stocks or shares in companies with interests related to the submitted work or consulting fees from companies that could have interests related to the work), professional affiliations, advisory positions, board memberships (including membership on a journal's advisory board when publishing in that journal), or patent holdings that are related to the subject matter of the contribution. As a guideline, you need to declare an interest for (1) any affiliation associated with a payment or financial benefit exceeding \$10,000 p.a. or 5% ownership of a company or (2) research funding by a company with related interests. You do not need to disclose diversified mutual funds, 401ks, or investment trusts.

Authors should also disclose relevant financial interests of immediate family members. Cell Press uses the Public Health Service definition of "immediate family member," which includes spouse and dependent children.

Where do I declare competing interests?

Competing interests should be disclosed on the "declaration of interests" form as well as in a "declaration of interests" section of the manuscript. This section should include financial or other competing interests as well as affiliations that are not included in the author list. Examples of "declaration of interests" language include:

"AUTHOR is an employee and shareholder of COMPANY."

"AUTHOR is a founder of COMPANY and a member of its scientific advisory board."

NOTE: Primary affiliations should be included on the title page of the manuscript with the author list and do not need to be included in the "declaration of interests" section. Funding sources should be included in the "acknowledgments" section and also do not need to be included in the "declaration of interests" section. (A small number of front-matter article types do not include an "acknowledgments" section. For these articles, reporting of funding sources is not required.)

What if there are no competing interests to declare?

If you have no competing interests to declare, please note that in the "declaration of interests" section with the following wording:

"The authors declare no competing interests."

CELL PRESS DECLARATION OF INTERESTS FORM

If submitting materials via Editorial Manager, please complete this form and upload with your final submission. Otherwise, please email as an attachment to the editor handling your manuscript.

Please complete each section of the form and insert any necessary "declaration of interests" statement in the text box at the end of the form. A matching statement should be included in a "declaration of interests" section in the manuscript.

Institutional affiliations

We require that you list the current institutional affiliations of all authors, including academic, corporate, and industrial, on the title page of the manuscript. *Please select one of the following:*

\odot	All affiliations are listed on the title page of the manuscript.
\bigcirc	I or other authors have additional affiliations that we have noted in the "declaration of
	interests" section of the manuscript and on this form below.

Funding sources

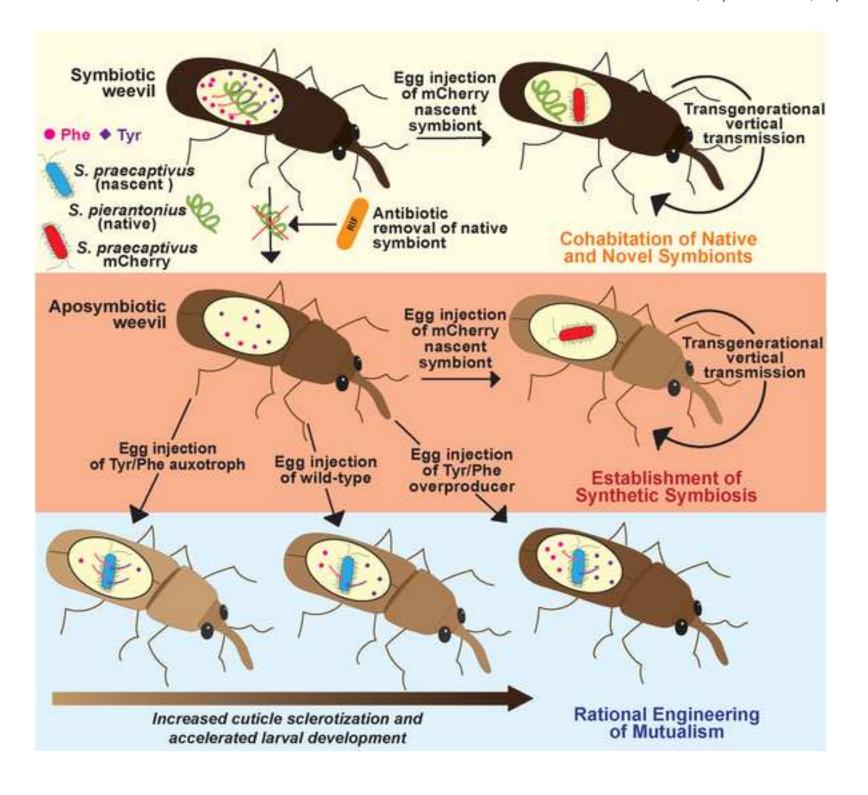
We require that you disclose all funding sources for the research described in this work. *Please confirm the following:*

All funding sources for this study are listed in the "acknowledgments" section of the manuscript.*

*A small number of front-matter article types do not include an "acknowledgments" section. For these, reporting funding sources is not required.

Competing financial interests

We require that authors disclose any financial interests and any such interests of immediate family members, including financial holdings, professional affiliations, advisory positions, board memberships, receipt of consulting fees, etc., that:


- (1) could affect or have the perception of affecting the author's objectivity, or
- (2) could influence or have the perception of influencing the content of the article.

Please select one of the following:

We, the authors and our immediate family members, have no financial interests to declare.
 We, the authors, have noted any financial interests in the "declaration of interests" section of the manuscript and on this form below, and we have noted interests of our immediate family members.

Advisory/management and consulting positions We require that authors disclose any position, be it a member of a board or advisory committee or a paid consultant, that they have been involved with that is related to this study. We also require that members of our journal advisory boards disclose their position when publishing in that journal. Please select one of the following:

O	We, the authors and our immediate family members, have no positions to declare and are not members of the journal's advisory board. The authors and/or their immediate family members have management/advisory or consulting relationships noted in the "declaration of interests" section of the manuscript and on this form below.	
<u>Patents</u> We require that you disclose any patents related to this work by any of the authors or their institutions. Please select one of the following:		
O	We, the authors and our immediate family members, have no related patents to declare. We, the authors, have a patent related to this work, which is noted in the "declaration of interests" section of the manuscript and on this form below, and we have noted the patents of immediate family members.	
Please insert any "declaration of interests" statements in this space. This exact text should also be included in the "declaration of interests" section of the manuscript. If no authors have a competing interest, please insert the text, "The authors declare no competing interests."		
The a	uthors declare no competing interests	
On behalf of all authors, I declare that I have disclosed all competing interests related to this work. If any exist, they have been included in the "declaration of interests" section of the manuscript.		
Name:	Colin Dale	
Manus	crint	
numbe (if avail	r	

1	Rational engineering of a synthetic insect-bacterial mutualism
2	
3	Yinghua Su*, Ho-Chen Lin, Li Szhen Teh, Fabienne Chevance, Ian James, Clara
4	Mayfield, Kent G. Golic, James A. Gagnon, Ofer Rog, Colin Dale ^{1*}
5	
6	School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112,
7	United States of America.
8	
9	¹ Lead contact
10	
11	*Correspondence: crystal.su@utah.edu (Y. Su), colin.dale@utah.edu (C. Dale)
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	

SUMMARY

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

Many insects maintain mutualistic associations with bacterial endosymbionts, but little is known about how they originate in nature. In this study, we describe the establishment and manipulation of a synthetic insect-bacterial symbiosis in a weevil host. Following egg injection, the nascent symbiont colonized many tissues, including prototypical somatic and germinal bacteriomes, yielding maternal transmission over many generations. We then engineered the nascent symbiont to overproduce the aromatic amino acids, tyrosine and phenylalanine, that facilitate weevil cuticle strengthening and accelerated larval development, replicating the function of mutualistic symbionts that are widely distributed among weevils and other beetles in nature. Our work provides empirical support for the notion that mutualistic symbioses can be initiated in insects by the acquisition of environmental bacteria. It also shows that certain bacterial genera, including the Sodalis spp. used in our study, are predisposed to developing these associations due to an ability to maintain benign infections and undergo vertical transmission in diverse insect hosts, facilitating the partner fidelity feedback that is critical for the evolution of obligate mutualism. These experimental advances provide a new platform for laboratory studies focusing on the molecular mechanisms and evolutionary processes underlying insect-bacterial symbiosis.

2

INTRODUCTION

Insects are one of the most successful and diverse groups of animals with 10% of species estimated to harbor obligate mutualistic bacterial endosymbionts^{1,2}. Endosymbionts enhance insect fitness by providing essential nutritional supplements^{3,4} or protection against enemies⁵⁻⁸, stress⁹ or toxins^{10,11}. Acquisition of nutritional symbionts allows many insects (including the grain weevils, *Sitophilus* spp., highlighted in this study) to persist on diets that are nutritionally imbalanced or incomplete and has facilitated substantial niche expansion in insects, contributing greatly to the ecological success¹².

Insect endosymbionts are often derived from environmental progenitors with large gene inventories and capability to synthesize myriad nutrients (e.g. essential amino acids and vitamins) that many eukaryotes cannot synthesize *de novo*¹³⁻¹⁵. Following establishment of mutualistic associations, endosymbionts undergo a degenerative mode of evolution, facilitating (i) loss of metabolic functions shared with the insect host and (ii) retention and potentiation of functions beneficial to the fitness of the association, including nutrient-provisioning pathways. These changes lead to establishment of associations in which partners are obligately co-dependent and metabolically integrated 15-17. Consequently, hosts often cannot be reared without their symbiotic partners, which often cannot be cultivated outside their hosts (e.g. in laboratory media), constraining experimentation. One essential and defining aspect that remains poorly understood is the transition to stable vertical symbiont transmission, requiring establishment of infection in reproductive tissues and developing

oocytes. Interestingly, certain bacteria (e.g. *Sodalis* spp., *Arsenophonus* spp., *Spiroplasma* spp.) are predisposed to developing relationships with insects^{15,18,19}, suggesting maintenance of specialized properties that facilitate this outcome.

Grain weevils provide an excellent model to study establishment of symbiosis because it is possible to remove their native bacterial symbiont (*Sodalis pierantonius*) through antibiotic treatment and maintain resulting aposymbiotic (symbiont-free) weevils in the laboratory²⁰. Previous studies have shown that *S. pierantonius* supplements its host with vitamins and amino acids²¹. Notably, it secretes tyrosine and phenylalanine during larval and early adult stages to facilitate cuticle strengthening²⁰. In addition, it triggers development of bacteriomes, housing symbionts and protecting them from insect innate immunity^{22,23}. Further, these bacteriomes are absent or markedly reduced in size in aposymbiotic insects, indicating that symbiotic interactions influence host developmental processes²⁰.

Interestingly, the symbiosis involving weevils and *S. pierantonius* is recent in origin^{15,24,25}. In addition, a diverse range of insects harbor *Sodalis*-allied symbionts that perform distinct nutritional functions (e.g. mealybugs²⁶, tsetse flies²⁷, seal lice²⁸, louse flies²⁹, stinkbugs³⁰, lygaeoid bug³¹, psyllids³²). This suggests that free-living *Sodalis* spp. have repeatedly and independently colonized insects inhabiting a wide range of niches³³, catalyzing novel mutualistic relationships with diverse functions. Several studies have exploited the use of a close free-living relative of the *Sodalis*-allied symbionts, named *S. praecaptivus*²⁴. This bacterium has a relatively large genome with a high coding

density and few pseudogenes, consistent with the notion that it evolves under strong stabilizing selection in a free-living/opportunistic lifestyle. Comparative studies indicate that related insect symbionts have gene inventories that are subsets of S. praecaptivus. They are substantially reduced in coding content, indicating that they have evolved degeneratively, under a relaxed selection pressure facilitating loss of gene functions that lack adaptive value in symbiosis. Because S. praecaptivus is amenable to culture³⁴ and genetic manipulation³⁵ and yields stable and benign infections in insect hosts that naturally harbor Sodalis-allied symbionts^{36,37}, it has proved useful in studying the mechanistic interactions underpinning symbiosis. These studies are performed by microinjecting adult insects with mutant strains of S. praecaptivus and examining their effects. However, in the case of grain weevils, which are oviparous and therefore require bacterial infection of oocytes in female ovaries to facilitate vertical transmission, S. praecaptivus is not observed to be maternally transmitted following adult microinjection³⁶. Tsetse flies, which are viviparous and nourish developing larvae via milk gland secretions during pregnancy³⁸, undergo a low frequency of vertical transmission of S. praecaptivus following adult microinjection³⁷, but it is insufficient to facilitate experimentation.

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

One explanation for the inability of *S. praecaptivus* to achieve vertical transmission in grain weevils following adult microinjection is that bacteria may need to establish infection in germline stem cells. This makes sense considering our understanding of the natural association between grain weevils and *S. pierantonius*, in which adult weevils maintain two populations of symbiotic

bacteria²⁰: "germinal" (facilitating maternal transmission) and "somatic" (facilitating nutrient production).

In this study, we describe a protocol for microinjection of *S. praecaptivus* into eggs of the grain weevil *Sitophilus zeamais*, resulting in sustained vertical transmission over multiple insect generations, providing a means for partner-fidelity feedback to facilitate evolution of mutualistic functions. We use this new experimental platform to introduce mutant strains of *S. praecaptivus* with modified tyrosine and phenylalanine biosynthetic capabilities. Notably, these strains significantly impact weevil cuticle sclerotization and larval development time, providing a clear genetic validation of the role of aromatic amino acid production in this symbiosis. This work demonstrates that a *S. praecaptivus* mutant with a single *tyrR* gene knockout can overproduce tyrosine and phenylalanine to impact host cuticle sclerotization and reduce larval development time, signifying that the relationship is mutualistic.

RESULTS

Egg injection establishes a synthetic, insect-bacterial symbiosis

We developed a procedure for microinjection of *S. praecaptivus* into grain weevil eggs to test the hypothesis that egg infection leads to vertical transmission of bacteria. This procedure uses a modified *Drosophila* egg microinjection protocol, followed by transplantation of larvae into grain, facilitating development to adulthood. The procedural efficiency was monitored for a batch of injections

performed on 96 aposymbiotic weevil eggs. Herein, 40% (38/96) of eggs incurred lethal damage during isolation and preparation for injection. Out of the remaining 58, 50% (29/58) survived and yielded larvae. Following transplantation into maize, 21% (6/29) of larvae completed development and emerged as adults. All six demonstrated mCherry fluorescence, indicative of *S. praecaptivus* MC1 infection. First instar larvae maintained 3.74×10^4 bacterial CFU / larva (Mean; SD = 2.88×10^4), increasing to 7.95×10^6 CFU / weevil (Mean; SD = 2.19×10^6) in newly emerged adults.

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

Following injection, weevils were monitored using fluorescence microscopy to track bacteria. Uninjected weevils demonstrated no mCherry fluorescence in egg, larval or adult stages (Figure S1A-D). Following injection into the egg posterior pole (Figure 1A), bacteria proliferated at the injection site (Figure 1B) and then migrated through the embryo, achieving dense infection in the developing gut (Figure 1C) and resulting first instar larvae (Figure 1E). Following metamorphosis, adults demonstrated widespread mCherry fluorescence (Figure 1F), consistent with the presence of S. praecaptivus MC1 in hemolymph (Figure S2A), and other tissues. Adult ovaries harbored S. praecaptivus MC1 in several regions (Figure 11) including the tropharium apex where the native symbionts of grain weevils are localized²⁰.

To further explore the utility of this technique, we injected a mCherry-expressing *S. praecaptivus* strain lacking *ypel*, encoding an N-acyl homoserine lactone synthase involved in quorum sensing. This strain kills weevils following microinjection into adults because quorum sensing represses expression of

virulence factors, including insecticidal toxins³⁶. Following egg injection, this strain proliferated rapidly in eggs, revealing dense infection after four days (**Figure 1D**). Out of 55 eggs injected with this strain, only one (uninfected) larva emerged, indicating that the $\Delta ypel$ strain efficiently kills eggs. This illustrates the utility of the egg microinjection procedure in exploring molecular mechanisms of symbiosis throughout the entire developmental cycle of the host.

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

162

163

164

165

166

167

Egg injection yields sustained vertical transmission of S. praecaptivus

To determine if S. praecaptivus MC1 undergoes vertical transmission following egg injection, we tracked ten generations of weevils derived from a single isofemale and isomale aposymbiotic weevil pairing that were successfully infected by egg microinjection. From this line, ten randomly selected F₁ offspring were found to be infected with S. praecaptivus MC1, having an average of 2.5 × 10^6 CFU / weevil (SD = 2.09×10^6). Fluorescence microscopy revealed S. praecaptivus MC1 in those F₁ eggs and larvae, confirming that bacteria had been acquired vertically (Figure 1G-H). In the F₂ generation, the adult infection frequency declined to 50% (n = 20), with an average number of 1.39×10^6 CFU / weevil (SD = 1.04×10^6), excluding two samples that were considered outliers having very low densities of bacteria. Based on the decline in the F₂ generation, we elected to maintain only weevils showing mCherry fluorescence to serve as parents for the F₃ generation. This selection was repeated at generational intervals throughout the experiment to ensure that sufficient number of weevils maintained S. praecaptivus MC1. The rate of vertical transmission and infection density remained relatively constant in subsequent generations (**Figure 2A**). The high level of transmission from P_0 - F_1 stage is likely explained by high numbers of bacterial cells in eggs following injection, yielding a high level of infection in female ovaries, consistent with the observation that bacterial infection densities in adult weevils were higher in P_0 individuals and settled to a lower consistent level in subsequent generations. Nine additional *S. praecaptivus* MC1-injected aposymbiotic isofemale lines were established to assess repeatability of the procedure. While all yielded *S. praecaptivus* MC1-infected offspring, the transmission rate varied from 20% to 100%, with a median of 95% and mean of 78% (**Figure 2B**) and an aggregate average of 1.21 × 10 6 CFU / weevil (SD = 1.83 × 10 6). Differences may arise due to variation in the age of the eggs (0-24 h), a factor known to affect *Drosophila* egg microinjection as well³⁹. Alternatively, variation in the bacterial inoculum or the precise site of the injection may affect the success of the procedure.

While the majority of our experiments were performed on aposymbiotic weevils, we were also interested to determine how symbiotic weevils, harboring their native symbiont ($Sodalis\ pierantonius$), responded to introduction of S. $praecaptivus\ MC1$ into their eggs. Notably, the procedure was also successful with symbiotic weevils, yielding P_0 adults with average infection density of $9.95\times 10^6\ CFU\ /$ weevil ($SD=1.25\times 10^7$). However, a substantially lower level of transmission was observed relative to aposymbiotic weevils (Mean = 19%) with only four of nine isofemale lines producing S. $praecaptivus\ MC1$ -infected offspring (with aggregated average of $3.47\times 10^6\ CFU\ /$ weevil; $SD=3.91\times 10^6$;

Figure 2B). This indicates that *S. praecaptivus* and *S. pierantonius* can coexist and be transmitted simultaneously but that *S. praecaptivus* transmission is constrained by the presence of the native symbiont, which is transmitted with ~100% efficiency in our laboratory population.

Throughout our experiments, in order to identify weevils infected with *S. praecaptivus* MC1, we employed a simple screening method in which live insects were inspected for mCherry fluorescence. However, this detection method could fail to identify weevils that maintain low-density infections. Yet, a low-density infection could be sufficient to lead to transmission of bacteria to offspring, leading to an underestimate of transmission frequency. To evaluate this, 30 offspring from 30 non-fluorescent parents (F₆ derivatives) were checked for *S. praecaptivus* MC1 by homogenization and plating. Notably, none of those weevil homogenates yielded *S. praecaptivus* MC1 colonies, indicating that absence of fluorescence in parents is strongly correlated with the absence of bacteria in offspring.

Dynamics of S. praecaptivus transmission

To determine if transmission/maintenance of *S. praecaptivus* MC1 is biased towards offspring sex, we selected 100 random offspring from generation F_6 of the infected aposymbiotic weevils, checked them for mCherry fluorescence and dissected them to determine sex. No significant difference existed between sexes with 29/40 males and 37/60 females harboring infections, X^2 (1, N = 100) = 1.255, p > 0.05. To determine if *S. praecaptivus* MC1 is associated with

increased development time, 30 mated S. praecaptivus MC1-infected F₆ weevils oviposited for three days and their offspring emergence time and infection status were tracked. Kaplan-Meier analysis revealed no significant difference in development time between infected and uninfected weevils (Figure 2C; p = 0.34). To investigate stability of the S. praecaptivus infection throughout development, 20 1st instar larvae and 20 adult offspring were collected from 30 infected F₇ parents, for bacterial enumeration. Their infection frequencies demonstrated no significant difference between larvae (40%; 8/20) and adults $(45\%; 9/20; X^2 (1, N = 40) = 0.102, p > 0.05)$, indicating robustness over the course of development. To check if transmission of S. praecaptivus MC1 is influenced by female reproductive age, six S. praecaptivus MC1-infected F₆ females in the first 14 days of adulthood were allowed to oviposit for three weeks on fresh maize and adult offspring were collected until no more emerged. Offspring were homogenized and plated to determine infection. We then compared the first seven and last seven offspring from each female, revealing no significant difference in infection frequency (**Figure 2D**; X^2 (1, N = 43) = 8.712, p> 0.05.). Finally, we performed a crossbreeding experiment using unmated F₆ weevils to determine sexual dynamics of *S. praecaptivus* transmission. Six pairs were assembled for mating, three of which comprised an uninfected male and infected female and three of which comprised the reciprocal combination. Offspring from each pairing (n = 30) were homogenized and plated to check for infection. All offspring maintaining S. praecaptivus MC1 were derived from infected females, indicating exclusively maternal transmission.

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

Throughout this study, no morphological or behavioral abnormalities were observed in either aposymbiotic or symbiotic weevils at any life cycle stage following establishment of *S. praecaptivus* MC1. Further, following microinjection, adult weevils emerged at a median 45 days for aposymbiotic weevils and 41 days for symbiotic weevils following transfer into grain. This is comparable to the uninfected weevils subjected to identical husbandry lacking only the microinjection (aposymbiotic median 44.5 days; symbiotic median 39 days).

S. praecaptivus colonizes prototypical bacteriomes in grain weevils

The grain weevils native symbiont, *S. pierantonius*, resides in specialized bacteriomes at the anterior of the midgut in larvae, the midgut mesenteric caeca in young adults and ovaries of adult females²⁰. To determine if *S. praecaptivus* MC1 infects the same tissues in aposymbiotic weevils, we visualized tissues of F₁ larvae and adults. Both larval and adult bacteriomes that are potentiated in symbiotic weevils are colonized intracellularly by *S. praecaptivus* MC1 in both aposymbiotic and symbiotic weevils, albeit at higher density in the latter (**Figure 3; Figure S2B**). Thus, only *S. pierantonius*, induces larval and gut bacteriome cell proliferation^{40,41}. Symbiotic weevils featured fully formed larval and adult bacteriomes, densely infected with both *S. praecaptivus* MC1 and *S. pierantonius* (**Figure 3A** and **3D**), mimicking experimental outcomes observed in aphids^{42,43}. Because *S. pierantonius*, has a distinct morphology (**Figure 3B**), microscopy clearly revealed both bacterial species inside the same larval and adult

bacteriome cells (**Figure 3C and 3E**). Bacteriomes from uninjected weevils demonstrated no mCherry fluorescence (**Figure S1E and F**).

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

276

277

S. praecaptivus infects weevil eggs at early stage of oogenesis

Figure 11 shows widespread infection of S. praecaptivus MC1 in the ovary. For more in depth characterization, we performed confocal microscopy on ovaries from S. praecaptivus MC1-infected F₁ females (Figure 4). In the telotrophic weevil reproductive system, germ cells are localized in a transition zone between the tropharium and vitellarium. The developing oocytes receive nutrients from nurse cells in the tropharium via nutritive cords⁴⁴. S. praecaptivus MC1 was present in tropharium cells in both aposymbiotic (Figure 4A) and symbiotic (Figure 4B) weevils, suggesting bacteria could be transmitted to developing oocytes from nurse cells. However, S. praecaptivus MC1 also infected the zone between the tropharium and vitellarium (Figure 4C), containing pro-oocytes, along with central and lateral prefollicular cells⁴⁵. To facilitate oocyte development, pro-oocytes are encapsulated by prefollicular cells in the vitellarium to form egg chambers. Even the most proximal oocytes in the weevil vitellarium maintained S. praecaptivus in the oocyte and surrounding follicular cells, indicating that oocytes are infected at a very early stage of development.

In order to confirm that adult injection does not facilitate establishment of *S. praecaptivus* infection that is maternally transmitted, we performed an experiment in which weevils were injected at adult stage with *S. praecaptivus* MC1. Out of 33 weevils, 28 developed mCherry fluorescence, indicating

infection. However, following mating, no offspring displayed mCherry fluorescence or yielded *S. praecaptivus* colonies when their homogenates were plated (n=30), confirming that adult injection does not lead to vertical transmission. Imaging of adult-injected weevil ovaries revealed *S. praecaptivus* MC1 attached to the exterior of the tropharium (**Figure S2C**) and vitellarium (**Figure S2D**), but no infection inside these structures. This was also occurred with midgut mesenteric ceca, which demonstrated only surface colonization with *S. praecaptivus* MC1 following adult microinjection (**Figure S2E**).

Rational engineering of a functional mutualism

Knowing that *S. pierantonius* produces tyrosine and phenylalanine that promotes cuticular sclerotization²⁰, we engineered strains of *S. praecaptivus* with modified biosynthetic capabilities. These encompass a Tyr/Phe auxotroph ($\Delta pheA-tyrA$) and numerous candidate Tyr/Phe overproducing strains that were identified during rational engineering approaches in *E. coli*⁴⁶. While several mutant *S. praecaptivus* strains ($\Delta tyrR$, $\Delta nuoN$, $\Delta csrA$, Δzwf and Δmdh) demonstrated Tyr/Phe cross-feeding (**Figure 5A**; **Figure S3A**), the $\Delta tyrR$ strain was selected for our experiments because TyrR functions specifically as a repressor for genes of aromatic amino acid biosynthesis⁴⁷, whereas the other mutants are anticipated to have broader impacts on metabolic processes, potentially impacting the symbiosis. Tyr/Phe secretion was then confirmed for the $\Delta tyrR$ strain, using a liquid assay (**Figure 5B**). $\Delta pheA-tyrA$, $\Delta tyrR$ and WT strains were then

introduced into aposymbiotic weevil eggs. These strains lacked mCherry, in order to avoid confounding subsequent cuticle color assays.

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

Following injection of ΔpheA-tyrA, ΔtyrR and WT S. praecaptivus into aposymbiotic eggs, two week old adults were collected for imaging along with uninjected aposymbiotic and symbiotic grain weevils of the same age. Following imaging, weevils were homogenized and plated to characterize their infections. Color analysis was performed on a common quadrant of the weevil cuticle under controlled lighting conditions to ensure consistency (Figure 5C). Lighter cuticle coloration (increased red pigmentation) indicates decreased cuticular sclerotization and reduced symbiont Tyr/Phe biosynthesis²⁰. Accordingly, aposymbiotic grain weevils had cuticles with significantly higher red coloration than symbiotic counterparts (p < 0.0001). Among aposymbiotic weevils harboring S. praecaptivus, those with auxotrophic ΔpheA-tyrA had the reddest cuticles. Weevils with WT S. praecaptivus were significantly darker than those with $\Delta pheA-tyrA$ (p < 0.01), but were significantly lighter than uninjected aposymbionts (p < 0.05). This suggest that S. praecaptivus depletes host Tyr/Phe; an effect that is exacerbated with an auxotrophic strain that cannot synthesize Tyr/Phe de novo. Strikingly, weevils harboring the $\Delta tyrR$ overproducer had cuticles at least as dark as those of aposymbionts (no significant difference). Notably, the WT and Δ*tyrR S. praecaptivus* strains maintained very similar densities in the weevil (t-test; p = 0.84), indicating that color differences could not be explained as a function of change in the burden of infection.

To further assess impact on weevil fitness we compared larval development times of symbiotic and aposymbiotic weevils, including aposymbionts maintaining WT, $\Delta pheA$ -tyrA or $\Delta tyrR$ strains. Results (**Figure 5D**) show that symbiotic weevils have the shortest larval development time, consistent with *S. pierantonius* providing the greatest fitness benefit. No significant time differences were observed between uninjected aposymbionts and either (i) aposymbionts injected with WT or (ii) aposymbionts injected with $\Delta pheA$ -tyrA (p > 0.05). However, aposymbionts injected with $\Delta tyrR$ showed accelerated larval development compared to non-injected aposymbionts (p < 0.001), indicating that the $\Delta tyrR$ strain yields a beneficial (mutualistic) outcome, implying that symbiont Tyr/Phe production is also beneficial prior to adulthood.

DISCUSSION

Mutualistic inter-kingdom interactions involving microorganisms and animals/ plants are common and have facilitated many important innovations including aerobic energy generation, photosynthesis and nitrogen fixation⁴⁸. They create new biology from components with exclusive functions, catalyzing exploitation of novel niches, reducing the burden of competition⁴⁹. Insects have served as important models for study because symbiosis has made an exceptional contribution to their ecological success⁵⁰. However, the origin of these associations remains poorly understood⁵¹. This is partly due to the fact that certain mutualistic adaptations are anticipated to be maladaptive in a free-living

state, leading to a causality dilemma. For example, the sharing of nutritional resources in mutualism is contraindicated in the free-living state where individuals must compete to acquire resources for growth. Further, mutualists must overcome natural antagonistic interactions (immunity) to forge an intimate association that mediates partner fidelity feedback necessary for selection to optimize mutualistic functionality^{52,53}.

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

Here, we established, characterized and engineered a synthetic insectbacterial symbiosis to gain insight into the nature and complexity of adaptations facilitating mutualism. Following development of a protocol to introduce a nascent candidate symbiont, S. praecaptivus, into the eggs of aposymbiotic grain weevils (Sitophilus zeamais), we monitored weevils that maintained the association over ten generations through maternal transmission with ~50% efficiency per generation. Our results demonstrate that S. praecaptivus undergoes sustained vertical transmission in a novel host, providing a model for long-term study of symbiotic interactions and evolutionary processes in symbiosis. Notably, the association can be maintained by selection of insects that display mCherry fluorescence at generational intervals. Our results show that cyclical vertical transmission mandates introduction of S. praecaptivus into eggs, mimicking natural processes of transovarial transmission, as documented for native, S. pierantonius, in weevils⁵⁴. This accords with S. praecaptivus establishing infection in germ and/or stem cells such that subsequent differentiation processes propel infection into mature larval and adult tissues, including ovarioles. Although our experiment focused on introduction of bacteria into eggs,

it is possible that establishment could occur later in development when, for example, larvae commence movement/feeding and may encounter injuries that provide opportunities for bacterial entry.

Our work also shows that *S. praecaptivus* can establish infection in weevils that maintain their native symbiont, *S. pierantonius*. In those weevils, both bacteria reside in somatic and germinal bacteriomes in the gut and ovary²⁰. Previous work demonstrated production of specialized antimicrobial peptides (coleoptericins) that (i) prevent growth of symbionts outside of bacteriomes and (ii) control their proliferation inside bacteriomes by inducing bacterial cell filamentation⁵⁵. However, in our study, *S. praecaptivus* was observed infecting a range of weevil tissues, displaying no evidence of filamentation, indicating lack of susceptibility to these effects.

We found that *S. praecaptivus* and *S. pierantonius* co-exist in germinal apical bacteriomes, transmitting together, albeit at lower efficiency for *S. praecaptivus*. Localization of *S. praecaptivus* in ovarian tissues of aposymbiotic weevils revealed colonization of multiple cell types within ovarioles, including proocytes and prefollicular cells assembling during oogenesis, along with nurse cells that sustain developing oocytes. This provides several, redundant, potential opportunities for transmission, possibly enabling members of the genus *Sodalis* to undergo transmission in insects with diverse (panoistic, polytrophic and telotrophic) reproductive systems. It likely represents another factor explaining the success of *Sodalis* spp. in the board colonization of insects in nature¹⁵. Notably, *S. praecaptivus* is transmitted to eggs at a very early stage of

oogenesis, in contrast to several other insect symbionts that are transmitted at later stages. For example, the aphid symbiont (*Buchnera*) is transmitted from maternal bacteriocytes to blastulae in the ovariole tips of pathenogenetically-reproducing aphids at oogenesis stage seven⁴³, or when eggs reach a size of 500µm in aphids reproducing oviparously⁵⁶. Further, *Spiroplasma* enters *Drosophila* oocytes when lipid transport channels open at oogenesis stage ten⁵⁷, and *Wolbachia* transmission takes place in the telotrophic planthopper, *Laodelphax striatellus*, during vitellogenin transovarial transportation, which also takes place at a later stage of oogenesis⁵⁸.

The native symbiont of grain weevils, *S. pierantonius*, produces tyrosine and phenylalanine that facilitate cuticle sclerotization, yielding adult weevils that have a tough, dark exoskeleton^{20,59,60}. However, our work shows that wild type *S. praecaptivus* does not engage in Tyr/Phe secretion as demonstrated by laboratory cross-feeding assays. Correspondingly, adult weevils injected with WT or auxotrophic strains of *S. praecaptivus* have cuticles that are lighter in color than those of aposymbiotic counterparts, indicating reduced sclerotization, consistent with the notion that host Tyr/Phe levels are depleted by this bacterium. In order to generate a mutualistic strain of *S. praecaptivus*, we employed rational engineering⁶¹ to identify a mutant strain of *S. praecaptivus* (\(\Delta tyrR\)) that overproduces and cross-feeds Tyr/Phe to an auxotroph^{46,47}. Introduction of this strain into weevil eggs resulted in the production of adults whose cuticle color was restored to that of uninfected (aposymbiotic) counterparts. Further, weevils maintaining the \(\Delta tyrR\) strain had significantly reduced larval development time

relative to their aposymbiotic (uninfected) counterparts, implying that Tyr/Phe production is also beneficial in the context of larval development and seems to present a more sensitive signal for symbiont Tyr/Phe provisioning in our synthetic system. Of course it is possible that *S. praecaptivus* simply produces more Tyr/Phe in the larval stage or that it provides additional beneficial metabolites that selectively impact larval development. Together, this provides a genetic validation of the role of symbionts in Tyr/Phe production and cuticular sclerotization, which is thought to have played an important role in the radiation of beetles⁶² and ants⁶³ by enhancing strength, desiccation tolerance and predator/pathogen resistance^{64,65}.

Tyrosine and phenylalanine overproduction and secretion were observed to result from several single gene knockouts in *S. praecaptivus* ($\Delta tyrR$, $\Delta nuoN$, $\Delta csrA$, Δzwf and Δmdh). Since null mutants are anticipated to arise spontaneously in natural populations of bacteria in the environment, this suggests that insects can readily acquire bacterial strains capable of secreting specific nutrients as a consequence of spontaneous mutations. In support of this, many examples of nutrient cross-feeding have been identified in natural microbial communities that increase the collective efficiency of resource utilization 66,67 . Taken together, these results suggest that adaptation to nutrient secretion is not a significant bottleneck in the evolution of mutualistic associations that focus on nutrient provisioning. Further support for this notion was obtained in a recent study showing that mutualism could be established between a stinkbug and an *E. coli* strain that was experimentally evolved to facilitate mutualism in this host 68 .

However, in the case of this synthetic symbiosis, the *E. coli* are not transmitted transovarially, but are instead inoculated onto the surface of host eggs, facilitating vertical transmission. We reason that bacterial adaptation to transovarial transmission likely requires more complex genetic underpinnings, conferring an ability to infect ovarioles and eggs. Critically, our work shows that a (non-engineered/wild-type) free-living relative of a widely distributed group of insect symbionts has an intrinsic capability to establish and sustain vertical transmission in a novel insect host (albeit one that naturally harbors a *Sodalis* symbiont) with no obvious detrimental effects. However, injection of a quorum-sensing mutant ($\Delta ypel$), demonstrating constitutive expression of virulence factors^{36,37} was observed to kill weevil eggs with striking efficiency, highlighting the lability and complexity of interactions facilitating maintenance and vertical transmission of a symbiont.

Given that natural selection lacks foresight, it is important to recognize that the ability of *S. praecaptivus* to associate with an insect host might be a function of selection pressures mediated by a biphasic lifestyle comprising a free-living state in addition to host association⁶⁹. Indeed, it has been proposed that *S. praecaptivus* might use insects as vectors to facilitate transmission between animal and/or plant hosts in the environment²⁴. Alternatively, the ability of *S. praecaptivus* to associate with insects might simply be a side effect of its ability to associate with plant and/or mammalian hosts⁷⁰⁻⁷², although it is notable that *S. praecaptivus* maintains virulence factors characterized as insect-specific³⁶. Interestingly, recent work indicates that free-living *Sodalis spp.* maintain a

substantial presence in decaying wood³³ and *S. praecaptivus* was in fact isolated from a human following impalement with a dead tree branch²⁴. Since insects are also known to frequently associate with decaying wood, it is possible that free-living members of the genus *Sodalis* use insects as vectors for transmission among decaying trees in the environment⁷³.

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

Collectively, our work shows that bacterial genera such as Sodalis, that frequently develop symbiotic associations with a wide range of insect taxa, have extensive adaptations that facilitate infection, benign persistence and vertical transmission in insect hosts. Vertical transmission, in particular, lays the foundation for the evolution of mutualism by facilitating strong partner-fidelity feedback. Metabolic adaptations leading to nutrient secretion can have relatively simple genetic etiologies that can be honed by subsequent degenerative changes that mimic strategies utilized in microbial rational engineering to eliminate competing metabolic activities, favoring production of selected resources⁷⁴. While our work shows that vertical transmission occurs initially with sub-optimal efficiency, it should be noted that in nature the acquisition of a new biological function often facilitates ecological diversification, providing a unique niche for partners to exploit, replete with strong selection pressure to maintain functionality of the association and thereby increase the efficiency of vertical transmission. Further, our work demonstrates the autocatalytic quality of symbiosis, in which an existing symbiont creates favorable host conditions for the acquisition of a nascent symbiont, leading to functional augmentation, symbiont replacement and metabolic integration⁷⁵. Numerous studies have revealed evidence of these events in nature, rationalized as a consequence of loss of fitness of an existing symbiont^{58,76-78} or acquisition of new functionality in response to environmental change or niche expansion^{79,80}. In simple terms, mutualism can be described as a state of coexistence in which the benefits of a partnership outweigh the inherent costs⁸¹. The ability of *S. praecaptivus* to maintain a benign infection, combined with pre-existing host adaptations that facilitate bacterial maintenance, likely contribute significantly towards a reduction in those costs.

The development of a synthetic, transovarially-transmitted symbiosis provides new opportunities to advance knowledge in symbiosis. First, because S. praecaptivus is amenable to culture and manipulation, this system can be used to investigate mechanistic adaptations underlying symbiosis and mutualism, throughout the spectrum of insect development. Second, this system can be maintained for long-term study of host-symbiont adaptation and degenerative evolution. Finally, many insects, including certain disease vectors, are not amenable to germ line genetic modification and symbionts could be used as a platform to express transgenes, either to investigate molecular processes or interfere with processes of disease transmission in natural insect populations^{37,82,83}.

523

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

524

525

ACKNOWLEDGMENTS We gratefully acknowledge funding provided by National Science Foundation award DEB1926738 (to C.D.) and National Institute of Health NIGMS award R35 GM136389 (to K.G.G.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We thank Prof. Philippe Cluzel (Harvard Univ.) for provision of the mCherry cassette and Shinichiro Enomoto for help constructing strains. We also thank Sara Weinstein for assistance with statistics.

550	AUTHOR CONTRIBUTIONS
551	Y.S., H.L, K.G.G. and C.D. designed experiments. Y.S., H.L., L.S.T., I.J. F.C.,
552	J.G., O.R., C.M. and C.D performed experiments. Y.S. and C.D. analyzed data,
553	wrote the manuscript and prepared figures. All authors read and provided edits
554	for the manuscript and agree to its contents.
555	
556	
557	
558	
559	
560	
561	
562	
563	
564	
565	
566	
567	
568	
569	
570	
571	
572	

DECLARATION OF INTERESTS

574 The authors declare no competing interests.

INCLUSION AND DIVERSITY We worked to ensure sex balance in the selection of non-human subjects. One or more of the authors of this paper self-identifies as a member of the LGBTQ+ community. One or more of the authors of this paper self-identifies as living with a disability.

Figure 1: Establishment of *S. praecaptivus* MC1 in aposymbiotic weevils following egg injection. (A) Schematic and micrograph showing microinjection into the egg posterior pole (PP). Subsequent images (B-I) are shown under normal light and under mCherry fluorescence. (B) Egg one day post injection (PI) showing infection at PP. (C) Egg four days post injection, with infection progressing. (D) Egg four days post injection with a Δ*ypeI* mutant, showing extensive pathogenesis. (E) First instar larva, immediately following emergence from microinjected egg. (F) Adult weevil, injected at egg stage following emergence from grain. (G) Egg derived from microinjected parents that acquired *S. praecaptivus* via maternal transmission at five days post deposition (PD). (H) First instar larva derived from egg-microinjected parents. (I) Ovaries from mated aposymbiotic female derived from microinjected egg, showing extensive colonization. See also Figure S1 and Video S1.

Figure 2: **Dynamics of** *S. praecaptivus* **MC1 infection following egg injection**. (**A**) Infection frequency and average bacterial density (with error bars showing standard deviation) in adult weevils over ten generations. (**B**) Dynamics of F₁ infection in multiple replicated egg injection experiments involving aposymbiotic (apo) and symbiotic (sym) grain weevils (n=10 for each line). (**C**) Kaplan-Meier analysis of association between infection and developmental status. (**D**) Infection status of the first seven and last seven offspring obtained from six individual aposymbiotic F₆ females infected with *S. praecaptivus* MC1, demonstrating no significant difference.

Figure 3: Localization of Sodalis praecaptivus MC1 expressing mCherry (red) in offspring of aposymbiotic (apo) and symbiotic (sym) weevils infected by egg microinjection. (A) Larval gut with white circle highlighting the bacteriome that develop only in sym weevils, shown under normal (left) and fluorescent (right) light. (B) Scanning electron micrograph (SEM) of the weevil symbiont, S. pierantonius, isolated from uninjected sym S. zeamais bacteriome, showing distinctive spiral morphology. (C) Confocal image of larval gut bacteriome from sym weevil, stained with Hoechst 33342 (blue; targeting nucleic acid), showing co-habitation of S. praecaptivus MC1 (red) and S. pierantonius (blue spirals). (D) Adult gut from newly emerged weevils with white circles highlighting cecal bacteriomes that form only in sym weevils. (E) Confocal image of cecal bacteriome from sym weevil, stained with Hoechst 33342 (blue; targeting nucleic acid) and CellMask Green (yellow: targeting cell membranes), showing co-habitation of S. praecaptivus MC1 (red) and S. pierantonius (blue spirals). Inset images in panels C&E are zoomed and enhanced in contrast. See also Figure S1 and S2.

661

662

663

664

665

666

667

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

Figure 4: Low (left) and high (right) magnification confocal images of *S. praecaptivus* MC1 expressing mCherry (red) in ovaries of offspring from aposymbiotic (apo) and symbiotic (sym) weevils following egg microinjection. Specimens were stained with Hoechst 33342 (blue: targeting nucleic acid) and CellMask Green (yellow: targeting cell membranes). (A)

Tropharium from adult apo weevil, showing *S. praecaptivus* MC1 inside

tropharium cells. (**B**) Tropharium from adult sym weevil, showing co-existence of *S. praecaptivus* MC1 and *S. pierantonius*. (**C**) Vitellarium from adult apo weevil, with *S. praecaptivus* MC1 in epithelial cells, developing oocytes and the tropharium/vitellarium transition zone containing pro-oocytes.

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

668

669

670

671

Figure 5: Characterization of S. praecaptivus strains with modified tyrosine and phenylalanine biosynthesis. (A) Plate-based assay on minimal medium, showing a $\Delta tyrR$ overproducer cross-feeding $\Delta pheA-tyrA$ auxotroph. (B) Growth of an auxotrophic Δ*pheA-tyrA* strain over seven days in minimal medium alone or in the presence of wild type or $\Delta tyrR$ strains following inoculation of cells at equal densities. The auxotrophic Δ*pheA-tyrA* strain shows significant growth increase only in the presence of the $\Delta tyrR$ overproducer, relative to the wild type strain (>10 fold; p < 0.01). See additional data presented in **Figure S3B**. (**C**) Thorax cuticular redness of two-week-old sym weevils and their apo derivatives with and without $\Delta pheA$ -tyrA, WT and $\Delta tyrR$ strains of S. praecaptivus injected at eqq. stage. Boxes on left show the raw images associated with the highest and the lowest red values in the dataset. (D) Larval development time of sym weevils and apo counterparts with and without $\Delta pheAtyrA$, WT and $\Delta tyrR$ strains injected at egg stage. Matrices show results of pairwise statistical analyses (t-test) indicating no significant difference and asterisks indicating significance of p < 0.05, p < 0.050.01, p < 0.001 and p < 0.0001. See also Figure S3.

689

691	STAR METHOD
692	RESOURCE AVAILIABILITY
693	Lead contact
694	Further information and request for resources and reagents should be directed to
695	and will be fulfilled by the lead contact, Colin Dale (colin.dale@utah.edu)
696	Materials availability
697	Mutant strains generated in this study are available upon request from the lead
698	contact, Colin Dale (colin.dale@utah.edu).
699	Data and code availability
700	All sequence reads derived from genomic sequencing were deposited in
701	the NCBI sequence read archive (SRA) under accession SAMN26947704
702	SAMN26947705 and SAMN26947706 for the MC1, $\Delta pheA$ -tyrA and $\Delta tyrF$
703	strains, respectively.
704	This paper does not report original code.
705	Any additional information required to reanalyze the data reported in this
706	paper is available from the lead contact upon request.
707	
708	EXPERIMENTAL MODEL AND SUBJECT DETAILS
709	Insects:
710	Grain weevils (Sitophilus zeamais), originally obtained from USDA, Manhattan
711	KS, U.S.A, were reared on organic whole yellow maize (Purcell Mountain Farms)
712	in an Darwin insect chamber at 25 °C and 62% relative humidity (RH). Symbiont
713	free (aposymbiotic) weevils were generated by rearing on rifampicin treated corr

prepared by hydrating dried corn with a 3% (w/v) solution of rifampicin (1 mg/ml)³⁶. Following treatment for one generational interval, the resulting aposymbiotic weevils were maintained on untreated grain and are checked periodically to confirm the absence of bacteriomes.

Bacterial strains

- This study involved the use of *Sodalis praecaptivus* strain HS, which is a close relative of insect-associated *Sodalis* spp. symbionts that was isolated from an infected human^{24,34}, and has been previously deposited in the American Type Culture Collection (ATCC) as product BAA-2554. For all experiments outlined in the study, it was cultured in LB liquid media and plated on LB agar with appropriate antibiotics as outlined in method details, presented below, at 30 °C, under atmospheric air. Strains were preserved at -80 °C in LB media with 15% (w/v) glycerol.
- All mutant strains of *S. praecaptivus* utilized throughout this study, can be obtained from the lead contact Colin Dale (colin.dale@utah.edu).

METHOD DETAILS

Genetic modification of Sodalis praecaptivus

Lambda Red recombineering was utilized to generate recombinant strains of *S. praecaptivus* maintaining plasmid pRed/Gamm (CAT) using methodologies developed and outlined in previous studies⁸⁴. For the work outlined in this study, we engineered a strain that expresses the fluorescent mCherry protein, in order to visualize *S. praecaptivus* in grain weevils. In addition, we engineered *S. praecaptivus* strains that are (1) auxotrophic for phenylalanine and tyrosine and

(2) overproduce these aromatic amino acids. The auxotroph was generated by knocking out both the *tyrA* and *pheA* genes, encoding enzymes involved in the terminal steps of tyrosine and phenylalanine biosynthesis, respectively, yielding a strain that is incapable of biosynthesizing either amino acid⁸⁵. Candidate Tyr/Phe overproducing strains were generated in accordance with a rational engineering strategy previously developed to facilitate overproduction of L-DOPA in *E. coli*^{46,47}. This encompassed generation of *S. praecaptivus* mutants lacking *tyrR*, *nuoN, ppc, ptsHlcrr, csrA, zwf, mdh* genes.

Preparation of an mCherry-expression cassette. An mCherry and zeocin resistance cassette (1.5 kbp), codon-optimized for efficient expression in gamma Proteobacteria^{86,87}, was amplified from bacterial DNA by PCR in a reaction comprising 10 μl of 5X PCR buffer, 4 μl of 25 mM dNTPs, 3 μl of 25 mM MgCl₂, 1.25 μl of 20 μM forward primer (#2272), 1.25 μl of 20 μM reverse primer (#2273), 0.5 μl of Phusion High Fidelity DNA Polymerase (Thermo Fisher Scientific) and 1 μl of template DNA. The cycling conditions involved initial denaturation at 98 °C for 2 min, followed by 29 cycles of denaturation (98 °C; 30 s), annealing (56 °C; 30 s) and extension (72 °C; 1 min), followed by a final extension at 72 °C for 2 min. This yielded a single amplicon of expected size (1.5-kbp), as determined by gel electrophoresis.

We elected to insert the mCherry-zeocin cassette into the *lacZ* gene of *S. praecaptivus* based on the notion that lactose is not present in insects and therefore, disruption of this gene should not negatively impact the interaction

between S. praecaptivus and weevils. Furthermore, insertional inactivation of lacZ can be detected by plating bacteria on media with IPTG and X-Gal88, facilitating selection of recombinants. Three consecutive PCR reactions were employed to generate a construct that could be integrated into the lacZ gene of S. praecaptivus strain 101³⁶ using lambda Red recombineering⁸⁴. DNA from wildtype S. praecaptivus was isolated from cultured cells by heating at 98°C for 5 min to provide template for PCR reactions. In the first PCR, 212 bp of the 5' end (primer #2286/#2287) and 278 bp of the 3' end (#2289/#2290) of the *lacZ* gene were amplified with a flanking tail using the following a PCR reaction composed of 12.5 µl of 2X Phusion, 6.5 µl of nuclease free water, 2.5 µl of 2.5 µM forward primer, 2.5 µl of 2.5 µM reverse primer and 1 µl of DNA template. The PCR was performed with an initial denaturation at 98°C for 30 s, followed by 35 cycles of denaturation (98 °C; 10 s), annealing (58 °C; 30 s) and extension (72 °C; 2 min). The resulting PCR product was then purified using Agencourt AMPure XP magnetic beads, in accordance with manufacturer's protocol. In the second PCR, 4 µl of 5' and 3' lacZ PCR products were amplified with 4 µl of the mCherryzeocin cassette to generate a chimeric product with 12 µl of 2X Taq Polymerase MasterMix (Thermo Fisher Scientific) with initial denaturation at 95°C for 30 s, followed by 10 cycles of denaturation (94 °C; 15 s), annealing (45 °C; 30 s) and extension (72 °C; 1min). The third PCR step was used to amplify the final 2 kbp disruption fragment from the second PCR product using 1 µl each of primers #2287 and #2290, which anneal to the 5' and 3' ends of *lacZ*, respectively. This reaction was conducted with 13 µl of 2X Taq Polymerase MasterMix (Thermo

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

Fisher Scientific), 11 µl of nuclease free water and 24 µl of the 2nd PCR product. The PCR conditions involved an initial denaturation at 95 °C for 30 sec, followed by 35 cycles of denaturation (94 °C; 15 s), annealing (58 °C; 30 s) and extension (72 °C; 1.5 min). The third PCR product was again purified using AMPure XP beads to generate template for recombineering.

Preparation of $\Delta pheA$ -tyrA and Phe and Tyr overproduction recombineering constructs. Genetic constructs to generate these mutant strains were prepared using a similar three-step PCR procedure, as detailed above for the mCherry-zeocin cassette, to generate chimeric PCR products with gentamycin, spectinomycin or kanamycin resistance cassettes for $\Delta pheA$ -tyrA and all candidate gene knockouts yielding Phe and Tyr overproduction ($\Delta tyrR$, $\Delta nuoN$, Δppc , $\Delta ptsHlcrr$, $\Delta csrA$, Δzwf and Δmdh). The PCRs and clean up steps were conducted using reagents and conditions outlined for preparation of the mCherry-zeocin construct, using primers listed in **Table S1**.

Lambda Red recombineering. Wild-type *S. praecaptivus* strain 101 culture maintaining the plasmid pRed/Gamm (CAT)³⁶ was cultured overnight in 3 ml LB with 30 μg/ml chloramphenicol. The resulting cells were then inoculated into 25 ml 2YT medium (20 mg/ml Tryptone, 8 mg/ml Yeast Extract, 10 mg/ml NaCl, pH 5.8) with 30 μg/ml chloramphenicol and permitted to grow for 3 hours in a 30 °C shaking incubator (200 rpm). The expression of the lambda Red functions was induced by adding arabinose at 4 mg/ml and the culture was allowed to grow for

another 30 min under the same conditions. *S. praecaptivus* cells were then pelleted by centrifugation at 9000 × g. for 20 min at 4 °C, washed twice in cold sterile de-ionized water and resuspended in a fresh aliquot of 25 ml ice cold sterile de-ionized water. Two additional rounds of washing and resuspension were performed, first using a resuspension volume of 25 ml and second using a resuspension volume of 1 ml. This yields high efficiency electro-competent *S. praecaptivus* cells that can be transformed with recombineering constructs (as outlined here) or plasmids. The prepared PCR products were then combined with 80 μ l of competent cells and electroporated at 1600 V/s using an Eppendorf electroporator model 2510. The cells were permitted to recover for 16 hours by plating on L agar without antibiotic selection before replica plating onto L agar with IPTG (100 mM), X-gal (100 mg/ml) and appropriate antibiotic (15 μ g/ml zeocin, 40 μ g/ml spectinomycin, 5 μ g/ml gentamicin or 30 μ g/ml kanamycin).

Genetic and phenotypic verification. All resulting transformants were found to be resistant to appropriate antibiotics following recombineering. PCR assays were performed using primers flanking the insertion site in target genes to confirm that the constructs were inserted in the anticipated fashion in the *S. praecaptivus* genome. The amplification of the insertion region (PCR product sizes listed in **Table S1**) was achieved by PCR with a reaction mixture composed of 0.5 μl of 2.5 μM forward and 2.5 μM reverse primer (**Table S1**), 12.5 μl of 2X Taq Polymerase MasterMix (Thermo Fisher Scientific), 10.25 μl of nuclease free water, 1 μl of DNA template and 1.25 μl DMSO. The cycling condition comprised

an initial denaturation at 95 °C for 1 min, followed by 35 cycles of denaturation (94 °C; 30 sec), annealing (58 °C; 30 sec) and extension (72 °C; 4 min). In addition, a PCR assay for the presence of the *tam* gene (440 bp) (GenBank: AHF76984.1) was performed to verify that the transformant was *S. praecaptivus*³⁶. This PCR used 12.5 μ l 2X Taq Polymerase MasterMix (Thermo Fisher Scientific), 1 μ l of forward (#127) and reverse (#128) primer, 11.5 μ l nuclease free water and 1 μ l of template DNA from the transformant. The thermocycler conditions included an initial denaturation at 95 °C for 1 min, followed by 25 cycles of denaturation (94 °C; 30 s), annealing (48 °C; 30 s) and extension (72 °C; 3 min).

Phenotypic tests were performed to validate the recombinant strains. MCherry fluorescence was confirmed by fluorescent microscopy and the resulting recombinant was designated S. praecaptivus strain MC1. The double auxotrophic phenotype of the $\Delta pheA$ -tyrA strain was confirmed by replica plating on minimal media with and without tyrosine and phenylalanine supplementation. The functions of the candidate Phe and Tyr overproducing strains were assessed using a cross-feeding assay in which putative overproducers and the wild type strain (control) were streaked adjacent to the $\Delta pheA$ -tyrA auxotroph. In addition, tyrosine production was validated for the $\Delta tyrR$ mutant during growth of the putative overproducer and wild type strain (control) in minimal media using a colorimetric tyrosine assay (Sigma-Aldrich). These assays were performed in triplicate for the wild type and $\Delta tyrR$ strains, following 5 days of growth in minimal

media at 30 °C with shaking (200 rpm), according to the manufacture's' protocol and measured using a POLARstar OPTIMA spectrophotometer.

Genome sequencing of recombinant strains. Prior to injection in weevils, S. praecaptivus MC1, $\Delta pheA$ -tyrA and $\Delta tyrR$ strains were sequenced to confirm that (1) the inserted cassette was integrated into the anticipated genomic location, and (2) the lambda Red recombination event did not induce any extraneous mutations in S. praecaptivus. Genomic DNA for each strain was extracted from cells that were isolated as single colonies and cultured on L plates with IPTG (100 mM) and X-gal (100 mg/ml) for 48 hours at 30 °C. Bacterial cells were collected and transferred into 180 μ l Buffer ATL, and DNA was extracted using a Qiagen Blood and Tissue Kit protocol (Qiagen, Germany), following the manufacturer's protocol for Gram negative bacteria. The resulting genomic DNA was treated with 1 μ l RNaseA for 15 minutes at room temperature and purified with Ampure XP purification beads (Axygen) prior to final elution in 50 μ l nuclease-free water.

Library construction was performed using NEBNext Ultra II DNA Library Prep Kit (New England BioLabs, USA) and NovaSeq S4 Reagent Kit v1.5 (2 x150 bp). Whole-genome sequencing was performed on a NovaSeq 600 system (Illumina) at the University of Utah Huntsman Cancer Institute High-Throughput Genomics Core Facility, yielding 34.2 Gb, 39.2 Gb and 41.2 Gb of raw sequence reads, respectively, for the MC1, Δ*pheA-tyrA* and Δ*tyrR* strains. Reads were quality trimmed in BBDuk and aligned back to the *S. praecaptivus* wild type

reference sequence (CP006569) using Geneious Prime 2022.0.2 with default parameters. The resulting alignments were then inspected manually for mismatches. Trimmed reads were also assembled using the SPAdes assembler with default parameters. The resulting contigs were then aligned to sequences comprising the resistance cassettes used for lambda Red recombination to identify those contigs representing regions of the chromosome that were genetically modified. All three mutant strains were confirmed to have the correct genetic modifications with no gene duplications or other rearrangement in the *S. praecaptivus* genome. Further, no extraneous mutations were identified in any of the recombinant strains. All sequence reads derived from genomic sequencing were deposited in the NCBI sequence read archive (SRA) under accession SAMN26947704, SAMN26947705 and SAMN26947706 for the MC1, Δ*pheA-tyrA* and Δ*tyrR* strains, respectively.

Generalized transduction procedure for *S. praecaptivus*

In order to introduce the mCherry allele into a *S. praecaptivus* Δ*ypel* strain, constructed and validated in a previous study³⁶, we took advantage of an endogenous phage transduction system. Phage induction was achieved by growing a 1:20 dilution of an overnight culture of *S. praecaptivus* MC1 in LB media at 30 °C for 8 hours with shaking at 200 rpm and then exposing the resulting culture in an open petri dish to UV light from a germicidal lamp in a Labconco model 36208/36209 TYPE A2 laminar flow hood for 30 sec. Following exposure, the culture was maintained at 30 °C for 12 hours. Chloroform was then

added to 1% (v/v) and mixed thoroughly by vortexing. Cells were then pelleted by centrifugation at 8000 rpm for 20 min and the supernatant (containing phage) was stored at 4 °C and plated on LB media to ensure that it did not contain any viable *S. praecaptivus* cells. Transduction was performed by mixing 200 μ l of phage suspension with 100 μ l of an overnight culture of *S. praecaptivus* $\Delta ypel^{36}$ and 900 μ l of LB media. Following growth for one hour at 30 °C without shaking, the mixture was plated on LB agar with 15 μ g/ml zeocin, 40 mg/ml spectinomycin, 100 mM IPTG and 100 mg/ml X-gal, and incubated for 3 days at 30 °C. A single colony demonstrating spectinomycin resistance (indicative of $\Delta ypel$) and zeocin resistance (indicative of mCherry-bleoR presence) was streaked onto a second plate and a single colony was isolated for microinjection into weevil eggs.

Microinjection of *S. praecap*tivus MC1 into aposymbiotic and symbiotic weevil eggs:

Weevil egg isolation. Weevil eggs that were deposited in grain were detected by staining gelatinous egg plugs using acid fuchsin^{89,90} and destaining in DI water until only the egg plugs remain stained. The egg plugs were then removed using forceps, and the egg inside the cavity was carefully removed for use in the microinjection procedure. Only eggs that were deposited by weevils within the past 24 hours were used in this study.

Egg preparation for microinjection. Isolated eggs were attached in a consistent polar orientation to a microscope slide with heptane glue to preclude the possibility of movement during the microinjection procedure. Following attachment, eggs were dehydrated for 5 min at 25 °C. Wrinkles on the egg surface were observed to be correlated with a poor outcome of microinjection procedure, perhaps indicating damage incurred during their isolation or excessive dehydration. After dehydration, a 2 μl drop of gas-permeable halocarbon oil 700 (Sigma-Aldrich) was placed on the surface of each egg to achieve complete immersion, inhibiting further dehydration and facilitating gas exchange.

Injection needle preparation. S. praecaptivus MC1 strain was cultured in LB medium overnight in a 30 °C shaking incubator and concentrated to $OD_{600nm} = 1$ in 0.85% (w/v) NaCl. First, 2 μ l of the prepared bacterial culture were drawn into one end of a 3.5" glass tube (Drummond #2-00-203-G/X) by capillary action. The tube was then pulled on a needle puller (Sutter Instrument Co Model P-97) with settings of heat = 270, pull = 20, velocity = 40, time = 150. Subsequently, a sterilized tweezer was used to break the pulled needle and expose the sharp end for injection.

Microinjection. The prepared needle, replete with bacterial culture was then attached to an empty syringe held by a micromanipulator (Narishige, Model M-152) to facilitate accurate subsequent injection, and adjusted to be perpendicular

to the line of eggs attached to the glass slide. Injections were performed into the posterior poles of eggs under phase contrast microscopic observation following *Drosophila* egg microinjection procedures⁹¹. Approximately 0.005~0.02 µl of bacterial culture was then injected into each egg. Following injection, the glass slides with injected eggs were maintained in an incubator at 25 °C and 62% RH.

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

942

943

944

945

946

Egg hatching and transfer to grains. After 4-6 days, the first instar larval stage was observed to emerge from microinjected eggs. Immediately following emergence, larvae were transferred back to corn grains to facilitate completion of their larval development. In some cases, eggs that were observed to contain developing larvae failed to hatch, likely due to injury, and were abandoned. Maize grains were soaked in sterile deionized water for 5 min to facilitate weevil transplantation and subsequent survival. Transplantation was achieved by first drilling a 1.5 mm diameter hole into the grain and then carefully implanting the larva. The hole was then gently packed with finely powdered cornmeal and a thin layer of glutinous rice-water cement was used to seal the hole to simulate the tough coating that is found on the grain surface. The glutinous rice-water cement was prepared by combing 0.5 g glutinous rice flour and 2 ml DI water and heated in a 1000 W microwave on full power for 30 sec, providing sufficient cement for 30 larval implantations. The transplanted grains were then maintained under standard conditions (25 °C, 62% RH) for one month to facilitate the completion of weevil development to adulthood.

964

Microinjection of *S. praecaptivus* MC1 in aposymbiotic (apo) and symbiotic weevil adults

A suspension of *S. praecaptivus* MC1 in 0.85% (w/v) NaCl (OD_{600nm} = 1) was prepared for injection into adult weevils using needles pulled from 3.5" glass capillary tubes (Drummond #2-00-203-G/X) at settings of heat = 292, pull = 100, velocity = 24, time = 250. Adult aposymbiotic maize weevils (less than 3 weeks following emergence) were then microinjected with *S. praecaptivus* MC1 using an established protocol³⁵ involving dipping the capillary needle into the bacterial suspension and then piercing the thoracic hemocoel of the adult weevils with the contaminated needle. All of the resulting adult weevils were maintained in the laboratory at 25 °C and 62% RH for 3 weeks to reproduce.

Live staining for confocal imaging

Weevils were processed for confocal microscopic imaging by careful dissection in 0.85% (w/v) NaCl. Dissected tissues (i.e. gut, ovaries) were washed in saline and placed on a freshly made 1.5 mm 0.5% agarose pad on a microscope slide. The tissues were stained with Hoechst 33342 (10 mg/ml) and CellMask Green (Thermo Fisher Scientific, 5 mg/ml) to stain nuclei and membranes, respectively, by adding 1 µl of each dye on to the top of the samples. The slide was then covered with a cover slip (No. 1.5: 0.175 mm +/- 0.015), sealed using Valap (1:1:1 mix of vaseline:lanolin:wax). Twenty minutes later, once the stains penetrated the tissues, confocal imaging was performed on a Zeiss LSM880 microscope equipped with an AiryScan detector, a 20X AIR objective and a 63X

NA1.4 oil immersion objective. Imaging was performed using appropriate excitation and emission filters for Hoechst 33342 and CellMask Green and mCherry, and images were processed in ZEN Blue 2.1 (Zeiss) and Imaris Viewer 9.6.0 (Bitplane). Single plane images selected from the z stacks are presented in this manuscript.

Preparation of S. pierantonius for electron microscopy

Fifth instar *Sitophilus zeamais* larvae were isolated from maize grains and subjected to dissection to remove bacteriomes located at the anterior end of the midgut into 0.1 M phosphate buffer (pH 7.2). Bacteriomes were then homogenized in a Dounce glass sub-cellular homogenizer to release bacteria from insect cells. Cellular debris was removed by centrifugation at 500 × g for 1 min. The supernatant was then subjected to three rounds of centrifugation (2000 × g for 5 min) and washing in 0.1 M phosphate buffer (pH 7.2). After the final washing step, the bacterial cell pellets was resuspended in 1% osmium tetroxide for 40 minutes and dehydrated using a graded series of ethanol (30%, 50%, 70%, 90%, 100%) in 5 min steps. Cells were then filtered onto a 0.2 micron polycarbonate filter for critical point drying. Following mounting, specimens were sputter coated with 10 nM gold/platinum and then visualized using a FEI Nova NanoSEM™ scanning microscope.

Measuring weevil cuticle color and larval development time

In order to compare weevil cuticle coloration, we collected aposymbiotic weevils that were injected with ΔpheA-tyrA, ΔtyrR and WT S. praecaptivus individually at egg stage along with non-injected aposymbiotic and symbiotic counterparts that were subject to the same egg isolation and larval implantation procedure. The larval development time for each injected and non-injected group was recorded. This represents the number of days from implantation of a first instar larva into corn to the subsequent emergence of the adult weevil. All weevils were collected at 14 days post adult emergence, based on the results of a pilot experiment demonstrating that the difference in cuticle color between symbiotic and aposymbiotic weevils was highest at that time point. Weevils were first washed in DI water, placed on a white background and a drop of glycerol was added to coat their exoskeleton²⁰. Images of each weevil were obtained under consistent lighting conditions with a single light source under a dissection microscope (Leica M205 FCA). A square in the center of the thorax was then cropped with its side length equals to half of the thorax width, and an average red value for the square was then computed using ImageJ software. Weevils were homogenized and plated to verify their infection status following imaging.

1027

1028

1029

1030

1031

1032

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

QUANTIFICATION AND STATISTICAL ANALYSIS

Chi squared tests were performed manually for the following purposes:

To determine if the adult weevil infection status is biased according to sex; results subsection "Dynamics of *S. praecaptivus* transmission"; n = 100 (number of weevils); significant difference is defined as p < 0.05.

- 1033 To determine the stability of infection in weevil larvae vs. adults; results
- 1034 subsection "Dynamics of S. praecaptivus transmission"; n = 40 (number of
- weevils); significant difference is defined as p < 0.05.
- 1036 To determine if female weevil reproductive age is correlated with offspring
- 1037 infection frequency; results subsection "Dynamics of S. praecaptivus
- transmission" and Figure 2D; n = 43 (number of weevils); significant difference is
- defined as p < 0.05. Two samples were excluded due to an absence of infected
- 1040 offspring.
- 1041 <u>T tests were performed in Microsoft Excel for the following purposes:</u>
- 1042 To compare growth of the S. praecaptivus ΔpheA-tyrA mutant strain during co-
- 1043 culture with other S. praecaptivus strains; results subsection "Rational
- 1044 engineering of a functional mutualism" and Figure 5B; n (number of biological
- replicates) = 4; Mean = 2.04×10^7 CFU/ml (grow with $\Delta tyrR$) and 3.84×10^6
- 1046 CFU/ml (grow with WT); SD = 2.13 \times 10⁶ CFU/ml (grow with $\Delta tyrR$) and 3.92 \times
- 1047 10^5 CFU/ml (grow with WT); significant difference is defined as p < 0.05.
- 1048 To compare infection densities in weevils; results subsection "Rational
- engineering of a functional mutualism" and Figure 5C and D; n (number of
- weevils) = 16 (for apo+ $\Delta pheA$ -tyrA and apo+WT) and 17 (for apo+ $\Delta tyrR$); Mean
- 1051 = 2.22×10^6 CFU/weevil (apo+ $\Delta pheA-tyrA$), 2.84×10^6 CFU/weevil (apo+WT)
- 1052 and 2.67 \times 10⁶ CFU/weevil (apo+ $\Delta tyrR$); SD = 2.36 \times 10⁶ CFU/weevil
- 1053 (apo+ $\Delta pheA$ -tyrA), 1.71 × 10⁶ CFU/weevil (apo+WT) and 1.94 × 10⁶ CFU/weevil
- 1054 (apo+ $\Delta tyrR$); significant difference is defined as p < 0.05.

- 1055 To compare the cuticle color (red value) among weevils; results subsection "Rational engineering of a functional mutualism" and Figure 5C; n (number of 1056 1057 weevils) = 16 (for apo, apo+ $\Delta pheA$ -tyrA and apo+WT), 17 (for apo+ $\Delta tyrR$) and 1058 19 for sym; Mean = 31.6 (apo), 52.9 (apo+ $\Delta pheA-tyrA$), 40 (apo+WT), 27.3 1059 $(apo+\Delta tyrR)$ and 11.44 (sym); SD = 10.39 (apo), 13.77 (apo+ $\Delta pheA-tyrA$), 6.98 1060 (apo+WT), 6.62 (apo+ $\Delta tyrR$) and 3.7 (sym); significant difference is defined as p 1061 < 0.05. 1062 To compare the larval development time among weevils; results subsection 1063 "Rational engineering of a functional mutualism" and Figure 5D; n (number of weevils) = 16 (for apo, apo+ $\Delta pheA-tyrA$ and apo+WT), 17 (for apo+ $\Delta tyrR$) and 1064 1065 19 for sym; Mean = 44.41 (apo), 45.35 (apo+ $\Delta pheA-tyrA$), 43.24 (apo+WT), 40.44 (apo+ $\Delta tyrR$) and 38.47 (sym); SD = 3.04 (apo), 3.84 (apo+ $\Delta pheA-tyrA$), 1066
- 1069 Kaplan-Meier analysis was performed using the R software package:

1068

1073

1074 1075

1076

1077 1078

1079

defined as p < 0.05.

1070 To determine if weevil development time is correlated with infection status; results subsection "Dynamics of S. praecaptivus transmission" and Figure 2C; n 1071 1072 = 29 (number of weevils); significant difference is defined as p < 0.05.

3.44 (apo+WT), 3.05 (apo+ $\Delta tyrR$) and 2.89 (sym); significant difference is

Video S1: Live F₁₀ descendant of the main S. praecaptivus MC1 injected weevil line along with an uninfected control weevil visualized for two seconds under normal light then under mCherry fluorescent light, related to Figure 1.

1080 REFERENCES

- 1081 1. Klepzig, K.D., Adams, A.S., Handelsman, J., and Raffa, K.F. (2009).
- 1082 Symbioses: A Key Driver of Insect Physiological Processes, Ecological
- 1083 Interactions, Evolutionary Diversification, and Impacts on Humans. Environ.
- 1084 Entomol. 38, 67–77.

1085

- 1086 2. Stork, N.S. (2018). How Many Species of Insects and Other Terrestrial
- 1087 Arthropods Are There on Earth? Annu. Rev. Entomol. 63. 31-45.

1088

- 1089 3. Moran, N.A., Plague, G.R., Sandström, J.P., and Wilcox, J.L. (2003). A
- 1090 genomic perspective on nutrient provisioning by bacterial symbionts of insects.
- 1091 Proc. Natl. Acad. Sci. U.S.A. 100, 14543–14548.

1092

- 1093 4. Douglas, A.E. (1998). Nutritional interactions in insect-microbial symbioses:
- aphids and their symbiotic bacteria. Buchnera. Annu. Rev. Entomol. 43, 17–37.

1095

- 1096 5. Oliver, K.M., Russell, J.A., Moran, N.A., and Hunter, M.S. (2003). Facultative
- 1097 bacterial symbionts in aphids confer resistance to parasitic wasps. Proc. Natl.
- 1098 Acad. Sci. U.S.A. 100, 1803–1807.

- 1100 6. Nakabachi, A., Ueoka, R., Oshima, K., Teta, R., Mangoni, A., Gurgui, M.,
- 1101 Oldham, N.J., van Echten-Deckert, G., Okamura, K., Yamamoto, K., et al.

- 1102 (2013). Defensive bacteriome symbiont with a drastically reduced genome. Curr.
- 1103 Biol. 23, 1478–1484.

- 7. Kaltenpoth, M., Göttler, W., Herzner, G., and Strohm, E. (2005). Symbiotic
- bacteria protect wasp larvae from fungal infestation. Curr. Biol. 15, 475–479.

1107

- 1108 8. White, J.A., Richards, N.K., Laugraud, A., Saeed, A., Curry, M.M., and
- 1109 McNeill, M.R. (2015). Endosymbiotic candidates for parasitoid defense in exotic
- and native New Zealand weevils. Microb. Ecol. 70, 274–286.

1111

- 1112 9. Heyworth, E.R., and Ferrari, J. (2016). Heat stress affects facultative
- symbiont-mediated protection from a parasitoid wasp. PLoS One. 11, e0167180.

1114

- 1115 10. Kikuchi, Y., Hayatsu, M., Hosokawa, T., Nagayama, A., Tago, K., and
- 1116 Fukatsu, T. (2012). Symbiont-mediated insecticide resistance. Proc. Natl. Acad.
- 1117 Sci. U.S.A. 109, 8618-8622.

1118

- 1119 11. Blanton, A.G., and Peterson, B.F. (2020). Symbiont-Mediated Insecticide
- 1120 Detoxification as an Emerging Problem in Insect Pests. Front. Microbiol. 11,
- 1121 547108.

- 1123 12. Cornwallis, C., Padje, A., Ellers, J., Klein, M., Jackson, R., Kiers, T., West, S.,
- and Henry, L. (2021). Symbiont-driven niche expansion shaped the adaptive
- radiation of insects. (Preprint).

- 1127 13. Moran, N.A., McCutcheon, J.P., and Nakabachi, A. (2008). Genomics and
- Evolution of Heritable Bacterial Symbionts. Annu. Rev. Genet. 42, 165-190.

1129

- 1130 14. McCutcheon, J.P., and Moran, N.A. (2012). Extreme genome reduction in
- symbiotic bacteria. Nat. Rev. Microbiol. 10, 13–26.

1132

- 1133 15. McCutcheon, J.P., Boyd, B.M., Dale, C. (2019). The Life of an Insect
- Endosymbiont from the Cradle to the Grave, Curr. Biol. 29, 485-495.

1135

- 1136 16. Dale, C., and Moran, N.A. (2006). Molecular Interactions between Bacterial
- 1137 Symbionts and Their Hosts. Cell *126*, 453-465.

1138

- 1139 17. Zientz, E., Dandekar, T., and Gross, R. (2004). Metabolic interdependence of
- obligate intracellular bacteria and their insect hosts. Microbiol. Mol. Biol. Rev. 68,
- 1141 745-777.

- 1143 18. Nováková, E., Hypša, V. and Moran, N.A. (2009). Arsenophonus, an
- emerging clade of intracellular symbionts with a broad host distribution. BMC
- 1145 Microbiol. 9, 143.

- 1146
- 1147 19. Masson, F., Copete, C.S., Schüpfer, F., Garcia-Arraez, A., and Lemaitre, B.
- 1148 (2018). In Vitro Culture of the Insect Endosymbiont Spiroplasma poulsonii
- 1149 Highlights Bacterial Genes Involved in Host-Symbiont Interaction. MBio 9,
- 1150 e00024-18.
- 1151
- 20. Vigneron, A., Masson, F., Vallier, A., Balmand, S., Rey, M., Vincent-Monégat
- 1153 , C., Aksoy, E., Aubailly-Giraud, E., Zaidman-Rémy , A., and Heddi, A. (2014).
- 1154 Insect Recycle Endosymbionts When the Benefit Is Over. Curr. Biol. 24, 2267-
- 1155 2273.
- 1156
- 1157 21. Wicker, C. (1983). Differential Vitamins and Choline Requirements of
- 1158 Symbiotic and aposymbitoic S. oryzae (Coleoptera: Curculionidae). Comp.
- 1159 biochem. physiol., Mol. 76, 177-182.
- 1160
- 1161 22. Heddi, A., Vallier, A., Anselme, C., Xin, H., Rahbe, Y., and Wäckers, F.
- 1162 (2005). Molecular and cellular profiles of insect bacteriocytes: mutualism and
- harm at the initial evolutionary step of symbiogenesis. Cell. Microbiol. 7, 293-
- 1164 305.
- 1165
- 1166 23. Reynolds, S., and Rolff, J. (2008). Immune function keeps endosymbionts
- 1167 under control. J. Biol. 7, 28.
- 1168

- 1169 24. Clayton, A.L., Oakeson, K.F., Gutin, M., Pontes, A., Dunn, D.M., von
- Niederhausern, A.C., Weiss, R.B., Fisher, M., and Dale, C. (2012). A Novel
- 1171 Human-Infection-Derived Bacterium Provides Insights into the Evolutionary
- 1172 Origins of Mutualistic Insect–Bacterial Symbioses. PLoS Genetics 8, 1-13.

- 1174 25. Oakeson, K. F., Gil, R., Clayton, A. L., Dunn, D. M., von Niederhausern, A.
- 1175 C., Hamil, C., Aoyagi, A., Duval, B., Baca, A., Silva, F. J., Vallier, A., Jackson, D.
- 1176 G., Latorre, A., et al. (2014). Genome degeneration and adaptation in a nascent
- stage of symbiosis. Genome Biol. Evol. 6, 76–93.

1178

- 1179 26. Husnik, F., and McCutcheon, J.P. (2016). Repeated replacement of an
- intrabacterial symbiont in the tripartite nested mealybug symbiosis. Proc. Natl.
- 1181 Acad. Sci. U.S.A. 113, E5416-E5424.

1182

- 1183 27. Doudoumis, V., Blow, F., Saridaki, A., Augustinos, A., Dyer, N.A., Goodhead,
- 1184 I., Solano, P., Rayaisse, J.B., Takac, P., Mekonnen, S., Parker, A.G., et al.
- 1185 (2017). Challenging the Wigglesworthia, Sodalis, Wolbachia symbiosis dogma in
- tsetse flies: *Spiroplasma* is present in both laboratory and natural populations.
- 1187 Sci. Rep. 7, 4699.

- 1189 28. Boyd, B.M., Allen, J.M., Koga, R., Fukatsu, T., Sweet, A.D., Johnson, K.P.,
- and Reed, D.L. (2016). Two Bacterial Genera, Sodalis and Rickettsia, Associated

- with the Seal Louse *Proechinophthirus fluctus* (Phthiraptera: Anoplura). Appl.
- 1192 Environ. Microbiol. 82, 3185-97.

- 29. Nováková, E., Husník, F., Šochová, E., and Hypša, V. (2015). Arsenophonus
- and Sodalis Symbionts in Louse Flies: an Analogy to the Wigglesworthia and
- 1196 Sodalis System in Tsetse Flies. Appl. Environ. Microbiol. 81, 6189-99...

1197

- 1198 30. Hosokawa, T., Kaiwa, N., Matsuura, Y., Kikuchi, Y., and Fukatsu, T. (2015).
- 1199 Infection prevalence of *Sodalis* symbionts among stinkbugs. Zool. Lett. 1, 5.

1200

- 1201 31. Santos-Garcia, D., Silva, F.J., Morin, S., Dettner, K., and Kuechler, S.M.
- 1202 (2017). The All-Rounder Sodalis: A New Bacteriome-Associated Endosymbiont
- 1203 of the Lygaeoid Bug Henestaris halophilus (Heteroptera: Henestarinae) and a
- 1204 Critical Examination of Its Evolution. Genome Biol. Evol. 9, 2893–2910.

1205

- 1206 32. Ghosh, S., Sela, N., Kontsedalov, S., Lebedev, G., Haines, L.R., and
- 1207 Ghanim, M. (2020). An Intranuclear Sodalis-Like Symbiont
- 1208 and Spiroplasma Coinfect the Carrot Psyllid, Bactericera trigonica (Hemiptera,
- 1209 Psylloidea). Microorganisms 8, 692.

- 1211 33. Tláskal, V., P, V.S., Žifčáková, L., and Baldrian, P. (2021). Ecological
- 1212 Divergence Within the Enterobacterial Genus Sodalis: From Insect Symbionts to
- 1213 Inhabitants of Decomposing Deadwood. Front. Microbiol. 12, 668644.

- 1214
- 1215 34. Chari, A., Oakeson, K.F., Enomoto, S., Jackson, D.G., Fisher, M.A., and
- 1216 Dale, C. (2015). Phenotypic Characterization of Sodalis Praecaptivus Sp. Nov., a
- 1217 Close Non-insect-associated Member of the Sodalis-allied Lineage of Insect
- 1218 Endosymbionts. Int. J. Syst. Evol. 65, 1400-1405.

- 1220 35. Clayton, A.L., Enomoto, S., Su, Y., and Dale, C. (2017). The Regulation of
- 1221 Antimicrobial Peptide Resistance in the Transition to Insect Symbiosis. Mol.
- 1222 Microbiol. 103, 958–972.

1223

- 1224 36. Enomoto, S., Chari, A., Clayton, A.L., and Dale, C. (2017). Quorum Sensing
- 1225 Attenuates Virulence in Sodalis praecaptivus. Cell Host Microbe 21, 629-636.

1226

- 1227 37. Munoz, M.M., Spencer, N., Enomoto, S., Dale, C., and Rio, R.V.M. (2020).
- 1228 Quorum sensing sets the stage for the establishment and vertical transmission
- of Sodalis praecaptivus in tsetse flies. PLoS Genet. 16, e1008992.

1230

- 1231 38. Gooding, R.H., and Krafsur, E.S. (2005). Tsetse genetics: contributions to
- biology, systematics, and control of tsetse flies. Annu. Rev. Entomol. 50, 101–
- 1233 123.

- 1235 39. Sullivan, W., Ashburner, M., and Hawley, R.S. (2000). Drosophila Protocols.
- 1236 (New York: Cold Spring Harbor Laboratory Press), pp. 345-371.

- 40. Masson, F., Moné, Y., Vigneron, A., Vallier, A., Parisot, N., Vincent-Monégat,
- 1239 C., Balmand, S., Carpentier, M.C., Zaidman-Rémy, A., and Heddi, A.
- 1240 (2015). Weevil endosymbiont dynamics is associated with a clamping of
- 1241 immunity. BMC Genom. 16, 819.

- 1243 41. Maire, J., Parisot, N., Ferrarini, M.G., Vallier, A., Gillet, B., Hughes, S.,
- 1244 Balmand, S., Vincent-Monégat, C., Zaidman-Rémy, A., and Heddi, A. (2020).
- 1245 Spatial and morphological reorganization of endosymbiosis during
- metamorphosis accommodates adult metabolic requirements in a weevil.
- 1247 Proc. Natl. Acad. Sci. U.S.A. 117, 19347-19358.

1248

- 1249 42. Koga R, Tsuchida, T., and Fukatsu, T. (2003). Changing partners in an
- obligate symbiosis: a facultative endosymbiont can compensate for loss of the
- essential endosymbiont *Buchnera* in an aphid. Proc. R. Soc. B. 270, 2543–2550.

1252

- 1253 43. Koga, R., Meng X.Y., Tsuchida, T., and Fukatsu, T. (2012). Cellular
- 1254 mechanism for selective vertical transmission of an obligate insect symbiont at
- the bacteriocyte-embryo interface. Proc. Natl. Acad. Sci. U.S.A. 109, E1230-
- 1256 E1237.

- 1258 44. Trauner, J., and Büning, J. (2007). Germ-cell cluster formation in the
- 1259 telotrophic meroistic ovary of *Tribolium castaneum* (Coleoptera, Polyphaga,

- 1260 Tenebrionidae) and its implication on insect phylogeny. Dev. Genes Evol.
- 1261 *217*,13-27.

- 45. Teuscher, M., Ströhlein, N., Birkenbach, M. Schultheis, D., and Schoppmeier,
- 1264 M. (2017). TC003132 is essential for the follicle stem cell lineage in
- telotrophic *Tribolium* oogenesis. Front. Zool. 14, 26.

1266

- 46. Wei, T., Cheng, B-Y., and Liu, J-Z. (2016). Genome Engineering *Escherichia*
- 1268 coli for L-DOPA Overproduction from Glucose. Sci. Rep. 6, 1-9.

1269

- 1270 47. Pittard, J., Camakaris, H., and Yang, J. (2005). The TyrR Regulon. Mol.
- 1271 Microbiol. *55*, 16–26.

1272

- 48. Rosenberg, E., and Zilber-Rosenberg, I. (2016). Microbes Drive Evolution of
- 1274 Animals and Plants: the Hologenome Concept. MBio. 7, e01395-15.

1275

- 1276 49. Joy, J.B. (2013). Symbiosis catalyses niche expansion and diversification.
- 1277 Proc. Biol. Sci. 280, 20122820.

1278

- 1279 50. Buchner, P. (1965). Endosymbiosis of animals with plant microorganisms.
- 1280 Inc.: Interscience Publ. (New York 1965: John Wiley & Sons). 7, 168.

- 1282 51. Sachs, J.L., Skophammer R.G., and Regus J.U. (2011). Evolutionary
- transitions in bacterial symbiosis. Proc. Natl. Acad. Sci. U.S.A. 108, 10800-
- 1284 10807.

- 1286 52. Ewald P.W. (1987). Transmission modes and evolution of the parasitism-
- mutualism continuum. Ann. N. Y. Acad Sci. *503*, 295-306.

1288

- 1289 53. Weyl, E.G, Frederickson, M.E., Yu, D.W., and Pierce, N.E. (2010). Are
- mutualisms maintained by host sanctions or partner fidelity feedback? Proc. Natl.
- 1291 Acad. Sci. U.S.A. Available at SSRN: https://ssrn.com/abstract=1582717.

1292

- 1293 54. Nardon, P., Grenier, A.M., and Heddi, A. (1998). Endocytobiote control by the
- host in the weevil Sitophilus oryzae, Coleoptera, Curculionidae. Symbiosis. 25,
- 1295 237-250.

1296

- 1297 55. Login, F.H., Balmand, S., Vallier, A., Vincent-Monégat, C., Vigneron, A.,
- 1298 Weiss-Gayet, M., Rochat, D., Heddi, A. (2011). Antimicrobial Peptides Keep
- 1299 Insect Endosymbionts Under Control. Science 334, 362–365.

- 1301 56. Miura, T., Braendle, C., Shingleton, A., Sisk, G., Kambhampati, S., and Stern,
- 1302 D.L. (2003). A comparison of parthenogenetic and sexual embryogenesis of the
- pea aphid Acyrthosiphon pisum (Hemiptera: Aphidoidea). J. Exp. Zool. B Mol.
- 1304 Dev. Evol. J EXP ZOOL PART B, 295, 59-81.

- 1305
- 1306 57. Row, S., Huang, Y.C., and Deng, W.M. (2021). Developmental regulation of
- 1307 oocyte lipid intake through 'patent' follicular epithelium in Drosophila
- 1308 *melanogaster*. iScience 24, 102275.
- 1309
- 1310 58. Guo, Y., Hoffmann, A.A., Xu, X-Q., Mo, P-W., Huang, H-J., Gong, J-T., Ju, J-
- 1311 F., and Hong, X-Y. (2018). Vertical Transmission of Wolbachia Is Associated
- 1312 With Host Vitellogenin in *Laodelphax striatellus*. Front Microbiol. 9, 2016.
- 1313
- 1314 59. Anbutsu, H., Moriyama, M., Nikoh, N., Hosokawa, T., Futahashi,
- 1315 R., Tanahashi, M., Meng, X.Y., Kuriwada, T., Mori, N., Oshima, K., et al. (2017).
- 1316 Small Genome Symbiont Underlies Cuticle Hardness in Beetles. Proc. Natl.
- 1317 Acad. Sci. U.S.A. 114, E8382-E8391.
- 1318
- 1319 60. Kuriwada, T., Hosokawa, T., Kumano, N., Shiromoto, K., Haraguchi, D., and
- Fukatsu, T. (2010). Biological role of *Nardonella* endosymbiont in its weevil host.
- 1321 PLoS One 5, e13101.
- 1322
- 1323 61. Bittihn, P., Din, M.O., Tsimring, L.S., and Hasty, J. (2018). Rational
- engineering of synthetic microbial systems: from single cells to consortia. Curr.
- 1325 Opin. Microbiol. 45, 92-99.
- 1326
- 1327

- 1328 62. Kiefer, J.S.T., Batsukh, S., Bauer, E., Hirota B., Weiss, B., Wierz, J.C.,
- 1329 Fukatsu, T., Kaltenpoth, M., and Engl, T. (2021). Inhibition of a nutritional
- endosymbiont by glyphosate abolishes mutualistic benefit on cuticle synthesis in
- 1331 Oryzaephilus surinamensis. Commun. Biol. 4, 554.

- 1333 63. Jackson, R., Monnin, D., Patapiou, P.A., Golding, G., Helanterä, H., Oettler,
- 1334 J., Heinze, J., Wurm, Y., Economou, C., Chapuisat, M., and Henry, L. (2021).
- 1335 Convergent evolution of a nutritional symbiosis in ants. Research Square.
- 1336 (Preprint).

1337

- 1338 64. Engl, T., Eberl, N., Gorse, C., Krüger, T., Schmidt, T.H., Plarre, R., Adler, C.
- and Kaltenpoth, M., (2018). Ancient symbiosis confers desiccation resistance to
- stored grain pest beetles. Mol. Ecol. 27, 2095-2108.

1341

- 1342 65. Kanyile, S.N., Engl, T. and Kaltenpoth, M., (2022). Nutritional symbionts
- enhance structural defence against predation and fungal infection in a grain pest
- 1344 beetle. J. Exp. Biol. 225, jeb243593.

1345

- 1346 66. Seth, E.C., Taga, M.E. (2014). Nutrient cross-feeding in the microbial world.
- 1347 Front. Microbiol. *5*, 350.

- 1349 67. Germerodt, S., Bohl, K., Lück, A., Pande, S., Schröter, A., Kaleta, C.,
- 1350 Schuster, S., and Kost, C. (2016). Pervasive selection for cooperative cross-
- feeding in bacterial communities. PLoS Comput. Biol. 12, e1004986.

- 1353 68. Koga, R., Moriyama, M., Onodera-Tanifuji, N., Ishii, Y., Takai, H., Mizutani,
- 1354 M., Oguchi, K., Okura, R., Suzuki, S., Goto, Y., et al. (2022). Single mutation
- makes Escherichia coli an insect mutualist. *bioRxiv*.

1356

- 1357 69. Obeng, N., Bansept, F., Sieber, M., Traulsen, A., and Schulenburg, H.
- 1358 (2021). Evolution of microbiota–host associations: the microbe's
- perspective. *Trends Microbiol.* 29, 779-787.

1360

- 1361 70. Caspi-Fluger, A., Inbar, M., Mozes-Daube, N., Katzir, N., Portnoy, V.,
- Belausov, E., Hunter, M.S., and Zchori-Fein, E. (2012). Horizontal transmission
- of the insect symbiont *Rickettsia* is plant-mediated. Proc. R. Soc. B: Biol.
- 1364 Sci., 279, 1791-1796.

1365

- 1366 71. Hosokawa, T., Ishii, Y., Nikoh, N., Fujie, M., Satoh, N., and Fukatsu, T.
- 1367 (2016). Obligate bacterial mutualists evolving from environmental bacteria in
- natural insect populations. Nat. Microbiol. 1, 1-7.

- 1370 72. Flórez, L.V., Scherlach, K., Gaube, P., Ross, C., Sitte, E., Hermes, C.,
- 1371 Rodrigues, A., Hertweck, C., and Kaltenpoth, M. (2017). Antibiotic-producing

- 1372 symbionts dynamically transition between plant pathogenicity and insect-
- defensive mutualism. Nat. Commun. 8, 1-9.

- 1375 73. Ulyshen, M.D. (2016). Wood decomposition as influenced by invertebrates.
- 1376 Biol. Rev. Camb. Philos. Soc. 91, 70-85.

1377

- 1378 74. Ma, Q., Zhang, Q., Xu, Q., Zhang, C., Li, Y., Fan, X., Xie, X., and Chen, N.
- 1379 (2017). Systems metabolic engineering strategies for the production of amino
- acids. Synth. Syst. Biotechnol. 2, 87–96.

1381

- 1382 75. Bublitz, D.C., Chadwick, G.L., Magyar, J.S., Sandoz, K.M., Brooks, D.M.,
- 1383 Mesnage, S., Ladinsky, M.S., Garber, A.I. Bjorkman, J.P., Orphan, V.J., et al.
- 1384 (2019). Peptidoglycan Production by an Insect-Bacterial Mosaic. Cell 179, 703-
- 1385 712.

1386

- 1387 76. Campbell, M.A., Van Leuven, J.T., Meister, R.C., Carey, K.M., Simon, C.,
- 1388 and McCutcheon, J.P. (2015). Genome expansion via lineage splitting and
- genome reduction in the cicada endosymbiont Hodgkinia. Proc. Natl. Acad. Sci.
- 1390 U.S.A. 112, 10192–10199.

- 1392 77. Matsuura, Y., Moriyama, M., qukasik, P., Vanderpool, D., Tanahashi, M.,
- 1393 Meng, X-Y., McCutcheon, J.P., and Fukatsu, T. (2018). Recurrent symbiont

- recruitment from fungal parasites in cicadas. Proc. Natl. Acad. Sci. U.S.A.115,
- 1395 **E5970–E5979**.

- 1397 78. Mao, M., and Bennett, G.M. (2020). Symbiont replacements reset the co-
- 1398 evolutionary relationship between insects and their heritable bacteria. ISME
- 1399 J. 14, 1384–1395.

1400

- 1401 79. Sudakaran, S., Kost, C., and Kaltenpoth, M. (2017). Symbiont Acquisition
- 1402 and Replacement as a Source of Ecological Innovation. Trends Microbiol. 25,
- 1403 375-390.

1404

- 1405 80. Bennett, G.M., and Moran, N.A. (2015). Heritable symbiosis: the advantages
- 1406 and perils of an evolutionary rabbit hole. Proc. Natl. Acad. Sci. U.S.A. 112,
- 1407 10169–10176.

1408

1409 81. Bronstein, J.L. (2001). The Costs of Mutualism. Am. Zool. *41*, 825–839.

1410

- 1411 82. Bahia. A.C., Dong, Y., Blumberg, B.J., Mlambo, G. Tripathi, A., BenMarzouk-
- Hidalgo, O.J., Chandra, R., and Dimopoulos, G. (2014). Exploring Anopheles gut
- bacteria for Plasmodium blocking activity. Environ Microbiol. 16, 2980-2994.

- 1415 83. Mancini, M.V., Spaccapelo, R., Damiani, C., Accoti, A., Tallarita, M.,
- 1416 Petraglia, E., Rossi, P., Cappelli, A., Capone, A., Peruzzi, G., et al. (2016).

- 1417 Paratransgenesis to control malaria vectors: a semi-field pilot study. Parasites
- 1418 Vectors 9, 140.

- 1420 84. Datsenko, K.A., and Wanner, B.L. (2000). One-step inactivation of
- 1421 chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl.
- 1422 Acad. Sci. U.S.A. 97, 6640-6645.

1423

- 1424 85. Bertels, F., Merker, H., and Kost, C. (2012). Design and characterization of
- auxotrophy-based amino acid biosensors. PLoS One 7, e41349.

1426

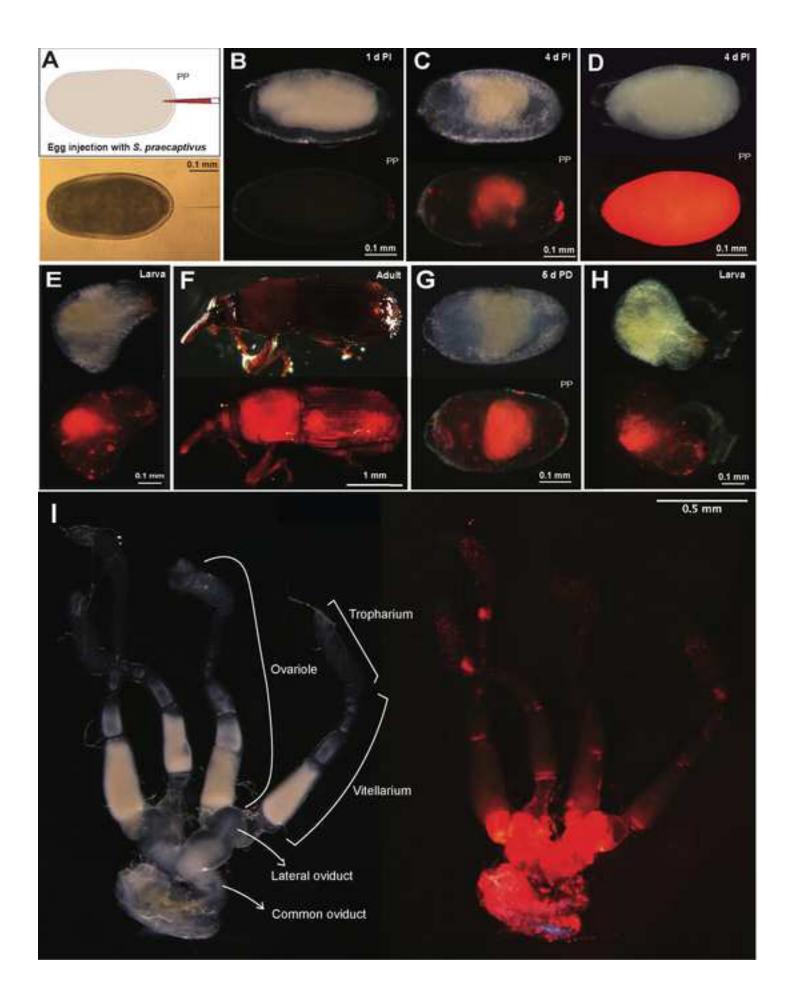
- 1427 86. Kim, J.M., Garcia-Alcala, M., Balleza, E., & Cluzel, P. (2020). Stochastic
- transcriptional pulses orchestrate flagellar biosynthesis in *Escherichia coli*. Sci.
- 1429 Adv. 6, eaax0947.

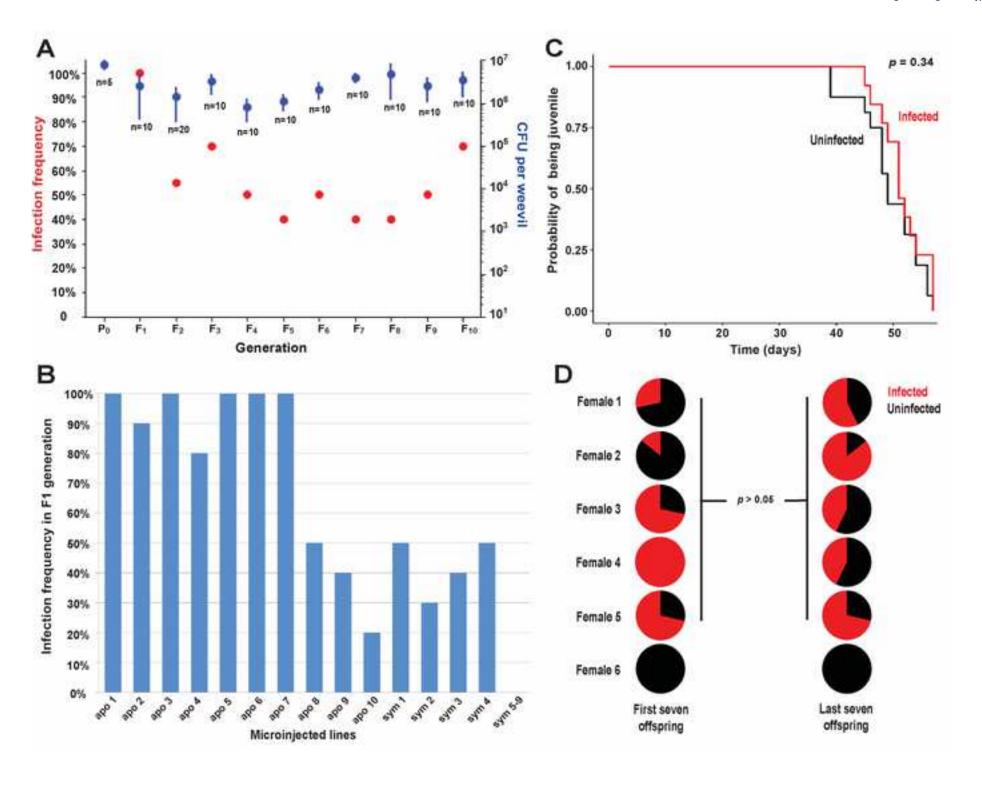
1430

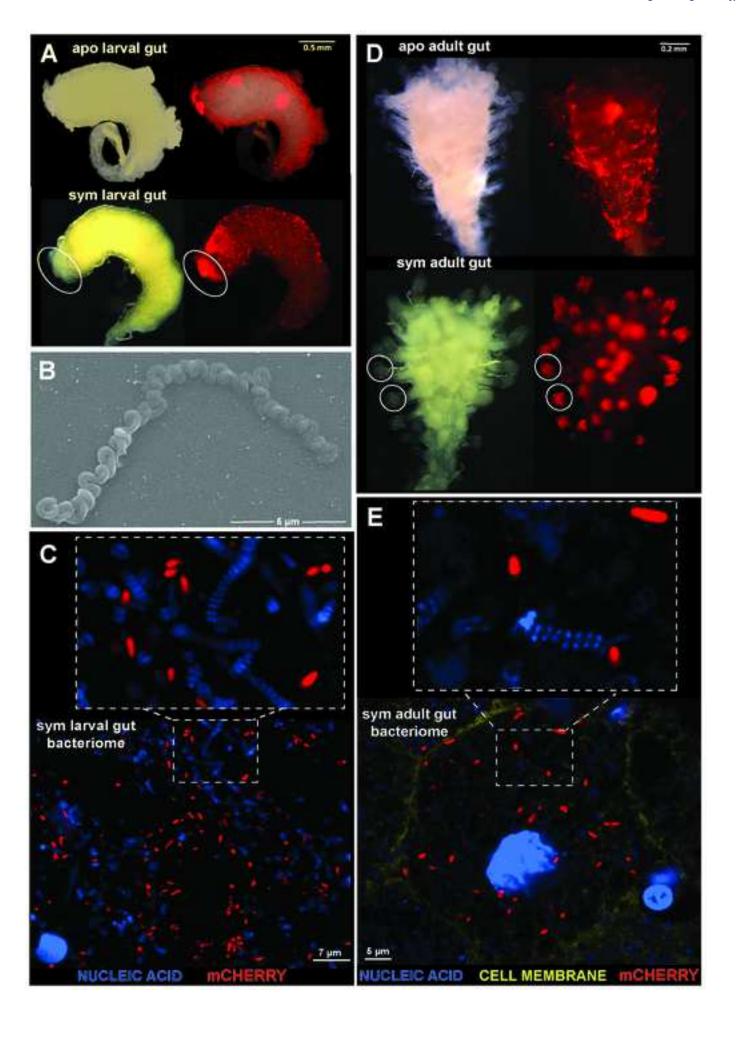
- 1431 87. Balleza, E., Kim, J. M., & Cluzel, P. (2018). Systematic characterization of
- maturation time of fluorescent proteins in living cells. Nat. Methods 15, 47-51.

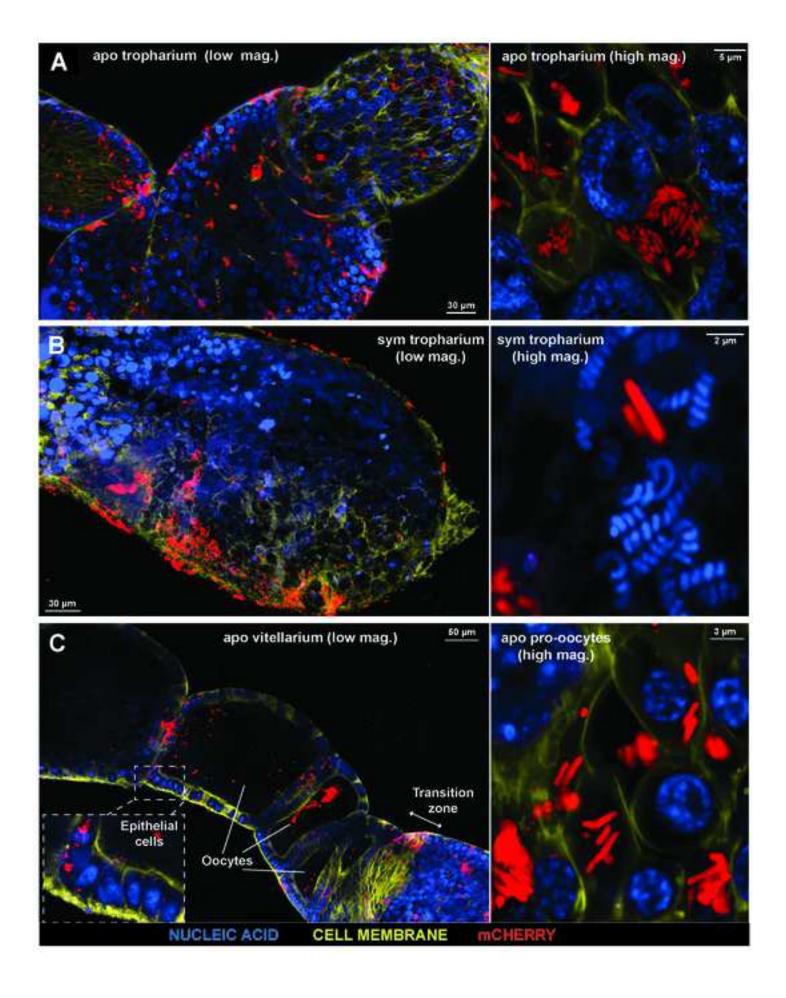
1433

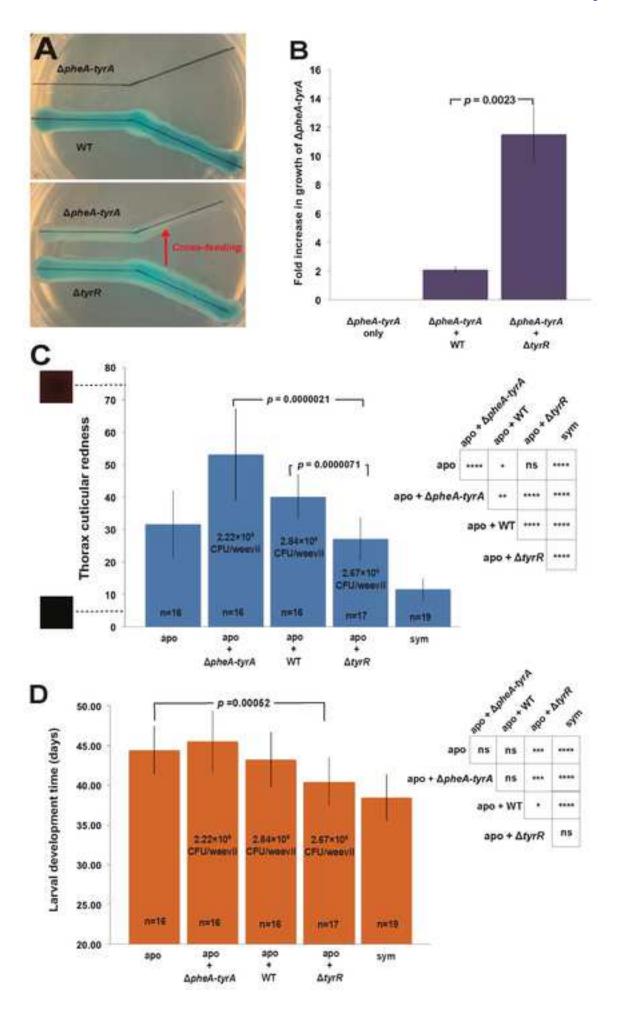
- 1434 88. Kiernan, J.A. (2007). Indigogenic substrates for detection and localization of
- enzymes. Biotech Histochem 82, 73-103.


- 1437 89. Ojo, J. A., and Omoloye, A.A. (2016). Development and Life History Of
- 1438 Sitophilus zeamais (Coleoptera: Curculionidae) on Cereal Crops. Adv Agric.
- 1439 *2016*, 1–8.


1440	
1441	90. Frankenfeld, J.C. (1948). Staining Methods for Detecting Weevil Infestation in
1442	Grain, U.S. Department of Agriculture, Bureau of Entomology and Plant
1443	Quarantine. http://ufdc.ufl.edu/AA00023165/00001.
1444	
1445	91. Rubin, G.M., and Spradling, A.C. (1982). Genetic transformation of
1446	Drosophila with transposable element vectors. Science, 218, 348-353.
1447	
1448	92. Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov,
1449	A.S., Lesin, V.M., Nikolenko, S.I., Pham, S., Prjibelski, A.D., et al. (2012).
1450	SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell
1451	Sequencing. J. Comput. Biol. 19, 7.
1452 1453	
1454	


KEY RESOURCES TABLE


SOURCE	IDENTIFIER	
OOOROL	IDENTIFICATION IDENTIFICATION	
ATCC	BAA-2554	
	CD 2555	
36	CD 101	
This naner	CD 1663	
	CD 1987	
	CD 1728	
	CD 1993	
	CD 2131	
	CD 1991	
	CD 708	
	CD 1989	
i ilis paper	CD 2565	
LICDA Marshattan	NI/A	
	N/A	
*		
area/mnk/cganr/		
T	N. 1.4 A	
N/A	N/A	
T 04	T	
04	N/A	
N/A	https://www.	
	adobe.com/p	
	roducts/illust	
	rator.html	
N/A	https://imaris	
	.oxinst.com/i	
	maris-viewer	
N/A	https://www.	
	geneious.co	
	m	
N/A	https://jgi.do	
	e.gov/data-	
	and-	
	tools/bbtools	
	/bb-tools-	
	user-guide/	
	This paper N/A N/A N/A N/A	


Image J 1.53a	N/A	https://image
		j.nih.gov/ij/

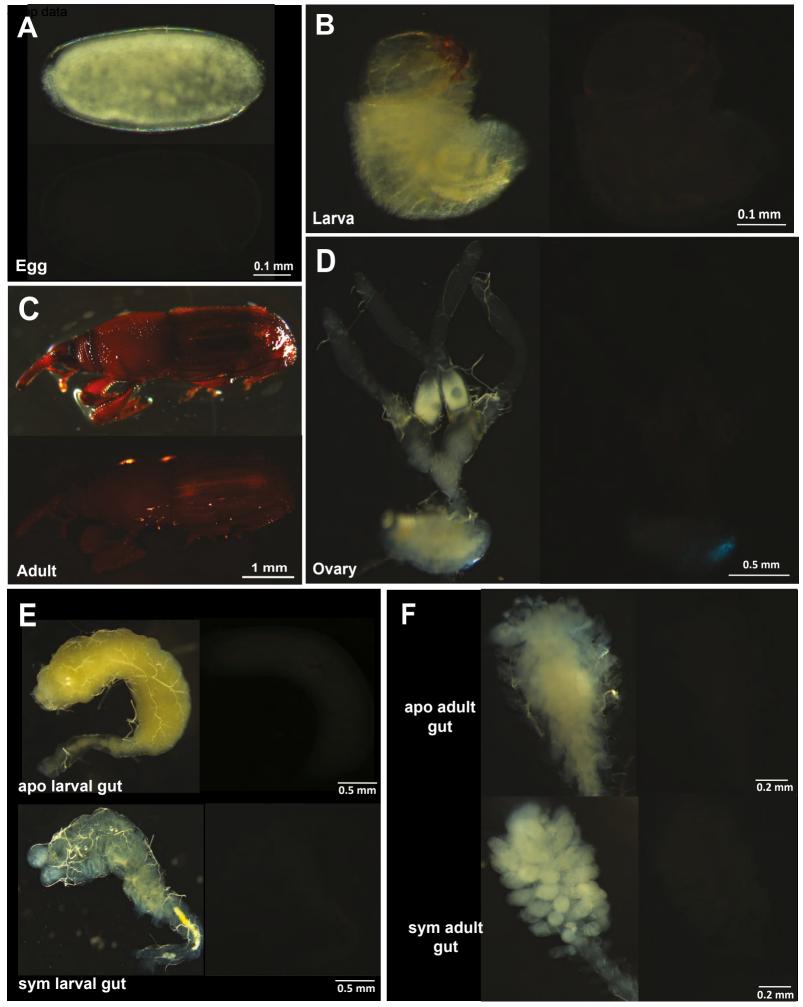


Figure S1: Imaging of uninjected weevils, showing absence of mCherry fluorescence, related to Figure 1 and Figure 3. Panels A-F were captured under normal light (left or upper) and under mCherry fluorescence (right or lower), employing identical light energy and imaging parameters to those used in Figure 1. (A) Aposymbiotic weevil egg (1 day old). (B) Aposymbiotic weevil 1st instar larva. (C) Aposymbiotic weevil adult (D) Aposymbiotic weevil ovary (E) Aposymbiotic (apo) and symbiotic (sym) larval guts. (F) Aposymbiotic (apo) and symbiotic (sym) adult guts.

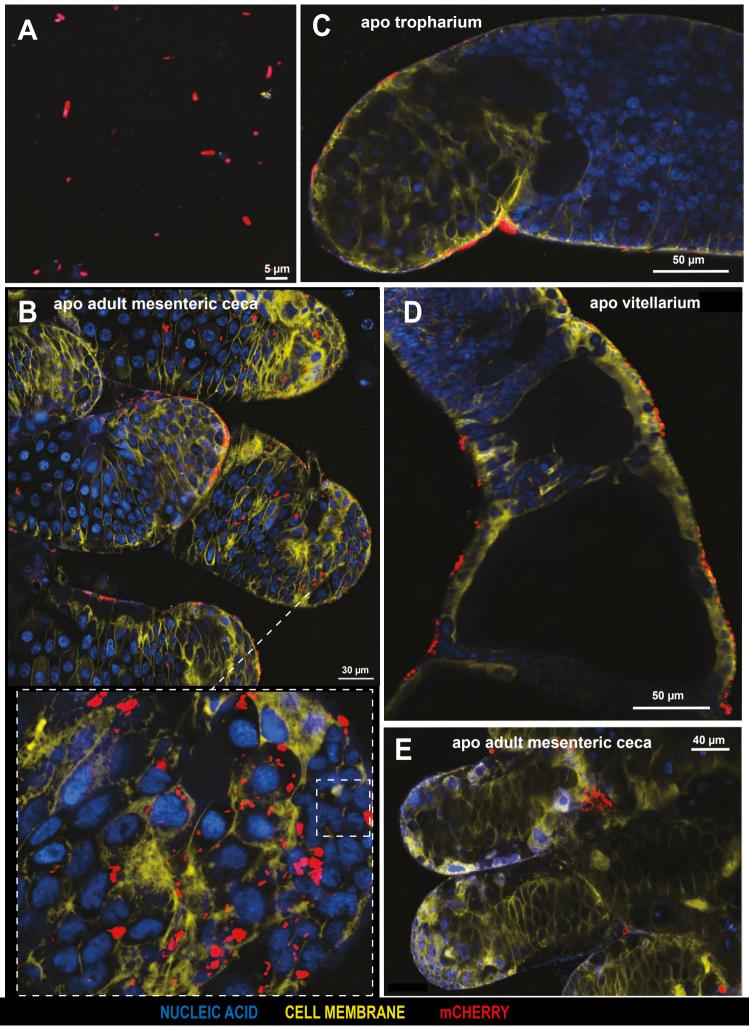
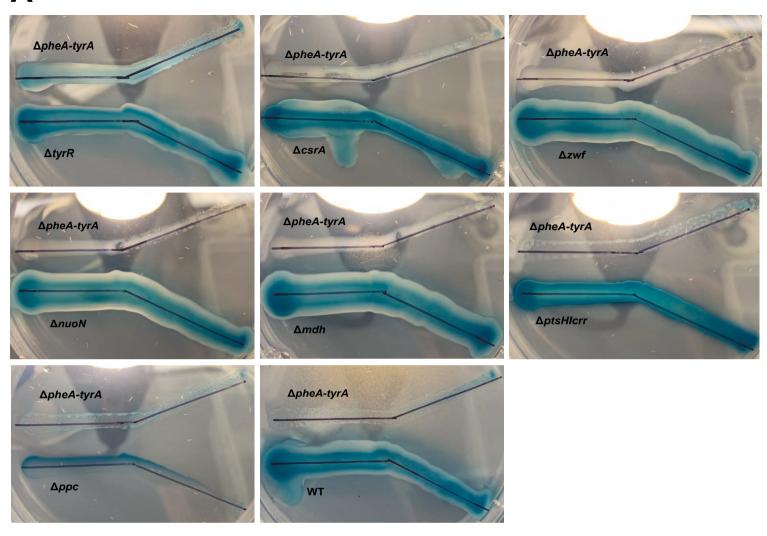



Figure S2: Confocal imaging of Sodalis praecaptivus MC1 expressing mCherry (red) in aposymbiotic Sitophilus zeamais, related to Figure 3 and Figure 4. (A) Hemolymph isolated from adult S. zeamais following leg removal. (B) Mesenteric ceca from a newly emerged adult weevil obtained from parents injected with S. praecaptivus MC1 at egg stage. The inset image (lower) is zoomed and enhanced in contrast. (C) Tropharium visualized at 21 days following injection of an adult weevil with S. praecaptivus MC1. (D) Vitellarium visualized at 21 days following injection of an adult weevil with S. praecaptivus MC1. (E) Gut mesenteric ceca visualized at 21 days following injection of an adult weevil with S. praecaptivus MC1.

Α

В

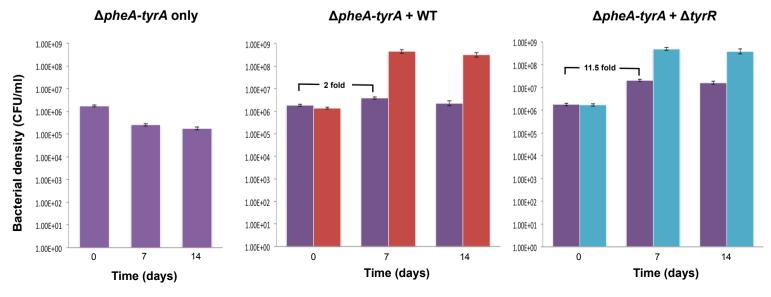


Figure S3: Tyr/Phe cross-feeding experiments, related to Figure 5. (A)

Outcome of cross-feeding assays performed on minimal medium for 12 days with seven candidate Tyr/Phe overproducing *S. praecaptivus* mutant strains ($\Delta tyrR$, $\Delta nuoN$, $\Delta csrA$, Δppc , $\Delta ptsHlcrr$, Δzwf and Δmdh) and a WT control. Each strain was streaked adjacent to a $\Delta pheA-tyrA$ *S. praecaptivus* strain that is auxotrophic for Tyr and Phe and requires cross-feeding for growth. (**B**) Pairwise liquid cross-feeding assays in minimal medium. The auxotrophic $\Delta pheA-tyrA$ strain shows significant growth increase only in the presence of the $\Delta tyrR$ overproducer.

Modification target	Step 1.1F	Step 1.1R	Step 1.2F	Step 1.2R	Step 3F & Verification PCR F	Step 3R & Verification PCR R	Anticipated size
MC1	#2287: aagtcacacgctcacaccag	#2286: GTTTATAAGGAGACACTTTATGTTTAAGAAGacgtg gttgcacgtaaatga	#2289: CTTTTGGAGGGGCAGAAAGATGAATGACTGTCtt gaccgagacagctcattg	#2290:tcagcatcgcagtcttcatc	#2287: aagtcacacgctcacaccag	#2290:tcagcatcgcagtcttcatc	2kbp
ΔpheAtyrA	#1155:agggcgcgttttatattgaca	cctttcacgcca	#1593: TGATATCGACCCAAGTACCGCCACCTAAagccttgt caacctcatcga	#1594:gaaagccatatccatgccgg	#1155:agggcgcgttttatattgaca	#1594:gaaagccatatccatgccgg	1.6kbp
ΔtyrR	#1921:ttgctgggccagttaaaatc	#1922: GGGTTCGTGCCTTCATCCGTTTCCACGGTgatcgt acgcgacaccagta	#1925:TTTTATTATTTTTTAAGCGTGCATAATAAGaat atggtttgagcggcaag	#1926:gcaggatagacggtggaca	#1921:ttgctgggccagttaaaatc	#1926:gcaggatagacggtggaca	1.1kbp
Δzwf	#1934: gcgcgatatttttgacgttt	#1935:GGGTTCGTGCCTTCATCCGTTTCCACGG Ttgatacaacgagggcaacaa	#1937: TTTTATTATTTTTAAGCGTGCATAATAAGggtcgtgga atgagttcgag	#1938: gcgctggttttccagttatt	#1934: gcgcgatatttttgacgttt	#1938: gcgctggttttccagttatt	1.6kbp
ΔptsHlcrr	#1928:aggacgagtatcgcctacga	#1929:GGGTTCGTGCCTTCATCCGTTTCCACGG Tcgcttttgccattagaggtc	#1931: CTTTTATTATTTTTAAGCGTGCATAATAAGaacgata acggcgctcaat	#1932: gattacccgcaaagtgctgt	#1928:aggacgagtatcgcctacga	#1932: gattacccgcaaagtgctgt	1.7kbp
Δmdh	#1940: ttaggcgatgcctttatgct	#1941: GGGTTCGTGCCTTCATCCGTTTCCACGGTtacag cgagagttccccatc	#1943:TTTTATTATTTTTAAGCGTGCATAATAAGtgg gtatcctcagcgacttc	#1944: ggcggctgtgattataaagg	#1940: ttaggcgatgcctttatgct	#1944: ggcggctgtgattataaagg	1.6kbp
Δρρς	#1946:gttggcaattgacgaacctt	gcatctttaatcgt	#1949: CTTTTATTATTTTTAAGCGTGCATAATAAGcgggcat gcgtaacacag	#1950: gacgacacttcatcctgacg	#1946:gttggcaattgacgaacctt	#1950: gacgacacttcatcctgacg	1.6kbp
ΔnuoN	#1628: gacgccggttccactatttc	#1629: TGGCAATTCCGGTTCGCTTGCTGTCCATAtgataa agtggttgcgtcgc	#1630: TCTATCGCCTTCTTGACGAGTTCTTCTGAtactgat ctcctcgctgctg	#1631: gaggactattctcgccgga	#1628: gacgccggttccactatttc	#1631: gaggactattctcgccgga	1.2kbp
ΔcsrA	#623:ggccgcaaaactctgagtag	#624: TGTCAAGAATAAACTCCCACATGGATTCGagtcgg gtctctcagtttcc	#625: TTGATATCGACCCAAGTACCGCCACCTAAgatccct tttcagcgccttg	#626: aacttgcgcagattggcag	#623:ggccgcaaaactctgagtag	#626: aacttgcgcagattggcag	1.5kbp
	Note: Note:						
		Bases presented in lower case are h	10.				
		Bases presented in upper case are homol	ů i				

Table S1: Oligonucleotides for the construction of *S. praecaptivus* mutants, related to STAR Methods.

Oligonucleotides	Source	Identifier
#127:gctattggtcgagcgttttacc	25	N/A
#128:cggcatcacatggtaatagc	25	N/A
#2287: aagtcacacgctcacaccag	This paper	N/A
#2286:gtttataaggagacactttatgtttaagaagacgtggttgcacgtaaatga	This paper	N/A
#2289:cttttggaggggcagaaagatgaatgactgtcttgaccgagacagctcattg	This paper	N/A
#2290:tcagcatcgcagtcttcatc	This paper	N/A
#2272:cttcttaaacataaagtgtctc	This paper	N/A
#2273:gacagtcattcatctttctgc	This paper	N/A
#1155:agggcgcgttttatattgaca	This paper	N/A
#1156:tgtcaagaataaactcccacatggattcgattggttacctttcacgcca	This paper	N/A
#1593:tgatatcgacccaagtaccgccacctaaagccttgtcaacctcatcga	This paper	N/A
#1594:gaaagccatatccatgccgg	This paper	N/A
#1921:ttgctgggccagttaaaatc	This paper	N/A
#1922:gggttcgtgccttcatccgtttccacggtgatcgtacgcgacaccagta	This paper	N/A
#1925:ttttattatttttaagcgtgcataataagaatatggtttgagcggcaag	This paper	N/A
#1926:gcaggatagacggtggaca	This paper	N/A
#1934:gcgcgatatttttgacgttt	This paper	N/A
#1935:gggttcgtgccttcatccgtttccacggttgatacaacgagggcaacaa	This paper	N/A
#1937:ttttattatttttaagcgtgcataataagggtcgtggaatgagttcgag	This paper	N/A
#1938:gcgctggttttccagttatt	This paper	N/A
#1928:aggacgagtatcgcctacga	This paper	N/A
#1929:gggttcgtgccttcatccgtttccacggtcgcttttgccattagaggtc	This paper	N/A
#1931:cttttattatttttaagcgtgcataataagaacgataacggcgctcaat	This paper	N/A
#1932:gattacccgcaaagtgctgt	This paper	N/A
#1940:ttaggcgatgcctttatgct	This paper	N/A
#1941:gggttcgtgccttcatccgtttccacggttacagcgagagttccccatc	This paper	N/A
#1943:ttttattatttttaagcgtgcataataagtgggtatcctcagcgacttc	This paper	N/A
#1944:ggcggctgtgattataaagg	This paper	N/A
#1946:gttggcaattgacgaacctt	This paper	N/A
#1947:gggttcgtgccttcatccgtttccacggtcccatcgcatctttaatcgt	This paper	N/A
#1949:cttttattatttttaagcgtgcataataagcgggcatgcgtaacacag	This paper	N/A
#1950:gacgacacttcatcctgacg	This paper	N/A
#1628:gacgccggttccactatttc	This paper	N/A
#1629:tggcaattccggttcgcttgctgtccatatgataaagtggttgcgtcgc	This paper	N/A
#1630:tctatcgccttcttgacgagttcttctgatactgatctcctcgctgctg	This paper	N/A
#1631:gaggactattctcgccgga	This paper	N/A
#623:ggccgcaaaactctgagtag	This paper	N/A
#624:tgtcaagaataaactcccacatggattcgagtcgggtctctcagtttcc	This paper	N/A
#625:ttgatatcgacccaagtaccgccacctaagatcccttttcagcgccttg	This paper	N/A
#626:aacttgcgcagattggcag	This paper	N/A

Table S2: Oligonucleotides used in this study, related to STAR Methods.

Supp video

Click here to access/download **Supplemental Videos and Spreadsheets**Supplementary video.MP4