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Figure 1: A multimaterial dataset is typically represented by a multivariate function defined on the cells of a cubical grid. In this paper,

we use a bijel simulation dataset composed of oil and water with the addition of particles animated with the fluid to study the fluid-particle

interactions. (a) Cells of the discrete domain can either contain oil (red), water (blue), or a mix of the two. Particles in the simulation, depicted

as gray spheres, influence the formation of the bijel. Multimaterial interface reconstruction is a well-known problem in multimaterial analysis

which involves M (b) Identifying the surface separating the two materials. To analyze the characteristics of a multimaterial domain scientists

need geometric structures beyond the interface. One of these is the medial axes, (c) here representing the topological skeletons of the oil (red)

and water (blue) components.

Abstract

Multimaterial interface reconstruction has been investigated over the years both from a visualization and analytical point of

view using different metrics. When focusing on visualization, interface continuity and smoothness are used to quantify interface

quality. When the end-goal is interface analysis, metrics closer to the physical properties of the material are preferred (e.g.,

curvature, tortuosity). In this paper, we re-evaluate three Multimaterial Interface Reconstruction (MIR) algorithms, already

integrated in established visualization frameworks, under the lens of application-oriented metrics. Specifically, we analyze

interface curvature, particle-interface distance, and medial axis-interface distance in a time-varying bijel simulation. Our

analysis shows that the interface presenting the best visual qualities is not always the most useful for domain scientists when

evaluating the material properties.

CCS Concepts

• Computing methodologies → Volumetric models; • Human-centered computing → Scientific visualization;

1. Introduction

An important component of multi-material simulation analysis is

the computation of its interface. Intuitively, reconstructing a multi-

material interface means to construct a surface M that separates ma-

terials within each cell of the domain. Studying the shape, topology,

and cavities of the interface allows to derive important information
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about the material under study [MTB∗19]. To this end, Material In-

terface Reconstruction (MIR) algorithms has received a consider-

able amount of attention in computational physics [Cam21], com-

puter graphics [AGDJ08], scientific visualizations [AGDJ10], and

material science [WLWH12].

However, approaches developed by different communities have

been evaluated with different criteria. Broadly speaking, we

can classify MIR techniques as either simulation-oriented or

visualization-oriented. The firsts focus on the physical properties

such as mass convergence and volume conservation [NP17]. The

seconds focus on the quality of the produced mesh [OCHJ12], or

memory consumption and run time performance [MC10].

This paper provides two novelties in the analysis of MIR algo-

rithms. First, we provide an application-oriented evaluation of sev-

eral MIR algorithms integrated in existing scientific visualization

frameworks (e.g., Visit [Chi12], ParaView [Aya15]). Second, we

analyze the results consistency by considering the full time-varying

evolution of the surface rather than a single time step.

2. Background and Related Work

Multimaterial analysis generally starts from a simulation method

used to create a discrete multimaterial description. In this work we

used a Lattice Boltzmann Method (LBM), a relatively new simu-

lation technique that can be seen as a mixture of particle-based

(e.g., Lagrangian [GM77]), and mesh-based approaches (e.g. Eu-

lerian [TP03]). LBM is often used in porous media simulations due

to its ability to capture complex boundaries, and microscopic in-

teractions [JH11]. The output of a LBM model is a multivariate

function f : D −→ R, defined on the cells of a cubical grid D.

Given f , Multimaterial Interface Reconstruction (MIR) is to

compute a mesh M describing the material boundaries. Ideally,

we subdivide each cell of D such that the total volume of each

material within the cell equals the materials volume fraction. The

difference between the original materials volume fraction and the

volumes obtained by subdividing the cell according to M de-

fines the volume fraction accuracy [MC10]. The most straightfor-

ward way to reconstruct the interface from f is by isocontouring

[JH11, RST16, MTB∗19]. In a two-material scenario [MC10] this

means computing an isosurface within cells that have 0.5 volume

fraction for each material. Since isocontouring can produce gaps

and artifacts, especially on domains with more than two materials,

the Simple Line Interface Calculation (SLIC) method [NW76] was

introduced, which uses a moving window around each cell to fill

the gaps left by the contour extraction. In the 2D case, gaps are

filled up by either a horizontal or vertical plane.

To improve the geometric quality of the reconstructed interface,

Piecewise Linear Interface Calculation (PLIC) methods generalize

the SLIC approach by allowing lines/planes with arbitrary orienta-

tions defined based on the finite-difference on the volume fraction

grid [HN81], the gradient of the volume fraction grid [You84], or

by solving a least square problem [Puc91]. SLIC and PLIC methods

have the advantage of speed and simplicity. The drawback is that

they compute independent geometries for each material, which are

generally disconnected, and reconstructing an interface with cor-

rect topology is a challenging problem [MC10,AGDJ10]. Meredith

et al. [Mer05,MC10] addressed this problem by averaging fractions

on cell corners and intersecting the cell edges where the material

fractions are equal. Anderson et al. [AGDJ08,AGDJ10] introduced

the idea to subdivide cells based on the material fractions. This ap-

proach can guarantee bounded errors for the reconstructed surface

but has the disadvantage of being memory and time-consuming.

Higher-order approaches have also been investigated like the

agorithm by Prilepov et al. [POD∗13] which presents a gradient-

based method capable of capturing complex interface topology

[POD∗13]. More recently, a higher-order method was proposed

which constructs cumulative integrals with nth-order B-splines over

the interface [Cam21]. Like other methods focusing on synthetic

data [OS88, Kaz13] this approach is computationally too complex

to be usable on real scientific simulations yet.

3. MIR Algorithm comparison

We compare three MIR algorithms widely adopted in the visual-

ization community, namely, EquiT and EquiZ both proposed by

Meredith et al. [Mer05], and Discrete proposed by Anderson et

al. [AGDJ08]. All these methods are implemented in the VisIt

framework. Notice that PLIC [You84] is provided by both Par-

aview [Aya15] and VisIt [Chi12]. Here we do not include PLIC

in our analysis since it does not provide an interface as output. The

evaluation uses a time-varying simulation of a bicontinuous interfa-

cially jammed emulsion gel [JH11]. Volume fraction data are pro-

duced for 28 snapshots taken periodically for every 105 time steps

in a 2563 cube (see Figure 1a). Since Discrete required more than

64GB of memory (the limit for our system) to reconstruct the inter-

face on the original dataset, we cropped the original dataset at its

center within a 1283 window. The interface quality is evaluated us-

ing four different metrics related to geometric characteristics of the

multimaterial [JH11, MTB∗19], namely interface’s Gaussian and

Mean curvature, particles to interface distance, and medial axis to

interface distance.

3.1. Evaluating interfaces with curvature estimators

Surface curvature is the most broadly used property in mesh qual-

ity estimation. Surface curvatures are defined based on two prin-

cipal curvatures, k1 and k2, which indicate how the surface bends

in the two principal directions at that point. The Gaussian curva-

ture is defined as the product of the two principal curvatures, while

Mean curvature is the average value of the two [HEZ∗19, Por94].

Gaussian and Mean curvature values are generally estimated at the

vertices of a mesh [Por94]. This operation can be challenging in the

presence of non-manifold vertices. In our evaluation, we used the

approach proposed by Cohen et al. [CSM03], which estimates the

curvature in a small neighborhood of a given vertex.

We computed Mean and Gaussian curvature on the interfaces

extracted from all 28 snapshots by each of the three methods.

For each interface, we analyzed the obtained curvature values by

evenly sampling 10000 points on the interface. Bijels-derived struc-

tures captured the interest of material scientists due to their re-

semblance to minimal surface structures, which possess the opti-

mal overall transport properties [GBB∗09, LM10]. Ideally, a min-

imal surface structure should have zero Mean curvature and nega-
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